
J Intell Robot Syst (2007) 50:257–295
DOI 10.1007/s10846-007-9164-7

Optimal Camera Placement for Automated
Surveillance Tasks

Robert Bodor · Andrew Drenner · Paul Schrater ·
Nikolaos Papanikolopoulos

Received: 4 February 2007 / Accepted: 4 June 2007 /
Published online: 3 October 2007
© Springer Science + Business Media B.V. 2007

Abstract Camera placement has an enormous impact on the performance of vision
systems, but the best placement to maximize performance depends on the purpose
of the system. As a result, this paper focuses largely on the problem of task-specific
camera placement. We propose a new camera placement method that optimizes
views to provide the highest resolution images of objects and motions in the scene
that are critical for the performance of some specified task (e.g. motion recognition,
visual metrology, part identification, etc.). A general analytical formulation of the
observation problem is developed in terms of motion statistics of a scene and
resolution of observed actions resulting in an aggregate observability measure. The
goal of this system is to optimize across multiple cameras the aggregate observability
of the set of actions performed in a defined area. The method considers dynamic and
unpredictable environments, where the subject of interest changes in time. It does not
attempt to measure or reconstruct surfaces or objects, and does not use an internal
model of the subjects for reference. As a result, this method differs significantly in
its core formulation from camera placement solutions applied to problems such as
inspection, reconstruction or the Art Gallery class of problems. We present tests
of the system’s optimized camera placement solutions using real-world data in both
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indoor and outdoor situations and robot-based experimentation using an all terrain
robot vehicle-Jr robot in an indoor setting.

Keywords Camera networks · Robot/camera placement · Observability ·
Optimization · Sensor networks · Vision-based robotics

1 Introduction

This paper focuses on the problem of task-specific camera placement. We attempt to
determine how to place cameras relative to activities being performed by human
subjects, in order to provide image input to a system such that it optimizes that
system’s ability to achieve its task (learn activities, recognize motion, take measure-
ments, etc.). We use information taken from passive measurements of the scene, and
in general, do not assume a model of the environment.

The performance of computer vision systems for measurement, automation appli-
cations, surveillance, reconstruction, gait recognition, and many other applications,
depends heavily on the placement of cameras observing the scene. A standard
approach to camera placement for observing a scene is to position the cameras
uniformly around the area. This approach tends to do a good job of providing
view coverage of an area. However, this is not appropriate for our needs, because
such uniform placement ignores the human aspect of the tasks we are interested in.
We use the statistics of the motion paths taken in the scene to determine proper
camera placement, rather than spread cameras evenly to cover the area, since it is
the people, not the area that we are interested in observing. Our goal is to optimize
the aggregate observability of the tasks being performed by the subjects in an area.
We develop a general analytical formulation of the observation problem, in terms
of the statistics of the motion in the scene and the total resolution of the observed
actions, that is applicable to many observation tasks and to multiple camera systems.
An optimization approach is used to find the internal and external (mounting
position and orientation) camera parameters that optimize the observation criteria.
We demonstrate the method for multiple camera systems in real-world monitoring
applications, both indoor and outdoor.

The paper is organized as follows: Section 2 describes related work, while Section 3
describes our camera placement formulation and experimental results. Section 4
summarizes our conclusions, and Section 5 describes future work we would like
to pursue.

2 Related Work

The use of computer vision to automate real-world surveillance and motion tasks is a
very rich and interesting field. Some of the application areas include pedestrian and
transportation safety [5, 24, 28], surveillance [3, 14, 19, 25, 38], crime prevention [16],
and human-computer interaction [12, 51].

An issue that plays a fundamental role in real-world surveillance and motion
recognition is that of optimal camera placement for the purpose of maximizing
the observability of the motions taking place. Optimal camera placement has been
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considered for numerous problem areas, and significant prior literature exists in
the areas of scene monitoring, surveillance and tracking, part inspection, three-
dimensional reconstruction, robotic sensor motion planning (often for eye-in-hand
systems), and for the Art Gallery problem. While all of the methods developed in
these areas focus on the problem of optimal camera placement, the methods differ in
features of interest, and the objective functions which they optimize. Furthermore,
we believe the camera placement method described in this paper is novel and distinct
from prior approaches in these areas.

The method focuses on optimizing the view of a set of target motion paths taken
through an area of interest. As such, the method considers dynamic and unpre-
dictable environments, where the subject of interest changes in time. Furthermore,
the path starting positions and motion directions are not known a priori since targets
can come and go within the area of interest. The method focuses on optimizing the
aggregate path observability as a whole, based on a probabilistic framework, and
does not attempt to optimize the view of any individual path or target motion. While
tracking is used as one means of providing path input to the system, the purpose of
the method is not tracking, but rather observing the path motions for subsequent
applications such as motion recognition. The method does not attempt to measure
or reconstruct surfaces or objects, and does not use an internal model of the subjects
for reference. As a result of this and the issues described above, this method differs
significantly in its core formulation from camera placement solutions applied to
problems such as inspection, reconstruction or the Art Gallery class of problems.
In the rest of this section, we describe many instances of prior work in these areas,
and attempt to elaborate on these distinctions.

O’Rourke [35] provides an in-depth theoretical analysis of the problem of maxi-
mizing camera coverage of an area, where the camera fields of view do not overlap
(the so-called “Art Gallery” problem).

In recent years, research has been done to extend the framework to include limited
field of view cameras and to incorporate resolution metrics into the formulation.
Fleishman et al. further refined the art gallery framework by introducing a resolution
quality metric [15]. In addition, Isler et al. extended the formulation of the mini-
mum guard coverage art gallery problem to incorporate minimum-set cover. They
derived reduced upper bounds for two cases of exterior visibility for two- and three-
dimensions [20].

Our method differs from the art gallery framework in several important ways. We
focus on task observability, and try to capture target motions, while this framework
tries to optimize coverage area. This corresponds to minimizing overlapping views.
We do not optimize for minimum view overlap, and in fact, to accomplish these
tasks, overlapping camera views are often necessary. However, the work we do
can be related to the notion of “strong visibility of guard patrol” as described by
O’Rourke. In some ways, this is the dual problem - assuming moving cameras,
and fixed points of interest to observe. We assume (largely) fixed cameras, with
moving subjects. However, the framework of the art gallery problem makes many
fundamental assumptions that differ considerably from our own framework. The
art gallery framework assumes that the subject(s) of observation (in O’Rourke’s
case, the gallery walls) is/are known a priori. They generally also assume omni-
directional cameras, and that all non-occluded camera placements are equally good.
These assumptions are fundamental to the art gallery problem, and so fundamentally
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affect the approach, that they make it a different problem. To our knowledge, no one
has addressed these issues as we do.

In the field of robotics, vision sensor planning has been studied to aid in inspection,
object recognition, task planning and visual servoing tasks. Several excellent surveys
of this area have been written, including Roy et al. and Scott et al. [39, 40], and
Tarabanis et al. [43]. Abrams et al. develop a system to perform dynamic sensor
planning for a camera mounted on a moving robotic arm in order to compute optimal
viewpoints for a pre-planned robotic grasping task [1]. Nelson and Khosla [29]
introduce a modified manipulability measure in order to reduce the constraints on the
tracking region of eye-in-hand systems while avoiding singularities and joint limits.
They also studied dynamical sensor placement within this context, and introduced
the concept of the resolvability ellipsoid to direct camera motion in real-time in
order to maintain servoing accuracy [30, 31]. Sharma and Hutchinson also introduce
a quantitative sensory measure, perceptibility, in order to improve positioning and
control of manipulator systems [41].

Tarabanis et al. [44, 45], and [46] present a succession of planning methods to
determine optimal camera placement given task-specific observational requirements
such as field of view, visibility, and depth of field. They describe optimization
approaches to maximize these features for model based and task driven eye-in-hand
sensor planning. In addition, Yao and Allen [52] formulate the problem of sensor
placement to satisfy feature detectability constraints as an unconstrained optimiza-
tion problem, and apply tree-annealing to compute optimal camera viewpoints in the
presence of noise.

Olague and Mohr [34] consider the problem of optimal camera placement for 3D
measurement accuracy of parts located at the center of view of several cameras. They
demonstrate good results in simulation for known static objects. Chen and Davis
[10], develop a resolution metric for camera placement considering occlusions. In
addition, Denzler et al. [13] develop a Kalman filter based approach for selecting
optimal intrinsic camera parameters for tracking applications. They demonstrate
results for actively adapting focal length while tracking a rigid object. Tarbox and
Gottschich [47] present three different planning algorithms for measuring exposed
surfaces of an object using a measurability criterion for model based inspection.
Chen and Li [9] develop a sensor placement graph for model based inspection, based
on a genetic algorithm approach. They refine the graph to a shortest path using a
Christofides algorithm.

Our method differs from these because it considers the joint observability of a set
of tasks. In addition, our method considers task uncertainty: the locations of the tasks
that we are attempting to observe are not known a priori, and change with time as
the subjects move through the scene.

Another important set of multi-camera systems are those that incorporate only
fixed cameras. These systems generally focus on the problem of tracking subjects
across cameras and finding correspondence of subjects between cameras. Two good
examples of this work appear in Ukita and Matsuyama [48] and Stauffer and Tieu
[42]. These methods do not consider observability, and camera placement is generally
ad-hoc. We believe that this group of methods could benefit from the camera
placement framework we introduce.

Another interesting area of camera placement research is the area of object or
scene reconstruction. Three-dimensional visual hull reconstruction is a process for
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creating three-dimensional models of objects from multiple two-dimensional images
taken from views around the object. This process has been developed extensively
by the computer graphics field and has seen applications in many areas including
motion picture special effects, video games and product marketing. Matusik et al. [23]
describe a method where reconstruction is accomplished by projecting the silhouettes
of each camera’s foreground subject into a 3D space. Each silhouette “carves out”
a section of the space, and the intersection of the carved-out sections results in the
3D model of the subject. Similar approaches to 3D reconstruction from silhouette
can be found in Carranza et al. and Cheung et al. [8, 11], and Weik and Liedtke
[49]. Another three-dimensional reconstruction approach that uses tensor voting is
described by Mordohai and Medioni [27]. This method does not require computation
of silhouettes, or a known background.

Reconstruction quality may be greatly improved by increasing the number of
cameras used, or views taken. In addition, improvements to visual hull reconstruction
have been developed in recent years [18, 32, 33, 50]. Many of these improve the
reconstructed shape by adjusting the camera positioning based on an internal model
of the subject. These approaches are very interesting, but differ from the method
we describe because they assume a static object or scene, often incorporate a known
model, and are formulated to optimize the appearance or minimize the error of the
external surfaces of an object, not optimally observe a set of motion paths.

3 Camera Placement to Observe the Scene

Resolution is one of the fundamental and primary information bottlenecks for vision
applications. The performance of virtually all single or multiple camera-based vision
systems will improve with higher resolution input. For example, measurement, 3D
reconstruction, and recognition accuracy all have a dependence on the resolution
of the subject. Therefore, it is desirable to position cameras in order to maximize
the total resolution of the subject in all cameras (as measured by the fraction of the
subject’s area in the image). However, how to position the cameras is not always
obvious.

For example, if we desire to monitor an area effectively with a multi-camera
vision system (Fig. 1), the system may be required to perform a variety of tasks
such as general surveillance (detection of loitering behavior, monitoring of crowd
movements, etc.), subject tracking [14], activity classification [2], gesture recognition
[12], along with individual biometrics gathering (gait recognition, etc.). Each of these
tasks may have different requirements and features of interest. As a result, optimal
camera placement may vary from task to task. In addition, task location will vary
throughout the area since people are free to move throughout the area of interest in
any direction they like.

As a result, positioning a camera, or set of cameras, to effectively observe the area
of interest is a difficult problem. Each camera position has to take into consideration
the observability of all activities in order to optimize the system’s performance.

Our goal is to address the problem of camera placement to optimize the aggregate
observability of a set of tasks. One possible application of this research is the devel-
opment of a design tool for surveillance camera placement in areas of high traffic,
where each subject may take a different path through the area. This work assumes



262 J Intell Robot Syst (2007) 50:257–295

Fig. 1 Scene of people moving
outdoors

the cameras are statically mounted to view an area. Optimizing the observability of
such a system means jointly maximizing the observability of the cameras relative to
the expected path distribution for the area of interest.

3.1 Problem Formulation

3.1.1 General Formulation

The general problem is to optimize the aggregate observability of a distribution
of target motions, where targets mean anything that we want to track: vehicles,
pedestrians, body parts, objects, etc. We assume target motions can be described
by the 3D motions of a set of b privileged points �x1(t), . . . , �xb (t).

Each camera’s state can be parameterized in terms of an “action” that carries the
camera parameters from default values to the current values (e.g., the rotation and
translation between world and camera coordinates). For every trajectory and set of
camera parameters, we will define a gain function that encodes the quality of the
view. The problem of finding a good camera location for the set of trajectories can
be formulated as a decision theory problem that tries to maximize the expected gain
for all cameras, where the expectation is performed across trajectories. In general:

V (�u1, . . . , �un) =
∫

�s∈S

G (�s, �u1, . . . , �un) p (�s) d�s (1)

where G (�s, �u1, . . . , �un) represents a gain function on trajectory states and camera
parameters, �ui are the parameters for the ith camera, p (�s) is the prior probability
distribution on the trajectory states, and S is the set of states of the system (world)
we are interested in. Our system assumes that p (�s) is known or can be computed. In
fact, we determine the probability distribution of paths by tracking subjects as they
move through the area.

Given a set of m sample paths with parameters �s j, the value function can be
approximated:

V (�u1, . . . , �un) =
m∑

j=1

G
(�s j, �u1, . . . , �un

)
. (2)
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The choice of a parameterization �s j will depend on the application. In motion studies,
�s j would describe the aspects of the motion that are relevant for the task. For
example, in activity recognition involving multi-segmented rigid bodies connected
at joints, �s could be a time-series of joint angles. One means of recovering these from
video is described in Bregler and Malik [7]. Another interesting method for measur-
ing motion trajectories from video is developed by Pless [37]. He demonstrates the
use of isomaps to extract motion trajectories from a wide variety of video sequences.

The value of a particular view of this motion will depend on how well the
relevant (and distinguishing) aspects of the motion survive projection. For example,
Mizoguchi and Sato [26] developed “space-time invariants” to encode arm and
hand motions taken from video. State vectors of this type would be very appro-
priate for human-computer interfacing or sign language applications. Alternatively,
Parameswaran and Chellappa present several human kinematic motion invariant
representations for standard locomotive motion types [36].

In our case, we are concerned with path observability, so �s j defines a set of linear
paths taken through an area. These are parameterized as follows:

�s j = [
φ j x j y j l j

]T (3)

where φ j is the orientation of the path j,
(
x j, y j

)
defines the path center, and l j is the

length of the path. Path lengths are not normalized due to variations in individual
walking patterns.

In addition, �ui defines a vector of actions to be considered. In our case, actions
correspond to camera positions, thus �ui defines a vector of camera parameters to be
optimized. In general, �ui may contain any number of variables such as camera focal
length, position, orientation, etc.

3.1.2 Specific Formulation

Assumptions In this work, we focus on viewing the locomotive motion paths taken
by subjects through a scene in order to best observe those subjects. This choice makes
the assumption that the motion path direction captures the principle component of
the activity or motion of interest. This assumption is valid for many activity recog-
nition and measurement applications (tracking, gait recognition, articulated motion
classification, etc.) because these activities can be found by fixing the dominant
orientation of the activity. In fact, many methods in the literature rely on this fact
to design their classifiers (PCA, etc.). However, this approach would not be the best
choice for applications that benefit from optimizing the front view of the subject, such
as face recognition.

In addition, we assume that it is sufficient to view each path from one side only.
Because of the symmetry of the human body, we consider viewing a path from either
side to have the same value. This is very reasonable for classification, but may not be
a valid assumption for other applications such as 3D reconstruction.

We also make the assumption that all paths in our distribution are linear. In fact,
we measure (track) all paths making no parametric assumptions, and then fit lines
to the tracking data via a least squares approximation. For tracking data that has a
high curvature, we split the data into a sequence of linear segments. Since this can
be done to an arbitrarily low residual error, this method does generalize to arbitrary
path distributions.
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Fig. 2 When dij (solid) < d0
(dashed), the camera is unable
to observe the full motion
sequence and fails the first
constraint

One of our most fundamental assumptions lies in the use of the pinhole projection
camera model. This model ignores lens distortion effects, among others. We chose
this model for its simplicity and efficacy. This model captures the key impact of the
camera positions correctly. In addition, for narrow field of view cameras that are far
from the subject, lens distortion is minimal. Higher order terms may be added in the
future to extend the formulation if this is necessary for a particular application.

Lastly, we use a simplified model of foreshortening. We focus on the first order
effects, ignoring the higher order effects. Again, we believe that this captures the
key effect of foreshortening on camera placement, and higher order models can be
integrated into the formulation in the future if necessary.

Constraints The goal of camera placement for optimal path observability is to
position a camera to observe the entire path of motion while maximizing the view
of the subject in the image. The first part of that goal, observing the entire path of
the jth subject, by the ith camera requires the distance from the camera to the subject
(dij) to be far enough away from the subject that the entire motion is captured within
the camera field of view (Fig. 2).

The camera must maintain a minimum distance, d0, from each path to ensure that
the full motion sequence is in view:

d0 = ral j f
w

(4)

where ra is the aspect ratio of the image, w is the diagonal width of the imaging
sensor, l j is the length of the path, and f is the focal length of the lens.

In three dimensions, this constraint also requires that the path lies within the view
frustum of the camera (Fig. 3) projected on the ground plane. This results in four
linear constraints per camera that must be satisfied for a path to contribute to the
observability metric for that camera position.

The second part of the goal, maximizing the view of the subject, requires the
camera to be as close to the subject as possible, so that the subject is as large as
possible in the image. Figure 4 depicts the reason for this. For a perspective

Fig. 3 View constraints for
each camera. The view
frustum of the camera
projected on the ground plane.
The path observed must fall
within this frustum and remain
at least d0 from the camera
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Fig. 4 Configurations that
decrease observability in
pinhole projection cameras. a
Increasing object–camera
distance. b Increasing
foreshortening

a b

projection camera with a fixed field of view, the size of an object in an image
decreases as the distance to the object increases. In digital imaging, the area of an
object in an image corresponds to a number of pixels that measure the object. As a
result, we can define observability metrics directly in terms of pixel resolution.

Another factor that reduces observability of an object is foreshortening. Figure 4
depicts this situation. As the angle between the camera’s view direction and the
object decreases, the projection of the object on the camera’s image plane also
decreases. As a result, the number of pixels that measure the object decreases, and
the observability lessens.

We use the following first-order approximations for these effects:

resolution ∝ 1

d2
(5)

resolution ∝ cos (θ) . (6)

Thus, optimizing path observability for an individual path corresponds to minimizing
the distance between the camera and the path center, along with minimizing fore-
shortening effects. In this case, there are two sources of foreshortening: the angle
between the path normal and the camera position, and the angle between the path
center and the normal to the image plane (Fig. 5).

a b

Camera 
Image 
Plane

d

Path

θ

φ

Camera 
Image 
Plane

α

β

d

Path

Fig. 5 Variables to minimize for each path. a Top view. b Side view
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Objective function Based on this geometry, we can define an objective function (7)
for each path–camera pair:

Gij =
⎧⎨
⎩

0 if d2
ij < d2

0,
d2

0

d2
ij
cos

(
θij

)
cos

(
φij

)
cos

(
αij

)
cos

(
βij

)
otherwise.

(7)

Optimizing this function over camera parameters will solve the observability prob-
lem for the single camera, single path case. This formulation forces the relationship
0 ≤ Gij ≤ 1 to hold, which will be required for our analysis later.

Single camera This single camera method may be further extended to work with
multiple paths by simply optimizing over the aggregate observability (Eq. 8) of the
entire path distribution.

V =
m∑

j=1

G j. (8)

This gives equal weighting to all paths in the distribution, and ensures that the
single camera is placed to maximize the overall path distribution, or equivalently,
to optimize the average path observability. Note that this is a unit-less metric. If V is
multiplied by the height and width of the image in pixels, it becomes a pixel resolution
metric of observability, as discussed above.

Multiple camera systems In the case of multiple camera systems, the formulation
is somewhat more complicated. In these instances, we would like to ensure that the
camera placements are optimized jointly for the multiple camera system.

To ensure that a single joint optimum is found, it would be necessary to search
jointly over all camera parameters �ui at the same time. However, this method is very
computationally intensive. In fact, the complexity of this method is exponential in
the number of cameras:

O (V) = O
(
(km)

n) (9)

where m represents the number of paths, n represents the number of cameras, and k
represents the number of camera parameters searched over per camera. (The value
of k depends on the particular optimization method used. For example, in a uniform
grid-based search method, k = pd, where p is the number of samples per parameter,
and d is the number of parameters. See Section 3.2 for more details.) For systems of
many cameras, this approach quickly becomes infeasible.

As a result, we employ an iterative method with a computational complexity that
is only linear in the number of cameras:

O (V) = O (kmn) . (10)

This method is clearly much faster than the previous approach. In addition, an
iterative approach allows for the addition of new cameras without re-optimizing,
which adds further to its utility.

In addition, we found that the iterative approach results in solutions that closely
approximate the optimal approach for cases where the maxima of the objective
function are sufficiently separated from one another (Fig. 10). Separated maxima
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correspond to path clusters within the overall path distribution that are grouped
by position and/or orientation. Such clusters occur naturally for most of the path
distributions we observed because of constraints or affordances in the environment.
(Sidewalks create clusters because traffic tends to move along them, doorways
cause clusters because paths funnel into them, obstacles cause clusters by forcing
traffic around them, etc.) If the clusters are sufficiently separated either in position
or orientation, then any camera placement solution that observes one cluster will
likely have a very low observability of the other clusters, and they can be treated
independently.

Because of this finding, we developed an iterative method for camera placement
that provides very good results in practice. In this formulation, we define a vector of
path observabilities per camera where each element, Gij, describes the observability
of path j by camera i.

Now, for each camera i, the objective function becomes:

Vi =
m∑

j=1

[
Gij (�ui)

i−1∏
k=1

(
1 − Gkj (�uk)

)]
(11)

By inverting the observability values of the previous camera
(
1 − Gkj

)
, the current

camera is directed to the regions of the path distribution that have the lowest
observability so far. In other words, a second camera should be positioned to view
those path clusters that the first camera did not view well, and so on.

V =
n∑

i=1

m∑
j=1

[
Gij (�ui)

i−1∏
k=1

(
1 − Gkj (�uk)

)]
(12)

Equation 12 gives the total observability value function for the multi-camera system.
Maximizing V optimizes the expected value of the observability, and thus provides
the best results for the entire path distribution as a whole (assuming distinct clusters).
It should be noted, however, that for particular individual paths, it may yield sub-
optimal observability results, as this was not our goal. Figure 6a shows a plot of Eq. 11
for a sample path configuration, and Fig. 6b shows a plot of Eq. 12.

We can see from this that the observability asymptotically approaches the maxi-
mum as the number of cameras viewing the path distribution increases. The number
of cameras necessary depends on the configuration of the particular path distribution,
and we do not know it a priori. However, these results indicate that a sufficiency
condition on the number of cameras necessary to completely observe any path
distribution (to a given residual) may be determined via this approach. In addition,
the experimental results shown in Sections 3.3 and 3.4 demonstrate that in practice,
the iterative method is able to consistently capture all of the path observability with
relatively few cameras.

To illustrate these equations, we develop V for 3 cameras, considering each path
as a separate cluster:

V1 =
m∑

j=1

G1 j (13)

For convenience, we drop the �ui notation, and Gij (�ui) becomes Gij.
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a b 

Fig. 6 Observability as a function of cameras placed. a Observability per camera Vi. b Total
observability V vs. number of cameras

Thus,

V1 = G11 + · · · + G1m. (14)

For the second camera, V2 can be determined as follows:

V2 =
m∑

j=1

[
G2 j (�u2)

(
1 − G1 j (�u1)

)]

V2 = G21 + · · · + G2n − G11G21 · · · − G1mG2m. (15)

Similarly,

V3 =
m∑

j=1

[
G3 j (�u3)

(
1 − G2 j (�u2)

) (
1 − G1 j (�u1)

)]
(16)

or

V3 = G31 + · · · + G3m − G11G31 · · · − G1mG3m

−G21G31 · · · − G2mG3m

+G11G21G31 + G12G22G32 + G13G23G33. (17)

Now, V is simply the sum of the above:

V = V1 + V2 + V3, (18)

or

V =
m∑

j=1

G1 j + G2 j + G3 j − G1 jG2 j − G1 jG3 j

−G2 jG3 j + G1 jG2 jG3 j. (19)

Note that while Eq. 12 is a recursive definition, it yields an objective function that
is symmetric in all terms (sets of camera parameters).
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First, we’ll define a function τ as follows:

τ (x1, x2, · · · , xn) = x1 + x2 + x3 + · · · + xn

−x1x2 − x1x3 − · · · − x(n−1)xn

+x1x2x3 + x1x2xn · · · + x(n−2)x(n−1)xn

(−1)n+1x1x2 · · · xn (20)

Then, we can re-write Eq. 12 as:

V = τ

⎛
⎝ m∑

j=1

G1 j, . . . ,

m∑
j=1

Gnj

⎞
⎠ . (21)

This is very important, because it indicates that the order in which the camera
placement is optimized does not effect the outcome of the optimization result for the
multi-camera system. Via substitution, we can change the order in which the camera
parameters are considered, yet Eq. 18 remains identical.

In addition, this formulation ensures that the maximum gain of any path is 1,
regardless of the number of cameras. For example, note that for any path j, the
following equation holds (It is important for this analysis to recall that ∀ Gij : 0 ≤
Gij ≤ 1.):

0 ≤ G1 j + G2 j + G3 j − G1 jG2 j − G2 jG3 j − G1 jG3 j + G1 jG2 jG3 j ≤ 1 (22)

This intuition may be further clarified if we consider the following. We can find
the optimal value of the objective function by setting the partial derivatives of the
function to zero and evaluating. In general:

∂V
∂ �uk

= ∂
∑m

j=1 Gkj

∂ �uk
·
⎛
⎝1 − τ

⎛
⎝ m∑

j=1

G1 j, . . . ,

m∑
j=1

G(k−1) j,

m∑
j=1

G(k+1) j, . . . ,

m∑
j=1

Gnj

⎞
⎠

⎞
⎠ .

(23)
In the trivial single camera case, then

∂V
∂ �u1

= ∂
∑m

j=1 G1 j

∂ �u1
=

m∑
j=1

∂G1 j

∂ �u1
= 0 (24)

This equation is maximized when each path is optimally observed by the camera(
∀ j : ∂G1 j

∂ �u1
= 0

)
.

We have found that even for complex cases where clusters are not independent,
the iterative method requires only 1 or 2 more cameras in its solution than the
optimal method to capture all the path information. Therefore, we have not found a
need to use the much more expensive optimal approach in practice.

3.2 Optimization

In the general case, �ui might be defined as:

�ui = [
Xci Yci Zci γxci

γyci
γzci

f
]T

(25)
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where (Xci , Yci , Zci) corresponds to camera position, (γxci
, γyci

, γzci
) correspond to

camera orientations (pitch, roll, yaw) about the (X, Y, Z ) axes, and f is the focal
length of the camera. This would allow optimization over the six extrinsic camera
parameters along with focal length, the primary intrinsic parameter.

This formulation may be applied to many vision problems. We chose to focus
first on the problem of camera placement to maximize path observability in a
scene. In these applications, the camera placement above the ground is often highly
constrained. Camera mounting is limited to points such as the roofs of buildings.
This does not leave Zci as a free parameter. In addition, we found that pitch (γx) is
highly coupled to the height above the scene, thus we fix these parameters based on
the needs of each scene. In addition, we ignore the effect of roll (γy), since it simply
rotates the image plane about the optical axis, and thus has an insignificant effect on
observability. Lastly, we assume systems of identical fixed field of view cameras, thus
f is held constant.

Our objective function is thus reduced to:

Gij =
⎧⎨
⎩

0 if d2
ij < d2

0,
d2

0

d2
ij
cos

(
θij

)
cos

(
φij

)
otherwise

(26)

and the action vector �ui becomes:

�ui = [
Xci Yci γzci

]T
. (27)

Equations 28 through 30 introduce a change of variables to convert the objective
function from relative variables (dij, θij, φij) into absolute variables (Xci , Yci , γzci

) to
position and orient each camera in the world coordinate system.

dij =
√(

x j − Xci

)2 + (
y j − Yci

)2 (28)

θij = cos−1

(
T1 − T2

T3 · T4

)
(29)

where

T1 = (
ysj − y j

) (
x j − Xci

)
T2 = (

xsj − x j
) (

y j − Yci

)

T3 =
√(

x j − xsj
)2 + (

y j − ysj
)2

T4 =
√(

x j − Xci

)2 + (
y j − Yci

)2

and (xsj, ysj) is the starting point of each path.

φij = cos−1

(
P1 − P2

P3 · P4

)
(30)
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where

P1 = (
y j − Yci

)
cos

(
γzci

)
cos

(
γxci

)

P2 = (
x j − Xci

)
sin

(
γzci

)
cos

(
γxci

)

P3 =
√

cos2
(
γzci

)
cos2

(
γxci

)
+ sin2

(
γzci

)
cos2

(
γxci

)

P4 =
√(

x j − Xci

)2 + (
y j − Yci

)2
.

We solve for the parameters (Xci , Yci , γzci
) through a iterative-refinement based

constrained nonlinear optimization process. The method we used was a modified
version of the well-known hill-climbing alorithm, where we evaluate the constrained
function Eq. 26 at uniformly spaced intervals of the parameters of �ui. In regions
where the absolute slope | ∂V

∂ �u | is large, we refine the search by decreasing the spacing
interval and iterating. Initial discretization of the parameter space is determined by
hand. Furthermore, to decrease computational burden, we limit the parameter space
of each camera by removing parameter ranges that correspond to fields of view that
do not contain any part of the path distribution.

Of course, this method is quite straightforward, and does not guarantee avoidance
of local minima, yet we have found this process to work very well in our numerous
simulated and real world experiments. It allows us to be reasonably certain that the
process avoids local minima because we maintain a global picture of the objective
surface, while providing very accurate estimates of the parameters in the refined
regions. In addition, we found this method to be faster than Newton-Raphson
methods in the presence of complex sets of constraints. For example, for the real-
world scenes described in Section 3.4, we found that all solutions could be computed
in between 22 s and 1.7 min using a 2.66-GHz single processor Pentium IV computer
running Matlab.

3.3 Simulation Results

Figures 7, 8, and 9 show the results of the method on simulated path distributions
to illustrate the approach. In all the result figures shown in this paper, the objective
surface shown corresponds to the 2D slice of γzci

where the objective function is
optimized.

Figure 7 shows results for the case of a single camera and single path. Note how
the objective surface varies with position. The function has two optima: one on either
side of the path. The simulation result confirms the intuition that the optimal camera
position to observe a single path is perpendicular to that path, at a distance of d0. For
this single path case, the residual observability that remains after the first camera is
placed is near zero.

Figure 8 shows results for the multiple camera system case, where the paths are all
parallel. Note that the objective surface is modified for the second camera. The paths
that are viewed well by the first camera are discounted when computing the position
of the second camera.

Figure 9 shows results for a more complicated path distribution, similar to one that
might be observed at a traffic intersection.
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a b

c

Fig. 7 Objective surface and camera placement solution for the single path, single camera case.
Labeled dots indicate camera locations. a Objective surface. b Solution. c Camera C1 objective
surface (from above). In c, red lines indicate the view frustum of the camera

For comparison, Fig. 10 shows the results of the optimal multi-camera placement
method for 3 cameras on the same traffic intersection path distribution. Note that
the objective surface computed by this method is very similar to that of the iterative
method, and it yields camera placement results that are almost identical.

3.4 Experimental Results

We tested this system on motion paths captured at several indoor and outdoor
locations. Video was captured by a single fixed camera placed at each scene. In
order to estimate the paths of the subjects’ motions in the scene, the video was
processed to segment each subject from the background, compute the position of the
subject in the frame, and track the subject’s position over time. Segmentation was
achieved through the use of a Gaussian mixture model-based adaptive background
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a b

c d

Fig. 8 Objective surface and camera placement solution for multiple parallel paths. Labeled dots
indicate camera locations. Note how the objective surface changes after the first camera is positioned.
a Objective surface—first camera. b Solution—first camera. c Objective surface—second camera.
d Solution—second camera

segmentation algorithm. In addition, a Kalman filter was used for tracking. Linear
paths were estimated from the tracking data using a linear least-squares fitting.

In each experiment, the camera was calibrated relative to the ground plane
using the method described in Masoud and Papanikolopoulos [22]. Thus, all path
distributions shown are in world coordinates, as are the camera placement solutions.

In each case we show results for the number of cameras necessary to observe
the paths well, with negligible residual. Figure 11 shows results for an indoor scene
of human motion. For this path distribution, two cameras are sufficient to observe
all paths well. Note that cameras placed in the corners of the room (the standard
solution) would not be positioned optimally to observe this distribution. Figure 12
shows results for an outdoor pedestrian courtyard and street scene. Here the first two
cameras focus attention on the dominant pathways, while the third camera attends to
the contribution of the less common paths. Figure 13 shows results for a pedestrian
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a b

c d

e f

Fig. 9 Results for a simulated traffic intersection path configuration. Labeled dots indicate camera
locations. Camera placement results are shown for 3 cameras, along with the initial objective surface.
a Paths. b Objective surface. c Multiple camera solution. d Camera C1 objective surface (from
above). e Camera C2 objective surface (from above). f Camera C3 objective surface (from above)

courtyard scene. Due to the complexity of this path distribution, four cameras were
needed to observe all paths well. Figure 14 shows results for a traffic intersection.
Note that the camera placement solution is very similar in nature to that predicted
by the simulated intersection.
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Fig. 10 Camera placement
results obtained using an
optimal algorithm which
searches jointly over all
camera parameters at the
same time. Black dots
indicate camera
locations

Table 1 summarizes the total observability value of the camera configurations for
the experiments. We compare these results with configurations of cameras placed
uniformly around a circle, with each camera oriented to look at the center of the path
distribution. A circular placement is rather intuitive, and certainly the predominant
status quo for multi-camera system configurations. However, it is not optimal for
most path configurations. As Fig. 15 shows, peaks may occur at varying distances and

a b

Fig. 11 Uniformly positioned cameras. a Circular configuration shown with a sample objective
surface. b A sample camera solution
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� Fig. 12 Results for an indoor motion path configuration. Labeled dots indicate camera locations.
Camera placement results are shown for 2 cameras, along with the objective surface for each camera.
a Scene. b Tracked paths. c Multiple camera solution. d Camera C1 objective surface (from above).
e Camera C2 objective surface (from above)

orientations from the center of the path distribution. As a result, a uniform camera
distribution will miss the peaks in most cases. The best radius to choose for placing
the cameras is not obvious. If we make the conservative choice of selecting a camera
distance such that every path falls within the field of view of every camera, cameras
will be farther from the paths than necessary. However, if we bring them too close,
then some paths will not be completely viewed by any camera. In addition to the
distance from the path center, the locations of the cameras on the circle are not
obvious. While they are evenly distributed, this configuration has radial symmetry
equal to the inter-camera angle (2π/m radians, where m is the number of cameras).
A rotation of the entire configuration will result in a different camera placement
solution, and a different observability result.

To compare our method with this approach, we spread cameras uniformly around
a circle of radius r. (The number of cameras was set equal to the optimal number
returned by our method for each experiment.) We did an exhaustive search over
both radius and angle. We varied the radius of the circle, and for each radius,
we rotated each configuration 360/m times, and computed the observability of
each case. Table 1 shows results for the best case and for the average of these
observability results. Note that without a camera placement theory to guide the
choice of configuration, such as the one we have presented, the best case results
shown here can only be found via an exhaustive search of this parameter space, thus
the average results may be a more valid comparison for arbitrarily placed camera
configurations viewing a scene.

3.5 Extensions

3.5.1 Online Application

In this section, we present an experiment that demonstrates an active vision ap-
plication of this work. We relax the constraint that the camera position is fixed,
and consider the problem of adapting the camera placement to changing path
configurations.

Table 1 Observability of multi-camera placement configurations

Scene Theoretical Evenly distributed Proposed method
max

Average Percent Best Percent Obs Percent
max (%) case max (%) based max (%)

Indoor 8 3.93 49 7.05 88 7.98 99
Pedestrian and vehicle 39 9.44 24 27.71 71 35.79 92
Pedestrian only 21 10.85 52 17.59 84 19.90 95
Vehicle only 43 23.01 54 36.11 84 41.56 97
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� Fig. 13 Results for an outdoor motion path configuration, including pedestrian and vehicle traffic.
Labeled dots indicate camera locations. Camera placement results are shown for 3 cameras, along
with the objective surface for each camera. a Scene. b Tracked paths. c Multiple camera solution. d
Camera C1 objective surface (from above). e Camera C2 objective surface (from above). f Camera
C3 objective surface (from above)

We use a single mobile camera to observe a moving subject as he walks back
and forth between two occluding screens. The camera is initialized to an arbitrary
position in the room, while ensuring that all paths fall within the initial view. The
system monitors the paths taken through the scene, computes the optimal camera

Fig. 14 Results for a pedestrian courtyard path configuration. Labeled dots indicate camera lo-
cations. Camera placement results are shown for 4 cameras, along with the objective surface for
each camera. a Scene. b Tracked paths. c Multiple camera solution. d Camera C1 objective surface.
e Camera C2 objective surface. f Camera C3 objective surface. g Camera C4 objective surface
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Fig. 14 Continued

position to view this new path distribution, and moves to the new goal position.
Figure 16 shows the arrangement of the experiment.

Equipment setup This experiment makes use of a modified all terrain robot vehicle
ATRV-Jr robot, shown in Fig. 17a. The modifications include a custom built “sensor
mast” which allows the positioning of cameras and other sensors at an elevated
vantage point. A laptop is mounted on the rear of the “sensor mast” to perform video
processing tasks that are too CPU intensive for the ATRV-Jr’s on-board systems.

The experiment required the integration of several systems as shown in the
diagram in Fig. 18. Here, a firewire camera (Sony DCR-TRV730) is used to provide
a video stream to a software module that captures video and tracks movement.
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In order to estimate the paths of the subject’s motion, the video was processed
to segment the subject from the background, compute the position of the subject
in the frame, and track the subject’s position over time. These paths are shown in
Fig. 19. Segmentation was achieved through the use of a Gaussian mixture model-
based adaptive background segmentation algorithm. In addition, a Kalman filter was
used for tracking.

Figure 20 illustrates the paths estimated from the position tracking data. The
new position is then transmitted as a location goal to the robot. A player-client
[17] receives the new location goal, and through an interaction with a player-server,
directs the motion of the ATRV-Jr to the optimal location. As the movement of
subject through the scene changes, the process repeats continuously to keep the
camera in a location that provides the optimal observability of the motion sequences.

System calibration The camera was calibrated to determine its intrinsic parameters,
and to determine the extrinsic parameters of the camera with respect to the plane
of the ground. We used the method of Masoud and Papanikolopoulos [22]. The
calibration involved selecting parallel and perpendicular lines on the ground plane
in an image (Fig. 21). The result was a homography transformation matrix between
the camera’s image plane and the ground plane.

Experimental results Figures 22 and 23 show results for one trial of the experiment.
The objective surface for this path distribution is very similar to the simulation
result for the multiple parallel path case. Note, however, that the shape of the joint
objective surface is not exactly circular, and is somewhat elongated because of the
shape of the actual path distribution. The resulting view (Fig. 24b) of the walking
motion has significantly improved observability from the initial view (Fig. 24a).

Table 2 shows the results of six experimental runs with the mobile robotic
platform. The first row shows the observability value of the motion sequences,
measured from the initial camera position. The second row shows the observability
value of the motion sequences, measured from the final camera position. The third
row shows the improvement due to the new camera pose. The fourth and fifth rows
show the theoretical maximum observability of the sequences, and the difference
between the theoretical and final (optimized) values.

Note that while none of the final positions of the camera reached optimal
observability, all runs showed significantly improved observability. We believe that
the differences between theoretical maximum observability and our results are
due to a combination of robot positioning error and path estimation error. Robot

Table 2 Observability results

Observability Trial

1 2 3 4 5 6

Initial position 0.55 0.63 0.58 0.54 0.59 0.50
Final position 0.69 0.88 0.85 0.80 0.95 0.78
Percent improvement 25% 40% 47% 48% 61% 57%
Theoretical maximum 1.00 1.00 1.00 1.00 1.00 1.00
Diff. from theoretical 0.31 0.12 0.15 0.20 0.05 0.22



282 J Intell Robot Syst (2007) 50:257–295



J Intell Robot Syst (2007) 50:257–295 283

� Fig. 15 Results for a traffic intersection path configuration. Labeled dots indicate camera locations.
Camera placement results are shown for 3 cameras, along with the objective surface for each camera.
a Scene. b Tracked paths. c Multiple camera solution. d Camera C1 objective surface. e Camera C2
objective surface. f Camera C3 objective surface

(and therefore camera) positioning error was introduced because of imprecision
in the robot’s odometry. In our experiments, the robot consistently demonstrated
positioning errors of 5 to 25 cm at its final position. We believe this comprised the
major source of error for our system.

Path estimation may have also contributed to the overall error. Each path taken by
the subject is tracked over time. Small errors in the position estimates of the subject
in each image would cause minor errors in the path estimates. In addition, there is
some inherent error in estimating the paths by line fitting.

Sign Resolvability To further demonstrate, and better quantify, the improved ob-
servability that the proper camera view provides, we repeated the above experiment
while the subject carried a sign containing alphanumeric symbols and sets of parallel
lines at varying scales (Fig. 25).

The subject moved back and forth between the occlusions and was tracked, as
above. The new path distribution was estimated and the robot was given a new goal
command to move the camera to the position of optimal path observability. We
tested the resolvability of the sign at several positions along the robot’s motion path.
In this case, sign resolvability is defined as the number of characters that is clearly
discernible and unambiguous to a human observer. In the case of lines, we define
resolvability as the number of sets of line triplets where all 3 lines are clearly distinct
and separate.

Figure 26 shows views of the sign taken at several positions along the robot’s
motion path. Table 3 displays the results of the resolvability of the sign for both
alphanumeric characters and line triplets.

Furthermore, we tested the resolvability of the characters on the sign using an au-
tomated character recognition system, in addition to a human observer. Specifically,
we used the Cuneiform™ Pro 6.0 optical character recognition software to detect
the characters on the sign at each position along the motion path. Results for this test
appear in Table 4.

It is important to note that the camera was positioned to optimize for path
observability, not sign resolvability. As a result, in no view are all of the characters
clearly resolvable. However, there is a very significant improvement in the relative
performance of the recognition at the optimized view, indicating the value of the
method.

Table 3 Sign resolvability—
human observer Initial view Middle view Final view

Alphanumeric 12 5 24
Lines 3 3 14
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Fig. 16 Overview of the
experiment

Fig. 17 Block diagram of the
ATRV-Jr camera system Motion Capture

and Tracking

Path Analysis and

Camera Placement

Optimization

Player Client

and Server

New Goal

Communication

Module

FireWire Camera

ATRV-Jr

Fig. 18 The robotic setup
consisting of an ATRV-Jr and
a “sensor mast.” a Front view.
b Side view

a b
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Table 4 Sign resolvability—
optical character recognition
software

Initial view Middle view Final view

Alphanumeric 1 2 10

3.5.2 Incorporating Design Constraints

As we have discussed, in real world scenes, camera placement is often constrained
by the physical environment. Indoors, cameras usually need to be placed on or along
the ceiling in order to achieve unoccluded views. Outdoors, cameras generally need
to be placed on rooftops or light posts in order to observe an area.

In an attempt to address this real-world placement constraint, and provide a better
design tool for camera placement, we extended the formulation to include placement
constraint regions. The optimization procedure on camera parameters is confined
to the user-defined valid camera placement regions. This modification speeds up
the analysis, and provides a solution relevant to the physical environment. In
addition, these results can be compared to optimal results obtained via unconstrained
optimization in order to determine how much of an effect the constraints have on the
observability of the scene.

Figure 27 shows the results of this method for the simulated traffic intersection
data. In this case, the dark areas of the figure represent building rooftops. Cameras
may be mounted at the edges of these areas. Note that the camera placement is
optimized with respect to the imposed placement constraints.

3.5.3 Occlusion

We extended the formulation to incorporate static occlusions in the environment.
Such occlusions have obvious and potentially significant impact on the observability
of a scene. We incorporate occlusion into our model by removing occluded paths
from the value calculation for a given set of camera parameters. If an occluding body
comes between a camera and a path, that path cannot be completely observed by
the camera. As a result, it does not contribute to the value of the observability seen
by that camera. The location and dimensions of such occlusions are assumed to be

Fig. 19 Path lines observed
from the initial view
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a b

Fig. 20 Path lines and resultant objective surface. a Path lines projected onto the ground plane
(world coordinates). b Objective surface

Fig. 21 Calibration setup. The
calibration grid shown here
was removed for experiments

a b 

Fig. 22 Initial and final view of the camera during a run. a Initial view. b Final view
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a b

Fig. 23 Initial camera positioning and view of paths. Figures show camera view frustum projected
onto ground plane. a Path configuration at initialization. Camera is positioned to optimize the view
of this single path. b Observed path configuration relative to camera pose

known for this analysis. (They may be measured by hand as an initialization step for
the scene, or can be estimated online via a method such as Jackson et al. [21])

Figure 28 shows the effect of an occlusion on the single-camera, single-path
case. The effect of the occluding body on the resultant solution can be seen clearly
when compared to Fig. 7. Note that the occlusion significantly changes the objective
surface, effectively eliminating one possible solution from consideration.

a b

Fig. 24 Camera positioning solution for joint path observability optimization. Figures show camera
view frustum projected onto ground plane. a Solution shown with path distribution. b Solution shown
with the objective surface superimposed onto it
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Fig. 25 Sign used for
resolvability experiments,
containing alphanumeric
symbols and sets of parallel
lines

Figures 29 and 30 show similar results for actual pedestrian and vehicle traffic
scenes. These occlusions suppress portions of the objective surfaces seen in Figs. 12
and 13.

4 Conclusion

In this paper, we have studied the problem of observing humans in largely un-
controlled indoor and outdoor environments. We have described several new ap-
proaches to camera placement for automated vision tasks, considering fixed and
moving cameras, as well as static occlusions in the scene.

We have developed a novel analytical method for computing optimal camera
position and pose for task observability with multiple camera systems. The general
formulation was applied to the problem of path observation in wide-area scenes, and
extended to consider real-world mounting constraints. This approach was validated
in both simulation and real-world experiments involving multiple-camera systems

a b c

Fig. 26 Views of the sign taken at several positions along the robot’s motion path. a Initial view
(foreshortened). b View taken during motion (distant). c Final view (optimal)
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Fig. 27 Constrained camera placement solution. Grey boxes indicate building rooftops. Black dots
indicate camera locations and lines indicate the view frustum of each camera. a Unconstrained
solution. b Constrained solution. Black dots indicate constrained camera solutions, red dots indicate
unconstrained solutions. c Constrained solutions superimposed on objective surface

observing many subjects moving through a scene. Our findings indicate that this
method may be used to guide proper camera placement in complex indoor and
outdoor scenes. In addition, the method may be used to guide proper camera
placement in dynamically adapting scenes and scenes that contain static occlusions.
Furthermore, this approach can aid in the determination of camera placement to
provide optimal observability of assembly tasks.

5 Future Work

This is a very rich and interesting problem area, where there is still much work
to be done. In this paper, we discuss several natural extensions to the work we
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Fig. 28 Objective surface and camera placement solution for the occluded single path, single camera
case. Labeled dots indicate camera locations. a Objective surface. b Camera C1 solution. c Camera
C2 solution. In b, lines indicate the view frustum of the camera

have done, along with descriptions of some additional progress we have made in
these areas.

5.1 Camera Placement

Our goal with this work was to develop a design tool for camera placement in
applications where subject motion varies, and is important to observe. There are
many areas into which this work can be extended, including vision-based user
interface design and the coordination of multiple robotic systems used to optimally
place multiple cameras.
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a b

Fig. 29 Results for an occluded outdoor motion path configuration, including pedestrian and vehicle
traffic. Labeled dots indicate camera locations. Camera placement results are shown for 4 cameras,
along with the objective surface of the fourth camera. a Multiple camera solution. b Objective surface
(from above)

A straightforward extension of this work is to extend the state vector of camera
parameters to include all extrinsic camera parameters. Optimizing over all extrinsic
parameters will provide for general camera placement in cases where camera mount-
ing is completely unconstrained [cameras mounted on unmanned aerial vehicles
(UAVs), for instance].

In addition, motions other than locomotive motion may be studied within this
framework, if the appropriate changes are made to the state vector s. For example,

a b

Fig. 30 Results for an occluded outdoor pedestrian motion path configuration. Labeled dots indicate
camera locations. Camera placement results are shown for 4 cameras, along with the objective surface
of the fourth camera. a Multiple camera solution. b Objective surface (from above)
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a b

Fig. 31 The effect of varying ω. Black dots indicate camera locations. a Solution that optimizes
observability (ω = 1). b Solution that optimizes perpendicularity for recognition (ω = 11)

in the area of user interfacing, the motion of the hands could be tracked and
represented in a path distribution.

We developed a camera placement method given static occlusions. An impor-
tant extension is to study camera placement in the context of moving occlusions.
Principally, this would require a means of moving the cameras online to adapt to
the varying occlusion conditions. This could be done outdoors using UAV-mounted
cameras as we have mentioned, or indoors using cameras mounted on tracks in the
ceiling, for example.

5.1.1 The Effect of Focal Length

Another interesting extension is to include intrinsic camera parameters in the state
vector. We touched on this by looking at the effect of varying focal length on the
resultant camera placement solution. For most of our experiments, the action vector
�ui was three-dimensional:

�ui = [
Xci Yci γzci

]T
, (31)

and did not include focal length f . This was justified because for focal lengths in the
linear region (where radial distortion effects are negligible), changing the focal length
only changes the minimum distance d0, and does not generally change the shape of
the solution.

5.1.2 Family of Objective Functions

Another intriguing extension of the work is to consider other objective functions.
The general problem framework we propose can be used to solve many problems
in camera placement. We focused on the most generally applicable problem of
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optimizing observability. Other problems include optimal placement for the pur-
poses of three-dimensional reconstruction, activity recognition, face recognition, etc.

We began an initial look at this problem. One can define a family of objective
functions on ω as follows:

Gij =
⎧⎨
⎩

0 if d2
ij < d2

0,
d2

0

d2
ij

(
cos

(
θij

)
cos

(
φij

)
cos

(
αij

)
cos

(
βij

))ω otherwise.
(32)

Now, by varying the ω parameter, the camera placement solution may be altered to
meet different criteria. For example, our analysis focused on the ω = 1 case, which
was appropriate for observability. However, the objective function resulting from
ω = 0 would be more appropriate for three-dimensional reconstruction applications,
because in this case it is important to spread cameras evenly around a subject, and
not favor any single view of a path. In contrast, for articulated motion recognition
based on image sequences taken from a single viewpoint, it is critical to favor that
particular viewpoint (often the view perpendicular to the motion path). In this case,
an ω > 1 would tend to drive camera placement toward the paths’ perpendiculars.
Figure 31 illustrates the different solutions produced by ω = 1 and ω = 11. We be-
lieve that the study of varying the objective function used is a very promising area of
future research.
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