CONTENTS

ONE INTRODUCTION
A Brief History
A Brief Introduction to the Technology of Aeronautics

TWO FLUID MECHANICS
Fluid Statics and the Atmosphere
Fluid Dynamics
Conservation of Mass
The Momentum Theorem
Euler's Equation of Motion
Bernonili’s Equation
Determination of Free-Stream Velocity
Determination of True Airspeed
Potential Flow
Velocity Potential and Stream Function
Elementary Flow Functions
Vortex
Source
Biot-Savart Law
The Calculation of Flows for Well-Defined Body Shapes
The Circular Cylinder
The Numerical Calculation of Potential Flow Around Arbitrary Body
Shapes

THREE THE GENERATION OF LIFT
Wing Geometry
Airfoils
Airfoil Families
NACA Four-Digit Series
NACA Five-Digit Series
NACA 1-Series (Series 16}
NACA 6-Series
' Modern Airfoil Developments
Prediction of Airfoil Behavior
Maximum Lift
Flaps
Plain Flaps
Split Flaps
Slotted Flaps

LY =2

16
16
2

29
3
13
35
36
38
39
42
43

45
47
51

54

61
61
63
72
72
72
74
74
76
82
93
95

100



CONTENTS

ONE INTRODUCTION
A Bnef History
A Brief Introduction to the Technology of Aeronautics

TWOC FiLUID MECHANICS
Fluid Statics and the Atmosphere
Fluid Dynamics
Conservation of Mass
The Momentum Theorem
Euler’s Equation of Motion
Bernoulli’s Equation
Determination of Free-Stream Velocity
Determination of True Airspeed
Potential Flow
Velocity Potential and Stream Function
Elementary Flow Functions
Vorlex
Source
Biot-Savart Law
The Calculation of Flows for Well-Defined Body Shapes
The Circular Cylinder
The Numerical Calculation of Potential Flow Around Arbitrary Body
Shapes

THREE THE GENERATION OF LIFT
Wing Geometry
Airfoils
Airfoil Families
NACA Four-Digit Series
NACA Five-Digit Series
NACA 1-Series (Series 16)
NACA 6-Series
Modern Airfoil Developments
Prediction of Airfoil Behavior
Maximum Lift
Flaps
Piain Flaps
Split Flaps
Slotted Flaps

16
16
22
26
29
31
33
35
36
38
39
42
43

45
47
51

54

61
61
63
72
72
2
74
74
76
82
93
835

100



Xii  CONTENTS

Flap Effectiveness in the Linear Range
Leading Edge Devices
The Optimum Airfoil for High Lift
Powered-Lift Systems
The Lifting Characteristics of a Finite Wing
The Vortex System for a Wing
The Maximum Lift of a Finite Wing
Effect of Fuselage on Cr,,,
Effect of Trim on .y,
Estimation of C;_,,, for a Complete Airplane Configuration
Airfoil Characleristics at Low Reynolds Numbers

FOUR DRAG
Skin Friction Drag
Form Drag
Drag of Streamlined Shapes
Interference Drag
Induced Drag
Calculation of Induced Drag
Effective Aspect Ratio
Drag Breakdown and Equivalent Fiat-Plate Aren
Drag Counts
Average Skin Friction Coefficients
Example Estimates of Drag Breakdown
Trim Drag
Caoling Drag
Drag Reduction
Winglets
Reduction of Skin Friction Drag
Drag Cleanup
Total Airplane Drag

FIVE LIFT AND DRAG AT HIGH MACH NUMBERS
Qualitative Behavior of Airfoils as a Function of Mach Number
Subsonic Flow at High Mach Numbers
Fundamentals of Gas Dynamics
One-Dimensional Isentropic Flow
Normal Shock Waves
Oblique Shock Waves
Expansion Waves
Transonic Airfoils
Supersenic Airfoils
Linearized Compressible Potential Flow
Subsonic Flow
Supersonic Flow (Ackeret Theory)
Three-Dimensional Wings
Characteristics of Sweptback Wings
Deita Wings

109
i13
117
120
130
131
140
144
146
148
151

162
163
168
176
181
185
186
194
196
196
197
199
203
206
214
215
221
23
232

237
237
238
244
244
248
253
258
261
266
271
272
274
279
281
294

CONTENTS

Supersonic Wings
Subsonic Leading Edges
Supersonic Leading Edges
Effect of Mach Number on the Zero Lift Drag of Two- and Three-
Dimensional Shapes
Area Rule for Transonic Flow

SiIX THE PRODUCTION OF THRUST
A Brief History of the Piston Engine
Piston Engine Characteristics
Supercharged Engines
Propeller Analysis
Momentum Theory
Blade Element Theories
Momentum-Blade Element Theory
Vortex Theory
Practical Use of Propeller Charts
Approximate Useful Relationships for Propellers
Propeller Selection
Design of a New Propeller
A Brief History of the Turbojet
Description of the Gas Turbine Engine
Engine Ratings
Flat Rating
Some Considerations Relating to Gas Turbine Performance
Qualitative Comparison of the Performance of Turbojet, Turbofan, and
Turboprop Engines
Specific Engine Characteristics and Performance
Turbojet
Turbofan
Turboprop
Installation Losses
Trends in Aircraft Propulsion

SEVEN AIRPLANE PERFORMANCE

Takeoff
Ground Roll
Effect of Wind
Airborne Distance
Balanced Field Length

Rate of Climb, Time to Climb, and Ceilings
Generalized Power-Required Curve
Time to Climb

Range

Maximum Endurance

Descent

Landing

Xifi

303
304
309

315
321

332
332
333
339
343
343
347
349
35
359
364
366
368
370
371
377
378
378

382
385
385
398
405
411
411

418
418
419
425
427
431
432
438
439

447



xiv  CONTENTS CONTENTS XV

Airborne Distance 450 Directional Static Stability 524
Ground Rol! 451 Directional Control 526
Range Payload 452 Lateral Control 528
Operating Limitations 460 Adverse Yaw 534
Flight Envelope 460 Roll Control by the Use of Spoilers 534
Marneuvering Envelope (V-n Diagram) 463 Aileron Reversal 337
Gust Load Factors 466 Steady Rolling Motion 538
Energy Methods for Optimal Trajectories 468 Coupling Effects 541
The Art of Estimating and Scaling 471 Rolling Moment with Rudder 541
Rolling Moment with Yaw Rate 542
' Yawing Moment with Roll Rate 543
EIGHT STATIC STABILITY AND CONTROL 477 Rolling Moment with Sideslip Angle-—Dihedral Effect 543
Introduction 477
Coordinate System—Forces, Moments, and Velocities 478 NINE LONGITUDINAL DYNAMIC STABILITY AND CONTROL 352
Longitudinal Static Stability 479 Equations of Motion 552
Stick-Fixed Stability 479 Linearization of the Equations 556
Stick-Fixed Neutral Point and Static Margin 481 A Summery Look at the Stability Derivatives and Other Parameters
Cw,, and Aerodynamic Center Location for a Finite Wing 484 Affecting Longitudinal Dynamic Motion 561
Downwash Angle 486 X Derivatives and Parameters 561
Longitudinal Control 488 Z Derivatives and Parameters 563
Control Position as a Function of Lift Coefficient 438 M Derivatives and Parameters 564
All-Movable Tail 489 Examination and Reduction of Equations of Longitudinal Motion 565
Stabilizer-Elevator 489 Solution of nth-Order Linear Differential Equations with Constant
Stabilator 491 Coefficients 565
Control Forces 401 Mode Shapes 565
Gearing 492 Phugoid (Long-Period Mode) 574
Stick Force for A Stabilator 493 Short-Period Mode 576
Stick Force for a Horizontal Stabilizer-Elevator Combination 494 Solution of the Longitudinal Equations of Motion Using an Analog
Estimation of Aerodynamic Hinge Moments 495 Computer 576
Example Calculation of Stick Force 502 Longitudinal Flying Qualities 585
Stick-Free Longitudinal Static Stability 505 Phugoid Mode 586
Elevator-Stabilizer Configuration 505 Flight Path Stability 587
Stabilator Configuration 506 Short Period Mode 587
Stick-Free Static Margin 508
Steady Maneuvering 508 TEN [LATERAL-DIRECTIONAL DYNAMIC STABILITY AND
Horizontal Stabilizer-Elevator Configuration: Elevator Angle per g 509 CQNTROL . 391
Stabilator Angle per g 512 Equations of Motion 591
Stick Force per g 512 Euler Angles ) 594
Stabilizer-Elevator Configuration 512 Reduction of the Lateral-Directional Equations of Motion 595
Stabilator 513 A Summary Look at the Stability Derivatives and Other Parameters
Effect of Fuselage and Nacelles 513 Affecting Lateral-Directional Dynamic Motion 596
Effects of Propulsion System 515 ¥ Derivatives 596
Propeilers 515 Cv, 397
Jets 571 Cvﬁ 597
Ground Effect 573 Y; 598
Lateral and Directional Static Stability and Controt 524 Cvs, 600




xvi CONTENTS

[ Derivatives

C,

Is
N Derivatives
Ty
Cn,
Cn;
Crs,
Crs,
Lateral-Directionai Equations for the Cherokee 180
Mode Shapes
Roll Mode
Spiral Mode
Oscillatory or '‘Dutch Roll” Mode
Lateral Directional Flying Qualities
Roll Mode
Dutch Roll Mode
Spiral Stability
Spinning

APPENDIX A1 THE Si SYSTEM
APPENDIX A.2 STANDARD ATMOSPHERE

APPENDIX A.3 AIRPLANE DATA

APPENDIX A.4 NOMENCLATURE AND ABBREVIATIONS

INDEX

600
600
601
602
603
603
604
604
604
604
605
605
603
606
606
607
609
610
611
612
612
613

621
624
629

640

649

AERODYNAMICS, AERONAUTICS, AND FLIGHT MECHANICS



ONE
INTRODUCTION

Aceronautics is defined as “the science that treats of the operation of
aircraft, also, the art or science of operating aircraft.” Basically, with
aeronautics, one is concerned with predicting and controlling the forces and
moments on an aircraft that is traveling through the atmosphere.

A BRIEF HISTORY

Thursday, December 17, 1903
“When we got up a wind of between 20 and 25 miles was blowing from the
north. We got the machine out early and put out the signal for the men at the
station. Before we were quite ready, Johr T. Daniels, W. S. Dough. A. D.
Etheridge, W. C. Brinkly of Manteo, and Johnny Moore of Nags Head arrived.
After running the engine and propeliers a few minutes to get them in working
order, I got on the machine at 10:35 for the first trial. The wind, according to
our anemometers at this time, was blowing a little over 20 miles (corrected) 27
miles according to the government anemometer at Kitty Hawk. On slipping the
rope the machine started off increasing in speed to probably 7 or 8 miles. The
machine lifted from the truck just as it was entering the fourth rail. Mr.
Daniels took a picture just as it left the tracks. I found the control of the front
rudder quite difficult on account of its being balanced too near the center and
thus had a tendency to turn itself when started so that the rudder was turned
too far on one side and then too far on the other. As a result the machine
would rise suddenly to about 10fi. and then as suddenly, on turning the
rudder, dart for the ground. A sudden dart when out about 100 feet from the
end of the tracks ended the flight. Time about 12 seconds (not known exactly
as watch was not promptly stopped). The level for throwing off the engine was
broken, and the skid under the rudder cracked. After repairs, at 20 min. after
11 o’clock Will made the second trial.”

The above, taken from Orvilie Wright’s diary, as reported in Reference
1.1, describes mankind’s first sustained, controlled, powered flight in a
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2 INTRODUCTION

Figure 1.1 The first flight, December 17, 1903. (Courtesy of the National Air and
Space Museum, Smithsonian Institution.)

heavier-than-air machine. The photograph, mentioned by Orville Wright, is
shown here as Figure 1.1. Three more flights were made that morning. The
last one, by Wilbur Wright, began just at 12 o’clock and covered 260 m in 59 s.
Shortly after this flight, a strong gust of wind struck the airplane, turning it
over and over. Although the machine was severely damaged and never flew
again, the Wright Brothers achieved their goal, begun approximately 4 yr
carlier.

Their success was no stroke of luck. The Wright Brothers were painstak-
ing in their research and confident of their own results. They built their own
wind tunnel and tested, in a methodical manner, hundreds of different airfoil
and wing planform shapes. They were anything but a ‘“‘couple of bicycle
mechanics.” Their letters to Octave Chanute, a respected civil engineer and
aviation enthusiast of the day, reveal the Wright Brothers to have been
learned men well versed in basic concepts such as work, energy, statics, and
dynamics. A three-view drawing of their first airplane is presented in Figure
1.2.

On September 18, 1901, Wilbur Wright was invited to deliver a lecture
before the Western Society of Engineers at a meeting in Chicago, Illinois.
Among the conclusions reached by him in that paper were:

1.98m (6.5

-

}

123 m (40.3)

~ 643 m {21.1"}

I\
\f V.

Figure 1.2 Three views of the Wright Brothers’ flyer.
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1. “That the ratio of drift to lift in well-shaped surfaces is less at angles of
incidence of five degrees to 12 degrees than at an angle of three degrees.”
(“Drift” is what we now call “drag.”)

2. “That in arched surfaces the center of pressure at %) degrees is near the
center of the surface, but moves slowly forward as the angle becomes less,
till a critical angle varying with the shape and depth of the curve is reached,
after which it moves rapidly toward the rear till the angle of no lift is
found.”

3. “That a pair of superposed, or tandem surfaces, has less lift in proportion
to drift than either surface separately, even after making allowance for
weight and head resistance of the connections.”

These statements and other remarks (see Ref. 1.1} show that the Wright
Brothers had a good understanding of wing and airfoil behavior well beyond
that of other experimenters of the time.

Following their first successful flights at Kitty Hawk, North Carolina, in
1903, the Wright Brothers returned to their home in Dayton, Chio. Two years
later they were making flights there, almost routinely, in excess of 30 km and
30 min while others were still trying to get off the ground.

Most of the success of the Wright Brothers must be attributed to their
own research, which utilized their wind tunnel and numerous experiments
with controlled kites and gliders. However, their work was built, to some
degree, on the gliding experiments of Otto Lilienthal and Octave Chanute.
Beginning in 1891, Lilienthal, working near Berlin, Germany, made ap-
proximately 2000 gliding flights over a 5-yr period. Based on measurements
obtained from these experiments, he published tables of lift and drag
measurements on which the Wright Brothers based their early designs.
Unfortunately, Lilienthal had no means of providing direct aerodynamic
control to his gliders and relied instead on kinesthetic control, whereby he
shifted his weight fore and aft and side to side. On August 9, 1896, as the
result of a gust, Otto Lilienthal lost control and crashed from an altitude of
approximately 15m. He died the next day. During 1896 and 1897, Octave
Chanute, inspired by Lilienthal's work, designed and built several gliders that
were flown by others near Miller, Indiana. Chanute recognized Lilienthal’s
control problems and was attempting to achieve an “automatic” stability in
his designs. Chanute’s principal contribution was the addition of both vertical
and horizontal stabilizing tail surfaces. In addition, he went to the “box,” or
biplane, configuration for added strength. Unfortunately, he also relied on
kinesthetic control.

When the Wright Brothers began their gliding experiments in the fall of
1900, they realized that adequate control about all three axes was one of the
major prerequisites to successful flight. To provide pitch control (i.e., nose up
or down), they resorted to an all-movable horizontal tail mounted in front of

e
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the wing. Yaw control (i.e., turning to the left or right) was accomplished by
means of an all-movable vertical tail mounted behind the wing. Their method
of roll control (i.e., lowering one side of the wing and raising the other) was
not as obvious from photographs as the controls about the other two axes.
Here, the Wright Brothers devised a means of warping their “box™ wing so
that the angle of incidence was increased on one side and decreased on the
other. The vertical tail, or rudder, was connected to the wing-warping wires so
as to produce what pilots refer to today as a coordinated turn.

The Wright Brothers were well ahead of all other aviation enthusiasts of
their era. In fact, it was not until 3 yr after their first flight that a similar
capability was demonstrated, this by Charles and Gabriel Voisin in Paris,
France (Ref. 1.2}. On March 30, 1907, Charles Voisin made a controlled flight
of approximately 100 m in an airplane similar in appearance to the Wright
flyer. A second machine built by the Voisin Brothers for Henri Farman, a
bicycle and automobile racer, was flown by Farman later that year on flights
that exceeded 2000 m. By the end of that year at least five others succeeded in
following the Wright Brothers’ lead, and aviation was on its way.

Today we are able to explain the results of the early experimenters in a
very rational way by applying well-established aerodynamic principles that
have evolved over the years from both analysis and experimentation. These
developments have their beginnings with Sir Isaac Newton, who has been
called the first real fluid mechanician (Ref. 1.3). In 1687 Newton, who is
probably best known for his work in solid mechanics, reasoned that the
resistance of a body moving through a fluid is proportional to the fluid
density, the velocity squared, and the area of the body.

Newton alse postulated the shear force in a viscous fluid to be propor-
tional to the velocity gradient. Today, any fluid obeying this relationship is
referred to as a Newtonian fluid.

In 1738, Daniel Bernoulli, a Swiss mathematician, published his treatise,
“Hydrodynamics,” which was followed in 1743 by a similar work produced
by his father, John Bernoulli. The Bernoullis made important contributions to
understanding the behavior of fluids. In particular, John introduced the
concept of internal pressure, and he was probably the first to apply momen-
tum principles to infinitesimal fluid elements.

Leonhard Euler, another Swiss mathematician, first put the science of
hydrodynamics on a firm mathematical base. Around 1755, Euler properly
formulated the equations of motion based on Newtonian mechanics and the
works of John and Daniel Bernoulli. It was he who first derived along a
streamline the relationship that we refer to today as “Bernoulli’s equation.”

The aerodynamic theories of the 1800s and early 1900s developed from
the early works of these mathematicians. In 1894 the English engineer,
Frederick William Lanchester, developed a theory to predict the aerodynamic
behavior of wings. Unfortunately, this work was not made generally known



Table 1.1 Largest Aircraft Examples Starting with the Wright Brothers

L.oadings
Designer or .
Manufacturer First Wing Gross Emply Useful Power,

a. Model Number Flight  Span,  Lcngth, Arca. Weight,  Weight, Load, Power Plant, Wing ibfhp MNumher®  Passenger Range,

b. Model Name Date ft ft n? 106016 I00ib  1XRIb nooxhpleng. BT orlb Flown  Capacity STM. Comment

Wright 12/03 403 211 s10 075 0.6 h15% l=12hp 1.47 62.50 1 L] o Canard biplane and

h. Flyer single engines
driving two
pusher
propellers.

Sikorsky/RBVZ 4/13 113 672 1,615 10,58 7.8 33 4= {0 hp .55 26,45 KO 1] 0 Biplane with

b. liya Mourcmetz traciot engings
on lower wing;
used effectively
as a bamber in
w.ow.l

Zeppelin-Slaaken 4{15 138.5 787 3,572 2.5 14.38 6.61 3 % 240 hp 5.9 M2 4 . . Riplane with one

a. VGO nose mounted
engine and two
wing-mounted
pushers.

Handley Puge 418 126 64 3000 0 15 15 4 x 275 hp 10,00 2727 n 40 1,300 Huill te bomb

a. H.P.15(V/1500) Berlin in W.W.1,
biplare with
2% 2tractor!
pusher
arrangement.

Caproni 1921¢ 98.4 76.9 7,696 502 3086 24.26 8 % 400 hp 718 190 o 100 410 Flying boat:

a. Cabl triple triplane.

b. Transaero

Junkers 11429 144.3 76.1 3,229 44.09 2R.66 15,33 2 % 400 hp 13.63 18.33 8l 30 746 Engings wing-

a. (¥38 22 B hp buried; DLH
line service from

. 1932 10 1544,
Daornter 29 157.5 1314 4,736 105.8 722 EAT Y 12 x 500 hp 2234 17.63 3 108 850  Flying boat.
a Do X
Table 1.1 (continued)
[oadings
Disigner or —
Manufucturer First Wwing Giross Empty Useful Power,

a. Model Numhber Flight Span, Length, Area, Weight, Weight, Luad, FPower Planl, Wing Ibfhp Number? Fassenger Range,

b, Model Name Date It It fl’ 10XN} 1h 106} i 1000 1h no. = hpleng. byt arlh Flown Capacity STM. Comment

Kalirin /133 1739 a9 4,887 83.78 3379 b Ao 7750 hp 17.14 15.96 1 .. &) Bomber;

a K-7 projected 120~
passenger
transport
vErSIon not
buite

Tupoley S 2067 106.5 5233 1684 92,58 2426 B3 375 hp 2233 1649 > 64r 1240 Equipped with

4. ANT-I0 PTInting press

k. Maxim Gorki and prapaganda
aerial
loudspeaker
system.

Douglas 641 212 132.3 4,285 162 5 63 4% 2,000 hp 32.67 17.50 1 . 7,700 Bomber.

a. XB-1%

{ockheed 1146 189.t 156.1 3600 184 114 0 4% 3000 hp 2097 15.23 2 158 4,700 Full deuble-deck

a. & accommoda-

b. Constitution tions,

Hughes L1447 3205 21R.5 11,450 400 248 152 8 x 3,000 hp 3493 16.67 1¥ 700 5900  Flying boat;

a. H-4{HK-1) all wood.

Convair 11/47 23 t82.5 4,772 265 140 125 6% 3,000 hp 55.53 14.72 1 40 . & wing-buried

a. XC-99 engines with
pusher
propellers; fuil
double-deck
accommada-
tions.

Bristol 9{49 20 177 5,317 290 145 145 §% 2,500 hp 54.54 14.50 1 100 5,500 8 wing-buried

a. 187 ' engines coupled

h. Brabazen | in pairs to 4
tractor
propellers.



Comment

contta-rotating

propellers.

High-wing, nose
and tail-loading

CArgo transpott;

T-tail,

Source. From F. A. Cleveland, “Size Effects in Conventional Aircraft,” J. of Afrcraft, 7(6), November-December 1970 (33rd Wright Brothers

Lecture). Reproduced with permission.

loading cargo
transport:

Bomber.

High-wing, tail

7,000 Bomber.
7,500

ST.M.
10,000
6,800

Range.

T T T e i R

Passenger
Capacity
350"

1,00

Number®
Flown
744
Sp#
SP¥

Power,
Ibthp
arlbh

3.001}
285 |
9.19
478

T.oadings

Wing
Ihftt
97,50
148,45
123.31

12200

Power Flant,
no. = hpfeng.
£ x 10,0001h
&% 13,7%Hb
4% 15,000 hp
43 41,000 Ib

Usefn]
Load,
1000
224
0.8
444.5

166

Empty
Weighl,
1000 [k
2514
320

Giross
Weight,
ILLIRE]
390
488
551.2
764.5

Wing
Area.
it
4,000
4,000
3703
6.200

T.ength.
i
153
1576
189.6
2427

Span,
f
183
185
2113
2227

Firsi
Flight
Date
4/52
61
265
68

{continued)

in series production.

Manufacturer
a. Medel Number

Designer ar
b. Modei Name

* Counting original(s), subsequent series production, and derivatives—if any.

¥ Counting pilot (Qrville Wright) and S tb of fuel.
f Turbine energy expressed in terms of gas-hp with 0.8 efficiency.

* SP
" Used mainly as freighter: 724-seat stretched version projected.

‘ Destroyed in taxi-test which resulted in unintended liftoff.
! Triple deck version.

¥ Set world record 21 Oct. 1929 with 169 onboard.
“ One ANT-20 is built with six 1100-hp engines.
* Flew only once on high-speed taxi test.

'Two in Germany; six in Japan.

b. Straloferiress

Boeing
b. Stratofortress

Tabie 1.1
4. YB-32

a. B-52(3
Antoncy

b. Antheus
Lackheed

a. O-5A

b. Galaxy

Boeing
a. An22
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until 1907 in a book published by Lanchester. By then the Wright Brothers
had been flying for 3 yr. Much of the knowledge that they had laboriousty
deduced from experiment could have been reasoned from Lanchester’s
theory. In 1894, Lanchester completed an analysis of airplane stability that
could also have been of value to the Wrights. Again, this work was not
published until 1908.

Lanchester’s wing theory was somewhat intuitive in its development. In
1918 Ludwig Prandtl, a German professor of mechanics, presented a mathe-
matical formulation of three-dimensional wing theory; today both men are
credited with this accomplishment. Prandil also made another important
contribution to the science with his formalized boundary layer concept.

Around 1917 Nikolai Ergorovich Joukowski (the spelling has been angli-
cized), a Russian professor of rational mechanics and aerodynamics in
Moscow, published a series of lectures on hydrodynamics in which the
behavior of a family of airfeils was investigated analytically.

The work of these early hydro- and aerodynamicists contributed little, if
any, to the progress and ultimate success of those struggling to fly. However,
it was the analytical base laid by Euler and those who followed him on which
the rapid progress in aviation was built.

After 1908, the list of aviators, engineers, and scientists contributing to
the development of aviation grew rapidly. Quantum improvements were
accomplished with the use of flaps, retractable gear, the cantilevered wing,
all-metal construction, and the turboiet engine. This impressive growth is
documented in Tabile 1.1. Note that in less than 10yr from the Wright
Brothers® first flight, the useful load increased from 667 N (1501b) to more
than 13,300 N (3000 Ib). In the next 10 yr, the useful load increased by a factor
of 10 and today is more than 1.78 x 10° N (400,000 Ib) for the Lockheed C-5A.

Our state of knowledge is now such that one can predict with some
certainty the performance of an airplane before it is ever flown. Where
analvtical or numerical techniques are insufficient, sophisticated experimental
facilities are utilized to investigate areas such as high-lift devices, complicated
three-dimensional flows in turbomachinery, and aerothermodynamics.

A BRIEF INTRODUCTION TO THE TECHNOLOGY
OF AERONAUTICS

Consider the airplane in steady, climbing flight shown in Figure 1.3. The
term steady means that the airplane is not accelerating; hence, all forces and
moments on the aircraft must be in balance. To be more precise, one states
that the vector sum of all forces and moments on the airplane must be zero.
To depict the angles more clearly, all forces are shown acting through the
center of gravity (cg). Although the resultant of all the forces must pass
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w

Figure 1.3 Forces and mamenis on an airplane in a steady climb.

through the center of gravity, it is not generally true that any one of the
forces, with the exception of W, must satisfy this condition.

In this figure V represents the velocity vector of the airplane’s center of
gravity. This vector is shown inclined upward from the horizontal through the
angle of climb, 8.. The angle between the horizontal and the thrust line is
denoted as 6. If this line is taken to be the reference line of the airplane, then
on¢ states that the airplane is pitched up through this angle. The angle
between the reference line and the velocity vector, 8 — 0, is referred to as the
angle of attack of the airplane. Later we will use other angles of attack
referenced to the wing geometry: thus, one must be careful in interpreting lift
and drag data presented as a function of the angle of attack.

The thrust, T, is the propelling force that balances mainly the aerody-
namic drag on the airplane. T can be produced by a propeller, a turbojet, or a
rocket engine.

The lift, L., is defined as the component of all aerodynamic forces
generated by the aircraft in the direction normal to the velocity vector, V. In
level flight this means principally the upward vertical force produced by the
wing. Generally, however, it includes the tail and fuselage forces. For exam-
ple, in landing many aircraft require a downward force on the horizontal tail
in order to trim out the nose-down pitching moment produced by the wing
flaps. This trimming force can be significant, requiring a wing lift noticeably in
excess of the airplane’s weight.

Similar to the lift, the drag, D, is defined as the component of all
aerodynamic forces generated by the airplane in the direction opposite to the

A BRIEF INTRODUCTION TO THE TECHNOLOGY OF AERONAUTICS 71

velocity vector, V. This force is composed of two principal parts, the parasite

drag and the induced drag. The induced drag is generaied as a result of

producing lift; the parasite drag is the drag of the fuselage, landing gear,
struts, and other surfaces exposed to the air. There is a fine point concerning
the drag of the wing to be mentioned here that will be elaborated on later.
Part of the wing drag contributes to the parasite drag and is sometimes
referred to as profile drag. The profile drag is closely equal to the drag of the
wing at zero lift; however, it does increase with increasing lift. This increase
is therefore usually included as part of the induced drag. In a strict sense this
is incorrect, as will become clearer later on.

W is the gross weight of the airplane and, by definition, acts at the center
of gravity of the airplane and is directed vertically downward. It is composed
of the empty weight of the airplane and its useful load. This latter weight
inclades the payload (passengers and cargo) and the fuel weight.

The pitching moment, M, is defined as positive in the nose-up direction
(clockwise in Figure 1.3) and results from the distribution of aerodynamic
forces on the wing, tail, fuselage, engine nacelles, and other surfaces exposed
to the flow. Obviously, if the airplane is in trim, the sum of these moments
about the center of gravity must be zero.

We know today that the aerodynamic forces on an airplane are the same

whether we move the airplane through still air or fix the airplane and move . .

the air past it. In other words, it is the relative motion between the air and
airplane and not the absolute motion of either that determines the aerody-
namic forces. This statement was not always so obvious. When he learned of
the Wright Brothers’ wind tunnel tests, Octave Chanute wrote to them on

<

t
]
!
!

October 12, 1901 (Ref. 1.1) and referred to “‘natural wind.” Chanute con:/"

jectured in his letter:

“ft seems to me that there may be a difference in the result whether the air
is impinged upon by a moving body or whether the wind impinges upon the
same body at rest. In the latter case each molecule, being driven from behind,
tends to transfer mare of its energy to the body than in the former case when
the body meets each molecule successively before it has time to react or its
neighbors.”

Fortunately, Wilbur and Orville Wright chose to believe their own wind
tunnel results.

Returning to Figure 1.3, we may equate the vector sum of all forces to
zero, since the airplane is in equilibrium. Hence, in the direction of flight,

Tcos(0—08,)—D—-Wsing. =0 (1.1)
Normal to this direction,
Weosd, —L—Tsin(d—8.)=0 (1.2)
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These equations can be solved for the angle of climb to give

aTcos(0—-6.)—-D
L+Tsin(8—48,)

In this form, 8, appears on both sides of the equation. However, let us assume
a priori that 6. and (8 — 8.) are small angles. Also, except for very high
performance and V/STOL {vertical or short takeoff and landing) airplanes, the
thrust for most airplanes is only a fraction of the weight. Thus, Equation 1.3
becomes

8. =tan (L.3)

O = (1.4

For airplanes propelied by turbojets or rockets, Equation 1.4 is in the
form that one would normally use for calculating the angle of climb.
However, in the case of airplanes with shaft engines, this equation is modified
so that we can deal with power instead of thrust,

First, consider a thrusting propeller that moves a distance S in time ¢ at a
constant velocity, V. The work that the propeller performs during this time is,
obviously,

work= TS

Power is the rate at which work is performed; hence,
power=T %

But_ Sit is equal to the velocity of advance of the propeller. Hence the power
available from the propeller is given by

Pavar =TV (1.5)

Similarly, the power required by a body traveling through the air with a
velocity of V and having a drag of D will be

Preq’d = DV
Thus, returning te Equation 1.4, by multiplying through by WV, we get
W(Vec) =P, — Prcq’d (1.6)

The quantity V@, is the vertical rate of climb, V.. The difference between the
power that is required and that available is referred to as the excess power,
Pys. Thus Equation 1.6 shows that the vertical rate of climb can be obtained
by.equating the excess power to the power required to lift the airplane’s
w'elght at the rate V.. In operating an airplane this means the following. A
pilot is flying at a given speed in steady, level flight with the engine throttle
only partially open. If the pilot advances the throttle while maintaining a
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constant airspeed, the power from the engine will then be in excess of that
required for level flight, and the airplane will climb.

Suppose, instead of keeping it constant, the pilot, while opening the
throttle, allows the airspeed to increase in such a manner as to maintain a
constant altitude. When a wide open throttle (WOT) condition is reached the
maximum power available is equal to the power required. This is the con-
dition for maximum airspeed, “straight and level.”

From this brief introduction into airplane performance, it is obvnous that
we must be able to estimate the aerodynamic forces on the airplane before we
can predict its performance. Also, a knowledge of the characteristics of its
power plant-propulsor combination is essential.

In addition to performance, the area of “flying qualities™ is very im-
portant to the acceptance of an airplane by the customer. Flying qualities
refers primarily to stability and control, but it also encompasses airplane

~ response to atmospheric disturbances.

Let us briefly consider the pitching moment M, shown in Figure 1.3. This
moment, which must be zero for steady, trimmed flight, results mainly from
the lift on the wing and tail. In addition, contributions arise from the fuselage,
nacelles, propulsor, and distribution of pressure over the wing. Suppose now
that the airplane is trimmed in steady, level flight when it is suddenly
disturbed (possibly by a gust or an input from the pilot) such that it pitches up
by some amount. Before it can respond, the airplane’s path is still essentially
horizontal, so that the angle between the velocity vector and the plane’s axis
is momentarily increased. It will be shown later that, at a given airspeed, the
moment, M, is dependent on this angle, defined previously as the angle of
attack. Since the moment was initially zero before the airplane was disturbed,
it follows that, in general, it will have some value other than zero due to the
increase in angle of attack. Suppose this increment in M is positive. In this
case the tendency would then be for the angle of attack to increase even
further. This is an unstable situation where the airplane, when disturbed,
tends to move even further from its steady-state condition. Thus, for the
airplane to exhibit a more favorable, stable response, we desire that the
increment in M caused by an angle of attack change be negative.

This is about as far as we can go without considering in detail the
generation of aerodynamic forces and moments on an airplane and its
components. The preceding discussion has shown the importance of being
able to predict these quantities from both performance and flying qualities
viewpoints. The following chapters will present detailed analytical and
experimental material sufficient to determine the performance and stability
and control characteristics of an airplane.

As you study the material to follow, keep in mind that it took the early
aviation pioneers a lifetime to accumulate only a fraction of the knowledge
that is yours to gain with a few months of study.
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The primary system of units 1o be used in this text is the 51 (Systems
Internationale) system. Since this system is just now being adopted in the
United States, a comparison to the English system is presented in Appendix
A.1. Also, to assure familiarity with both systems, a limited number of
exercises are given in the English system. For a more complete explanation of
the SI system, se€ Reference 1.4.

PROBLEMS

1.} Calculate the rate of climb of an airplane having a thrust-te-weight ratio

of 0.25 and a lift-to-drag ratio of 15.0 at a forward velocity of 70m/s
(230 fps). Express V, in meters per second. Current practice is to eXpress
rate of climb in feet per minute. What would be your answer in these
units?

1.2 Which of the systems (ball and track) pictured below are in equilibrium?
Which are stable?

N

1.3 An aircraft weighs 45,000 N (10,117 1b) and requires 597 kW (800 hp) to fly
straight and level at a speed of 80 m/s (179 mph). If the available power is
895 kW (1200 hp), how fast will the airplane climb when the throttle is
advanced to the wide open position?

1.4 For an aircraft witha high thrust-to-weight ratio, the angle of climb is not
necessarily small. [n addition, for certain V/STOL aircraft, the thrust

vector can be inclined upward significantly with respect to the direction of
flight. If this angle is denoted as &5, show that

. 4 Tcosbr— D

0. =1l 7T sin 6y

1.5 A student pushes against the side of a building with a force of 6 N for a
period of 4hr. How much work was done?

1.6 An aircraft has a lift-to-drag ratio of 15. It is at an altitude of 1500m
(4921 ft) when the engine fails. An airport is 16 km {9.94 miles) ahead. will
the pilot be able to reach it?
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FLUID MECHANICS

This chapter will stress the principles in fluid mechanics that are especi-
ally important to the study of aerodynamics. For the reader whose pre-
paration does not include fluid mechanics, the material in this chapter should
be sufficient to understand the developments in succeeding chapters. For a
more complete treatment, see any of the many available texts on fluid
mechanics (e.g., Refs. 2.1 and 2.2).

Unlike solid mechanics, one normally deais with a continuous medium in
the study of fluid mechanics. An airplane in flight does not experience a
sudden change in the properties of the air surrounding it. The stream of water
from a firehose exerts a steady force on the side of a burning building, unlike
the impulse on a swinging bat as it connects with the discrete mass of the
baseball.

In solid mechanics, one is concerned with the behavior of a given, finite
system of solid masses under the influence of force and moment vectors
acting on the system. In fluid mechanics one generally deals not with a finite
system, but with the flow of a continuous fluid mass under the influence of
distributed pressures and shear stresses.

The term fluid shouild not be confused with the term liguid, since the
former includes not only the latter, but gases as well. Generally a fluid is
defined as any substance that will readily deform under the influence of
shearing forces. Thus a fluid is the antonym of a solid. Since both liquids and
gases satisfy this definition, they are both known as fluids. A liquid is
distinguished from a gas by the fact that the former is nearly incompressible.
Unlike a gas, the volume of a given mass of liquid remains nearly constant,
independent of the pressure imposed on the mass.

FLUID STATICS AND THE ATMOSPHERE

Before treating the more difficult case of a fluid in motion, let us consider
a fluid at rest in static equilibrinm. The mass per unit volume of a fluid is
defined as the mass density, usually denoted by p. The mass density is a

16

FLUID STATICS AND THE ATMOSPHERE 17

constant for liguids, but it is a function of temperature, T, and pressure, p, for
gases. Indeed, for a gas, p, p, and T are related by the equation of slate

p=pRT 2.1

R is referred to as the gas constant and has a value of 287.3 m*/*K-sec’ for air
at normal temperatures. In Equation 2.1, T is the thermodynamic or absolute
temperature in degrees Kelvin. T and the Celsius temperature, ¢, are related

by
T=t+273.15 2.2)

A container filled with a liquid is pictured in Figure 2.ta. A free-body
diagram of a small slug of the fluid is shown in Figure 2.1b. This slug has a

dh b}

mp 4

pg dh

Fi 2.1 The variation of pressure with depth in a liquid.
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unit cross-sectional area and a differential length of dh. Acting downward
over the upper surface is the static pressure, p, while acting upward over the
lower face is this same pressure plus the rate of increase of p with depth
multiplied by the change in depth, dh. The static pressure also acts inward
around the sides of the element, but this contributes nothing to the balance of
forces in the vertical direction. In addition to the pressure forces, the weight
of the fluid element, pg dh, acts vertically downward; g is the gravitational
constant.
Summing forces on the element in the vertical direction leads to

dp _

Integrating Equation 2.3 from h = 0 at the surface to any depth, h, results
in the static pressure as a function of the depth.

P =p.+pgh Q4

where p, is the atmospheric pressure at the free surface.

A manometer is a device frequently used to measure pressures. It is
based on Equation 2.4. Consider the experimental setup pictured in Figure
2.2. Here, a device known as a pitot-static tube is immersed in and aligned
with a gas flow. The impact of the gas being brought to rest at the nose of the
tube produces a pressure higher than that along the sides of the tube. This
pressure, known as the total pressure, is transmitted through a tube to one
side of a U-shaped glass tube partially filled with a liquid. Some distance back
from the nose of the pitot-static tube the pressure is sampled through a small
opening that is flush with the sides of the tube. This opening, if it is far
enough back from the nose, does not disturb the flow so that the pressure
sampled by it is the same as the static pressure of the undisturbed flow. This
static pressure is transmitted to the right side of the glass U-tube manometer.
The total pressure, being higher than the static pressure, causes the liquid in
the left side of the U-tube to drop while the level on the right side rises.

If we denote p as the static pressure and p + Ap as the total pressure, the
pressure at the bottom of the U-tube can be calculated by Equation 2.4 using
either the right or left side of the tube. Equating the results from the two sides
gives

p+Ap + pghy=p +pg(Ah + hy)
or
Ap = pg Ah (2.5)

Hence, the difference of the liquid levels in the two sides of the manometer
is a direct measure of the pressure difference applied across the manometer.
In this case we could then determine the difference between the total pressure
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Figure 2.2 Pitot-static tube connected to a U-tube liquid manometer.

and static pressure in the gas flow from which, as we will see later, the
velocity of the gas can be calculated.

Now consider the variation of static pressure through the atmosphere.
Again the forces acting on a differential mass of gas will be treated in a manner
similar to the development of Equation 2.3 for a liquid. However, h will be
taken to be the altitude above the ground and, since the gravitational attrac-
tion is now opposite to the direction of increasing k, the sign of Equation 2.3
changes. For the atmosphere,

g_i = —pg (2.6)

The mass density, p, is not a constant in this case, so that Equation 2.6
cannot be integrated immediately. In order to perform the integration the
equation of state, Equation 2.1, is substituted for p, which leads to

dp _ _gdh
> T Q.7
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From experimental observation, the variation of temperature with al-
titude is known or, at least, a standard variation has been agreed on. Up to an
altitude of 11 km, the temperature is taken to decrease linearly with altitude at
a rate, known as the lapse rate, of 6.51°C/km. Thus, Equation 2.7 becomes

dp_ _dT 1
p T R(dT/dh)
ar
5= %> 2.8)

where 8 is the ratio of the static pressure at altitude to the pressure at sea
level and @ is the corresponding absolute temperature ratio.

Using the equation of state, the corresponding density ratio, o, is
obtained immediately from Equation 2.8.

_8
Y78

or
o= 6'"" (2.9)

Using the standard lapse rate and a sea level temperature of 288.15°K, # as a
function of altitude is given by

8=1-0.02256 h (2.10)

where h is the altitude in kilometers.

The lower region of the atmosphere up to an altitude for which Equations
2.8 to 2.10 hold is referred to as the troposphere. This is the region in which
most of today’s flying is done. Above 11km and up to an altitude of
approximately 23 km, the temperature is nearly constant. This region forms
the lower part of the stratosphere. Through the remainder of the stratosphere,
the temperature increases, reaching approximately 270°K at an altitude of
around 50 km.

Figure 2.3 presents graphs (taken from Ref. 2.3) of the various properties
of the standard atmosphere as a function of altitude. Each property is
presented as a ratio to its standard sea level value denoted by the subscript
“0." In addition to p, p, and T, the acoustic velocity and kinematic viscosity
are presented. These two properties will be defined later.

One normally thinks of altitude as the vertical distance of an airplane above
the earth’s surface. However, the operation of an airplane depends on the
properties of the air through which it is flying, not on the geometric height.
Thus the altitude is frequently specified in terms of the standard atmosphere.
Specifically, one refers to the pressure altitude or the dengity altitude as the
height in the standard atmosphere corresponding . the pressure or density,
respectively, of the atmosphere in which the airplane is operating. An air-
plane’s altimeter is simply an absolute pressure gage calibrated according to
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Figure 2.3 The standard atmosphere.

the standard atmosphere. It has a manual adjustment to allow for variations in
sea level barometric pressure. When set to standard sea level pressure
(760 mm Hg, 29.92 in. Hg), assuming the instrument and static pressure source
to be free of errors, the altimeter will read the pressure altitude. When set to
the local sea level barometric pressure (which the pilot can obtain over the
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radio while in flight), the altimeter will read closely the true altitude above sea
level. A pilot must refer to a chart prescribing the ground elevation above sea
level in order to determine the height above the ground.

FLUID DYNAMICS

We will now treat a fluid that is moving so that, in addition to gravita-
tional forces, inertial and shearing forces must be considered.

A typical flow around a streamlined shape is pictured in Figure 2.4. Note
that this figure is labled “two-dimensional flow”; this means simply that the
flow field is a function only of two coordinates (x and y, in the case of Figure
2.4) and does not depend on the third coordinate. For example, the flow of
wind around a tall, cylindrical smokestack is essentially two-dimensional
except near the top. Here the wind goes over as well as around the stack, and
the flow is three-dimensional. As another example, Figure 2.4 might represent
the flow around a long, streamlined strut such as the one that supports the
wing of a high-wing airplane. The three-dimensional counterpart of this shape
might be the blimp.

Several features of flow around a body in general are noted in Figure 2.4.
First, observe that the flow is illustrated by means of streamlines. A stream-
line is an imaginary line characterizing the flow such that, at every point along
the line, the velocity vector is tangent to the line. Thus, in two-dimensional

@!
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Figure 2.4 Two-dimensional flow around a straamlined shape.
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flow, if y(x) defines the position of a streamline, y(x) is related to the x and
components of the velocity, u(x) and v(x), by
vix)
3; =20 (2.11)
Note that the body surface itself is a streamline.

In three-dimensional flow a surface swept by streamlines is known as a
stream surface. If such a surface is closed, it is known as a stream tube.

The mass fiow accelerates around the body as the result of a continuous
distribution of pressure exerted on the fluid by th.e body. An _eqt_lal :411d
opposite reaction must occur on the body. This_stayc pressure distribution,
acting everywhere normal to the body’s surface, is pictured on the. lower half
of the body in Figure 2.4. The small arrows represent the local static pressure,
p, relative to the static pressure, py, in the fluid far removed from the bo"iy.
Near the nose p is greater than po; further aft the pressure becomes negative
relative to po. If this static pressure distribution, acting normal to the surface,
is known, forces on the body can be determined by integrating this pressure
over its surface.

In addition to the local static pressure, shearing stresses resulting from
the fluid’s viscosity also give rise to body forces. As fluid passes over a solid
surface, the fluid particles immediately in contact with the surface are brought
to rest. Moving away from the surface, successive layers of fluid are s]owe_d
by the shearing stresses produced by the inner layers. (The term “layers’™ is
used only as a convenience in describing the fluid behavior. The fluid shears
in a continuous manner and not in discrete layers.) The result is a thin layer of
slower moving fluid, known as the boundary tayer, adjacent to the surf?c_e.
Near the front of the bedy this layer is very thin, and the flow within it is
smooth without any random or turbulent fluctuations. Here the fluid part.icles
might be described as moving along in the layer on parallel planes, or laminae;
hence the flow is referred to as laminar.

At some distance back from the nose of the body, disturbances to the flow
{(¢.g., from surface roughnesses) are no longer damped out. These dist_u.rbances
suddenly amplify, and the laminar boundary layer undergoes transm.on to a
turbulent boundary layer. This layer is considerably thicker than the Jaminar one
and is characterized by a mean velocity profile on which small, rz}ndomly
fluctuating velocity components are superimposed. These flow regions are
shown in Figure 2.4. The boundary layers are pictured considerably thicker than
they actually are for purposes of illustration. For example, on the wing of an
airplane flying at 100 m/s at low altitude, the turbulent boundary 1.0 m back frop]
the leading edge would be only approximately 1.6 cm thick. If the layer were still
laminar at this peint, its thickness would be approximately 0.2 cm. .

Returning to Figure 2.4, the turbulent boundary layer coniinues t.0
thicken toward the rear of the body. Over this portion of the surface the fluid
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is moving into a region of increasing static pressure that is tending to oppose
the flow. The slower moving fluid in the boundary layer may be unable to
overcome this adverse pressure gradiemt, so that at some point the flow
actually separates from the body surface. Downstream of this separation
point, reverse flow will be found along the surface with the static pressure
nearly constant and equal to that at the point of separation.

At some distance downstream of the body the separated flow closes, and
a wake is formed. Here, a velocity deficiency representing a momentum loss
by the fluid is found near the center of the wake. This decrement of
momentum (more precisely, momentum flux) is a direct measure of the body
drag (i.e., the force on the body in the direction of the free-stream velocity).

The general flow pattern described thus far can vary, depending on the
size and shape of the body, the magnitude of the free-stream velocity, and the
properties of the flutd. Variations in these parameters can eliminate transition
or separation or both.

One might reasonably assume that the forces on a body moving through a
fluid depend in some way on the mass density of the fluid, p, the size of the
body, [, and the body’s velocity, V. If we assume that any one force, F, is
proportional to the product of these parameters each raised to an unknown
power, then

F o p*Vo©

In order for the basic units of mass, length, and time to be consistent, it
follows that

() (e

T? L3 AT

Considering M, L, and T in order leads to three equations for the unknown
exponents a, b, and ¢ from which it is found that a =1, b =2, and ¢ =2.
Hence,

F « pV¥? (2.12)

For a particular force the constant of proportionality in Equation 2.12 is
referred to as a coefficient and is modified by the name of the force, for
exampie, the lift coefficient. Thus the lift and drag forces, L and D, can be
expressed as

L=pV8C (2.13a)
D=3 VSC, (2.13b)

Note that the square of the characteristic length, 12, has been replaced by
a reference area, S. Also, a factor of 1/2 has been introduced. This can be
done, since the lift and drag coefficients, C; and C;,, are arbitrary at this
point. The quantity pV?2 is referred to as the dynamic pressure, the
significance of which will be made clear shortly.
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For many applications, the coefficients C; and Cp remain constant for a
given geometric shape over a wide range of operating conditions or body size,
For example, a two-dimensional airfoil at a 1° angle of attack will have a lift
coefficient of approximately 0.1 for velocities from a few meters per second
up to 100 m/s or more. In addition, C;, will be almost independent of the size
of the airfoil. However, a more rigorous application of dimensional analysis
[sec Buckingham’s = theorem (Ref. 2.1)] will result in the constant of
proportionality in Equation 2.12 possibly being dependent on a number of
dimensionless parameters. Two of the most important of these are known as
the Reynolds number, R, and the Mach number, M, defined by,

Vip

R= (2.14a)

M= (2.14b)

®
\4
a
where ! is a characteristic length, V is the free-stream velocity, p is the
coefficient of viscosity, and a is the velocity of sound. The velocity of sound
is the speed at which a small pressure disturbance is propagated through the
fluid; at this point, it requires no further explanation. The coefficient of
viscosity, however, is not as well known and will be elaborated on by
reference to Figure 2.5. Here, the velocity profile is pictured in the boundary
laver of a laminar, viscous flow over a surface. The viscous shearing produces
a shearing stress of 7, on the wall. This force per unit area is related to the
gradient of the velocity u(y) at the wail by

Actually, Equation 2.15 is applicable to calculating the shear stresses
between fluid elements and is not restricted simply to the wall. Generally, the
viscous shearing stress in the fluid in any plane parallel to the flow and away

ul{y)

Flgure 2.5 Viscous flow adjacent to a surface.
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from the wall is given by the product of p and the velocity gradient normal to
the direction of flow.

The kinematic viscosity, », is defined as the ratio of u to p.

y=£&

P
v is defined as a matter of convenience, since it is the ratio of u to p that
governs the Reynolds number. The kinematic viscosity for the standard
atmosphere is included in Figure 2.3 as an inverse fraction of the standard sea
level value.
A physical significance can be given to the Reynolds number by multi-
plying numerator and denominator by V and dividing by 1.

In the following material (see Equation 2.28) the normal pressure will be
shown to be proportional to pV” whereas, from Equation 2.15, uVfl is
proportional to the shearing stress. Hence for a given flow the Reynolds
number is proportional to the ratio of normal pressures (inertia forces) to
viscous shearing stresses. Thus, relatively speaking, a flow is less viscous than
another flow if its Reynolds namber is higher than that of the second flow.

The Mach number determines to what extent fluid compressibility can be
neglected (i.e., the variation of mass density with pressure). Current jet
transports, for example, can cruise at Mach numbers up to approximately 0.8
before significant compressibility effects are encountered.

At lower Mach numbers, two flows are geometrically and dynamically
similar if the Reynolds numbers are the same for both flows. Hence, for
example, for a given shape, Cp for a body 10 m long at 100 m/s will be the
same as Cp for a 100-m long body at 10 mfs. As another example, suppose
transition occurs 2 m back from the leading edge of a flat plate aligned with a
flow having a velocity of 50 m/s. Then, at 25 m/s transition would occur at a
distance of 4 m from the leading edge. Obviously the effects of R and M on
dimensionless aerodynamic coefficients must be considered when interpreting
test results obtained with the use of small models.

For many cases of interest to aerodynamics the pressure field around a
shape can be calculated assuming the air to be inviscid and incompressible.
Small corrections can then be made to the resuiting solutions to account for
these “real fluid” effects. Corrections for viscosity or compressibility will be
considered as needed in the following chapters,

Conservatlon_ of Mass

Fluid passing through an area at a velocily of V has a mass flow rate
equal to pAV. This is easily seen by reference to Figure 2.6. Here flow is
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Figure 2.6 Mass flow through a surface.

pictured along a streamtube of cross-sectional area A. The fluid velocity is
equal to V. At time t =0, picture a small slug of fluid of length, {, about to
cross a reference plane. At time {/ V, this entire slug will have passed through
the reference plane. The volume of the slug is Al, so that a mass of pAl was
transported across the reference plane during the time [/ V. Hence the mass
rate of flow, m, is given by
m = PAL
(UAY)
=pAV (2.16)

Along a streamtube (which may be a conduit with solid walls) the quantity pAV
must be a constant if mass is not to accumulate in the system. For incompressible
flow, p is a constant, so that the conservation of mass leads to the continuity
principle

AY = constant

AV is the volume flow rate and is sometimes referred to as the flux.
Similarly, pAV is the mass flux. The mass flux through a surface multiplied by
the velocity vector at the surface is defined as the momentum flux. Generally,
if the velocity vector is not normal to the surface, the mass flux will be

PAV-n
with the momentum flux written as
(pAV - n)V

here n is the unit vector normal to the surface and in the direction in which
the flux is defined to be positive. For example, if the surface encloses a
volume and the net mass flux out of the volume is to be calculated, n would
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be directed outward from the volume, and the following integral would be
evaluated over the entire surface.

fij-ndS
s

Consider the conservation of mass applied to a differential control
surface. For simplicity, a two-dimensional flow will be treated. A rectangular
contour is shown in Figure 2.7. The flow passing through this element has
veloci.ty components of ¥ and v in the center of the element in the x and y
directions, respectively. The corresponding components on the right face of
the element are found by expanding them in a Taylor series in x and y and

dropping second-order and higher terms in Ax. Hence the mass flux out
through the right face will be

ageu)g]
[pu+ ox 2 ay

Writing similar expressions for the other three faces leads to the net mass flux
out being

0. 2],

The net mass flux out of the differential element must equal the rate at which
the mass of the fluid contained within the element is decreasing, given by

a
——(pAx A
P ¥}
¥
dipy)
o A pv + S dx
Hpu}
+ = dx
Ly P ax x
pu
P L
P+ ™ dax
L’ Ax i

I
>
Figure 2.7 A rectangular differential contral surface.
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Since Ax and Ay are arbitrary, it follows that, in general,

@_+3(pu)+6(pv)=o

at ' ox ay
In three dimensions the preceding equation can be written in vector notation
as

%Pt-+v-(pV)=0 2.17)

where V is the vector operatar, del, defined by

d a (%)
=i—+j—+k—
v=i ax J ay k Jz
Any physically possible flow must satisfy Equation 2.17 at every point in the
flow.
For an incompressible flow, the mass density is a constant, so Equation

2.17 reduces to
V-v=0 {2.18)

The above is known as the divergence of the velocity vector, div V.
The Momentum Theorem

The momentum theorem in fluid mechanics is the counterpart of New-
ton’s second law of motion in solid mechanics, which states that a force
imposed on a system produces a rate of change in the momentum of the
system. The theorem can be easily derived by treating the fluid as a collection
of fluid particles and applying the second law. The details of the derivation
can be found in several texts (e.g., Ref. 2.1) and will not be repeated here.

Defining a controi surface as an imaginary closed surface through which
a flow is passing, the momentum theorem states:

“The sum of external forces (or moments) acting on a control surface
and internal forces (or moments) acting on the fluid within the control surface
produces a change in the flux of momentum (or angular momentum) through
the surface and an instantaneous rate of change of momentum (or angular
momentum) of the fluid particles within the control surface.”

Mathematically, for linear motion of an inviscid fluid, the theorem can be
expressed in vector notation by

_IsjpndS+B=Lij(V-n)dS+%jjvfdeT_ 2.19)

In Equation 2.19, n is the unit normal directed outward from the surface,
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S, enclosing the volume, V. V is the velocity vector, which generally depends
on position and time. B represents the vector sum of all body forces within
the control surface acting on the fluid. p is the mass density of the fluid
defined as the mass per unit volume.

For the angular momentum,

Q=jsjp(VXr)W'n)dS+%va-fp(V><r)d-r (2.20)

Here, Q is the vector sum of all moments, both internal and external, acting
on the control surface or the fluid within the surface. r is the radius vector to
a fluid particle.

As an example of the use of the momentum theorem, consider the force
on the burning buiiding produced by the firehose mentioned at the beginning
of this chapter. Figure 2.8 illustrates a possible flow pattern, admittedly
simplified. Suppose the nozzle has & diameter of 10cm and water is issuing
from the nozzle with a velocity of 60 mjs. The mass density of water is
approximately 1000 kg/m*. The control surface is shown dotted.
Equation 2.19 will now be written for this system in the x direction.
Since the flow is steady, the partial derivative with respect to time of the
volume integral given by the last term on the right side of the equation
vanishes. Also, B is zero, since the contrel surface does not enclose any

Pressure
distribution
on the wall

Walt

Figure 2.8 A jet of water impacting on a wall.
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bodies. Thus Equation 2.19 becomes

‘Isjpnds =JSIpV(V-n)dS

Measuring p relative to the atmospheric static pressure, p is zero
everywhere along the control surface except at the wall. Here n is directed to
the right so that the surface imtegral on the left becomes the total force
exerted on the fluid by the pressure on the wall. If F represents the magnitude
of the total force on the wall,

—iF=jSIpV(V-n)dS

For the floid entering the control surface on the left,
V = 60i
n=—i

For the fluid leaving the control surface, the unit normal to this cylindrical
surface has no component in the x direction. Hence,

—iF = - J' . f (1000)60i(—60) 4S

“—’—36X105ij IdS
s

The surface integral reduces to the nozzle area of 7.85x107°m’. Thus,
without actually determining the pressure distribution on the wall, the total
force on the wall is found from the momentum theorem to equal 28.3 kN.

Euler's Equation of Motion

The principle of conservation of mass, applied to an elemental control
surface, led to Equation 2.17, which must be satisfied everywhere in the flow.
Similarly, the momentum theorem applied to the same element leads to
another set of equations that must hold everywhere.

Referring again to Figure 2.7, if p is the static pressure at the center of
the element then, on the center of the right face, the static pressure will be

ap Ax
+ax 2

This pressure and a similar pressure on the left face produce a net force in the
x direction equal to

_9
9% Ax Ay
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Since there are no body forces present and the fluid is assumed inviscid,
the above force must equal the net momentum flux out plus the instantaneous
change of fluid momentum contained within the element.

The momentum flux out of the right face in the x direction will be

e Gy
[pu+ ax 2 u+6x2 Ay

Out of the upper face the corresponding momentum flux will be

a(pv)g]( a_uﬁ)
[pv-!— 3y 2 u+&y2 Ax

Similar expressions can be written for the momentum flux in through the left

and bottom faces.
The instantaneous change of the fluid momentum contained within the

element in the x direction is simply
i( u Ax Ay)
Thus, equating the net forces in the x direction to the change in
momentum and momentum flux and using Equation 2.17 leads to

il o du 1 ép

LR L L Y 2.21

at  Yax ey pax (2.21)
Generalizing this to three dimensions results in a set of equations known as
Euler’s equations of motion.

au du ou du 1 ép

Uy, 0, ou_ 10p 222
a Mt Pay W T T oax (2.22a)
w, B, w, aw_ 1op

7 +u 6x+v 6y+w pye o 2y (2.22b)
aw ua_w+va_w+wa_w=_la_p (2.22¢)

at ox ay az p oz

Notice that if u is written as u(x, y, z, t), the left side of Equation 2.22 is
the total derivative of u. The operator, a( ){at, is the local acceleration and
exists only if the flow is unsteady.

In vector notation Euler’s equation can be written

av __1

3t +(V-V)V= pr (2.23)
If the vector product of the operator V is taken with each term in

Equation 2.23, Equation 2.24 results.
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dew _
2 T V-V =0 .29
e is the curl of the velocity vector, ¥V X V, and is known as the vorticity.
i i k
a d a
XV=|— — Pacil
Xy ax ay 8z
u ] W 2.25)

One can conclude from Equation 2.24 that, for an inviscid fluid, the
vorticity is constant along a streamline. Since, far removed from a body, the
flow is usually taken to be uniform, the vorticity at that location is zero;
hence, it is zero everywhere.

Bernoulll’s Equatlon

Bernoulli’s equation is well known in fluid mechanics and relates the
pressure to the velocity along a streamline in an inviscid, incompressible flow.
It was first formulated by Euler in the middle 1700s. The derivation of this
equation follows from Euler’s equations using the fact that along a streamline
the velocity vector is tangential to the streamline.

dx _dy _dx
H v w

(2.26)

First, multiply Equation 2.22a through by dx and then substitute Equation
2.26 for vdx and wdx. Also, the first term of the equation will be set equal to
Zero; that is, at this time only steady flow will be considered.

ug—zdx+u%dy+u‘;—2dz=—ﬁg—§dx

Similarly, multiply Equation 2.22b by dy, Equation 2.22¢ by dz, and
substitute Equation 2.26 for u dy, w dy and u dz, v dz, respectively. Adding the
three equations results in perfect differentials for p and V?, V being the
magnitude of the resultant velocity along the streamline. This last term results
from the fact that

and
Vi=pwli+toi+w?
Thus, along a streamline, Euler’s equations become

VdV+%p=0 (2.27)
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If p is not a function of p (i.e., the flow is incompressible), Equation 2.27 can
be integrated immediately to give

p +ipV?= constant (2.28)
If the flow is uniform at infinity, Equation 2.28 becomes
p +3pV? = constant = p..+ 3p V.2 229

Here V is the magnitude of the local velocity and p is the local static
pressure. V.. and p. are the corresponding free-stream values. Equation 2.29
is known as Bernoulli’s equation.

The counterpart to Eguation 2.29 for compressible flow is obtained by
assuming pressure and density changes to follow an isentropic process. For
stich a process,

pip” = constant 2.30)

¥ is the ratio of the specific heat at constant pressure to the specific heat at
constant volume and is equal approximately to 1.4 for air. Substituting
Equation 2.30 into Equation 2.27 and integrating leads to an equation some-
times referred to as the compressible Bernoulli's equation.

Vi, vy p_
2 +'y—1p = constant (2.31)

This equation can be written in terms of the acoustic velocity. First it is
necessary to derive the acoustic velocity, which can be done by the use of the
momentum theorem and continuity. Figure 2.9 assumes the possibility of a
stationary disturbance in a steady flow across which the pressure, density,
and velocity change by small increments. In the absence of body forces and
viscosity, the momentum theorem gives

~dp = (p + dp)(u + duy — pi*
But, from continuity,
(p + dpYie + du) = pu

or
udp=—pu
Thus
dp
:_ 4p
u dp (2.32)
I w + du
P op P+dp,p+dp

Figure 2.9 A stationary small disturbance in a steady compressible flow.
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If the small disturbance is stationary in the steady flow having a velocity of 1,

then obviously u is the velocity of the disturbance relative to the fluid. By

definition, it follows that u, given by Equation 2.32, is the acoustic velocity.
By the use of Equation 2.30, the acoustic velocity is obtained as

12
_ w)
o-(
) (2.33)
An alternate form, using the equation of state {Equation 2.1), is
a = (yRT)" (2.34)
Thus Equation 2.31 can be written
vV a’
—_ + =
Z 75— constant (2.35)

The acoustic velocity is also included in Figure 2.3 for the standard atmos-
phere.

Determination of Free-Stream Velocity

At low speeds (compared to the acoustic velocity) a gas flow is essen-
tially incompressible. In this case, and for that of a liquid, Equation 2.29
applies. If the fluid is brought to rest so that the local velocity is zero then,
from Equation 2.29, the local pressure, referred to in this case as the
stagnation or total pressure, is equal to the sum of the free-stream static
pressure, p., and pV.*{2. This latter term is called the dynamic pressure and is
frequently denoted by the symbol g. Thus,

V.= [MOT_M] " 2.36)

where p, is the total pressure, also referred to as the stagnation or reservoir
pressure, The pitot-static tube shown in Figure 2.2 measures (py— p-)} and is
probably the most common means used to determine airspeed. However,
notice that Equation 2.36 contains the mass density that must be determined
before the airspeed can be calculated. This is most readily achieved by
measuring, in addition to the difference between the stagnation pressure and
the static pressure, the static pressure itself and the temperature. The density
is then determined from the equation of state (Equation 2.1).

At higher speeds (and we will now examine what is high) Equation 2.29
no longer holds, so that V.. must be determined from Equation 2.31.

Vi, ¥ P__ ¥ P
2 y-1p y—1p
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At this point the subscript = has been dropped, so that p, p, and V without a
subscript may be local or free-stream values.

Remembering that yp/p is the square of the acoustic velocity, the
preceding equation becomes

M, 1 _ 1 pep

+ | SN S
2 y-1 y-1lppe
Using Equation 2.3, this can be written as

— ¥y—Dh
B [1+ 754 L] @.37)

The dynamic pressure, g, is defined as
q=pV* (2.38)

which can be written in terms of the Mach number as

q =1ypM’
Combining this with Equation 2.37 gives
— — Wiy-1)
te ol i) ] e

The square root of Equation 2.39 is presented graphically in Figure 2.10.
The departure of this function from unity is a measure of the error to be
incurred in calculating the airspeed from the incompressible Bernoulli equa-
tion. Below a Mach number of 0.5 the error is scen to be less than 3%.

Determination of True Airspeed

During training, a pilot soon learns that the airspeed that appears on the
airspeed indicator is not the true airspeed. Instead, in order to determine the
true airspeed, the pilot must also read the altimeter and outside air tem-
perature. The pilot then resorts to a small hand calculator or, in some
instances, adjusts the dial on the airspeed indicator accordingly to allow for
the atmospheric properties.

The airspeed indicator is nothing more than an accurate differential pres-
sure gage calibrated according to Equation 2.31. This equation can be put in

the form
vie 2a? [(PO_F + 1)(771}.'1 _ ]
y-1L\ p
The airspeed indicator measures the difference, p,— p (sometimes called the

compressible dynamic pressure), but then is calibrated to obtain V by
assuming standard sea level values for the acoustic velocity and the free-

FLUID DYNAMICS 37

1.08 |
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10a - {Equation 2.39)%
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Mach number, M

Figure 2.10 Relationship between reservoir pressure and dynamic pressure as a
function of Mach number.

stream static pressure. Thus the calibrated airspeed is defined by
2 _ (y=Div 12
I e [ I | e
(y—1 PsL

where a subscript SL is used to denote standard sea level values.
As a ratio to V., the true airspeed can be written

v _ { 0 [Lf(Vu-.,l)IB + 1] — 1]}"2 2.41)

Vcai [f(vcai) + l]h'*l)f'r -1
where
Po— P _
PSL f{ Vca])

and can be obtained from Equation 2.40.  and & are the temperature and
pressure ralios, respectively.
If compressibility ¢can be neglected, the airspeed will be given by Equa-
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tion 2.36. In this case, using the standard sea level value of p to calibrate the
airspeed indicator dial leads to the equivalent airspeed.

Ve = [2(P0_P):|m
PsL
or

=g 12 (2.42)

Sl<

where o is the density ratio.

Finally, the indicated airspeed, V,, is defined simply as the airspeed that
the pilot reads from the airspeed indicator. If the indicator has no mechanical
error (instrument error) and if the static source is located so that it samples
the true free-stream static pressure (otherwise a position error incurs),
V: = V,,. Furthermore, if the Mach number is not too high, Vi = V=V,

As an example in determining true airspeed, suppose a pilot reads an
indicated airspeed of 180 m/s for an OAT of 239 °K and an altimeter reading
of 6000 m. This altitude, according to Equations 2.8 and 2.10, corresponds to a
pressure ratio 8 of 0.466. The measured temperature ratio, 8, is equal to 0.826.
Hence o =0.564. According to Equation 3.42, the true airspeed will be
239.7 mfs. From Equation 2.41, the true airspeed is calculated to be 231.6 m/s.
Thus, using the incompressible relationship to estimate the true airspeed from
the indicated airspeed resuits in a speed a few percent higher than that
obtained from the calibrated airspeed relationship.

To be precise one calculates the true airspeed from the calibrated
airspeed and then determines the equivalent airspeed from its definition,
Equation 2.42. In the previous example, this resunlts in a V. of 173.9m/s, a
value 3.4% less than the calibrated airspeed.

POTENTIAL FLOW

For a steady, inviscid, incompressible flow, Euler's equations of fluid
motion reduce to two relatively simple relationships that govern the velocity
vector.

divv=V V=10 (2.43a)
curlVv=vxv=0 (2.43b)

The first equation satisfies conservation of mass; the second one assures
that the dynamics of the flow is treated correctly.

In addition to satisfying Equation 2.43 one must assure that any mathe-
matical description of the flow field around a given body shape satisfies the
boundary condition that there be no velocity normal to the body at all points
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on its surface. If n is the unit vector normal to the surface, the following must
hold.
V-n=0 (2.44)

Velocity Potential and Stream Function

To assist in the solution of Equation 2.43, two functions are introduced.
The first of these is known as the velocity potential, ¢, and is defined such
that

_%
u= ax
=%
v= 3y
_d
w= oz
or, generally,
V=vV¢ (2.45)

Equation 2.43 satisfies identically Equation 2.43b. However, in order to
satisfy Equation 2.43a, it follows that ¢ must be a harmonic function; that is,

Vi =0 (2.46)
The operator, V2, known as the Laplacian, is defined as

8t 8r a7
Vies—QS+-——5+—
ax ay? az®

A flow for which Equation 2.43 is satisfied, and hence ¢ can be defined,
is known as a potential flow. The resulting fluid motion is described as being
irrotational. This follows since, in the limit at a point, the curl of the velocity
vector, which is zero, is equal to twice the rotational or angular velocity.

The stream function, , is related to the velocity components by

A4

u=:,i—§

p=-2 @2.47)
ox

¢ can only be defined for two-dimensienal, or axisymmetric, flow. To obtain a
particular component, the partial derivative of ¢ is taken in the direction
normal to the velocity and to the left as one looks in the direction of the

velocity,
A line element is pictured in Figure 2.11 with flow passing through it. This
clement is a segment of an arbitrary line connecting two points A and B. The
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Figure 2.11 Two-dimensional flow through a line elernent.

differential flux through this element will be

dQ =V -nds
But
n={(idy—jdx)/ds
V=iu+jo

Substituting n and V into dQ and using Equation 2.47 results in

Y 9Y
dQ =7 dx -+ dy

or

dQ = dy
Thus

B
4B =y(a)= [ Vonas (2.48)

That is, the change in the stream function between two points is equal to the
flux between the points. It follows that ¢ is a constant along a streamline.
This can be shown by noting that along a streamline

v_dy
u dx
and

dir=dQ =udy—vdx
Combined, the two relationships give
df =0
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or
¢ = constant (along a streamline)

The stream function, as a measure of the flux, satisfies identically
Equation 2.43a. For an irrotational flow, however, in order to meet Equation
2.43k it follows that ¢ must also be harmonic.

Vi =0 (2.49)

In a manner similar to the derivation of Equation 2.48, the change in ¢
between two points can also be easily obtained. If

& = ¢(x,y)
then

_% ¢

de P dx + 2y dy

=udx+uvdy

or, using vector notation,
B
o®) 9= [ v ar (2.50)

where R is the radius vector to the curve along which the integration is being
performed, as shown in Figure 2.11. dR is then the differential vector along
the curve, directed positively, with a magnitude of ds.

As an example in the use of ¢ and i, consider the uniform flow pictured
in Figure 2.12. For this flow,

u = UJ = constant
v =0

¢ will be taken to be zero along the x-axis. This choice is arbitrary, since
the values of both ¢ and ¢ can be changed by a constant amount without
affecting the velocity field obtained from their derivatives. Equation 2.48 will
be zero if the integral is performed along a line for which y is a constant.

Figure 2.12 Uniform flow in the x direction.
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Thus ¢ changes only in the y direction. Integrating Equation 2.48 in this
direction gives

w(y)~w(0)=j:(iv>-idy

or

= Uy

If the uniform flow contains, in addition to U, a constant velocity
component V in the y direction, ¢ becomes

¢ =Uy— Vx (2.51)

The minus sign in Equation 2.51 is in accordance with the positive
direction of n, as shown in figure 2.11. n is directed to the right as one looks in
the direction of point B from point A. In this case the integration for the
second term is in the positive x direction, so n equals —j.

In a more formal manner, ¢ will be derived for this same flow using
Equation 2.50.

V=iU+jV
R=ix+jy
Hence
dR=idx+jdy

so that, taking ¢ =0 at x, y =0,

Xy
H(x, ¥) =f Udx+ Vdy
0
=Ux+ Vy (2.52)

Elementary Flow Functions

If ¢, and ¢; are functions satisfying Equation 2.50 then, because this
equation is linear, their sum will also satisfy Equation 2.50. In general, both
the velocity potential and stream function can be constructed by summing
less complicated functions.

d(x y) = 5) $ilx, ) (2.53a)

Y(x, y) = E: dnx, ) (2.53h)

Equation 2.53 represents the real benefit to be gained in describing a flow
in terms of ¢ and . This statement will become obvious as the developments
proceed.

The simple flows from which more complicated patterns can be
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developed are referred to as elementary tflow functions. There are three of
them: uniform rectilinear flow, vortex, and source. The first of these has
already been covered with ¢ and ¢ given by Equations 2.52 and 2.51,
respectively.

Vortex

A vorteX is pictured in Figure 2.13. This flow in two dimensions is purely
circular around a point with no radial velocity component. Denoting the
tangential velocity component by v, the problem is to find v, as a function of
r that will satisfy the set of Equations 2.42a and 2.42b. v, is to be independent
of 8.

In polar coordinates,
ve_12v,

Vxv= or r r oo

(2.54a)
_1ave  dv, v

v.v rdg  ar r

(2.54b)
where r and @ are the polar coordinates, with v, being the radial component of
velocity and v, the tangential component.

Since v, is zero in Figure 2.13 and v, is independent of 8, Equation 2.54b
is satisfied identically and, from Equation 2.54a

dvg | Do
ar r
or, after integrating,
rus = constant

i

Flgure 2.13 Flow field around a vortex.
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Thus, for potential flow, the tangential velocity around a vortex must
vary inversely with the radial distance from the center of the vortex.

The strength of a vortex, denoted by v, is measured by integrating the
tangential velocity completely around the vortex. The value of this integral is
independent of the path providing it encloses the singular point at the center
of the vortex.

Y= § V-dR (2.55)

This closed-line integral of the velocity is known as the circulation.
Evaluating Equation 2.55 on a constant radius leads to the relationship
between the tangential velocity around a vortex, the radius, and the vortex
strength.

S
Vo =5 (2.56)

Equation 2.55 is a well-known relationship and can be easily remembered
from the definition of .

¢ and ¢ for a vortex follow immediately from Equations 2.50, 2.48, and
2.56.

s®-60)= [ 5L do)
=L [6(B) - 0(4)]
27
If 6 is measured relative to Zero and 8(B) is taken to be any value of 8,
6=2 Q.57
The stream function for a vortex is found from

B
W(B) — Y(A) = — f Lar
¥, HB)
2a A

Letting (A} be zero and r(A) be an arbitrary radius, a, leads to

Yt
=3 In 4 (2.58)

The minus sign results from the choice of positive coordinate directions.

Source

The source is the counterpart of a vortex. Here the flow, pictured n
Figure 2.14, is again symmetrical about the center, but it is entirely radial with
no tangential velocity component.
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Figure 2.14 Flow from a source.

The strength of a source, g, is measured by the total flux emanating from
the center. From Figure 2.14, g is obviously given by

q = 2arru,
ar
= 49
v=5 (2.59)

In a manner similar to that followed for the vortex, one may verify that
for the source

$ = 5‘% Inr (2.60)
_4q6
v=L (2.61)

Equations 2.56 and 2.59, which define the velocities around vortices and
sources, can be extended to three dimensions. If @ is the strength of a
three-dimensional source, this flux will equal the product of the radial velocity
and the surface arca through which the velocity is passing. Thus, one can
write v, immediately as

v = -Q—g 2.62)

Biot-Savart Law

The three-dimensional velocity field associated with a vortex line is
considerably more complicated and is given by the Biot-Savart law. The
derivation of this law is beyond the scope of this text. Figure 2.15a illustrates
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z

Figure 2.15a Definition of quantities used in the Biot-Savart law.

Plen, ¥t

.
e A h
ok S
0 # N

Figure 2.156 The Biot-Savart law for a straight-line vortex.

x

a portion of a vortex line about which at any point the circulation, T, is
constant. If v; is the velocity vector induced at any point, P, in the field by the
vortex line, the Biot-Savart law states

' rxdR
dv;—E—*l;F—* (2.63)

This is the most general form of the Biot-Savart law. dR is the derivative
of the radius vector from the origin to the vortex line and is thus the directed
differential distance along the line. r is the radius vector from the point P to
the line element dR. The positive direction of the circulatory strength, I', is
defined according to the right-hand rule. The x,y,z orthogonal coordinate
system is also right-handed.

A special form of the Biot—Savart law for a straight-line vortex segment
found in many texts can be obtained by integrating Equation 2.63. Referring
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to Figure 2.15b, for convenience the line vortex is placed on the x-axis and
lies between 0 and x. The z-axis will project out of the paper according to the
right-hand rule. The circulation T is taken to be positive in the x direction
which means it will be clockwise when viewed in that direction. For this
figure,

R=ix
OP+r=R
OP=ix,+jy,
Thus
r=i(x —xp}—jyr
dR=1idx
s0 that
i i Kk
rXdR= | {x—xp) —y 0
dx 0 0
=Kk ypdx

I} = [(x — xp)* + ye]'"

Equation 2.63 then becomes

v klyp J’X dx
4 )y [ —xp P+ v "
This reduces to
vi=Kk L {(cosa +cos B) (2.64)

47h

a, B, and h are defined in Figure 2.15b. Notice that the velocity has only a z
component. As the line becomes infinite in length, the angles a and 8

" approach zero, and Equation 2.64 reduces to the expression for the velocity

around a two-dimensional point vortex given by Equation 2.56.

The Calculation of Flows for Well-Defined Body Shapes

The flow functions described thus far are basic functions. By combining
these functions a multitude of more complicated flows can be described.
When combining these functions, the velocities will add vectorially. This is
obvious from Equation 2.53a, since

grad ¢ = grad ¢, + grad.¢p,+ - - -
or
V=V +V+:-:

As an example of the use of these functions, consider the classic
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-
-

e

x= -1

Figure 2.16 Source-sink combination in a unifarm flow.

two-dimensional case illustrated in Figure 2.16. Here a source and a sink {(a
negative source) of equal strength are placed a unit distance from either side
of the origin in a uniform flow. Three velocities from the source, sink, and
uniform flow are shown added vectorially at P giving the resnleant velocity,
Y.

It is easily verified that the entire resulting flow is symmetrical about both
the x- and y-axes. To the left of the source along the x-axis a distance of X,
from the origin a stagnation point exists where the resultant velocity is zero.
The location of this point can be found from Equation 2.39 for the velocity
from a source {(or sink).

. 4 q
0= U 5= 1  2alxo+ D
or
xi=1+-4+ (2.65)
al

It will be seen that this point lies on a dividing streamline that is closed
and that separates the flow leaving the source and entering the sink from the
uniform flow. The resultant streamline pattern can be constructed by cal-
culating the velocity at many points in the field and fairing streamlines tangent
to these vectors. However, a more direct way is to form the stream function
and then solve for y(x) for constant values of ¢. Adding the ¢ functions for
the uniform flow, source, and sink, one cbtains

e = 5“— (8,— 62+ Uy (2.66)
m

where 8, and 8, are shown in Figure 2.16. Because of the multivaluedness of
the tangent function, one must be careful in evaluating this expression.
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At the st'ag_nfltion point, 8, = ¢, and y = 0, so that ¢ = 0. Since this point
liecs on the dividing streamline, a value of ¢ = 0 will define this streamline
Hence .

2ally
dq

0,— 8, = (2.67)

Sinj::e the flow is symmetrical, we only need to calculate the streamline
shapes in one quadrant, say the one for which x and y are both positive, In
this guadrant,

1_¥

6, = tan~
! 1+x

1 ¥
1-x

32: T —tan

Hence x and vy along the dividing streamline are related by

_ 2 U
tan 1#_—;—2=W(1—2?}’) {2.68)
This can be solved explicitly for x.
xl — ] w2 _ 2y
Y " Tan (a1l - QUYQT] 269

Notice that as y approaches zero in Equation 2.68, x approaches the
value given by Equation 2.65.

Sln'ce any streamline can be replaced by a solid boundary, the dividing
str&_:am-lme represents a closed body. If it is assumed that the body’s fineness
ratio (i.e., thickness to length) is small, then at its maximum thickness point
(x = 0), Equation 2.68 can be written approximately as

u
ZyD: W(l-z;yg)
or
’ Kk

Yo AT+ (n Uil 7

H Yo is the semithiclfness of the body corresponding to x,, the semilength.
ence the fineness ratio of the body, #l, is related to g/ U by

[ alU
I 21+ (gfwU)P" 271

This classical body shape is referred to as the Rankine oval. The streamline
{Jl:lttern can be (_ietermmed as a function of the streamline position far from
e body. If y, is the location of a particular streamline away from the body
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then, for this particular streamline,
¥ =yU

Equating this to Equation 2.66, one obtains a relationship between x and y
along the streamline as a function of y. and g/U that can be solved explicitly

for x. 2
—J1_v2_ 2y
x= {1 Y " lan a1 =2(UlgKy - }’m)]} @72

This relation was used to calculate the streamline patterns of Figure 2.17.
Only the flow external to the dividing streamline is shown.

For comparison, this figure presents the streamline patterns (in one
quadrant only) for 20% and 50% thick ovals. For each thickness, g/lJ was
chosen on the basis of Equation 2.69. Because this equation assumes #/! to be
small, the thickness ratio of the one shape is slightly greater than 50%.

Having defined the shape of a body and the velocity field around it, the
next obvious point of interest is the pressure distribution over the body’s
surface. In order to remove the dependence of the predicted pressure dis-
tribution on the free-stream pressure and velocity, the pressure distribution is
normally presented in coefficient form, C,, where C, is defined according to

_ P~ P
G = ampvy 2.73)
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Flgure 2.17 Calculated streamlines for 20 and 50% thick Rankine ovals.
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From Equation 2.29, C, is found from the ratio of local velocity to free-

stream velocity.
vy’
C,=1- (_V ' 2.74)

Returning now to the Rankine oval, note first that C, = 1 at the stagnation
point where V is zero. Moving away from the nose along the = 0 stream-
line, the velocity increases to a maximum at some location. Depending on the
fineness ratio, this point of maximum velocity may or may not be at the
maximum thickness of the body; that is, x = 0.

Although cne could work with ¢, knowing the source (and sink) strength
the easiest approach is to calculate the ¥ and v components directly by adding
the components attributed to each elementary flow function. In this case it
will be found that

“_,,. 4 [ x+1 — x-1
U, 2l L(x + 1)* + y? (x_])2+y‘z]

v __q [ y _ ¥y ]
Us 27l Llix+ ' +y? (x—1P+y

The pressure coefficient is then calculated from

[+ )]

The pressure distribution along the surfaces of 20 and 50% thick Rankine
ovals have been calculated using the preceding equations, and the results are
presented in Figure 2.18. It is not too surprising to find that, for the 20% oval,
the minimum pressure occurs near the nose, where the curvature is the
greatest. For the 50% thick oval the minimum pressure occurs approximately
ha.lfway from the center of the body to the nose, but it is nearly flat over the
mlddle 70% of the body’s length.

The Circular Cylinder

_ The flow field around a circular cylinder and resulting pressure dis-
tribution can be determined as a limiting case of the Rankine oval. In Figure
2.16 tpe source and sink were placed at x =— 1.0 and x = 1.0, respectively.
We_wﬂl now move them instead toward the origin, but increase their strengths
In inverse proportion to the distance between them. In the limit as the
distance between the source and sink goes to zero, a so-called source-sink
doublet is obtained.

Letting 2¢ equal the distance between the source and sink and m the
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Figure 2.18 Predicted pressure distributions for 20 and 50% thick Rankine
ovals.

constant doublet strength equal to 2e(), Equation 2.64 can be written as

m oY Sy )
= + tan 7)) U,
v 4r€(tan e+x PRI T

lime—=0
In the limit, this becomes
m_ ¥y
2o x4+ y?

h=— + Uy

For ¢ = 0, since y is not generally zero, it follows that
x4yt =o—s

This is the equation of a circle of radius

R = (mf2=U)*"
Thus # can be written in polar coordinates as

W= Ursin @ [ - (5)2] 2.76)

;
where #2= x>+ y?
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The tangential velocily along the surface of the cylinder is found from
Equation 2.47 by differentiating 4 with respect to r and evaluating the result
at r= R. In this way vy is found to be

ve=2U sin @ (2.77)

The pressure coefficient distribution, from Equation 2.45, is thus predic-
ted to be
C, = 1—4sin’¢ (2.78)

In Chapter Four it will be seen that Equation 2.78 agrees fairly well with
experimental results over the front half of the cylinder, but departs from
actual measurements over the rear portion as the result of viscosity.

A point vortex of strength y can be placed at the origin without altering
the streamline representing the surface of the cylinder. If this is done,
Equation 2.77 becomes

— : ¥
v, =2U sin 0+ R (2.79)

Relative to p, the pressure on the surface of the cylinder will be

2

. Y
20 sin 8 + 2R (2.80)

Referring to Figure 2.19, the net vertical force, or lift, on the cylinder
resulting from the pressure distribution will be

—p=l g2 1
P—po=35pU"-3p

L=—f PR sin 6d9
|

Figure 2.19 Circular cylinder with circulation.
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or, from Equation 2,78, this reduces to
L=pUy (2.81)

This is referred to as the Kutta-Joukowski law. Although derived here
specifically for a circular cylinder, it can be applied to other shapes where y
represents generally the circulation around the shape. This will be amplified
further in Chapter Three.

The net horizontal force, or drag, on the cylinder is found from

27
D=f pR cos 8de
0

Using Equation 2.80, the drag is found to be zero, a result that is true in
general for a closed body in steady potential flow. This result is known as
D’Alembert’s paradox, after Jean le Rond D’Alembert, a French mathemati-
cian who first reached this conclusion around 1743.

The Numerical Calculation of Potential Flow Around
Arbitrary Body Shapes

The preceding has demonsirated how particular body shapes can be
generated by the superposition of elementary fiow functions. This procedure
can be generalized and the inverse problem can be solved where the body
shape is prescribed and the elementary flow functions that will generate the
bady shape are found.

The concept of a point source or a point vortex can be extended to a
continuous distribution of these functions. Consider first the two-dimensionat
source distribution shown in Figure 2.20. Here g is the source strength per
unit iength.

Consider the closed contour shown dashed in Figure 2.20, having a length
of Ax and a vanishing small height. The total flux through this surface must
equal g Ax. Close to the surface the u# velocity components from the elemen-
tal sources will cancel so that only a v component remains. Thus

2v Ax = q Ax
0r
v :% (2.82)

In Reference 2.4 this relationship is used to determine the flow about
arbitrary shapes. Thus, unlike the Rankine oval, the body shape is specified,
and the problem is to find the distribution of singularities to satisfy the
condition that the velocity everywhere normal to the body surface to be zero.
This particular problem is referred to as the Neumann probiem. Essentially

the numerical solution of the problem proceeds by segmenting the body
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Figure 2.20 Distributed sources in two-dimensional flow.

surface and distributing 2 unit source strength, g, over the ith element. The
normal velocity induced at the middle of the ith element by q; is obtained
immediately from Equation 2.82. The contribution to the velocity at the ith
element from another element is calculated by assuming the total source
strength at the second element to be a point source located at the middle of
that element. Taking # elements and letting i = 1,2, 3,...,#n leads to a set of
n linear simultaneous algebraic equations for the unknowns, g;, G2, 43, . . . , Ga-

Consider in mare detail this approach for two-dimensional flow. Figure
2.21 shows two elements along the surface of a body. The ith element is the
control element over which the unit source strength g; is distributed. At the
ith element a point source is located having a strength equal to g; AS, AS;
being the length of the jth element. The free-stream velocity U, is shown
relative to the body x-axis at an angle of attack of a.

At the center of the ith element the normal velocity components from
each source and the free stream must vanish. Hence

) N
Upsin(9-a) =S+ 3 gy J=i (2.83)
i=1

¢; is an influence coefficient, which accounts for the geometry of the
body shape in determining the normal velocity induced at the ith element by
the source at the jth element.

If {; and #, correspond to the midpoints of the ith element then, for Figure
2.21:

y= b 2:84a)
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Figure 2.21 Numerical solution of the Neumann problem by a distribution of

S0urces.
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Having thus determined the source strengths, g, the resultant velocity at
any location can be determined by adding vectorially the free-stream velocity
to the contributions from all of the sources. Finally, the pressure distribution

can be determined from Equation 2.74.

This numerical procedure applied to a circular cylinder with a unit radius
is illustrated in Figure 2.22. Here, only eight elements are shown. For this

case,
X = Ccos 6

y; = sin 8

POTENTIAL FLOW

Figure 2.22 Approximation to a circular cylinder with straight-line segments.
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Flgure 2.23 Convergence of the numerical result to the exact solution for a
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where

The numerical calculation of the pressure distribution around a circular
cylinder is compared in Figure 2.23 with the exact solution given by Equation
2.78. As the number of segments increases, the approximate solution is seen
to approach the exact solution rapidly, in Chapter Three this numerical
method will be extended to include distributed vortices in addition to sources.
In this way the lift of an arbitrary airfoil can be predicted.

SUMMARY

This chapter has introduced some fundamental concepts in fluid
mechanics that will be expanded on and applied to explaining the aerody-
namic behavior of airplane components in succeeding chapters. Potential flow
methods will be used extensively with corrections given for Reynolds and
Mach numbers.

PROBLEMS

2.1 Prove that the resultant static force on the face of a dam acts at the
centroid of the dam'’s area.

2.2 Show that the incompressible Bernoulli's equation {(Equation 2.28)
becomes p + pgh +3pV? = constant for a liquid, the weight of which is
significant in comparison to the static pressure forces. (k is the depth of
the streamline relative to an arbitrary horizontal reference plane.)

2.3 A pilot is making an instrument approach into the University Park
Airport, State College, Pennsylvania, for which the field elevation is
listed at 378 m (1241ft) above sea level. The sea level barometric
pressure is 763.3 mm Hg (30.05 in. Hg), but the pilot incorrectly sets the
altimeter to 758.2 mm Hg (29.85 in. Hg). Will the pilot be flying tao high
or too low and by how much? [Note. Standard sea level pressure is equal
to 760 mm Hg (29,92 in. Hg)].

2.4 Set to standard sea level pressure, an altimeter reads 2500 m (8200 ft).
The outside air temperature (OAT) reads —15°C (5°F). What is the
pressure altitude? What is the density altitude?

2.5 By integrating the pressure over a body’s surface, prove that the bucyant
force on the body when immersed in a liguid is equal to the product of
the volume of the displaced liquid, the liquid’s mass density, and the
acceleration due to gravity.
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2.6 The hypothetical wake downstream of a two-dimensional shape is pic-
tured below. This wake is far enough away from the body so that the
static pressure through the wake is essentially constant and equal to the
free-strecam static pressure. Calculate the drag coefficient of the shape
based on its projected frontal area.

T )
— v . A 2w
bl

2.7 An incompressible flow has velocity components given by u = wy and
v = wx, where w is a constant. Is such a flow physically possible? Can a
velocity potential be defined? How is « related to the vorticity? Sketch
the streamlines.

2.8 Derive Bernoulli's equation directly by applying the momentum theorem
to a differential control surface formed by the walls of a small stream-
tube and two closely spaced paralle! planes perpendicular to the velocity.

2.9 A jet of air exits from a tank having an absolute pressure of 152,000 Pa
(22 psi). The tank is at standard sea level (SSL) temperature. Calculate
the jet velocity if it expands isentropically to SSL pressure. :

2.10 A light aircraft indicates an airspeed of 266 km/hr (165.2 mph) at .
pressure altitude of 2400 m (7874 ft). If the outside air temperature is
—10°C, what is the true airspeed?

2.11 Prove that the velocity induced at the center of a ring vortex (like a smoke
ring) of strength I" and radius R is normal to the plane of the ring and has a
magnitude of I'/2R. _

2.12 Write a computer program to solve the Biot-Savart equations numfarlca!ly.
This can be done by dividing a line vortex into finite, small straight-line
elements. At a desired location the velocities induced by all of the elements
can then be added vectorially to give the total resultant velocity. Check
your program by using it to solve Problem 2.11.
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THREE
THE GENERATION OF LIFT

Lift is the component of the resultant aerodynamic forces on an airplane
normal to the airplane’s velocity vector. Mostly, the lift is directed vertically
upward and sustains the weight of the airplane. There are exceptions
however. A jet fighter with a thrust-to-weight ratio close to unity in a steep
climb may be generating very little lift with its weight being opposed mainly
by the engine thrust.

The component that is the major {ift producer on an airplane and on
which this chapter will concentrate is the wing. Depending on the airplane’s
geometry, other components can contribute to or significantly affect the lift,
including the fuselage, engine mnacelles, and horizontal tail. These latter
components will be considered, but to a lesser extent than the wing.

WING GEOMETRY

The top view, or planform, of a wing is shown in Figure 3.1. The length,
b, from one wing tip to the other is defined as the wingspan. The chord, c, at
some spanwise station, y, is the distance from the wing’s leading edge to its
trailing edge measured parallel to the plane of symmetry in which the
centerline chord, ¢, lies. The chord generally varies with y so that, for
purposes of characterizing wing geometry, a mean chord, ¢, is defined as the
value that, when multiplied by the span, results in the planform area, S.

¢ =§ G.1)

The aspect ratio of a wing, A, is a measure of how long the span is with
respect to the mean chord. Thus

b2

=2 3.2
A=3 (3.2)
For a rectangular planform where the chord is constant, this reduces to
A=t 3.3
C

61



62 THE GENERATION OF LIFT

Viof air relative to wing)

Trail

Flgure 3.1 Top view of a wing {planform}.

As shown in Figure 3.1, a wing planform may be tapered and swept back.
The taper ratio, A, is defined as the ratio of the tip chord, ¢, to the midspan
chord, ¢y.

L
Co

A= G4

The sweep angle, A, is frequently measured relative to the guarter-chord
line of the wing, that is, a line defined by the locus of points a quarter of the
distance from the leading edge to the trailing edge. A, on occasion, is also
measured relative to the leading edge.

Usually the center portion of a wing is enclosed by the fuselage. In such
an instance the wing’s aspect ratio and taper ratio are determined by ignoring
the fuselage and extrapolating the planform shape into the centerline. The
midspan chord in this instance is thus somewhat fictitious. The wing root is
defined as the wing section at the juncture of the wing and fuselage.
Occasionally, in the literature, one will find wing geometry characterized in
terms of the wing root chord instead of the midspan chord.

Approximately the aft 25 to 30% of a wing's trailing edge is movable. On
the outer one-third or so of the span the trailing edge on one side of the wing
deflects opposite to that on the other. These oppositely moving surfaces are
called ailerons; ailerons provide a rolling moment about the airplane’s long-
itudinal axis. For example, when the aileron on the left wing moves down
and the one on the right moves up, a moment is produced that tends to lift the
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left wing and lower the right one; this ts a maneuver necessary in making a
coordinated turn to the right.

The inner movable portions of the wing’s trailing edge on both sides of
the wing are known as the flaps. For takeoff and landing the flaps are lowered
the same on both sides. There is no differential movement of the flaps on the
left and right sides of the wing. The purpose of the flaps is to allow the wing
to develop a higher lift coefficient than it would otherwise. Thus, for a given
weight, the airplane can fly slower with the flaps down than with them up.
Flaps, including leading edge flaps and the many different types of trailing
edge flaps, will be discussed in more detail later.

For some applications both ailerons are lowered to serve as an extension
to the flaps. In such a case they are referred to as drooped ailerons, or
flaperons. When flaperons are employed, additional roll control is usually
provided by spoilers. These arc panels that project into the flow near the
trailing edge to cause separation with an attendant loss of lift.

In order to understand and predict the aerodynamic behavior of a wing, it
is expedient to consider first the behavior of two-dimensional airfoils. An
airfoil can be thought of as a constant chord wing of infinite aspect ratio.

AIRFOILS

A considerable amount of experimental and analytical effort has been
devoted to the development of airfoils. Much of this work was done by the
National Advisory Committee for Aecronautics (NACA), the predecessor of
the National Aeronautics and Space Administration (NASA). Reference 3.1 is
an excellent summary of this effort prior to 1948. More recently NASA and
others have shown a renewed interest in airfoil development, particularly for
application to helicopter rotor blades, general aviation aircraft, and aircraft
operating at transonic speeds of Mach 0.7 or higher.

The development of an unflapped airfoil shape is illustrated in Figure 3.2.
First, in Figure 3.2a, the chord line, ¢, is drawn. Mext in Figure 3.2b, the
camber line is plotted up from the chord a small distance 2z, which is a
function of the distance from the leading edge. Next, as shown in Figure 3.2c,
the semithickness is added to either side of the camber line. Also, the nose
circle is centered on a tangent to the camber line at the leading edge and
passes through the Ieading edge. Finally, an outer contour is faired around the
skeleton to form the airfoil shape. Observe that the chord line is the line
joining the ends of the mean camber line.

The early NACA families of airfoils were described in this way, with the
camber and thickness distributions given as algebraic functions of the
chordwise position. However, for certain combinations of maximum thiclf-
ness-to-chord ratios, maximum camber-to-chord ratios, and chordwise posi-
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Figure 3.2 The construction of an airoil contour,

tion of maximum camber, tabulated ordinates for the upper and lower
surfaces are available (Ref. 3.1).

Before discussing the various families of airfoils in detail, we will
generally consider the aerodynamic characteristics for airfoils, all of which
can be influenced by airfoil geometry.

To begin, an airfoil derives its lift from the pressure being higher on the
lower surface of the airfoil than on the upper surface. If a subscript { denotes
lower surface and “u” denotes upper surface, then the totat lift (per unit
span) on the airfoil will be

L= [ @-poax 3.5)
0O

The moment about the leading edge, defined positive nose up, will be

Mie=— [ x(p.—p.) dx 3.6)

In accord with Equation 2.12, the lift and moment can be expressed in
terms of dimensionless coefficients.

_ L
S Tevie o7

AIRFOILS &5

_ MLE
Crme = ypvic? ©8)

Note that lowercase subscripts are used to denote coefficients for a
two-dimensional airfoil, whereas uppercase subscripts are used for the three-
dimensional wing.

Writing

Pr— Pu Bi— Do Pu—Pe

(DpV: ™ (1/2pV* (1/2)pV?

and redefining x as the distance in chord lengths from the leading edge,
Equations 3.5 and 3.6 become

1
c=[ .- ¢, ax 3.9)
(1]
and
1
Coa=— [ x(G, ~ G d (3.10)

where the upper and lower pressure coefficients are defined according to
Equation 2.73,

The moment calcuiated from Equation 3.10 can be visualized as being
produced by the resultant lift acting at a particular distance back from the
leading edge. As a fraction of the chord, the distance x., to this point, known
as the center of pressure, can be calculated from

—xc,,C, =C,

MLE

3.0

Knowing x.,, the moment coefficient about any other point, x, along the
airfoil can be written, referring to Figure 3.3, as

Cm = _(xcp_‘x) Cg (3.12)

G

1.0 |

Figure 3.3 Dimensionless moment at x produced by dimensionless lift acting at

Xep.
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It will be shown later that a point exists on an airfoil called the
aerodynamic center about which the moment coefficient is constant and does
not depend on C,. Denoting the location of the aerodynamic center by x,.,
Equation 3.12 can be solved for the location of the center of pressure.

Cons.
Xep= Xac — < 3.13)

Do not confuse the aerodynamic center with the center of pressure.
Again, the aerodynamic center is the location about which the moment is
constant, the center of pressure is the point at which the resultant lift acts.

The progressive development of an airfoil shape is illustrated by
reference to Figure 3.4a and 3.4b. Historically airfoils developed ap-
proximately in this manner. Consider first the simple shape of a thin, flat
plate.

Beginning with Figure 3.4a if the angle of attack of a thin, flat plate is
suddenly increased from zero, the flow will appear for a moment as shown.
Because of near-symmetry, there is practically no lift produced on the plate.
However, because of viscosity, the flow at the trailing edge cannot continue
to turn the sharp edge to flow upstream. Instead, it quickly adjusts to the
pattern shown in Figure 3.4b. Here the flow leaves nearly tangent to the
trailing edge. This condition is known as the Kutta condition after the
German scientist, W. M. Kutta, who in 1902 first imposed the trailing edge
condition in order to predict the lift of an airfoil theoretically. In Figure 3.4k
observe that there is one streamline that divides the flow that passes over the
plate from that below. Along this “dividing streamline,” the flow comes to
rest at the stagnation point, where it joins perpendicular to the lower surface
of the plate near the leading edge. As the flow progresses forward along this
line, it is unable to adhere to the surface around the sharp leading edge and
separates from the plate. However, it is turned backward by the main flow
and reattaches to the upper surface a short distance from the leading edge.
The resulting nonsymmetrical flow pattern causes the fluid particles to ac-
celerate over the upper surface and decelerate over the lower surface. Hence,
from Bernoulli’s equation, there is a decrease in air pressure above the plate
and an increase below it. This pressure difference acting on the airfoil
produces a lift.

If the angle of attack of the plate is too great, the separated flow at the
leading edge will not reattach to the upper surface, as shown in Figure 3.4c.
When this occurs, the large separated region of unordered flow on the upper
surface produces an increase in pressure on that surface and hence a loss in
lift. This behavior of the airfoil is known as stail. Thus the limit in C, that is,
C,,..- is the result of flow separation on the upper surface of the airfoil.

To improve this condition, one can curve the leading edge portion of the
flat plate, as shown in Figure 3.4d, to be more nearly aligned with the flow in
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Figure 3.4 Progressive development of airfoil shapes. (a) Flat plate at sudden
angle of attack—no lift. (b) Flat plate at angle of attack in steady flow and generating
lift. (¢} Flat plate experiencing leading edge separation and loss of litt (stail). (d) Flat
plate with curved leading edge to prevent leading edge separation. (e) Airfoil with
thickness and camber to delay stall. (f) Airfoil with trailing edge separation.
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Figure 3.4 (Continued)

)
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that region. Such a shape is similar to that used by the Wright Brothers. This
solution to the separation problem, as one might expect, is sensitive to angle
of attack and only holds near a particular design angle. However, by adding
thickness to the thin, cambered plate and providing a rounded leading edge,
the performance of the airfoil is improved over a range of angles, with the
leading edge separation being avoided altogether. Thus, in a qualitative sense,
we have defined a typical airfoil shape. Camber and thickness are not needed
to produce lift (lift can be produced with a flat plate) but, instead, to increase
the maximum lift that a given wing area can deliver.

Even a cambered airfoil of finite thickness has its limitations, as shown in
Figure 3.4f. As the angle of attack is increased, the flow can separate initially
near the trailing edge, with the separation point progressively moving forward
as the angle of attack continues to increase.

The degree to which the flow separates from the leading or trailing edge
depends on the Reynolds number and the airfoil geometry. Thicker airfoils
with more rounded leading edges tend to delay leading edge separation. This
separation also improves with increasing values of the Reynolds number.

Leading edge separation results in flow separation over the entire airfoil
and a sudden loss in lift. On the other hand, trailing edge separation is
progressive with angle of attack and results in a more gradual stalling. The
situation is illustrated in Figures 3.5 and 3.6 (taken from Ref. 3.1). In Figure 3.5
note the sharp drop in C at an a of 12° for R =3x10° whereas for
R =9x10% the lift curve is more rounded, with a gradual decrease in C
beyond an « of 14°. In Figure 3.6, for a thicker airfoil with the same camber,
the lift increases up to an angle of approximately 16° for all R values tested.
At this higher angle, even for R =9x10°% it appears that leading edge
separation occurs because of the sharp drop in G for o values greater than
16°. From a flying qualities standpoint, an airfoil with a well-rounded lift curve
is desirable in order to avoid a sudden loss in lift as a pilot slows down the
airplane. However, other factors such as drag and Mach number effects must
also be considered in selecting an airfoil. Hence, as is true with most design
decisions, the aerodynamicist chooses an airfoil that represents the best
compromise to conflicting requirements, including nonaerodynamic con-
siderations such as structural efficiency.

Figures 3.5 and 3.6 illustrate other characteristics of airfoil behavior that
will be considered in more detail later. Observe that the lift curve, G versus
a, is nearly lingar over a range of angles of attack. Notice also that the slope,
dCjlda, of the lift curve over the linear portion is unchanged by deflecting the
split flap. The effect of lowering the flap or, generally, of increasing camber is
to increase (G by a constant increment for each « in the linear range. Thus the
angle of attack for zero lift, ay, is negative for a cambered airfoil. In the case -
of the 1408 aiffoil pictured in Figure 3.5, ay equals —12.5°, with the split flap
deflected 60°.
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If « is increased beyond the stali G will again begin to increase before
dropping off to zero at an « of approximately 9%0°. The second peak in G is
generally not as high as that which occurs just before the airfoil stalls. S. P.
Langley, in his early experiments, noted these two peaks in the & versus a
curve but chose to fair a smooth curve through them. Later, the Wright
Brothers observed the same characteristics and were troubled by Langley’s
smooth curve. After searching Langley’s original data and finding that he, too,
had a “bump” in the data, Wilbur Wright wrote to Octave Chanute on
December 1, 1901,

“If he (Langley) had followed his observations, his line would probably have
been nearer the truth. I have myself sometimes found it difficult to let the lines run
where they will, instead of running them where I think they ought to go. My
conclusion is that it is safest to follow the observations exactly and let others do
their own correcting if they wish™ (Ref. 1.1).

To paraphrase the immortal Wilbur Wright, “‘Do not ‘fudge’ your data—it may
be right.”

AIRFOIL FAMILIES
NACA Four-Digit Series

Around 1932, NACA tested a series of airfoil shapes known as the
four-digit sections. The camber and thickness distributions for these sections
are given by equations to be found in Reference 3.1, These distributions were
not selected on any theoretical basis, but were formulated to approximate
efficient wing sections in use at that time, such as the well-known Clark-Y
section.

The four-digit airfoil geometry is defined, as the name implies, by four
digits; the first gives the maximum camber in percent of chord, the second the
location of the maximum camber in tenths of chord, and the last two the
maximum thickness in percent of chord. For example, the 2412 airfoil is a
12% thick airfoil having a 2% camber located 0.4¢ from the leading edge. The

2412 airfoil is pictured in Figure 3.7 along with other airfoils yet to be
described.

NACA Five-Digit Serles
The NACA five-digit series developed around 1935 uses the same thick-

ness distribution as the four-digit series. The mean camber line is defined
differently, however, in order to move the position of maximum camber
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=
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Figure 3.7 Comparison of various airfoil shapes.

forward in an effort to increase C, . Indeed, for comparable thicknesses and
cambers, the C__ values for the five-digit series are 0.1 to 0.2 higher than
those for the four-digit airfoils. The numbering system for the five-digit series
is not as straightforward as for the four-digit series. The first digit multiplied
by 3/2 gives the design lift coefficient of the airfoil. The next two digits are
twice the position of maximum camber in percent of chord. The last two
digits give the percent thickness. For example, the 23012 airfoil is a 12% thick
airfoil having a design C, of 0.3 and a maximum camber located 15% of ¢
back from the leading edge. This airfoil is also pictured in Figure 3.7.
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NACA 1-Series (Serles 16}

The NACA 1-series of wing sections developed around 1939 was the first
series based on theoretical considerations. The most commonly used I-series
airfoils have the minimum pressure located at the 0.6¢ point and are referred
to as series-16 airfoils. The camber line for these airfoils is designed to
produce a uniform chordwise pressure difference across it. In the thin airfoil
theory to follow, this corresponds to a constant chordwise distribution of
vorticity.

Operated at its design C, the series-16 airfoil produces its lift while
avoiding low-pressure peaks corresponding to regions of high local velocities.
Thus the airfoil has been applied extensively to both marine and aircraft
propellers. In the former application, low-pressure regions are undesirable
from the standpoint of cavitation (the formation of vaporous cavities in a
flowing liquid). In the latter, the use of series-16 airfoils delays the onset of
deleterious effects resulting from shock waves being formed locally in regions
of high velocities.

Series-1 airfoils are also identified by five digits as, for example, the
NACA 16-212 section. The first digit designates the series; the second digit
designates the location of the minimum pressure in tenths of chord. Following
the dash, the first number gives the design C in tenths. As for the other
airfoils, the last two digits designate the maximum thickness in percent of
chord. The 16-212 airfoil is shown in Figure 3.7.

NACA 6-Series

The 6-series airfoils were designed to achieve desirable drag, com-
pressibility, and C, , performance. These requirements are somewhat
conflicting, and it appears that the motivation for these airfoils was primarily
the achievement of low drag. The chordwise pressure distribution resulting
from the combination of thickness and camber is conducive to maintaining
extensive laminar flow over the leading portion of the airfoil over a limited
range of C values. Outside of this range, C; and C;__ values are not too much
different from other airfoils.

The mean lines used with the 6-series airfoils have a uniform loading
back to a distance of x/c = 2. Aft of this location the load decreases linearly.
The a =1 mean line corresponds to the uniform loading for the series-16
airfoils.

There are many perturbations on the numbering system for the 6-series
airfoils. The later series is identified, for example, as

max

NACA 65212 a=06
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Here 6 denotes the series; the numeral 5 is the location of the minimum
pressure in tenths of chord for the basic thickness and distribution; and the
subscript 1 indicates that low drag is maintained at C; values of 0.1 above and
below the design G of the 0.2, denoted by the 2 following the dash. Again, the
last two digits specify the percentage thickness. If the fraction, a4, is not
specified, it is understood to equal unity. The 65,-212 airfoil is shown in Figure
37

Lift and drag curves for the 65,-212 airfoil are presented in Figure 3.8.
Notice the unusual shape of C; versus G, where the drag is significantly lower
between G values of approximately 9 to 0.3. In this region, for very smooth
surfaces and for Reynolds numbers less than 9 X 105, extensive laminar flow is
maintained over the surface of the foil with an attendent decrease in the skin
friction drag. This region, for obvious reasons, is known as the “drag bucket.”
In practice this laminar flow, and resulting low drag, is difficult to achieve
because of contamination by bugs or by structurally transmitted vibration that
perturbs the laminar boundary layer, causing transition. Chapter Four will
discuss the drag of these airfoils in more detail.

MODERN AIRFOIL DEVELOPMENTS

Systematic series of airfoils have given way, at least in part, to speci-
alized airfoils designed to satisfy particular requirements. These airfoils are
synthesized with the use of sophisticated computer programs such as the one
described in Reference 3.5, which will be discussed in more detail later. One
such special purpose airfoil is the so-called supercritical airfoil reported on in
References 3.6 and 3.7. This airfoil has a weli-rounded leading edge and is
relatively flat on top with a drooped trailing edge. For a constant thickness of
129, wind tunnel studies indicate a possible increase of approximately 15% in
the drag-divergence Mach number for a supercritical airfoil as compared to a
more conventional 6-series airfoil. In addition, the well-rounded leading edge
provides an improvement in C.... at low speeds over the 6-series, which has
sharper leading edges.

A qualitative explanation for the superior performance of the super-
critical airfoil is found by reference to Figure 3.9. At a free-stream Mach
number as low as 0.7 or so depending on the shape and C, a conventional
airfoil will accelerate the flow to velocities that are locally supersonic over the
forward or middle portion of its upper surface. The flow then decelerates
rapidly through a relatively strong shock wave to subsonic conditions. This
compression wave, with its steep positive pressure gradient, causes the
boundary layer to thicken and, depending on the strength of the shock, to
separate. This, in turn, causes a significant increase in the drag. The minimum
value of the free-stream Mach number for which the local flow becomes
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Flgure 3.2 Supercritical flow phenomena.

supersonic is referred to as the critical Mach number. As this .value is
exceeded by a few hundredths, the shock wave strengthens su.fﬁmently to
cause the drag to rise suddenly. This free-stream Mach number is known as
the drag-divergence Mach number. '

The supercritical airfoil also accelerates the flow to locally supersonic
conditions at free-stream Mach numbers comparabie to the 1- or 6-ser_1es
airfoils. However, the supercritical airfoil is shaped, so that around its de51.gn
lift coefficient, the flow decelerates to subsonic conditions through a dis-
tribution of weak compression waves instead of one strong one. In this way
the drag-divergence Mach number is increased substantially.
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Although the possibility of such airfoils was known for some time, their
successful development in modern times is attributed to R. T. Whitcomb. A
Whitcomb-type supercritical airfoil is pictured in Figure 3.7,

Tested at low speeds, the supercritical airfoils were found to have good
C, . values as well as low C,; values at moderate lift coefficients. As a result,
another family of airfoils evolved from the supercritical airfoils, but for
low-speed applications. These are the *‘general aviation™ airfoils, designated
GA(W) for general aviation (Whitcomb). The GA(W)-1 airfoil is the last of the

24
R
20k © 1.9x108
a 39 \
= ¢ 57
28 \\
18- b123 L

0.8 '/5

0.4

—0.4

~0.1 \

’.&4 =

X
—-0.2 r\i B

=12 -8B -4 4] 4 g 12 16 20 24 28
o, deg

Figure 3.10a Effect of Reynoids number on section characteristics of the
GA(W)-1 airfoil Model smooth, M =0.15.

0.04
3 o
- o 1.9x 108 l
oot o 39
9.2 I v,
G L 2133 AL f/ ]'
0.02 Q Vi
. i 73(
o &
B A
0.01
‘ il
-1.2 -08 -04 o 04 08 12 16 20

G

Figure 3.10b Conditions same as Figure 3.10a.

— Roughness
pb Off

Off
Otf )
0.08:
2.8 5
4 )

2.4

-

32t

[»¢ oo
a o b
Ta

2.0

A

0.4

—0.2

S a— o P 8 12 18

«, deg
Figure 3.10c GA(W)-1 airfoil section characteristics for 0.20¢ simulated spiit flap
deflected 60° (M = 0.20).

79



MODERN AIRFOIL DEVELOPMENTS 871

airfoils pictured in Figure 3.7. Test results for this airfoil are reported in
Reference 3.8, where its C;_, values are shown to be about 30% higher than
those for the older NACA 65-series airfoils, In addition, above C, values of
around 0.6, its drag is lower than the older laminar flow series with standard
roughness. These data are presented in Figure 3.10 for the GA(W)-1 airfoil.
Comparisons of C___and C; for this airfoil with similar coefficients for other
airfoils are presented in Figures 3.11 and 3.12.

Observe that the performance of the GA(W)-1 airfoil is very Reynolds
number-dependent, particularly G, which increases rapidly with Reynolds
number from 2 to 6 million. At the time of this writing, the GA(W) airfoil is
beginning to be employed on production aircraft. The same is true of the
supercritical airfoil. Indeed, the supercritical airfoil is being used on both the
Boeing YC-14 and McDonneil-Douglas YC-15 prototypes currently being tested
for the advanced medium STOL transport (AMST) competition. At the time of
this writing, NASA is adopting a new nomenclature for the GA(W) airfoils. They
will be designated by LS (low speed) or MS (medium speed) foliowed by four
digits. For example, the GA(W)-1 airfoil becomes L.S(1)-0417. The (1) designates
a family. The 04 refers to a design lift coefficient of 0.4, and 17 is the maximum
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thickness in percent of chord. For more information on modern airfeils, consult
Reference 3.36,

PﬁEDfCTlON OF AIRFOIL BEHAVIOR

In Chapter Two it was noted that the concepts of a point vortex and a
point source could be extended to a continuous distribution of the elementary
flow functions. In that chapter a distribution of sources in a uniform flow was
found to produce a nonlifting body of finite thickness. In the case of the
circular cylinder, the addition of a vortex also produced lift.

Comparable to the continuous distribution of sources pictured in Figure
2.20, consider a similar distribution of vortices as illustrated in Figure 3.13.
Such a distribution is referred to as a vortex sheet. If v is the strength per unit
length of the sheet, ¥ Ax will be the total strength enclosed by the dashed
contour shown in the figure. The contour is taken to lic just above and below
the sheet. Ax is sufficiently small so that the velocity tangent to the sheet, v,
can be assumed to be constant. Because of the symmetry to the flow provided
by any one segment of the sheet, the tangential velocity just below the sheet
is equal in magnitude but opposite in direction to that just above the sheet.
From Equation 2.55, relating circulation to the strength of a vortex, it follows
that

v Ax =2v Ax
or
p :% ' (3.19)

Note the similarity of this relationship 1o that expressed by Equation 2.82.
However, in the case of Equation 3.14, the velocity is tangent to the vortex
sheet whereas, for Equation 2.82, the velocity is normal to the line on which
the sources lie,

Consider now the thin airfoil pictured in Tigure 3.14. If the airfoil is
producing a lift, the pressure on the lower surface is greater than that on the
upper. Hence, from Bernoulli’s equation, the velocity on the upper surface is
greater than the velocity on the lower surface. Letting this difference in

Ax
HH _>| T = vortex strength

—_— per unit length
A
{—L/—iﬂ{-&ﬂ(ﬁﬂiﬂ/ﬂﬂlf-&raﬂ{-&{ﬁ\ﬁ{—&
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L——— I vax = total strength of
enclosed vortices

1

Flgure 3.13 Distributed vortices in a two-dimensional flow (vortex sheet).
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Figure 3.14 The velocity difference across a lifting thin airfoil.

velocity across the airfoil equal 2v, the upper and lower velocities can be
written as

V.=V+ro
and
Vi=V—-u»

Thus the flow field around the airfoil is the same as that which would be
produced by placing, in a uniform flow of velocity V., a vortex sheet of unit
strength 2v along the airfoil.

The contribution to the lift of a differential length of the airfoil will be

dl = (p;~p.) dx
Or, using Bernoulli's equation, this becomes,
dt = pV(2p) dx

Since 2p is the unit vortex strength, the Kutta~Joukowski law (Equation 2.81)
is found to hold for the airfoil element.

dl = pVydx
or, intégrating Equation 3.18 over the entire chord,
[=pVT (3.15)

where T is the total circulation around the airfoil given by
= j ydx (3.16)
(i}

In order to predict the lift and moment on the airfoil, one must find the
chordwise distribution of y(x) that will produce a resultant flow everywhere
tangent to the mean camber line (thin airfoil approximation). In addition, the
Kutta condition is applied at the trailing edge to assure that the flow leaves

" the trailing edge tangent to the mean camber line at that point. This is a
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necessary condition; otherwise, the resulting flow will appear similar to Figure
3.4q with the lift being equal to zero.

An analytical solution to the thin airfoil will be obtained later but, first, let
us consider a numerical approach to predicting the lift and moment of an
airfoil.

As a gross approximation to the distributed vorticity along the airfoil, the
distribution will be replaced by only one vortex of unknown strength, I'.
However, I” will be placed at a particular point on the airfoil, at the quarter-
chord point. The boundary condition and the Kutta condition will be satisfied
at only one point, the three-quarter-chord point. This approximation, known
as Weissinger’s approximation, is illustrated in Figure 3.15 for a flat-plate
airfoil.

The velocity induced at 3¢/4 by I placed at ¢f4 will be

T .

v =—

we

Assuming o to be a small angle, it follows that

v; = Va (3.17)
or
I''=acVa (3.18)
From the Kutta—Joukowski relationship, L = pVT, so that
L=pmcVia (3.19)

Expressing lift in terms of the lift coefficient and vsing Equation-3.19 leads to
C = 2na (3.20)

where « is the angle of attack in radians.

The expression agrees identically with the theoretical solution of this
problem that foflows. Notice that the result predicts the slope of the Lift curve,
dCfda, to be 2xfrad. Experimentally this figure is usually found to be

v L
rc

Flgure 3.15 Weissinger’'s approximation to a thin airfoil.
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somewhat less. Figures 3.5 and 3.6, for example, show a value of around
0.105/deg or 6.02/rad.

The approximation of Figure 3.15 can be improved on by dividing the
airfoil chord into a number of equal segments and placing a vortex of
unknown strength at the quarter-chord point of each segment. The unknown
strengths are determined by assuring that the normal velocity vanishes at the
three-quarter-chord point of each segment. With the last control point down-
stream of the last vortex singularity, the Kutta condition is assured.

To illustrate this numerical solution of the thin airfoil, consider Figure
3.16. Here, a circular arc airfoil having a unit chord length with a maximum
camber ratio of z is operating at an angle of attack «.

If it is assumed that

z<&1 . (3.21)

the radius of curvature, R, of the airfoil will be related to z approximately by
_ 1
R= 8z

The slope of the camber line relative to the chord line (the angle ¢ in Figure
3.16) at any distance x can be determined from the geometry of the figure.

¢ =(4—8x)z (3.22)

Figure 3.16 A circular arc airfoil approximated by two vortices.
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The component of V normal to the mean camber line and directed

upward is thus
v = Via—¢)

It follows that at control points 1 and 2 located at x values of 3¢/8 and 7¢/8,
respectively, the two vortices similating the airfoil must induce velocities
downward given by

v,=V(ae—2z) at 1 (3.23a)

vi=V(e+3z) at 2 (3.23p)

The problem is lincarized by Equation 3.21 so that the vortices, v, and v,,
are taken to lie on the chord line. Thus, according to Equation 2.56, the total
velocities induced at the two control points by the two vortices will be

o= ;}-_{271 ~2vs) atl - (3.24a)
-—1(3 +2 ) 12 (3.24b)
v = \3 Y1 Y2 a .
Equating Equations 3.23 and 3.24 results in
Y= _3qu (e +2) (3.254)
y2= 343 (a +52) (3.25b)

Applying the Kutta-loukowski law to each vortex results not only in a
predicted total lift, but also in a moment. In coefficient form the lift and
moment {(about the leading edge) become

Ci=2m(a +22) {3.26a)
Conip = —'?T(%+1;') (3.26b)

The moment coefficient about the leading edge can be transferred to the
quarter-chord point by using

1
C'"m = Comp g + ZCL
Thus,

Iz
Cope = - {3.27

This simple, two-point model results in several important observations
that are in agreement with more exact solutions. First, note that Equation 3.26a
shows the lift coeflicient to be a linear combination of o and z. Thus,
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cambering an airfoil will not change the slope of the lift curve. Second, it is
predicted that the moment about the quarter chord will be independent of o,
Hence, this point is predicted to be the aecrodynamic center.

As one divides the airfoil into a greater and greater number of ¢lements,
the resulting y distributions will approach the theoretical pressure distribution
predicted on the basis of continuous +y distributions. The strength, v, of a
vortex placed at the ¢/4 poiat of an element of length Ax will be related to the
pressure jump, Ap, across the element by

_pVy

Ap = Ax (3.28)
Figure 3.17 presents a comparison, for the flat-plate airfoil, between the
pressure distribution obtained using the foregoing numerical procedure with
that based on a continuous distribution of y along the chord. It is seen that
the numerical results rapidly converge to the continuous solution as the
number of elements increases. In preparing this figure it should be noted that
Ap, given by Equation 3.28, has been expressed in coefficient form and plotted
at the location of each point vortex. Figure 3.18 presents a similar comparison
for the circular arc airfoil. In this case « is taken to be zero, aveiding the

infinitely negative C, at the leading edge.

50 —

4.0 o2z
x5
o10

a1b
3.0

20 Exact theory

[ | I

0 0.2 0.4 0.6 0.8 1.0
x

_Figure 3.17 Comparison of numerical catcutation of chordwise lift distribution

with analytical prediction for a flat-plate airfoii at 10° angie of attack.
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Figure 3.18 Comparison of numerical calculation of chordwise lift distribution
with analytical prediction for a 4% cambered, circular arc airfoil.

The numerical model predicts the lift in exact agreement with mere
precise analytical models. However, the moment coefficient, given by Equa-
tion 3.27, is only three-quarters of that obtained by analvtical means. Figure
3.19 shows that the exact value is approached rapidly, however, as the
number of segments increases.

As indicated by Figure 3.19, the exact value of the moment coeefficient
about the aerodynamic center (cf4) for the circular arc airfoil is given by

Cp, = — 72 (3.29)

Using Equation 3.13, the location of the center of pressure can be found
as

1 mz
ch = Z + a (3.30)
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Figure 3.19 Numerical calculation of moment coefficient compared with analy-
tical prediction for 4% cambered, circular arc airfoil.

Qbserve that as  decreases, the center of pressure moves aft, ap-
proaching infinity as C; goes to zero. This movement of the center of pressure
is opposite to what was believed to be true by the early pioneers in aviation.
The Wright Brothers were probably the first to recognize the true nature of
the center-of-pressure movement as a result of their meticulous wind tunnel
lests.

Analytical solutions to the thin airfoil can be found in several texts {e.g.,
Ref. 3.2 and 3.3). Here, the airfoil is replaced by a continuous distribution of
vortices instead of discrete point vortices, as used with the numerical solu-
tion. '

Referring to Figure 3.20, without any loss of gencrality, the airfoil is
taken to have a unit chord lying along the x-axis with the origin at the leading

ot

Ee— X-
z{x} camber line

- )

LI NP, N} \JCC\J\\-\—
o 0 S i 1.0
ydx
v

. dw
Flgure 3.20 The modeling of a thin airfoil by a vortex sheet.
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edge. The shape of the camber line is given by z(x), and it is assumed that
z(x)<1

With this assumption the problem is linearized and made tractable by replac-
ing the airfoil with a vortex sheet of unit strength y(x) lying along the chord
line instead of along the camber line.

At the point x,, the downward velocity induced by an elemental vortex of
strength y(x) dx located at x, according to Equation 2.56, will be given by

dw(xq) = _yx)dx

29 (xo— X)
or, integrating over the chord,

A [Ty dx :

w(x0)=2ﬂ 0 Xo—X

(3.31)

In order to satisfy the boundary condition that the flow be tangent
everywhere to the mean camber line, it follows that, to a small angle

approximation,
Wxo) _ _.(_dZ)
v i), ©-32)

Thus, given a and z(x), the following integral equation must be solved

for y{(x).
I ("y&x)dx (g)
ZTI'VJ; xo—-x ° \dx 0 (3.33)

In addition, y(x) must vanish at the trailing edge in order to satisfy the
Kutta condition. Otherwise, the induced velocity will be infinite just down-
stream of this point.

Equation 3,33 is solved by first transforming to polar coordinates.

Letting
x=2(1-cos 6) (.38
Equation 3.33 becomes
1 [ _y@)de _ ( dz )
2nV )y cos@—cos @ dx,, (3.33)

On the basis of the more sophisticated method of conformal mapping
(e.g., see Ref. 3.4), it is known that ¥{x) is generally singular at the leading
edge approaching infinity as 1/x. Thus we will assume a priori that Equation
3.35 can be satisfied by a y(8) distribution of the form

_ (1+cos ), < . ]
y =2V [A., e +§ A, sin n@ (3.36)
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Using the relationships

% [cos (n - 158 — cos (n + 1)9] = sin 1 sin 8

and

I“ cosndde sinnd,
0

cos8—cos 8y T sin 6q (3-37)

Equation 3.35 becomes

5 _, 4z
Agng,. cosnf=a e
Multiplying both sides of the preceding equation by cosmé (m =0, 1, 2, ..,
n,...) and integrating from 0 to 7 Jeads to

A= a— [ 9 4g (.38a)
T Jo dx
A =2 f "4z s nede (3.38b)
oty dx

Thus, knowing the shape of the mean camber line, the coefficients Ag, A,
Ag, .. .can be determined either in closed form or by graphical or numerical
means {see Ref. 3.1). Having these coefficients, C; and C, can then be easily
determined from the Kutta-Joukowski relationship.

The lift and moment about the leading edge are given by

1
L =J- eVy(x)dx
0

1
Mg = I pVy(x) xXdx
0

From these and using Equation 3.36,

C, =2m7A¢+ A, (3.39)
A
Cop= - T A0+ 25 (3.40)

It follows that C,, about the quarter-chord point is independent of a, SO 'that
this point is the aerodynamic center, with the moment coeflicient being given
by

G, = — F(AI— A2) (3.41)

-Since « is contained only in the A, coefficient, it can be concluded
immediately without considering the actual form of z(x) that G is given by a
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linear combination of @ and a function of z. Thus, camber changes can be
expected to affect the angle of zero lift but not the slope of the lift curve.

Reference to airfoil data, such as that presented in Figures 3.5 and 3.6,
will show that the predictions of thin airfoil theory are essentially correct.
There is a range of angles of attack over which the lift coefficient varies
linearly with . The slope of this lift curve is usually not as high as the theory
predicts, being approximately 4 to 8% less than the theoretical value. For
many purposes an assumed value of 0.1 Cfdeg is sufficiently accurate and is a
useful number to remember. Experimental data also show the aerodynamic
center to be close to the quarter-chord point. The effects of camber on C,
dCjide, and C,, are also predicted well.

Recently large numerical programs have been developed to predict the
performance of airfoils that incorporate Reynolds number and Mach number
effects. These are typified by Reference 3.5, which will be described briefly.
This program begins by calculating the potential flow around the airfoil. In
order to allow for both finite thickness and circulation, the airfoil contour is
approximated by a closed polygon, as shown in Figure 3.21. A continuous
distribution of vortices is then placed on each side of the polygon, with the
vortex strength per unit length, -y, varying linearly from one corner to the next
and continvous across the corner. Figure 1.22 illustrates this model for two
sides connecting corners 3, 4, and 5. Control points are chosen midway
between the corners. The values of the vortex unit strengths at the corners are
then found that will induce velocities at each control point tangent to the
polygon side at that point. Note, however, that if there are n carners and
hence n + 1 unknown y values at the corners, the n control points provide
one less equation than unknowns. This situation is remedied by applying the
Kutta condition at the trailing edge. This requires that v,.,= —v,, assuring
that the velocities induced at the trailing edge are finite.

Having determined the vortex strengths, the velocity field and, hence, the

Flgure 3.21 Approximation of airfoil contour by closed polygon.
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Figure 3.22 Vortex distributions representing airfoil contour.

pressure distribution around the airfoil can be caiculated. This result is then
used to calculate the boundary layer development over the airfoil, including
the growth of the laminar layer, transition, the growth of the turbulent layer,
and possible boundary layer separation. The airfoil shape is then enlarged
slightly to allow for the boundary layer thickness and the potential flow
solutions are repeated. The details of this iterative procedure are beyond the
scope of this text.

MAXIMUM LIFT

Airfoil theory based on potential flow methods predicts the lift of an
airfoil in its linear range but does not provide any information concerning
maximum lift capability. As discussed previously, C,, is determined by flow -
separation, which is a “real fluid” effect. Separation is difficult to predict
analytically, so the following material on C,__is mainly empirical. .

Typically, conventional airfoils without any special high-lift devices will
deliver C, values of approximately 1.3 to 1.7, depending on Reynolds
number, c;';nbcr, and thickness distribution. The appreciable dependence of
C,... on R shown in Figure 3.12 for the GA(W)-1 airfoil is typical of ‘other
airfoils. Figure 3.23 presents C;__as a function of R and thickness ratio for
NACA four-digit airfoils having a maximum camber of 2%, located 40% of
the chord back from the leading edge. At intermediate thickness ratios of
around 0.12, the variation of C,,, with R parallels that of the 17% thick
GA(W)-1 airfoil. Note, at least for this camber function, that a thickness ratio
of 12% is about optimum. This figure is taken from Reference 3.14. This same
reference presents the following empirical formula for C_, for NACA four-
digit airfoils at an R of 8 x 105,

_ 32
G = 1.67+78pz 2.6 L1ET 0‘0332 0.5z -8) (3.42)
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Figure 3.23 Variation of C,,, with thickness ratic of NACA 24xx airfoils for
various Reynolds numbers. (B. W. McGormick, Aerodynamics of V/STOL Flight,
Academic Press, Inc, 1967. Reprinted by permission of Academic Press, Inc.)

f, 2, and p are thickness, maximum camber, and position of maximum camber,
respectively, expressed as a fraction of the chord. For example, for a 2415
airfoil,

t=0.15
z=0.02
p =040
s0 that according to Equation 3.42,
G =170

For a plain wing (unftapped), there is little effect of aspect ratio or taper
ratio on Cy,,.. Even the presence of a fuselage does not seem to have much
effect. As the angle of attack of a wing increases, (.. is reached and any
further increase in a will result in a loss of lift. Beyond Ct,.. the wing is said
to be stalled. Although taper ratio does not significantly affect the overall wing
Cy . it (and wing twist) significantly affect what portion of the wing stalls
first. As the taper ratio is decreased, the spanwise position of initial stall moves
progressively outboard. This tendency is undesirable and can be compensated
for by “washing out” (negative twist) the tips. One usually wants a wing to
stall inboard initially for two reasons. First, with inbeard stall, the turbulence
shed from the stalled region can shake the tail, providing a built-in stall
warning device. Second, the outboard region being unstalled will still provide
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aileron roll control even though the wing has begun to stall. The lift charac-
teristics of three-dimensional wings will be treated in more detail later.

Flaps

An examination of all of the airfoil data presented in Reference 3.1
discloses that the greatest value of G, ome can expect at a high Reynolds
number from an ordinary airfoil is around 1.8. This maximum value is
achieved by the NACA 23012 airfoil. Another 129 thick airfoil, the 2412,
delivers the second highest value, 1.7,

In order to achieve higher C_ values for takeoff and landing without
unduly penalizing an airplane’s cruising performance, one resorts to the use of
mechanical devices to alter temporarily the geometry of the airfoil. These
devices, known as flaps, exist in many different configurations, the most
common of which are illustrated in Figure 3.24. In addition to the purely
mechanical flaps, this figure depicts flaps that can be formed by sheets of air
exiling at the trailing edge. These ‘*‘jet flaps™ can produce G, values in
excess of those from mechanical flaps, provided sufficient energy and
momentum are contained in the jet. Frequently one uses the terms “powered”
and “unpowered” to distinguish between jet and mechanical flaps.

The effect of a mechanical flap can be seen by referring once again to
Figure 3.6. Deflecting the flap, in this case a split flap, is scen to shift the lift
curve upward without changing the slope. This is as one might expect from
Equation 3.26, since deflecting the flap is comparable to adding camber to the
airfoil.

Some flap configurations appear to be significantly better than others
simply because, when deflected, they extend the original chord on which the
lift coeflicient is based. One can determine if the flap is extensible, such as the
Fowler or Zap flaps in Figure 3.24, by noting whether or not the slope of the
lift curve is increased with the flap deflected. Consider a flap that, when
deflected, extends the original chord by the fraction x. The physical lift curve
would have a slope given by

dL _ %sz(l +x)eC, (3.43)

(]

since (1+x)c is the actual chord. C, does not depend significantly on
thickness or camber; hence, the lift curve siope of the flapped airfoil based on
the unflapped chord, ¢, would be

G, (flapped) = (1 + x)C,_ (unflapped)

Now the maximum lift, expressed in terms of the extended chord and C!m,.,g
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Figure 3.24 Flap configurations.

(based on that chord) would be,
Lyw= % pVi1+ x)cq,,,

Thus C;_,_based on the original chord becomes

Cfm.ax = (1 + x)C;m
or )
C,. =0, l1+x)
e ¢, (unflapped)
T e G, (lapped)

X g

(3.44)
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Figure 3.25 Performance of plain flaps. (a) Variation of maximum section li{
coefficient with flap deflection for several airfoil sections equipped with plain
flaps. (b) Variation of optimum increment of maximum section Fft coefficient
with flap chord ratio for several airfoil sections equipped with plain flaps. (¢)
Effect of gap seal on maximum it coefficient ot a rectangular Clark-Y wing
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Figure 3.26 Variation of maximum section lift coefficient with flap deflaction for
three NACA 230-series airfoils equipped with split flaps of various sizes. R =
3.5x10° (a} NACA 23012 airfoil section. {b) NACA 23021 airfoil section. {c) NATA
23030 airfoil section.

Figures 3.25 to 3.30 and Tables 3.1 and 3.2 present section data on plain,
split, and slotted flaps as reported in Reference 3.15. With these data one
should be able to estimate reasonably accurately the characteristics of an
airfoil section equipped with flaps.

A study of this data suggests the following:

Plain Flaps

1. The optimum flap chord ratio is approximately 0.25.

2. The optimum flap angle is approximately 60°.

3. Leakage through gap at flap nose can decrease C;_, by approximately 0.4.
4. The maximum achievable increment in G__is approximately 0.9.

Split Flaps

1. The optimum flap chord ratio is approximately 0.3 for 129% thick airfoils,
increasing to 0.4 or higher for thicker atrfoils.

. The optimum flap angle is approximately 70°.

- The maximum achievable increment in C;__ is approximately 0.9.

C,... increases nearly linearly with log R for 0.7 X 10° << R < 6 x 10°,

The optimum thickness ratio is approximately 18%.

RS
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Slotted Flaps

1. The optimum flap chord ratio is approximately 0.3.

2. The optimum flap angle is approximately 40° for single slots and 70° for
double-slotted flaps.

3. The optimum thickness ratio is approximately 16%.

4. C,,. is sensitive to flap (and vane) position.

3. The maximum achievable increment in C,,_ is approximately 1.5 for single
slots and 1.9 for double slotted flaps.
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Figure 3.29 Maximum section lift coeflicients for several NACA airfoil sections
with double-slotted and split flaps.

Referring to Equation 3.44 and Figure 3.30, it is obvious that some of the
superior performance of the double-slotted flap results from the extension of
the chord. From the figure, C, (flapped) is equal to 0.12 Cfdeg as compared to
the expected unflapped value of approximately 0.1. Hence, based on the
actual chord, the increment in C for the double-slotted flap is only 1.6.
However, this is still almost twice that afforded by plain or split flaps and
points to the beneficial effect of the slot in delaying separation.

Figure 3.31 (taken from Ref. 3.15) presents pitching moment data for
flapped airfoil sections. The lift and moment are taken to act at the aerody-
namic center of the airfoil, located approximately 25% of the chord back from
the leading edge. The moment is positive if it tends to increase the angle of
attack,

From Figure 3.31, the lowering of a flap results in an incremental pitching
moment. In order to trim the airplane a download must be produced on the
horizontal tail. The wing must now support this download in addition to the
aircraft’s weight. Hence the effective increment in lift due to the flap is less
than that which the wing-flap combination produces alone. This correction
can typically reduce AC;__ by 0.1 to 0.3.
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o Table 3.7 Maximum Lift Coefficients of Airfoi! Sections Equipped with Single-Slotted Flaps
&

Bl Dl T i e

Slot—entry configuration Flap nose shapes
Flap
Slot-Entry Nose 5f Optimum

Airfoil Section cie c, configuration Shape Cro {deg) Xy A7 Position R
Clarkk Y 0.20 1.00 b A 2.44 30 0 —-(.025 Yes 0.61 X 10
Clark Y 0.30 1.00 b A 283 40 0 —0.025 Yes 0.61
Clark Y 0.40 1.00 b A 3.10 40 0 —0.025 Yes 0.61
23012 0.10 0.93 a A 2.25 50 0.004 0.005 Yes 3.5
23012 0.15 1.00 b A 2.68 30 0 0.015 Yes 35
23012 .25 1.00 b A 2 40 ¢ 0.015 Yes 3.5
23012 0.256 0.800 a B 2,76 S50 0.005 0.018 Yes 3.5
23012 0.257 0.83 a A 2.81 50 0.005 0.016 Yes 3.5
23012 0.257 0.83 a A 2.83 40 0.013 0.024 Yes 3.5
23012 0.267 1.00 b A 290 30 0 0.025 No 35
23012 0.30 0.90 c A 2.92 50 0.002 0.010 No 3.5
23012 0.30 0.90 c A 2.92 40 0.002 0.020 No 15
23012 0.30 0.90 [ A 293 30 0.002 0.030 No 3.5
23012 030 0.90 b A 2.88 40 0.002 0.020 No 3is
23012 0.30 1.00 b A 3.29 40 0 0.015 No 35
23012 0.40 0.715 b A 2.87 50 0.015 0.015 Yes 33
23012 0.40 0.715 a A 2.90 50 0.015 0.015 Yes 3.5
23012 0.15 1.00 b A 2.59 60 0 0.015 No 35
23021 0.15 1.00 b A 2.66 60 0.050 0.030 Yes 1.5
23021 0.25 1.00 b A 317 40 0.025 0.015 Yes 15
23021 0.257 0.827 b B 2.69 60 0 0.015 Yes 15 ¥
23021 0.2587 0.827 a B 2.74 60 0 0.015 Yes 35 i
23021 0.257 0.827 b A 271 60 0.005 0.020 Yes s
23021 0.257 0.827 a A 282 50 0 0.025 Yes 35

23021 0.40 0.715 b A 2.79 50 0.015 0.025 Yes 3.5

23021 0.40 0.715 a A 2.88 50 0.015 0.045 Yes 3.5

23030 0.257 0.860 b B 2.59 60 0.025 0.040 Yes 135

23030 0.257 0.860 a B 2.68 60 —0.005 0.040 Yes 15

23030 0.40 0.775 b B 2.82 50 0.025 0.060 Yes 35

23030 0.40 0.775 a B 2.90 50 0.025 0.060 Yes s

63,4-420 0.25 0.88 b B 3.00 15 0.018 0.045 No 6.0
3,4-421 (approximately} 0.243 0.835 a A 3.21 40 0 0.027 Yes 9.0

65-210 0.25 .84 c A 247 45 0.009 4.010 Yes 6.0

65-210 0.25 0.90 c A 2.48 41.3 0.014 0.009 Yes 6.0

65-210 0.25 0.975 [ A 245 kM) 0.004 .020 Yes 6.0
5uyAlll (approxi- 0.35 0.839 e A 2.69 35 -0.020 0.032 Yes 9.0
mately)
5,-213 (approximately) 0.336 0.889 c A 2.63 40 0.019 0.046 No 9.0
Sens-114 0259 0915 c A 280 40 0.019 0.038 No 9.0
5,2-221 (approximately) 0.263 0.832 a B 2.83 30 0.025 0.046 Yes 9.95
6(215)-116, a = 0.6 0.25 0.824 c B 2.70 35 0 0.028 No 6.0
6,2-116, a = 0.6 0.25 0.827 4 A 2.69 45 0.017 0.038 No 6.0
6,2-216, a = 0.6 .30 0.90 c A 292 37 0 0.016 No 6.0
6,2-216, a = 0.6 0.25 0.824 a A 2.89 40 0.023 0.040 Yes 5.1
6,2-216, a = 0.6 0.25 0.834 [ A 2.88 45 0.011 0.031 Yes 51
6,2-118 0.25 0.90 2.68 325 seeemeen e No 6.0

1 CI!I o |
xy (4] }e Slot lip
SE
Reference point — ¥
Slot entry#

C;\\_\/

Typical single—slotted flap confiquration.
{All dimensions are given in fractions of airfoil chord.)

S0}
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Table 3.2 Maximum Lift Coefficients of Airfoil Sections Equipped with Doubie-Slotted Flaps

& 8, Optimum
Airfoil Section e cfe C, Cin. deg deg Xy ¥ X, Vs Position R
23012 0.10 0.189 0.83 2.99 70 40 0.009 0.009 0.014 0.024 Yes 15x10®
23012 0.257 0,227 0.715 3.47 FO 30 0.014 0.012 0.015 0.035 No 3.5
23021 0.257 0.227 0,715 3.56 60 30 0.019 0.024 0.025 0.065 No 3.5
23030 0.257 0.260 0.715 371 80 40 0.049 0.050 0.045 0.040 No 3.5
23012 0.257 117 0.826 3.30 60 25 —-0.016 0.010 —0.004 0.017 Yes 35
21021 0.257 0.147 0.827 3.32 70 30 0.017 0.027 0.007 0.024 Yes 35
63-210 0.25 0.075 0.84 2.91 50 25 0.022 0.024 0.024 0.018 Yes 6.0
63,4-421 (approximately) .195 3.083 0.87 330 55 14 0.038 0.012 0.009 0.016 No 6.0
64-208 0.25 0.075 0.84 2.51 45 30 0.015 0.015 0.015 0.019 Yes 6.0
64-208 0.25 0.056 0.84 2.40 50 25 0.018 0.014 0015 0.024 Yes 6.0
64-210 0.25 0.075 0.84 2.82 55 30 0,023 0.006 0.012 }.018 Yes 6.0
64,212 0.25 0.075 0.84 3.03 50 30 0.021 0.020 0.010 0.019 Yes 6.0
64,A212 0.229 0.083 0.833 2.83 55 26 0.044 0.005 0.004 0.014 Yes 6.0
65-210 0.25 0075 0.84 272 50 25 0.025 0.011 0.009 0.024 Yes 6.0
65(216)~215, a = 0.8 0.248 0.096 0.82 3.38 TG 12 0.024 0.010 0.025 0.032 No 6.3
65.~-118 0.244 0.10 0.864 3.35 65 23 0.038 0.007 0.009 0.025 Yes 6.0
65,-418 0.236 0.106 0.851 3.50 63 21 0.027 0.007 0.012 0.028 Yes 6.0
65421 0.236 0.109 0.85 3.08 51 20 0.029 0.017 0.012 0.024 Yes 2.2
66-210 0.25 0.075 0.84 2.64 35 25 0.029 0.023 0.012 0.022 Yes 6.0
66-210 025 0.100 084 272 60 it 0.027 0.039 0.024 0.021 Yes 6.0 §
66,214 (approximately} 0.227 0.085 0.854 3.00 55 20 0.044 0.009 0.004 0.025 Yes 9.0
1410 0.25 0.075 0.84 306 50 25 0.026 0.016 0.012 0.019 Yes 6.0

Vane chord fine

Slat lip

(a) Slot retracted

Airfoi! chord
line

(b} Flap deflected

5
% [a)
4%

Typical double—slotted flap configuration,
{All dimensions are given in fractions of airfoil chord.)

201

Definition of Flap Geometry given in Table 3.2
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Figure 3.31 (Continued}

In a high-wing airpfane, lowering the flaps can cause the nose to pitch up.
This is due to the moment produced about the center of gravity from the
increase in wing drag because of the flaps. Based on the wing area, the
increment in wing drag coefficient, ACp, due to the flaps is given ap-
proximately by,

ACp = 1.7{(cd c)' (S S) sin’8, (plain and split) (3.45)
= 0.9(c,-{c)"3“(sfl.5') sin’8; (slotted) {3.46)

If the wing is located a height of k above the center of gravity, a
balancing upload is required on the tail. The effect of trim on C; _ for a
complete airplane will be discussed in more detail later.

Flap Effectiveness in the Linear Range

Frequently one needs to estimate the increment in €, below stall, AC,
produced by a flap deflection. Not only is this needed in connection with the
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wing lift, but AC, is required also in analyzing the effectiveness of movable
control surfaces, which frequently resemble plain flaps.

If an airfoil section has a lift curve slope of C, and lowering its flap
produces an increment of AC,, the angle of zero lift, «, is decreased by

AC,
Cy,

The rate of decrease of aqg per unit increase in the flap angle &; is referred to
as the flap effectiveness factor, 7. Thus, for a flapped airfoil, the lift
coefficient can be written as

Aay = 347

= C[ﬂ((! + 7T Bf) (3.48)

where a is the angle of attack of the airfoil’s zero lift line with the flap
undeflected.

Theoretically 7 is a constant for a given flap geometry but, unfortunately,
flap behavior with & is rather nonlinear and hence r must be empirically
corrected by a factor % to account for the effects of viscosity. Including #,
Equation 3.48 becomes,

¢ = ¢ (e + mm 8f) (3.49)

The functions 7 and 5 can be obtained from Figures 3.32 and 3.33. Figure
3.33 is empirical and is based on data from References 3.15, 3.17, 3.19, and
3.20. Although there is some scatter in the data, as faired, the comparisons
between the various types of flaps are consistent. The double-slotted flap
delays separation on the upper surface, so that the decrease in flap effective-
ness occurs at higher flap angles than for the other flap types. The same can
be said of the slotted flap relative to the plain and split flaps. The plain flap is
fairty good out to about 20° and then apparently the flow separates from the
upper surface and the effectiveness drops rapidly, approaching the curve for
split flaps at the higher flap angles. In a sense the flow is always separated on
the upper surface of a split flap. Thus, even for small flap angles, the effective
angular movement of the mean camber line at the trailing edge of an airfoil
with a split flap would only be about half of the flap displacement.

In the case of the double-slotted flap it should be emphasized that this
curve in Figure 3.33 is for an optimum flap geometry. The trailing segment of
the flap is referred to as the main flap and the leading segment is called the
vane. In applying Equation 3.49 and Figures 3.32 and 3.33 to the double-
slotted flap, the total flap chord should be used together with the flap angle of
the main flap. Usually, the deflection angle of the vane is less than that for the
main flap for maximum lift performance.

Figure 3.32 is based on the thin airfoil theory represented by Equation
3.39. As an exercise, derive the expression for r given on the figure. 7 can
also be obtained using the numerical methods that led to Figures 3.17 and
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Filgure 3.32 Flap effectiveness factor.

3.18. As another exercise, apply Weissinger’s approximation to the flapped
airfoil using only two point vortices to represent the airfoil. Placing one
vorteXx on the quarter chord of the flap and the other on the quarter chord of
the remainder of the airfoil leads to

_ 33— 2¢)ey
T= 41— Cf)Cf +3 (.50)
where c¢; is the fraction of chord that is flapped. Equation 3.50 is ap-
proximately 10% lower than Figure 3.32 for ¢fc values of around 0.25.

The angle of attack at which the flapped airfoil stalls is generally less than
that for the plain airfoil. Hence, the increment in C,.. because of the flap is
not as great as the increment in £; at an angle below the stall. Denoting these
increments by AC,_ and AC, respectively, it is obvious that the ratio
AC, AC; must depend on ¢ffc, If ¢/l c, for example, is equal to 1.0, in a sense the
entire airfoil is the flap and AC,, must be zero. Systematic data on AC,_/AC;
are sparse. Figure 3.34 has been drawn based on a limited number of data
points and should be used with discretion.
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Figure 3.33 Correction factor to flap effectivensss factor +. Note that curves
apply for thickness ratios of approximately 12% and fiap chord fractions of 40% or
less.
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Figure 3.34 G, increment ratio as a function of flap chord ratio.
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As an example, in using Figures 3.32, 3.33, and 3.34, consider the
prediction of C,  for a 23012 airfoil equipped with a 30% chord split flap
defiected 60° and operating at a Reynold’s number of 3.5 ¥ 10°. From Figure
3.32, 1=0.66 for cfc =0.3 and from Figure 3.33, 5 =0.35 for a split flap
deflected 60°. Hence from Equation 3.49, AC, is equal to

AC,=C, 8
= (0.105)(0.66)(0.35)(60) (3.51)
=146

In Equation 3.51, C,, of 0.015 is obtained from Reference 3.1. Using Figure
3.34, the ratio of AC, , to AC, is obtained as 0.66. Hence,

AC{m“ - 096

According to Figure 3.27, €, for a plain 23012 airfoil equals 1.65 at R = 3.5
% 10°. Thus, for the flapped airfoil, O, . is predicted to be 1.65+ 0.96, or 2.61.
This result compares closely with Figure 3.264. If the procedure is repeated
for other flap angles, close agreement is also obtained with the figure,
However for a flap chord ratio of 0.1, the predicted values of C;... based on
Figures 3.32 to 3.34 are higher than those shown in Figure 3.26a.

Leading Edge Devices

In order to avoid leading edge separation, particularly at low Reynolds
numbers or for airfoils with relatively sharp leading edges, special high-lift
devices can also be incorporated into the leading edge to supplement the
benefits of trailing edge flaps. These are illustrated in Figure 3.35. The fixed
slot and extensible siat have been in use for some time, whereas the Kruger-type
nose flap was first employed on the turbojet transport.

As the name implies, the fixed slot is just that—a narrow channel through
which the air can flow from the lower surface to the upper surface. This
channeling of the flow allows the airfoil to operate at higher angles of attack
before the upper surface of the leading edge separates than otherwise would
be the case. Increments in C,_., of approximately 0.1 or 0.2 are achieved by
the fixed slot. It is a moot question as to why this delay in the separation
occurs. As in the case of slots with trailing edge flaps, the explanation has
been offered in the past that the flow through the slot feeds energy into the
slower moving boundary layer, thereby decreasing its tendency to separate,
More recently, however, in a Wright Brothers’ Lecture (Ref. 3.16) Smith, in
examining numerical results on multiclement airfoils, concluded that im-
proved stail performance from slots is most likely the result of more favor-
able pressure gradients being produced on one airfoil element by the other.

The extensible slat is similar in its performance to the slot, but it is
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A"

Fixed slot

Extensible slat

Leading edge flap \

Kruger—type leading edge flap

Figure 3.35 Various methods for delaying leading edge separation.

considerably more efficient because it can be positioned to optimize its
contribution to C, . The mechanically extended slat is finding increased
application, particularly with the use of thinner airfoil sections for high-speed
applications. Figure 3.36 presents some data on slats taken from Reference
3.17. Here a NACA 64A010 airfoil was tested using a slat in combination with
split and double-slotted trailing edge flaps. The slat is seen to improve C
significantly, producing increments in C; _ of approximately 0.9, 0.8, and 0.6
for the no-flap, split-flap, and double-slotted flap configurations, respectively.
Unlike the trailing edge flap, the primary effect of the slat is seen to be an
extension of the lift curve without the slat; that is, opening the slat does not
change C, by a large increment at a fixed angle of attack. The same is true of
leading edge flaps and is not unexpected in view of Figure 3.32.

The performance of a leading edge flap is presented in Figure 3.37 for the
same airfoil as for Figure 3.36. Comparing the two figures, it is obvious that
the two leading edge devices are nearly comparable in performance.

Figure 3.38 shows a section of a sophisticated Kruger-type flap. As this
flap swings down and forward, it assumes the curved shape that is shown.
With this optimum shaping, its performance probably exceeds to some extent

3.2

3.0

Double—slotted
flap, 26%¢
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Figure 3.36 Effect of leading edge slat on NACA 64A010 airfoil with and without
flaps.
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Figure 3.38 Flexible fiberglass leading edge flap used on the Boeing 747 and
YC-14 airplanes.

the data presented in Figures 3.39 and 3.40. Figure 3.39 (taken from Ref. 3.18)
shows that without a trailing edge flap the Kruger flap gives an increment in
Ci,.. 1o the 64-012 airfoil of only 0.4. However, the plain airfoil has a higher
C,,,, 10 begin with than that of Figures 3.36 and 3.37. Hence, the total C,__ for
the Kruger-flapped airfoil without a trailing edge flap is about the same as for
the other two leading edge devices. However, with the split flap, the Kruger
flap produces a combined C,__ equal to 3.0, which is 0.3 to 0.4 higher than the
corresponding data of Figures 3.36 and 3.37.

The data of Figure 3.40 (taken from Ref. 3.21) are based on Kruger’s
original work.

The Optimum Airfoil for High Lift

Stratford, in References 3.23 and 3.24, examined both theoreticallv and
experimentally the possibility of diffusing a turbulent boundary layer in such a
way as to produce zero wall shear. Known as “‘imminent separation pressure
recovery,” Stratford found that it is indeed possible, with the proper pressure
gradient, to maintain a velocity profile along a diffuser such that Ju(y)/dy is
equal to zero at the wall. u(y) is the velocity in the boundary layer parallel to
the wall and is a function of the distance, y, from the wall. With the velocity
gradient at the wall equal to zero, the boundary layer is just on the verge of

separating, since a negative value of this gradient will result in reverse flow,
as illustrated in Figure 3.41.
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with a 0.20¢ trailing edge split flap. A = 6.0 x 10%.

In the abstract to Reference 3.24, Stratford states:

“No fundamental difficulty was encountered in establishing the flow and it
had, moreover, a good margin of stability. The dynamic head in the zero skin
friction boundary layer was found to be linear at the wall (i.e., u < v'?), as
predicted theoretically in the previous paper. (Author’'s note, Stratford is
referring to Ref. 3.23.)
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The flow appears to achieve any specified pressure rise in the shortest
possible distance and with probably the least possible dissipation of energy for a
given initial boundary layer. Thus, an airfoil which could utilize it immediately
after transition from laminar flow would be expected to have a very low drag.”

The Stratford imminent separation pressure recovery was adopted for
airfoils by Liebeck and Ormsbee (Ref. 3.25) and was extended later by
Liebeck (Ref. 3.22). Using variational calculus, optimum chordwise pressure
distributions for the upper and iower surfaces are prescribed that are modified
slightly by additional constraints not present in the optimization process.
Specifically, the optimum C, distributions are modified in order to (1) close
the airfoil contour at the trailing edge, (2) round the leading edge to allow
operation over an angle-of-attack range, and (3) satisfy the Kutta condition at
the trailing edge.

The resulting modified form of the optimum pressure distribution is
compared with the optimum distribution in Figure 3.42. Beginning at the
stagnation point, the flow is accelerated up to a so-called rooftop region over
which the velocity, and hence the pressure, is constant. Following the rooftop
region, the Stratford pressure recovery distribution is employed to reduce the
velocity over the upper surface to its value at the trailing edge.

One such airfoil design is presented in Figure 3.43 (taken from Ref. 3.22).
Included on the figure is the pressure distribution to which the airfoil was
designed. Test data on this airfoil obtained at a Reynolds number of 3 x 10°
are presented in Figure 3.44a and 3.44b. Although this configuration is
referred to by the reference as a-“turbulent rooftop™ case, transition does not
occur until the start of the Stratford pressure recovery. In this case the
performance of the airfoil is seen to be good from the standpoint of €, and
Cy The drag coefficient remains below the value of 0.01 over a wide range of
C; values from 0.6 to 1.6.

Artificially producing transition near the leading edge severely com-
promises C;__and C,, as shown in Figure 3.44b. Siill, by comparison with the
standard NACA airfoils, the Liebeck airfoil appears to offer superior per-
formance at low speeds and, in the future, may find application to general
aviation aircraft. One possible drawback in this regard is the sharp drop in its
lift curve at stall.

Powered-Lift Systems

Figure 3.45 (taken from Ref. 3.26) presents the growth of C.__ over the
years since the Wright Brothers’ success. The two points labeled K and L are
somewhat misleading, since these two aircraft were experimental in nature
and used distributed suction over the wing to delay separation. From this
figure and the preceding information on flapped and plain airfoils, C;__ of
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Figure 3.42 Pressure distributions for Liebeck airfoils. {a) Optimum airfoil pres-
sure distribution according to variational analysis. () Modified form of optimum
pressure distribution for airfoil upper and lower surfaces (not to scale). (R. H.
Liebeck and A. I. Ormsbee, "Optimization of Airfoils for Maximum Lift", AIAA
Journal of Aircraft, 1970. Reprinted from the Journal of Aircraft by permission of
the American Institute of Aeronautics and Astronautics.)

slightly over 3 is probably the best that can be achieved without the addition
of power. Although two-dimensional airfoils with double-slotted flaps can do
better than this, as will be seen later, their full petential cannot be achieved
when applied to an airplane. Generally, the flaps cannot be applied over the
entire span of the wing. In addition to this loss in Cy .. an added penalty
results from the fuselage and tail download required for trim.

Cy,.. values considerably above those achievable with flap systems dis-
cussed so far are possible by the expenditure of power. Most of the powered-
flap systems presently under consideration bear a resemblance, or can be
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Figure 3.43 Lieback airfoil with its pressure distribution. (R. H. Liebeck, “Class
of Airfoils Designed for High Lift”, AIAA Journal of Aircraft, 1973. Reprinted from
the Journal of Aircraft by permission of the American Institute of Aeronautics and
Astronautics.)

related in their performance, to the jet flap. Thus, in order to understand
better the performance of systems such as upper surface blowing (USB),
externally blown flaps (EBF), augmentor wing, and circulation control, we
will begin with the jet flap shown in Figure 3.46. A thin sheet of air exits the
trailing edge at a downward angle of § relative to the airfoil zero lift line. This
line is shown at an angle of attack a. If T, is the total circulation around the
airfoil then, assuming &« and & to be small, the total lift on the airfoil will be

L= pVF(- + m;ﬂ,-(a + 8) (3.52)

where m; is the mass flux in the jet and v; is the jet velocity.

As the jet leaves the airfoil, it gets turned in the direction of the
free-stream velocity. In order to redirect the flux of jet momentum, it follows
that a pressure difference must exist across the jet. This pressure difference,
Ap, can be related to mv; and the radius of curvature R by the use of Figure
3.46b. Applying the momentum theorem in the direction of curvature,

ApR® = m;v;0
or
ap =751 (3.53)
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Figure 3.44a Experimental lift curve and drag polar for airfoil of Figure 3.43. (R.
H. Liebeck, “Class of Airfoils Designed for High Lift”, AIAA Journal of Aircraft,
1973. Reprinted from the Journal of Aircraft by permission of the American
institute of Aeronautics and Astronautics.)

1.8 -
o 9
SO QC___(—'T__\}
1.6
Turbulent rooftop
R, = 30x 108
A4 -
] S Plus
1.2 ‘-{:) transition
’ aClean strip at
Ct & Transition strip &t~ 9% 7 5% on
1.0 OTransition strip at 12% rlower
o Transition strip at 20% J surface
0.8 - 0) Theoretical €y, for transition
at peak of rooftop.
08— Theoretical Cp for transition
at the teading edge.
0.4
0.2
o ]
0.01 002 003 0.04 o.ui\n
-0zl o

Figure 3.44b Effect of transiticn location on the lift and drag of a Liebeck _airfoil.
(R. H. Liebeck, “"Ctass of Airfoils Designed for High Lift"”, AIAA Journal of Aircraft,
1973. Reprinted from the Journal of Aircraft by permission of tha American
Institute of Aeronautics and Astronautics.)

123



[ | I
A — Wright flyer H — 749
B — Spirit of St. Louis 1 — 1048
C—C-47 J—C-130
£ D - 23012 girfoil K — MA4
@ E - B-32 L—L-19
£ _| Theoretical F—C-54 M- 727
"é timit — 43 G—-C124 N-— C|—5A
2
= 12,0
£ LE devices and
£ triple—stotted ar
S Y Fowler flaps
g 40 (sweep wings)
g Split flaps r' 9 L
z 7 K
§ 3.0 ! —-(7'"0
H Clark—Y zirfoil e N S M N
= G J
= c
2 20 o1 F
- =
& A —-“lo/ D
3 S g Fowler or
3 1.0 —=-—Tdouble—slotted flaps
w NACA airfoils
0 I
1900 1910 1920 1930 1940 1950 1960 1970
Year

Figure 3.45 History of maximum lift coeflicients for mechanical iift systems. (F.
A. Cleveland, “Size Effects in Conventional Aircraft”, AIAA Journal of Aircraft,
1970 Reprinted from the Journal of Aircraft by permission of the American
Institute of Aeronautics and Astronautics.)

e
¥

v ;v

ptap
b)
Figure 3.45 The jot flap.

- .

MAXIMUM LIFT 125

Since the jet exerts a force on the fluid, it can be replaced by an
equivalent continuous vortex sheet that exerts the same force. Letting v, be
the strength per unit length of the sheet,

ApRO = pVyRé
or
_Ap
%=y (3.54)

Measuring the position of the jet, y, positively downward, the radius of
curvature and y for a nearly horizontal jet are related by

1 d’
R~ (3.53)
Combining Equations 3.53, 3.54, and 3.55 gives
— 1%, 2
——mydy (3.56)

NZ eV daxt
Equation 3.56 relates the jet vortex strength to the shape of the sheet and

the jet momentum flux.
The total circulation of the jet vortex sheet can be obtained by integrating

Equation 3.56 from x = 0 to .
I; :f vids
0

Z_Mizr
pV dx 0

= %i‘—’ji (a+3) (3.57)

Combining Equations 3.52 and 3.57 shows that the Kutta-Joukowski rela-
tionship holds for the jet-flapped airfoil if the circulation is taken around both

the airfoil and the jet.
L=pV(T.+T) (3.58)

The boundary value problem is then posed where the airfoil and jet sheet
are each replaced by an unknown vortex distribution. Distributions must then
be found that will induce a velocity at each point on the airfoil and combining
with the free-stream velocity to give a resultant velocity tangent to the airfoil.
Along the sheet the following must hold.

wix) _ dy
v dx
The details of the solution are beyond the scope of this text and can be

found in Reference 3.19.
Although the solution of Reference 3.19 is not in closed form, the results
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can be expressed in a relatively simple way. As with a physical flap, the
increment in C; because of a change in angle of attack and flap angle can be
expressed as a linear combination of the two angles.

C'. = C[ﬁa + C;aﬁ (3.59)
where
_dq
7 da
_dG
Ce=g5

The derivatives Cj, and C, are a function of the ratio of the jet
momentum flux to the product of the free-strearn dynamic pressure and a
reference area. This ratio, known as the momentum coefficient, C,, is defined

for a two-dimensional airfoil by

=
C="4 (3.60)

If, in addition, the jet exits ahead of the trailing edge and blows over and
is deflected by a physical flap having a chord of ¢; (see the hlown flap of
Figure 3.24), then C,, is also a function of ¢qc. For a pure jet flap (C{C=0),
C,, and G, are given by

G, = 47C, (1 +0.151C, " +0.139C,))'" {3.61)
Cy, =2w(1+0.151C,'" +0.219C,) (3.62)

For ¢fc values other than zero, C, is given in Figure 3.47. The curve
labeled ¢fc = 1.0 in this figure corresponds to Equation 3.62 since, for this
case, C‘a = C[ﬂ.

Data concerning C,, for jet-flapped airfoils is sparse. Generally, the jet
flap follows the predictions of Figure 3.41 fairly closely, since the jet fixes the
Kutta condition and provides some control over the boundary layer to
prevent separation. As a preliminary estimate for Ci..» Reference 3.3
recommends the use of the relationship presented in Figure 3.48. Here the
difference in the angle of attack for stall, with and without blowing, is
presented as a function of C.,.

The negative pitching moment of the jet flaps is higher than the moment
for conventional flaps for two reasons. First, the jet reaction acts at the
trailing edge; second, the jet-flapped airfoil maintains lift all the way back to

the trailing edge. As with the lift, Cy can be written as a linear combination of
a and §.

Cu = CMaa + CME(S
or

aC M) (aCM)
= (M +({S2 ! ,
CM ( BC; S=const Clﬂa aa‘ = =const C 85 (3 63)

In this equation dCad3C; can be obtained from Figure 3.49,
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Figure 3.47 Blown flap effectiveness. (B. W. McCormick,. A.erodynamics :_Jf
V/STOL Fiight, Academic Press, Inc. 1967. Reprinted by permission of Academic
Press, Inc.
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Figure 3.49 Effect of €. on pitching moments for blown flaps. (B. W. McCormick,
Aerodynamics of V/ISTOL Flight, Academic Press, Inc. 1967. Reprinted by per-
mission of Academic Press, Inc.)

To illustrate the use of the foregoing relationship for the pet-flapped
airfoil, consider the prediction of C,  for the NACA 63,4-421 airfoil (Figure
3.30} equipped with a 25% blown flap deflected 50°. The jet expands isen-
tropically from a reservoir pressure of 25 psia and a temperature of 70 °F. The
airfoil is operating at 50 mph at SSL conditions. It has a chord of 5ft and the
jet thickness is 0.2 in.

We begin by calculating the jet velocity from the compressible Bernoulli
equation (Equation 2.31).

1_ 2y ( _ 2)

pd=
T oy=1\p p
or, with the use of Equation 2.30,

v = {f';zj%l};_po [1 - (i)""”?]}m

From the equation of state (Equation 2.1),

Polpo = RT,
Thus,

v = {2(1-4)(1';;6)(529.7) [] B (%)u.m]}m

= 9469 fps
The mass density of the expanded jet will be

Ly
o= Po(;%ﬂ)
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po is calculated from the equation of state.
__ 25(144)
P~ 1716(539.7)
= 0.00396 slugs/ft’

Thus
p; = 0.00271 slugs/ft’

The jet mass flux will be equal to
m; = A
= 0.00271(0.2/12)(946.9)
= (L0428 slugs/s
The free-stream dynamic pressure is
q=1V’
= 0.0023378(50 X 1.467)°12
= §.397 psf
Thus,
C - (0.0428)(946.9)
* 6.397(5)
=1.27
From Figures 3.47 and 3.48,
Cr, = 9.09/rad
i, = 6.5/rad

Cmax — Al C, =0y = —2°

From Figure 3.30, C, , for the unblown airfoil without a flap is equal
approximately to 1.4. Using Figures 3.33 and 3.34, AC, due to the plain flap
(C. = 0) is estimated as

AC, = 217(0.5)(0.035)(%) = LI
50 that
2(1.15)
3

Thus, for C, = 0 with the flap deflected, C,__ is estimated to be 2.17. Ata =0,
C) is estimated to be 1.5. Thus, with C,, = 0.109 {from Figure 3.30),

AC,, = =0.77

_217-1.5
Cmax = 0109
=6.1°
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or, relative to the zero lift line, flaps up,
Cmax = 9.1°

For the operating C,, the angle of attack for the zero lift line at stall is
estimated to equal 7.1°
Thus,

Cgm“ = C;“am+ Cfﬁ S5

or

—gg9 L 465 30
Cl =9.09 25 +6.5 5

=6.8

The preceding answer must, of course, be further corrected, using Figure
3.43 and Equation 3.46, to account for trimming tail loads. Also, it should be
emphasized that the preceding is, at best, an estimate for preliminary design
purposes or relative parametric design studies. In the final analysis, model and
prototype component testing of the blowing system must be performed.

Credit for the practical application of the jet flap must be given to John
Attinello. Prior to 1951, all blown systems utilized pressure ratios less than
critical in order to avoid supersonic flow in the jet. Such systems required
large and heavy ducting. For his honors thesis at Lafayette College, Attinello
demonstrated with “homemade” equipment that a supersonic jet would
adhere to a deflected flap. This was contrary to the thinking of the day that
not only would a supersonic jet separate from a blown flap, but the losses
associated with the shock wave system downstream of the nozzie would be
prohibitive. Later, more sophisticated testing performed by the David Taylor
Model Basin confirmed Attinello’s predictions (Ref. 3.38) of high lift
coeflicients for supersonic jet flaps. This led to the development of compact,
lightweight systems using bleed air from the turbojet engine COmMpressor
section. The Attinello flap system was flight tested on an F9F-4 and produced
a significant decrease in the stalling speed for an added weight of only 50 1b.
Following this success, the Attinello flap went into production on the F-109,
F-4, F8K, A5, and other aircraft, including several foreign models.

THE LIFTING CHARACTERISTICS OF A FINITE WING

A two-dimensional airfoil with its zero lift line at an angle of attack of 10°
wilt deliver a lift coefficient, C,, of approximately 1.0. When incorporated into
a wing of finite aspect ratio, however, this same airfoil at the same angle of
attack will produce a wing lift coefficient, Cy, significantly less than 1.0. The
effect of aspect ratio is to decrease the slope of the lift curve C,, as the
aspect ratio decreases. Figure 3.50 illustrates the principal differences in the
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Figure 3.50 Comparison of NACA 65-210 airfoil [ift curve with that of a wing
using the same airfoil.

lift behavior of a wing and an airfoil. First, because the wing is twisted so that
the tip is at a lower angle of attack than the root (washout), the angle for zere
lift, measured at the root, is higher for the wing by approximately 0.6°, Next,
the slope of the wing’s lift curve, Cy_, is approximately 0.79 of the slope for
the airfoil. Finally, C; is only slightly less than C,_, in the ratio of

approximately 0.94. These three differences are almost exactly what one
would expect on the basis of wing theory, which will now be developed.

The Vortex System for a Wing

A wing’s lift is the result of a generally higher pressure acting on its lower
surface compared with the pressure on the upper surface. This pressure
difference causes a spanwise flow of air outward toward the tips on the lower
surface, around the tips, and inward toward the center of the wing. Combirged
with the free-stream velocity, this spanwise flow produces a swirling motion
of the air trailing downstream of the wing, as illustrated in Figure 3.51, This
motion, first perceived by Lanchester, is referred to as the wing’s trailing
vortex system.

Immediately behind the wing the vortex system is shed in the form of a
vortex sheet, which rolls up rapidly within a few chord lengths to form a pair
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/ \

Figure 3.51 Generation of vortex system by finite aspect ratio wing.

of oppositely rotating line vortices. Looking in the direction of flight, the
vortex from the left wing tip rotates in a clockwise direction; the right tip
vortex rotates in the opposite direction. .

The trailing vortex system, not present with a two-dimensional airfoil,
induces an additional velocity field at the wing that must be considered in
calculating the behavior of each section of the wing.

If the aspect ratio of the wing is Jarge, approximately 5 or higher, the
principal effect of the trailing vortex system is to reduce the angle of attack of
each section by a small decrement known as the induced angle of attack, «
In this case Prandil’s classical lifting line theory (Ref. 3.28) applies fairly well.
As shown in Figure 3.52, the wing is replaced by a single equivalent vortex
line, known as the “bound vortex,” since it is in a sense bound to the wing.
The strength of this vortex, I'(y), is related to the lift distribution along the
wing by the Kutta-Joukowski relationship.

dL
LD - pvrey (3.64)
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Figure 3.52 Lifting line model of a wing and trailing vortex system.

Expressing the lift per unit length of span in terms of the section chord
length, ¢(y), and section lift coefficient, C,(y), leads to

T'(y) =1c(»C(NV (3.65)

With no physical surface outboard of the wing tips to sustain a pressure
difference, the lift, and hence I', must vanish at the tips.

According to the Helmholtz theorem regarding vertex continuity (Ref.
1.3, p. 120}, a vortex line or filament can neither begin nor end in a fluid;
hence it appears as a closed loop, ends on a boundary, or extends to infinity.
Thus, it follows that if in going from y to y + dy the bound circulation around
the wing increases from I' to I'+dl’, a free vortex filament of strength dT,
lying in the direction of the free-stream velocity, must he feeding inte I' in
order to satisfy vortex continuity. This statement may be clarified by
reference 1o Figure 3.53.

The entire vortex system shown in Figure 3.52 can be visualized as being
closed infinitely far downstream by a “starting” vortex. This vortex, opposite

T +dl

r
At N
Y

1

Y

T 4T

Figure 3.53 |liustration of vortex continuity.
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in direction to the bound vortex, would be shed from the trailing edge of the
wing as its angle of attack is increased from zero.

The trailing vortex system of strength dI” induces a downwash, w(y), at
the lifting line, as mentioned earlier. As pictured in Figure 3.54, this reduces
the angle of attack by the small angle «; Thus the section lift coefficient will
be given by

C = Cl,,(fl - ;) (3.66)

« being measured relative to the section zero lift line.

To a small angle approximation, the induced angle of attack, a, is given
by w/ V. The downwash, w, can be determined by integrating the contributions
of the elemental trailing vortices of strength dI'. If the vortex strength dI'
trails from the wing at a location of y, its contribution to the downwash at
another location y, can be found by Equation 2.64 to be

__diy)
dw(yy) = o — (3.67)
Thus, a; becomes
_ L ["dI(y
atw =gy, S5 (3.68)

Equations 3.65, 3.66, and 3.68 together relate T'(y) to c(y} and afy) so
that, given the wing geometry and angle of attack, one should theoretically be
able to solve for I' and hence the wing lift. In order to accomplish the
solution, it is expedient to make the coordinate transformation pictured in
Figure 3.55. '

b
y—Ecosﬂ

cefy)

a;(y)

Figure 3.54 A wing section under the influence of the free-stream velocity and
the downwash.

THE LIFTING CHARACTERISTICS OF A FINITE WING 135

A
T

i
2
Figure 3.55 Coordinate transtormation used in the reduction of the lifting line
equations.

Hence, Equation 3.67 becomes

(60) = 1 j“ dra)
*Vo) = bV p COS O —cos

(3.69)

Since more elaborate and comprehensive treatments of wing theory can
be found in texts devoted specifically to the subject (e.g., see Ref. 3.29), only
the classical solution for the eliptic T distribution will be covered here. This
particular case is easily handled and rtesults in the essence of the general

problem.
Assume that I is of the form
Iy
r= ro\/ - (%y) (3.70)
Using Equation 3.68 this transforms to
Ir= Fo sin @

Here, I'y is obviously the midspan value of the bound circulation. Thus
Equation 3.69 becomes

(8y) = Iy T cos &dp
HRS = 5abV ), cos € —cos 6,

The preceding integral was encountered previously in thin airfoil theory
and has a value of & Thus, for an elliptic I distribution, «; and hence the
downwash is found 1o be a constant independent of y.

_ Ty 71
TV (3.7

If the wing is untwisted so that a is also not a function of y then, from
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Equation 3.66, it follows that the section (| is constant along the span. Thus,

br2
L= [ 2pV2(:C;dy

B2
== pVZC; [ cdy
2 —bf2
= lovics
2 p 1
But
L
C = Eg
Hence,
C; = CL

Equation 3.65 then gives
1
Iy =5c(NCV

21"0 \/] (2):)
-G

Thus it is found that, according to lifting line theory, an untwisted wing with
an elliptical planform will produce an elliptic I" distribution. Such a wing will
have a constant downwash and section C,.

Since € is constant and equal to C;, Equations 3.65, 3.66, and 3.71 can be
applied at the midspan position in order to determine the slope of the wing lift
curve. First, from Equations 3.72 and 3.63,

or,

c(y)=

CgC,r_
4b

But, for the planform given by Equation 3.66, ¢, and & are related to the
aspect ratio by

o =

Ao tb
TCy
Thus, «; becomes
G
o; = 'JTA (3'72)
Inserted into Equation 3.66, the preceding results in

_ _C
CL— Cga(a ‘.'TA)
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or,

€= C&-[W] a

Using the theoretical value of 2o Cjrad derived earlier, the preceding

becomes
e ) (3.73)
A+2 ’

Equations 3.72 and 3.73 are important results. The induced angle of
attack is seen to increase with decreasing aspect ratio which, in turn, reduces
the slope of the lift curve, C; . A wing having a low aspect ratio will require a
higher angle of attack than a wing with a greater aspect ratio in order to
produce the same ;.

It was stated previously that the comparative performance between the
wing and airfoil shown in Figure 3.50 could be explained theoretically. In this
case, A = 9.02 so that, on the basis of Equation 3.73,

C., = 0819C,

This result is within about 2% of the experimental results presented in Figure
3.50.

As the aspect ratio decreases, the lifting line becomes progressively less
accurate. For example, for an aspect ratio of 4.0, Equation 3.73 is ap-
proximately 11% higher than that predicted by more exact methods.

As described in Reference 3.3, a more accurate estimate of Cj, is
obtained from

‘ A
Cr. =G A3 A + DA+ D]

An alternate to Equation 3.74a is offered by Reference 3.35 and is
referred to as the Helmbold equation, after the original source noted in the
reference. The Helmbold equation reads

(3.74a)

A
=
Cr, = G (Cjm) + V(CfmP + A

Replacing C, by 2 in the denominator,

A
C =C ———— (3.74b)
te “2+Var Al

Equation 3,74a and 3.74b agree within a couple of percent over the range of
practical aspect ratios and approach each other in the limits of A=0 or
A = =, This holds for high or low aspect ratios and is based en an approximate
lifting surface theory, which accounts for the chordwise distribution of bound
circulation as well as the spanwise distribution.



140  THE GENERATION OF LIFT
The Maximum Lift of a Finite Wing

The maximum iift coefficient of a finite wing is influenced by several
factors. Obviously, Cp_, is strongly dependent on C, ; that is, the wing’s
performance depends on it’s airfoil performance. Secor;“al, the spanwise extent
to which the wing is flapped has a significant influence on Cp,,.. Also in
estimating C_, , one must account for the presence of the fuselage the tail
download required to trim the aerodynamic pitching moment, and tine span-
wise distribution of loading over the wing.

The effect of aspect ratio on Cy, is slight, as one might expect from the
preceding considerations on the elliptic wing, The wing lift coefficient and
section lift coefficients are nearly equal.

Tl}e detailed estimation of a wing's C;,___ begins with a calculation of its
spanwise load distribution. There are several methods to be found in the
llter_ature for doing this. Many of these fall into a class known as vortex
lattice methods. One of the first of these can be found in Reference 3.30.

‘ The vortex lattice method is similar to lifting line theory except that
fhscrete vortex lines are also distributed in the chordwise direction. As
illustrated in Figure 3.56, the wing is covered with a mesh of spanwise and

!
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Trailing vortex lines
Figure 3.56 Vortex lattice mode! for a wing.
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chordwise bound vortex lines with free vortex lines shed downstream from
the trailing edge. At every juncture of the vortex lines, Helmholtz’s law of
vortex continuity must hold. In addition, control points are chosen over the
wing equal in number to the number of unknown vortex line strengths. The
unknown vortex strengths are then adjusted to assure that the resultant flow
at each control point is tangent to the mean surface of the wing.

The lattice model shown in Figure 3.56, in the manner of Reference 3.30,
is formed by the superposition of horseshoe-shaped line vortices. One such
vortex is shown dashed for illustrative purposes. Note that the downstream
control points are aft of the last bound vortex lines; some points are even
slightly off of the wing’s surface. Stipulating that the flow at these points
parallels the camber surface at the trailing edge will satisfy approximately the
Kutta condition.

Trends in the behavior of C,_, as related to wing geometry can be seen
by the application of an approximate method for determining spanwise load
distribution known as Schrenk’s approximation (Ref. 3.31).

This method deals with two distributions: a basic lift distribution, and an
additional lift distribution. The basic distribution is that which exists along the
span when the total lift is equal to zero. Approximately, this lift distribution is
taken as the average of a constant “zero” distribution and one obtained by
neglecting any induced velocities. Thus,

V2l = 1pVcC, (o, + €} + 0]

or the basic section lift coefficient, Cy,, will be

C
Ci, =5 (an+ €) (3.78)

The additional lift distribution results from an angle of attack different
from a,, and is assumed to be the average of an elliptic distribution and one
proportional to the planform, both having the same total lift. For the latter,

CC! e
=kc
But
b2
L= J. qc‘C. dy
—b2
2
=gk cdy
b2
= gks
Thus, k = ;.

For the elliptic distribution,

2 2
CCL= KJI— (?y)
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bi2 3
e [ a1
-&i2

The constant of proportionality, K, in this case becomes

s0 that

_ 48
T mb Cr
The additional section lift coefficient then becomes
_ &[ 45 \/ _ (Ex) 2]
G, = 2 1+ —be 1 A (3.79
Usually C;, is defined as the value of Equation 3.79 for a C;, of unity: thus,
G=0C,+ G C (3.80)

The manner in which this equation is used to estimate C,__ is best
explained by an example. Consider the wing of Figure 3.50. This particular
wing has a taper ratio of 0.4 and a washout of 2°. Using Equations 3.78 and
3.79, the basic and additional section [ift coeflicient distributions given in
Figure 3.57 were calculated, Also graphed on this figure is C... as a function
of spanwise location. In this instance, Cines 18 taken from Figure 3.50 to be a
constant. In many cases, C; . decreases toward the tip as the airfoil becomes
relatively thinner or as the chord lengths become smaller.

Combining C, and Ci, in the form of Equation 3.80, Figure 3.57 shows
that a wing C; of 1.22 results in a section C; halfway out along the span, which
is just equal to the section G, at that location. Any attempt to increase €
above this value will therefore cause the wing to stall at this location. Since
the C; curve is rather flat in this location, the stalling would be expected to
spread to either side of 2y/b equal to 0.5. Thus, to estimate the Ci.. ofa
wing, one finds the wing C,. that results in a section C; somewhere along the
span, which is just equal to the section C,..- In this instance, the (1., value
of 1.22 compares favorably with the experimental results, Generally, however,
the C;, predicted by this method will be somewhat conservative, since the
total wing C; may still increase somewhat, even though a section of it begins
to stall.

As a further and more extreme example of the method, consider the wing
of Figure 3.50 equipped with 60% span, 20% chord split flaps deflected 60°,
From Equation 3.43, AC, is estimated to be

AC,=C, s
= 0.108 (0.545)(0.35)(60)
= 1.236

AC, ... empirically, is approximately 0.83 of the preceding equation (Figure
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Figure 3.57 Predicted lift coetficient distributions for wing of Figure 3.50.

3.34) or 1.026. Thus, Figure 3.57 is revised as shown in Figure 3.58 to increase
the section C;__ to 2.30 over the inner 60% of the span. .

Aerodyna"?nically the twist of the wing is changed by lowering the flaps.
Relative to the midspan chord, the zero lift lines of the sections outboard qf
the flaps are reduced in angle of attack by ACYC,, or 11.4°. Thus, for this
flapped wing, ¢, in degrees, becomes

o= (2 <06

E=_2,2b_y
=_22—3’—114 |2—y'>0.6
€ b : b

For this twist distribution and a taper ratio of 0.4, the angle of attack of the
midspan zero lift line, a.,, for zero lift becomes 4.24°. Thus
C, =0.054(4.24 + ¢€)

The additional lift distribution remains the same, since the planform is
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Figure 3.58 Predicted lift coefficient distributions for wing ol Flgure 3.50 with
60% span, 20% chord split flaps deflected 60°.

unchanged. The predicted ; distributions with the partial span split flaps are
presented in Figure 3.38.

Figure 3.58 predicts that the wing will begin to stall just outboard of the
flaps at a wing C; of 1.63. This result agrees exactly with Reference 3.27 with
regard to both C; _ and the location of the initial stall. This agreement is
somewhat fortuitous in view of Shrenk’s approximation, which is obviously
inexact, since it allows a finite loading at the tip and other discontinuities in
the c¢C, distribution. Nevertheless, for preliminary design studies, or in lieu of
more exact lifting surface methods, Shrenk’s approximation is a useful tool.

Effect of Fuselage on C,,

In working with a wing-fuselage combination, one normally defines the
wing planform area to include the portion submerged within the fuselage.
When a lift coefficient is guoted for the combination, it is based on this total
wing planform area obtained by extrapolating the leading and trailing edges
into the fuselage centerline. Generally, the fuselage will effect a decrease in
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Flgure 3.59 Effect of fuselage on spanwise lift distribution.

the lift per unit span over the portion of the wing covered by the fuselage.
This is illustrated in Figure 3.59. The upper distribution is without the
fuselage. The dashed line on the lower figure is the qualitative drop in ¢C; due
1o the fuselage. As an approximation, let us assume that the fuselage effects a
constant drop in ¢C; over its width proportional to the midspan value of ¢C,
Thus, the lift decrement resulting from the fuselage will be

AL = _chlosfusg

Stuse Is the wing planform area submerged in the fuselage, and C,, is the nearly
constant section (; near the center of the wing. &k is the constant of
proportionality. Thus the total C; with the fuselage, Ci,,.» can be written in
terms of C; before the fusclage is added as

Crrpe= G-k S S) (3.81)

In Reference 3.27, two wings equipped with partial and full-span, split,
single-slotted, and double-slotted flaps were tested with and without a
fuselage. The fuselage was circular in cross-section and the wing was mounted
slightly above the middle of the fuselage. The ratio Si.../S was equal to 0.083.
The results of these tests are plotted in Figure 3.60 and compared with
Equation 3.79 using kC/C, = 1.0. Also plotted on Figure 3.60 are test results
from References 3.32 and 3.33. The ratio Stuse/ S Was nearly the same for these
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Figure 3.60 Effect of fuseiage on G, ..

two references as for Reference 3.27. These data support the form of
Equation 3.81, at least to the extent that the correction to C,_ for the
fuselage appears to increase linearly with Ci,, of the wing alone. The
correction depends on the cross-sectional shape of the fuselage and seems to
vanish or even be slightly favorable for a rectangularly shaped section.
Reference 3.34 also shows the correction to be slight for elliptical shapes
where the height is greater than the width.

The decrement in C;, also depends on wing position and appears 1o be a
maximum for the midwing configuration.

Effect of Trim on Ce .

In order to calculate the stalling speed of an airplane in steady flight, one
must consider that, in addition to the weight, the wing’s lift must support any
download on the horizontal tail required to trim the airplane around its
pitching axis. In order to determine this additional trim load, refer to Figure
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Figure 3.61 Longitudinal trim of an airplane.

3.61. Here, the wing lift [, the tail lift, L, the pitching moment about the
wing's aerodynamic center, M,., and the weight are all shown in a positive
sense. With the aerodynamic center of the tail located a distance of I behind
the center of gravity and the wing's aerodynamic center a distance of
{Xeg — Xoo)C ahead, the tail lift to trim is given by

LT = 'M‘a‘g + Lli(xcg - xac)
T

T

In addition, static equilibrium in the vertical direction requires that
L+L:=W

Therefore, it follows that

c Mac
W= L[l +E(xcg_xac):| + It

In coefficient form this becomes

C =G [1 + xac)] +Cuf (3.82)
T
Here, €} is taken to mean the trim C..
_w
Cp= aS

C;,, rtefers to the untrimmed wing lift coefficient corrected for the
fuselage.

It was mentioned earlier that the added drag caused by flaps must
sometimes be considered in the trim of an airplane. If AC, denotes this
increment in the drag coefficient and if the flaps are located a distance of h
above the center of gravity, Equation 3.82 modified to account for the flap
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drag becomes

Cr=0C, [1 (e — xac)] +Cy,

Ir

=1£+ AC (3.83)
T C

ACp can be obtained experimentally or estimated on the basis of Equations
3.45 and 3.46.

Cu, is normally negative and greater in magnitude than the moments
resulting from C,, and AC, Thus ¢ is normally less than C,,. Since
Equation 3.83 holds for maximum lift conditions, it follows that the trim C;__,
is normally less than the wing Cr .

In calcutating Cp_ for use in Equation 3.83, the section aerodynamic
moment determined from Cy, including the increment because of the flaps, is
integrated over the wing excluding the part submerged in the fuselage.

Estimation of C,__ for a Complete Airplane Configuration

A Piper Cherokee PA-28 is pictured in Figure 3.62. Pertinent dimensions,
areas, weights, and other data are tabulated on the figure, Extrapelating the

//’\—' 1] e

23
L) — —
49.8
F 162 { 60
ia { -~ |~ 10 Retracted
12 Extended
i e
= 13 85.5 :
b 30—
Q
Wing area 160.0
Aileran area — tutal 10.8
T Flap area — total 14.9 fr2
F Horizontal tail area 24.4
i Fin area 7.8
i Rudder area 3.6
£1B Fuel 50.0 U.S. gal
’ Engine Lycoming 0—360—A3A
Naormal rating 180 bhp @ 2700 rpm
Grass weight 2400 b
Flap angles 10°, 257, 40°
¢ —b Airfoil section 65, —416
95 S o Washout Z°
T'i = I, = 170 slug f?
le— 83 Iy, = 1249 slug 2

7, = 1312 clug 2
Figure 3.62 Piper Cherokee PA-28-180.
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Figure 3.62 (Continued)

swept leading edge near the root into the fuselage centerline and accounting
for the elliptically shaped tips gives a total wing area when the flaps are
extended of 165.1ft. The area of the wing within the fuselage is 25.3 fi.
Assuming beforehand, or by iteration, a reasonable value for the “stalling
sgeed” of 60 mph leads to a Reynold’s number of approximately 3 x 10 for a
wing section. For this Reynold's number, Reference 3.1 shows a value for
Ci,,, Of 1.45 for the plain 65,-415 airfoil with a lift curve slope of ¢.106 Cjdeg.

Using an 18.5% chord, single-slotted flap deflected 40°, Figures 3.32, 3.33,
and 3.34 predict a AC, of 1.37 corresponding to an increase of 12.9° in the
angle of attack of the zero lift line. AC,,, is estimated at 1.33 giving a C,__ of
2.78 for the flapped wing sections. The derivative dC,./dC; is estimated from
Figure 3.31 to equal —0.20. Since Cy_ = —0.07 for the plain airfoil (Ref. 3.1),
Cu, = —0.34 for the flapped airfoil.

Accounting for the 2° of washout and the increment of ay caused by flaps
leads to an a,, value of 6.0° from Equation 3.76. This is the angle of attack of
the zero lift line at midspan for a zero wing C;. C,, and C, can then be
calculated for the wing alonc and are given in Table 3.3. The section C.
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Table 3.3 Calculated Additional
and Basic Lift Coefficients for the
PA-28 Wing with Flaps Down 40°

2y

B CJR (Cr.=10) C, Cgm“
0.1 1.04 0.62 2.78
0.2 1.09 0.59 2.78
0.3 1,12 ¢.57 2.78
0.4 1.09 0.55 218
0.5 1.06 0.53 2.8
0.6 1.02 0.51 2.78
0.7 0.98 —0.88 1.45
0.8 0.90 -0.90 1.45
0.9 0.79 -0.92 1.45
1.0 0.50 —0.94 1.45

values are also included in the table. A small amount of trial and error will
show that the wing stalls initially at 2y/b of around 0.3 at a wing C; of 1.97.
This estimated wing C; . must next be corrected for the effect of the
fuselage.

However, since the cross section of the Cherokee's fuselage is essentially
rectangular, and with the low-wing configuration, the correction to Cy,,, for
the fuselage is taken to be zero.

The aerodynamic moment of the wing is determined by integrating the
section pitching moments from the wing-fuselage juncture to the wing tip.

b2
M= 2! qciC, dy
¥ fuse

Expressed as a moment coefficient,

M
qS¢

[ Qcosoase ) (G o]

In this case b¢ = § and € =66 in., and Cy becomes

Cu

Cu = —0.198

Assuming the increment in drag from the flaps to have a negligible effect on
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Figure 3.63 Maximum trim lift coefficient of a Piper Cherckee 180 versus flap
angle.

the trim, Equation 3.82 becomes

5.5 5.5
Cro = 1.97[1 +25 0214 0.25)] 0198 25

=1.86

In a similar manner, trim C;_, values were caleulated for flap angles of 0,
10, and 25°. The resulting C;,__ values were found to be 1.33, 1.42, and 1.70,
respectively. These results are presented in Figure 3.63 together with
experimental values. The points labeled “flight tests” were obtained by
aerospace engineering students at The Pennsylvania State University as one
of the experiments in a course on techniques of flight testing. The other tvuro
points were calculated from the stalling speeds quoted by the manufacturer in
the airplane’s flight manual.

AIRFOIL CHARACTERISTICS AT LOW REYNOLDS NUMBERS
Occasionally one has the need for airfoil characteristics at Reynolds

number values much lower than those used by the NACA and others to
obtain the majority of the readily available airfoil data. Most of these data
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were obtained at R values of 3 x 10° and higher. For remote-piloted vehicles
(RPV), model airplanes, and the like, Reynolds numbers as low as S X 10° can
be encountered. A search of the literature will show little airfoil data availabie
in this Reynolds number range. The most reliable low-Reynolds number
airfoil data appear to be those given in Reference 3.35, where tests of five
different airfoil shapes are reported for R values as low as 42,000, These tests
were conducted in a low-turbulence tunnel.

The five airfoil shapes that were tested in Reference 3.37 are shown in
Figure 3.64. These are seen te comprise a thin, flat plate, a thin, cambered
plate, two 12% thick airfoils with 3 and 4% camber, and one 20% thick airfoil
with 6% camber. The airfoil shapes are similar in appearance to the NACA
four-digit series.

The lift curves for these airfoils are presented in Figure 3.65 for four
different Reynolds numbers. As one might expect, the flat-plate resuits are
nearly independent of R since the separation point at the leading edge is well
defined. To a slightly lesser degree, the same can be said for the cambered
plate. The form of the lift curves for the three airfoils is seen to change
substantially, however, over the R range from 4.2 x 10° down to 0.42 x 1¢°,
Particularly at the very lowest Reynolds number, the (), versus « curve is no
longer linear. The flow apparently separates at all positive angles just down-
stream of the minimum pressure point, near the maximum thickness location.

The 825 airfoil

A flat—plate airfoil

Curved plate 4174

— =
" _ T

The NGO airfoil

e

The N6OR airfail

Figure 3.64 Airfoil shapes tested at low Reynolds numbers.

15

1.0

0.5

AIRFOIL CHARACTERISTICS AT LOW REYNQLDS NUMBERS 153

/ ‘
Flat plate ‘

R = 123,000

Fiat plate

0.5

Flat plate

Flat plate

K = 84,000

0

o 107

0° 10° 207

o

Figure 3.65 Effect of Reynolds number on airfail lift coefficients.
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Figure 3.70 Drag polar for the 417a airfoil at low Reynolds numbers.

This explanation is substantiated by Figure 3.66. Here ¢, versus « is given for
the N60 airfoil. As « is first increased up to a value well beyond the stall and
then decreased, a large hysteresis is seen to exist in the curves for the higher
Reynolds numbers. Typically, as « is increased, complete separation on the
upper surface occurs at around 12°. The angle of attack must then be
decreased to around 5° before the flow will again reattach. At the lowest
Reynolds number, the lift curve tends to follow the portion of the curves at
the higher Reynolds numbers after stall has occurred and « is decreasing,
Thus, above an a of approximately 0°, it would appear that the flow is entirely
separated from the upper surface for the lower R values of 21,000 and 42,000.

Aerodynamic drag is considered in more detail in the following chapter.
Nevertheless, the drag characteristics for these low-Reynolds number tests
are presented now in Figures 3.67 to 3.71.
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Figure 3.71 Drag polar for the NBO airfoil at low Reynolds numbers.

PROBLEMS

3.1 A wing has a taper ratio of 1/3, an area of 20 m’, and a tip chord of 1.5 m.
What is its aspect ratio?

3.2 A thin, cambered airfoil is approximated by two straight-line segments,
as illustrated. Calculate C; and €, for this airfoil according to Equa-
tions 3.39 and 3.41.
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The airfoil of Problem 3.2 can be thought of as a flat-plate airfoil at an
angle of attack with a 50% chord flap deflected through a given angle.
What are these two equivalent angles? For this « and zero flap angle,
what would C; be? Comparing this C, to the value from Problem 3.2,
calculate the flap effectiveness factor  and compare it with Figure 3.32.
Taking a cue from Problems 3.2 and 3.3, derive the equation for  given
in Figure 3.32,

A 23015 airfoil is equipped with a 25% fully extensible, double-slotted
flap deflected at an optimum angle. It has a 6 ft chord and is operating at
100mph at SSL conditions. Estimate C,  from: (a) the summary
observations listed at the beginning of the section on flaps, (b) the
numerous tables and graphs of data, and (¢) Figures 3.32, 3.33, and 3.34.
Estimate ), for a thin flat-plate airfoil at a 5° angle of attack having a
33% c plain flap deflected 15°. Divide the chord into three equal seg-
ments and model the airfoil with three suitably placed point vortices.
The GA(W)-1 airfoil of Figure 3.10a is equipped with a pure jet flap. The
jet expands isentropically from a reservoir pressure of 170 kPa absolute
and a temperature of 290 °K. The airfoil is operating at SSI. conditions at
15m{s, The chord is 3m long and the jet thickness equals 2.5 mm,
Calculate C, for an « of 2° and a jet flap angle of 30°.

A finite wing is simulated by an approximate lifting line model consisting
of a bound vortex and two vortices trailing from each side, one from the
tip and the other one halfway out along the span. Using the midspan and
three-quarter-span stations as control points, calculate the section lift
coefficients at these stations for a flat, untwisted rectangular wing with
an aspect ratio of 6 at an angle of attack of 10°,

Use Schrenk’s approximation instead of the approximate lifting line
model to answer Problem 3.8.

3.10 The wing of Problem 3.1 has a washout of 4° and plain 3¢ flaps over the

31

inboard 60% of the span. Assuming R =9 x 10° and a smooth airfoil with
the characteristics given by Figure 3.6, calculate C;,,. for a flap angle of
40°. Do this by comparing section C; and Ci..x values along the span.
Write a computer program to solve the lifting line model illustrated in
Figure 3.52. This is not as difficult and laborious as it may sound. Place
symmetrically disposed trailing vortices of strength 4; at a distance of
¥(1,2,3,...,n} from the centerline line. Choose control points of 0,
(Vi +¥)2, (1 + )2, . .., (3u1 + ¥a)/2. At each control point, the bound
circulation equals the sum of the vortices shed outboard of the point.
Also, it is easy to show that C, = 2I'/cV. But C; is given by Equation
3.66, where a; = w/V. The downwash w can be expressed as a sum of
contributions from each trailing vortex. Hence these relationships lead to
a system of » simultaneous equations for the unknown vortex strengths
Yir Y2 - - » ¥» Once these are found, I' and ¢ can be calculated.

312
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Check your program by calculating the G distribution for an elliptic

wing. You should find that C, is nearly constant except near the tips,
where the accuracy of the numerical model deteriorates. An n of 20
should suffice for this example.

A cambered airfoil has an angle of attack for zero lift of —4°. If this
airfeil is incorporated into an untwisted wing having an eiliptical plan-
form, what will the wing lift coefficient be for an angle of attack of 8°?

The wing aspect ratio is equal to 5.0.
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FOUR
DRAG

As a child, it was fun to stick your hand out of the car window and feel
the force of the moving, invisible air. To the aeronautical engineer, however,
there is nothing very funny about aerodynamic drag. A continuing struggle for
the practicing aerodynamicist is that of minimizing drag, whether it is for an
airplaneg, missile, or ground-based vehicle such as an automobile or train. It
takes power to move a vehicle through the air. This power is required to
overcome the aerodynamic force on the vehicle opposite to its velocity
vector. Any reduction of this force, known as the drag, represents either a
direct saving in fuel or an increase in performance.

The estimation of the drag of a complete airplane is a difficnlt and
challenging task, even for the simplest configurations. A list of the definitions
of various types of drag partly reveals why this is so.

Induced Drag The drag that results from the generation of a trailing vortex
system downstream of a lifting surface of finite aspect ratio.

Parasite Drag The total drag of an airplane minus the induced drag. Thus, it is
the drag not directly associated with the production of lift. The parasite
drag is composed of many drag components, the definitions of which
follow.

Skin Friction Drag The drag on a body resulting from viscous shearing
stresses over its wetted surface (see Equation 2.15).

Form Drag (Sometimes Called Pressure Drag) The drag on a body resulting
from the integrated effect of the static pressure acting normal to its
surface resolved in the drag direction.

Interference Drag The increment in drag resulting from bringing two bodies in
proximity to each other. For example, the total drag of a wing-fuselage
combination will usually be greater than the sum of the wing drag and
fuselage drag independent of each other.

Trim Drag The increment in drag resulting from the acrodynamic forces
required to trim the airplane about its center of gravity. Usually this takes
the form of added induced and form drag on the horizontal tail.
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Profile Drag Usually taken to mean the total of the skin friction drag and
form drag for a two-dimensional airfoil section.

Cooling Drag The drag resulting from the momentum lost by the air that
passes through the power plant installation for purposes of cooling the
engine, oil, and accessories.

Base Drag The specific contribution to the pressure drag attributed to the
blunt after-end of a body.

Wave Drag Limited to supersonic flow, this drag is a pressure drag resulting

- from noncanceling static pressure components to either side of a shock
wave acting on the surface of the body from which the wave is emana-
ting.

With the exception of wave drag, the material to follow will consider
these various types of drag in detail and will present methods of reasonably
estimating their magnitudes. Wave drag will be discussed in Chapter 6.

SKIN FRICTION DRAG

Figure 4.1 depicts a thin, flat plate aligned with the free-stream velocity.
Frequently the drag of a very streamlined shape such as this is expressed in
terms of a skin friction drag coefficient, C}, defined by,

D
qas,

where S, is the wetted surface area that is exposed to the fow. This
coefficient is presented in Figure 4.1 as a function of Reynolds number for the
two cases where the flow in the boundary layer is entirely laminar or entirely
turbulent over the plate. Here the Reynolds number is based on the total
length of the plate in the direction of the velocity. In a usual application, the
boundary layer is normally laminar near the leading edge of the plate
undergoing transition to a turbulent layer at some distance back along the
surface, as described in Chapter Two. The situation is pictured in Figure 4.1,
where the velocity profile through the layer is shown. In order to illustrate it,
the thickness of the layer is shown much greater than it actually is.

As shown in this figure, a laminar boundary layer begins to develop at the
leading edge and grows in thickness downstream. At some distance from the
leading edge, the laminar boundary becomes unstable and is unable to
suppress disturbances imposed on it by surface roughness or fluctnations in
the free stream. In a short distance the boundary layer undergoes transition to
a turbulent boundary layer. Here the layer suddenly increases in thickness
and is characterized by a mean velocity profile on which a random fluctuating
velocity component is superimposed. The distance, x, from the leading edge

C_f = (4-1)
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Figure 4.1 Drag of a thin flat plate.

of the plate to the transition point can be calculated from the transition Reynolds
number, R.. R, is typically, for a flat plate, of the order of 3 x 10°, R, being
defined by

R, =YX (4.2)
H

For very smooth plates in a flow having a low level of ambient turbulence, R,

can exceed 1x 10°
Since the velocity profile through the boundary layer approaches the
velocity outside the layer asymptotically, the thickness of the layer is vague.
To be more definitive, a displacement thickness, 8%, is frequently used to
measure the thickness of the layer. 8* is illustrated in Figure 4.2 and is

defined mathematically by
w_ [ {1 1
o% = J; (1 V) 4y “3)

where y is the normal distance from the plate at any location such that,
without any boundary layer, the total flow past that location would equal the
flow for the original plate with a boundary layer. To clarify this further, let §
be the boundary layer thickness where, for all intents and purposes, u = V.
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Figure 4.2 Displacement thickness.
Then
Vg —-8%)= L udy 4.4

Allowing 3 to become infinite leads to Equation 4.3.
If we arbitrarily define § as the value of y at which u = 0.99V then, for a
laminar laver,

112 -172
5~52 ("—"j) = 5.2x (%) (4.5)
i}
* =2
& 3 {4.6)
For a turbulent fayer,
—1/5
8 =037x (%) 4.7
a
®*_ 9
8* =3 {4.8)

Observe that relatively speaking, the turbulent boundary layer is more
uniform, with 8* being only one-eighth of & as compared to one-third for the
laminar layer.

In order to clarify the use of Figure 4.1 and Equations 4.5 to 4.8, let us
consider the horizontal tail of the Cherokee pictured in Figure 3.62 at a
velocity of 60.4 mfs (135 mph) at a 1524 m (5000 ft) standard altitude. We will
assume that the tail can be approximately treated as a flat plate at zera angle
of attack.

From Figure 3.62, the length of the plate is 30in or 0.762 m. The total
wetted area, taking both sides and neglecting the fuselage, is 4.65 m® (50 ft%).
From Figure 2.3, at an altitude of 1.52km, p=0.1054kg/m’ and »=
1.639 x 107 m?%/s. We will assume that the transition Reynolds number is equal
to 3 x 10°,



166 DRAG

The distance from the leading edge to the transition point is found from
Equation 4.2.

‘= vR,
V
B s 10°
= 1.639 x 10 ><3><6—0.4

=0.0814m (3.2in.)
The Revnolds number based on the total length will be equal te

_ 60.4 (0.762)
1639 % 10°°

=2.81x 10°
If the flow over the tail were entirely turbulent then, from Figure 4.1,

C; = 0.455 (logjo R)™>* 4.9
=0.0037]
The dynamic pressure g for this case is
qg=pV2
_ 0.1054 (60.4)°
2
= 1923 N/m’

Hence the total skin friction drag would be

D = g5.C
= 1923 (4.65)(0.00371)
=3317N
However, the leading portion of the plate is laminar. The wetted area of
this portion is equal to 0.497 m?. For laminar flow over this portion,
C;=1328R™" (4.10)
=1.328 3x 105
= 0.00242
Hence the drag of this portion of the plate is equal to
D= qC}Sw
= 1923(0.00242)(0.497)
=231N
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If the flow were turbulent over the leading portion of the plate, its C;
would be
C; = 0.455 (logyo Ry
= 0.455 (logw 3 X 105>

= 0.00566
Thus its drag for a turbulent boundary layer would be
D =gqCGS.
= (1923)(0.00566)(0.497)
=535N

The above is 5.35—2.31, or 3.04 N higher than the actual drag for laminar
flow. Hence this difference must be subtracted from the total drag of 33.17 N
previously calculated assuming the boundary layer to be turbulent over the
entire plate, Hence the final drag of the total horizontal tail is estimated to be
D=3317-3.04
=30.13N
= 6.77 Ib.
The thickness, &, of the laminar boundary layer at the beginning of transition
can be calculated from Equation 4.5.
5 = 5.2 (0.0814)(3 x 10°)"?
=7728x10""m
= (.0304 in.
The thickness of the turbulent layer right after tramsition is found from
Equation 4.7 assuming the layer to have started at the leading edge.
& = 0.37(0.0814)(3 x 109717
=2418x 107 m
= 0.0952 in.

At the trailing edge, the thickness of the turbulent layer will be

8 = 0.37(0.762)(2.81 x 1057
= (.0145m
= 0.5696 in.

The displacement thickness at the trailing edge is thus only 0.0018 m
(0.071 in.).

Before leaving the topic of skin friction drag, the importance of surface
roughness should be discussed. Surface roughness can have either a beneficial
or adverse effect on drag. If it catlses premature transition, it can result in a
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reduced form drag by delaying separation. This is explained more fully in the
next section. Adversely, surface roughness increases the skin friction
coefficient. First, by causing premature transition, the resulting turbulent C is
higher than C; for laminar flow, in accordance with Figure 4.1. Second, for a
given type of flow laminar or turbulent, C; increases as the surface is
roughened.

It is difficult to quantify the increment in C; as a function of roughness,
since roughness comes in many forms. For some information on this, refer to
the outstanding collection of drag data noted previously (e.g., Ref. 4.4).
Generally, if a roughness lies well within the boundary layer thickness, say of
the order of the displacement thickness, then its effect on C; will be minimal.
Thus, for the preceding example of the horizontal tail for the Cherokee, the
use of flush riveting near the trailing edge is probably not justified.

An approximate estimate of the effect of roughness, at least on stream-
lined bodies, can be cbtained by examining the airfoil data of Reference 3.1,
Results are presented for airfoils having both smooth and rough surfaces. The
NACA “standard” roughness for 0.61-m (2-ft) chords consisted of 0.028-cm
(0.011-in.) carborundum grains applied to the model surface starting at the
leading edge and extending 8% of the chord back on both the upper and lower
surfaces. The grains were spread thinly to cover 5 to 10% of the arca.

An examination of the drag data with and without the standard roughness
discloses a 50 to 60% increase in airfoil drag resulting from the roughness. It
is difficult to say how applicable these results are to production aircraft.
Probably the NACA standard roughness is too severe for high-speed aircraft
employing extensive flush riveting with particular attention to the surface
finish. In the case of a production light aircraft for general aviation usage, the
standard roughness could be quite appropriate.

FORM DRAG

In addition to skin friction drag, a body generaily experiences some form
drag. Unlike the skin friction drag that results from viscous shearing forces
tangential to a body's surface, form drag results from the distribution of
pressure normal to the body’s surface. The extreme case of a flat plate normal
to the flow is pictured in Figure 4.3. Here the drag is totally the result of an
unbalance in the normal pressure distribution. There is no skin friction drag
present in this case.

Generally, form drag is difficult to predict. For that matter, so is skin
iriction drag except for the simplest cases. Thus, in general cases, such as that
pictured in Figure 4.4, where the total drag results from both normal and
tangential stresses (or pressures) one must usually resort to experimental data
to estimate the drag.
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Figure 4.3 Flat plate normal to flow.

Normal pressure

Flgure 4.4 Body having both skin friction and form drag.

As with skin friction drag, form drag is generally dependent on Reynolds
number. To see why, consider the flow around the circular cylinder pictured
in Figure 4.5. In Figure 4.5a flow is pictured at a low Reynolds number. Here,
beginning at the stagnation point, a laminar boundary layer develops. On the
surface of the cylinder, the static pressure (normal) is highest at the stag-
nation point and decreases to a minimum at the fop and bottom. Moving
around toward the rear, beyond these points, the static pressure increases,
tending toward the stagnation pressure at the very rear. In the absence of
viscosity the normal pressure distribution would be symmetrical (Equation
2.78) and there would be no drag. This is a clear example of D’Alembert’s
paradox, which states that a body in a inviscid fluid will experience no drag.
As the slower moving fluid in the laminar boundary layer moves beyond the
minimum pressure point on the cylinder, its momentum is insnfficient to move
against the positive pressure gradient, referred to as an adverse gradient, and
thus the flow separales just past the top and bottom locations on the cylinder.
In the separated region over most of the rear portion of the ¢ylinder the static
pressure is constant and equal to the low pressure at the top and bottom. Thus
the high pressure acting over the front and the low pressure over the rear
result in a high form drag.
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Figure 4.5 Flow over a circular cylinder. (2) Low Reynolds number. Separation
occurs befare transition. Large wake. (b) High Reynolds number. Transition
occurs before separation. Small wake.

The high-Reynolds number case is shown in Figure 4.5b. Here the
laminar boundary layer undergoes transition to a turbulent boundary layer
before separating. The subsequent turbulent mixing increases the momentum
and energy of the boundary layer so that it remains attached toward the rear
of the cylinder, well beyond the separation point of the laminar layer. Thus, in
this case, the separation region is much smaller and the static pressure is
higher on the rear of the cylinder than for the laminar case. Therefore,
because of reduced form drag, the drag coefficient of a cylinder is lower at
higher Reynolds numbers.

C, as a function of Reynolds number is presented in Figure 4.6 for both
spheres and two-dimensional circular cylinders. Here, C; i1s based on the
projected frontal area. Note the rapid drop in C; above an R value of
approximately 2 x 10°. This is the so-called critica! Reynoids number, where
the transition point is nearly coincident with the separation point. “Sub-
critical” refers to flow at Reynolds mumbers that are less than critical;
“supercritical” denotes R values that are higher than critical. A body shape
having a well-defined separation point will not exhibit a critical Reynolds
namber; neither will streamlined shapes.

Although not concerned with drag per se, Figure 4.6a also includes the
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Figure 4.6 Drag coefficients of ¢ylinders and spheres versus Reynolds number.
(a) Two-dimensional circular cylinders. (&) Spheres.

quantity fI/V, known as the Strouhal number, S. § characterizes an interes-
ting behavior of bluff bodies with rounded trailing edges. As such a body first
beging to move through a fluid, the vorticity in the boundary layer is shed
symmetrically from the upper and lower surfaces to form two vortices of
opposite rotation. However, the symmetrical placement of the vortex pair is
unstable, so that succeeding vortices are then shed alternately from the upper
and lower surfaces. The resulting flow pattern of periodically spaced vortices
downstream of the body is known as a Karman vortex street.

In the definition of Strouhal number, { is the frequency at which the
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vortices are shed. As a vortex is shed from one surface of the cylinder, it
produces a momentary circulation around the cylinder opposite in direction to
the vortex. From the Kutta-Joukowski law, a force on the cylinder normal to
V results. As the next vortex is shed, the force reverses its direction, resulting
in an alternating force on the cylinder. This particular phenomenon is the
cause for the “‘singing” of telephone wires in the wind.

As an example of the use of Figure 4.64, consider a wire 2 cm in diameter
in a wind blowing at a speed of 8 m/s. Assuming standard sea level conditions,

Vd

R=—~
14

__8(0.02)
1.456% 10~

= 1.099 x 10°
From Figure 4.6a, for this Reynolds number,
Ci= 1.1
S=0.18
Thus the drag per unit length on the wire will be
D=4qC,d
= %(1 226)(8)(1.1{0.02)

= {.863 N/m
The frequency of the alternating lift force on the wire will be,
Vs
I=a
_80.18)
0.02
=T72Hz

Let us now consider the extreme case of form drag illustrated in Figure
4.3, where the point of flow separation is well defined and not dependent on
Reynolds number. 1t is not too surprising to find that drag coefficients for such
shapes are nearly constant over a wide range of Reynolds number values. A
number of such shapes are pictured in Figure 4.74a.

This figure presents values for both two-dimensional and three-dimen-
sional shapes. Three-dimensional shapes are all bodies of revolution. Observe
that for the same profile shape,

Ci(2-D)

6D 1.8
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- _2aq y
> =2 —_— / G, =10t 1.2
1
?
—_— 2 G = 22 ) G - 17
2
e VA g = 14
—_— é ;= 0.4
—_ % =13
e ——— % Cd = 1.1
I G, =20
_— % ¢, =07
Two—dimensional Three—dimensional

Figure 4.7a Examples of shapes having C, values nearly independent of Ray-
nolds number,
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Flgure 4.7b Transition from three-dimensional to two-dimensional drag for
cylinders at supercritical Reynolds numbers.
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If the ratio of the span to the height {or diameter) of a flat plate (or
cylinder) normal to the flow is approximately 5 or less, C, is nearly constant
and equal to the 3-I} value. For aspect ratios greater than 5, C; varies
approximately in the manner given by the normalized curve of Figure 4.7h.
This curve is based on data from several sources, including Reference 4.4.

A qualitative evaluation of the drag coefficient for a given shape can be
made using some “educated intuition.” Referring to Figure 4.8, the drag

C;= 2.2

Cy= 1.98
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Flgure 4.8 Qualitative estimate of drag for two-dimensional shapes.
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Figure 4.2 Drag reduction of a high drag shape.
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coefficient of a bluff shape depends on the width of the wake behind the body
(before viscosity dissipates it). Beginning with the top figure and working
downward, one would expect, for the same projected frontal area, that the
widths of the wakes would diminish progressively. Intuitively, such a pro-
gression is visualized by picturing the flow as separating tangent to the
surface and then being turned gradually in the direction of the main flow.

With regard to drag, the trailing edge shape of a body is usually more
important than the leading edge shape. For example, the drag of the top shape
in Figure 4.8 can be reduced significantly by providing a body behind it to
which the flow can reattach. This is illustrated in Figure 4.9. As opposed to
Figure 4.8, in this case, the low pressure in the separated region between the
front and the afterbody reacts on both parts, contributing little or nothing to
the drag.

In order to provide an additional basis for estimating the drag of two-
dimensional sections, the data in Figure 4.10 are provided (Ref. 4.5). This
figure shows that for a shape with sharp corners, a rounding of the corners
will reduce the drag coefficient as well as the critical Reynolds number.

DRAG OF STREAMLINED SHAPES

The drag of shapes such as airfoils, fuselages, nacelles, torpedoes,
submarines, and airships is composed of both form drag and skin friction
drag. As the fineness ratie (length/maximum thickness) of a streamlined shape
increases, more and more of its drag is attributable to skin friction. Con-
versely, at low fineness ratios, the drag is prmc:pa]ly form drag
Data on the drag of two-dimensional and : p :
shapes are presented in Figures 4.11, 4.12, and 4.13. Based on the prOJected
frontal area, C; is given as a functlon of fineness ratio in Figure 4.11 at a
high Reynolds number. In this figure, a fineness ratio of 1.0 corresponds to a
circular cylinder and sphere for two-dimensional and three-dimensional
shapcs, respecnvely. Notice that the mintmum drag occurs at a hineness ratio
of approximately 2 for a three-dimensional shape, and at a value of ap-
proximately 3 for a two-dimensional shape. However, in view of the sharp
rise in both curves at the lower fineness ratios, it might be well in either case
to use fineness ratios higher than these, say around 4, if one wishes to fair a
blunt shape of a given frontal area.

The crossover of the two curves in Figure 4.11 is to be expected. At low
values of fineness ratio, C; for the two-dimensional shapes is higher than that
for the three-dimensional bodies, based on the data of Figures 4.6 and 4.7. At
the other extreme, as the fineness ratio becomes large, the skin friction drag
predominates. If C; is assumed to be the same for ¢ither the two-dimensional
or three-dimensional shapes, the ratio of the C, values, based on the pro-

0.4
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0. thickness
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Cs Fineness ratio = —L
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Finenass ratio

Figure 4.11 Drag coefficients for streamlined shapes as a function of fineness
ratio. Gy based on frontal area; R-107 based on length.
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Figure 4.13 Drag of fuselages and similar shapes.

jected frontal areas becomes

C.(3-D) _S.3-D) 4
C,(2-D) ~ S.(2-D) =D

where D is the maximum three-dimensional body diameter or the maximum
thickness of the two-dimensional shape. For an elliptical two-dimensional
shape compared to an ellipsoid, this becomes

Cd (3-D) — ki
2Dy 2

{4.11)

This is close to the ratio from Figure 4.11 for a finess ratio of 8 and only
slightly lower than the corresponding ratio given earlier for the form drag.
Minimum profile drag coefficients for NACA four- and five-digit airfoils
are presented in Figure 4.12 as a function of thickness ratio at a Reynolds
number of 6 x 10°. Here, as is usual for airfoils, C, is based on the chord
Iength. The several data points at each thickness ratio result from atrfoils of
different camber ratios. Note that C,  does not vary significantly with

'min
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camber. C, _ appears to vary almost linearly with t/c and extrapolates to a
value of 0.004 for a t/c of zero. This corresponds to a C; value of 0.002.
According to Figure 4.1, this would require laminar flow over these sections
more extensive than cne would expect. Probably, transition is delayed until
approximately the 25% chord point, the location of maximum thickness. One
would then expect a C;,, value of about 0.005.

Figure 4.13 presents three-dimensional drag data directly comparabie to
Figure 4.11, but with more detail. Data representing practical fuselage and
nacelle construction are included in Figure 4.13 together with C, results from
torpedo-shaped bodies. Assuming a reasonable relationship between the
frontal and wetted areas of such bodies, expected C,; values for various
values of C; are also included on the figure. For a given ; value, the
experimental results should approach one of these lines as the fineness ratio
gets large.

For fully turbulent flow at an R of 25x 10°, C; for a Aat plate would be
0.0026, whereas the data appears to be approaching a C; of 0.0032 to 0.0034.
The higher skin friction drag on the bodies is probably the result of surface
roughness.

It is interesting to examine the data of Figure 4.13 in terms of minimum
drag for a given body volume, This is particularly important for airship and
underwater applications. It is also of interest to the design of tip tanks, where
minimum drag for a given volume of fuel is desirable. Denoting the volume by
Vo, we will define another drag coefficient.

D

Ci= iy 4.12)
Cyy, 1s related to C; in Figure 4.1_3 by
A
Co, = AL Cy

Obviously, the ratio of the frontal area, 4, to the 2/3 power of the volume
depends on the particular body shape. We will assume the body to be
composed approximately of a hemispherical nose, a cylindrical midbody
extending to the middle of the body, and a tail cone. For this particular shape,

A 917 113 (4. l 3)

lefS: ( ! )2
4d 1

Using this relationship and Figure 4.13, the graphs presented in Figure 4.14
were obtained. From this figure it can be seen that to enclose a given volume
with a minimum drag body, its fineness ratio should be higher than the
optimum values from Figure 4.13. Indeed, for fuselages, the drag for a given
volume is nearly constant for ¥/d values from 4 to 10.




