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Abstract. In this paper a local trajectory planner is described and applied. This planner works
in three dimensional environment populated with static and passive movable obstacles. The main
contribution of this paper is a proposal of a new method of autonomous navigation. Novelty of this
approach relies on splitting the motion planning problem into two stages: a decision mode and a trace
mode. In the decision mode, vehicle selects its current direction of motion on the basis of the current
value of a performance index. In the trace mode vehicle traces boundary and edges of obstacles
using its on-board sensors. Depending on vehicle’s environment, the two modes follow one another
many times. Another new idea is a negative velocity feedback. The feedback stabilizes velocity of the
vehicle around a value considered safe in a given environment. The planner, although autonomous,
may be adjusted by higher order system (strategic behavior) by changing its parameters. It is not
computationally intensive and therefore can be used in real-time applications.
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1. Introduction

Controlling a vehicle is not a simple task, because environment as well as dy-
namics of the vehicle must be taken into account while planning its motion. The
vehicle can be a free-flying robot, spacecraft, aircraft, helicopter, mobile robot or
any autonomous, guided vehicle. The aforementioned objects are quite different
with respect to their motion abilities and ranges of environment perception. For ex-
ample, fixed wing aircraft cannot fly with low velocities and their turning radius is
quite large compared to mobile robots which can stop almost immediately and they
can, relatively easy, reorient themselves. Moreover, just opposite to mobile robots,
the aircraft can detect obstacles at long distances and the number of obstacles in
their environment is usually relatively small. Variety of vehicles makes develop-
ment of a general motion planning algorithm difficult. Nevertheless, in this paper,
we will propose some design principles of a general motion planning algorithm
for all vehicles. For each particular object, depending on its motion characteristics,
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some data parameterizing the algorithm should be adjusted appropriately.
Usually, the task of motion planning is divided into two stages: a path planning

and a trajectory planning. The path planning has an environment description as an
input with its start and goal points. It generates a geometrical path the vehicle needs
to follow. The path, in sequence, is time-parameterized by a trajectory planner.
The trajectory planner based on dynamic characteristics of the vehicle determines
time-dependent characteristics like positions, velocities and accelerations.

The global path planning carries all information before any motion of a vehicle
is performed. When a global information known in advance is neither perfect nor
predictable, there is a tendency to design so-called local path planners, (Borenstein
and Koren, 1991a; Elnagar and Base, 1993). Although such planners lead to the
loss of a path optimality but their actions are still focused on a target reaching
while avoiding obstacles. The paper addresses a problem which falls in between
a path planning and a trajectory planning. It covers a situation when environment
data acquired before trajectory planning are not perfectly reliable, but they still
exist. A rough map of the environment is built using environment data and a path
is planned. A task of local trajectory planner is to plan trajectory based on the
path, and our planner must perform tactical decision in order to modify preplanned
path when the path, due to lack of reliable data, may collide with obstacles. In this
paper three dimensional version of the local trajectory planner will be presented
developed by Sasiadek and Dul¸eba for the 2D case (1995) and adapted into 3D
environment (1997).

Before giving a detailed description of a 3-dimensional (3D) local trajectory
planner let us properly specify the system among other planners known in literature
of the subject, pointing to their advantages and disadvantages. Path planners are
generally divided into local and global ones and, usually, they do not take into
account dynamics of the vehicle. Former group works in on-line mode while the
latter in off-line mode. Known approaches to path planning might be divided into
four categories: deterministic, stochastic, learning-based, reflexive (behavioral).

Deterministic approaches are used most often in global path planners. Two
deterministic techniques: Voronoi diagrams, (Takahashi and Schilling, 1989), and
Visibility Graph (Ilari and Torras, 1990) are described below. A Voronoi diagram
represents a collection of locations equidistant from static obstacles. Naturally, the
locations are described by a graph with edges and nodes placed at intersection of
edges. Each edge is weighted with real (positive) number denoting difficulty of
motion between two nodes it connects. Motion planning using Voronoi diagrams
relies on finding a path connecting an initial and a final position of the vehicle with
nodes of the Voronoi diagram. Then, planning (searching) on the graph between
the two nodes is performed (e.g., with the use of theA? algorithm). The technique
works for static obstacles and is rather computationally involved, especially when
obstacles are irregular.

Complementary features to Voronoi diagrams technique has Visibility Graph
technique. It works for polygon obstacles. A motion plan is designed by searching
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through a graph with nodes located at nodes of obstacles-polygons. Coincidence of
the nodes is established by a visibility criterion. Planning is fast but resulting path
touches boundary of obstacles, therefore it is not safe at all. Due to its efficiency,
this technique also works in environments with movable obstacles.

A clear disadvantage of all global motion planners discussed above is the re-
planning needed each time environment changes. It happens frequently with mov-
able obstacles. A local path planners do not suffer from this disadvantage. Let us
look at an exemplary local path planner based on a potential field principle. At
a current position of vehicle, attractive and repulsive forces influence the vehicle.
The attractive force is produced by the goal state, while repulsive forces come from
obstacles. The resulting (net) force drives the vehicle through small time interval.
The potential field method of motion planning works in unstructured environments
with many irregular obstacles. The main disadvantage of the method is possibility
of getting stuck at a local optimum when resulting force takes the value of zero and
there is no direction shown to move towards the goal.

When movable obstacles are considered and their characteristics are known in
advance, they may be incorporated in the global path/trajectory planner by adding
to spatial variables a time variable and solving the task problem in the such an
augmented space (Kyriakopoulos and Saridis, 1992). More often, to represent dy-
namic environments, i.e., with movable obstacles and unknown or partly unknown
characteristics, a stochastic approach is used (Burlina et al., 1992; Zhu, 1991).
In stochastic approaches, planners usually work as local planners and a decision
of moving vehicle in a particular direction is made on the basis of minimizing
probability of collisions. Usefulness of stochastic planners decreases significantly
when a single mission in unknown terrain is planned.

The machine-learning techniques are applied (Chuang and Ahuja, 1992) in
unknown environments. These techniques are based on an assumption that al-
though the world is not known in advance, but it may be acquired. There are
some regularities in the environment and vehicle can gain knowledge about it while
navigating.

All methods mentioned above built a model of the world and planned actions
consistent with this model. Also, there are other methods which do not employ any
world-model building procedure and they act behaviorally (reflexively). Instead of
building models, reflexive planners act quickly to avoid nearest obstacles. Unfortu-
nately, they do not exhibit “intelligent” behavior, so usually they are implemented
as a bottom level of control system and are controlled by higher levels. Hierarchical
architecture organized in layers has been proposed by Brooks (1986).

A task for a local trajectory planner is as follows: given data, geometrical path
a vehicle (mobile/free-flying robot) needs to follow (environment is populated by
static and movable obstacles) as an input, find a collision-free path and a velocity
profile along it. In our case, vehicle is assumed to be a point and its dynamic be-
havior is incorporated into maximal allowable velocity and acceleration. When the
vehicle occupies some volume, it can be reduced to a point by growing obstacles.
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Orientation changes of the vehicle are constrained and the constraints are velocity
dependent. The vehicle is equipped with sonar sensors. The system, we introduce,
builds at first a histographic map (physical map) of an environment which in turn is
translated intoa control map. The histogram techniques have been used previously
by Borenstein and Koren (1991a; 1991b). It allows to condense all sonar-range
information into a sectorial data (distances to the nearest obstacle in the sectors).
The data condensed in sectors are virtually sensor independent. In our case the
physical map of obstacles is supplemented by aphysical goal, i.e., the goal the
vehicle would direct to from its current position if there is no obstacles around it.
The control map, absent in the original histogram approach, modifies the physical
map as follows: areal goal supplements the physical goal and movable obsta-
cles influence the map. The real goal shows direction the vehicle will direct to
in obstacle-populated environment. When there is no obstacles, both goals are the
same. Movable obstacles are either active ones, when they may cause collision with
the vehicle or passive ones, when, although visible, may not cause any collision.
A passive obstacle, when detected, should be filtered out from the control map. In
the 3D local trajectory planner only static obstacles and passive movable obstacles
will be considered. To deal with active movable obstacles, higher order system
should be implemented which having some global environment perception and
knowledge may develop a right decision. Nevertheless, some heuristics even at
the local trajectory planner can be put forward. For instance: the active obstacle is
put at the control map at the place(s) the obstacle may collide with the path of the
vehicle, or an extra factor in the criterion function (cf. Equation (11) of Section 2)
is added to penalize a path for approaching to a movable obstacle. The two above
heuristics do not advise how velocity should be controlled. Should it be increased
to avoid obstacles by running it out, or decreased to wait for being passed by a
movable obstacle. Obviously, one can find examples when all strategies of avoiding
active obstacles may fail, mostly due to the lack of global information. Therefore,
active obstacles are not included in our considerations, and have been put as a task
for higher order system.

A control map is a base to work out a control rule determining next velocity
and attitude of the vehicle based on the map and current values of the parameters.
The most demanding task in the system is a real goal determination. The most
popular approach to determine a real goal is based on a potential field approach
(Hwang and Ahuja, 1992; Ratering and Gini, 1993), although the approach has
its own disadvantages (Khatib, 1993). Taking advantage of a preplanned, but not
necessarily collision-free path, we need not use the potential field approach. A real
goal is determined in two different modes. The first one (decision mode), is applied
when the vehicle starts its motion. In this mode a criterion function is defined on
a set of possible directions of motion. The function should take into account the
following factors: distance to the physical goal, difficulty in reorienting the vehicle,
and obstacle avoidance. The function is minimized to give the best direction for the
next step of control. Unfortunately, the mode cannot be applied alone due to the fact
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that the vehicle can be trapped in a local minimum of the criterion function, which
means that being far from the goal the vehicle may be stopped permanently. To
avoid this setbacka trace modeis added. This mode is switched on when due to
obstacles a decision mode cannot determine the approaching direction to the goal.
In the trace mode the vehicle follows boundary of the obstacle on the way to the
physical goal, until conditions are met to switch on to the decision mode again. In
the trace mode, the vehicle can increase temporarily its distance to the goal.

The vehicle selects not only its direction of motion, but also its velocity. The
velocity is stabilized at the value considered safe in a given environment. In fact,
a negative velocity feedback is implemented. In obstacle-cluttered environment
the speed decreases while in obstacle-free terrains its value grows to the maximal
allowable value.

The paper is organized as follows: Section 2 describes a local trajectory planner
working in 3D environment populated with static and passive movable obstacles.
Section 3 presents numerical simulations of the system and in Section 4 the paper
is concluded.

2. A Local Trajectory Planner – Modules

In this section, after introducing nomenclature, the 3D local trajectory planner
scheme is given and its components discussed.

2.1. NOMENCLATURE

| · |, ‖ · ‖ absolute value and Euclidean norm, respectively.
〈·, ·〉, · × · scalar and cross products, respectively.
‖·, ·‖ang denotes an angle distance between normalized vectors

‖x, y‖ang= arccos(〈x, y〉), ‖x‖ = ‖y‖ = 1. (1)

Trian: triangularization of the sphere inR3 (S2), is a set of vectors (directions)
uniformly distributed on the sphere.

Trian(S2) = {x ∈ R3, ∀z ‖x − z‖ < ε, ‖x‖ = ‖z‖ = 1
}

(2)

with a small positive constantε determining the number of directions consti-
tuting the triangulating set. Triangulation is a domain of a criterion function
evaluating possible directions of motion. Each of the direction defines asector
centered around the vector.

Strip: subset of a triangulation set, defined as follows: let be given non collinear
unit vectorsx, y, z = (x × y)/‖x × y‖, and an strip-angle parameterξ . The
strip groups all directions close to the plane spanned by vectorsx, y.

Strip(z, ξ) = {r ∈ Trian
(
S2
)
, ‖r, z‖ang− π/2| < ξ

}
. (3)
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Rs is a constant denoting a sonar range, i.e., a radius of a ball observed by sensors.

Map is a function which assigns a distance for each directionx from Trian to the
nearest obstacle in this direction

Map(x) =
{

dist(x,Obst) if dist(x,Obst) 6 Rs,

∞ otherwise.
(4)

Sectors with dist(x,Obst) = ∞ are calledobstacle-freeand formOFreeset,
those sectors with dist(x,Obst) < ∞ are calledobstacle-populatedand they
are collected inOPopset.

distF (x,OPop) is a distance forx ∈ OFreesector to the nearest obstacle-populated
sector

distF (x ∈ OFree,OPop) = min
y∈OPop

‖x, y‖ang∈(0, π), (5)

distP (x,OFree) is a distance forx ∈ OPop sector to the nearest obstacle-free
sector

distP (x ∈ OPop,OFree) = min
y∈OFree

‖x, y‖ang∈(0, π), (6)

vmax is a amplitude of a maximal allowable linear velocity of the vehicle, and

amax is a amplitude of a maximal allowable acceleration/deceleration of the vehi-
cle,

pos(t), v(t), o(t) denote current position, velocity, attitude (orientation) of a ve-
hicle respectively. Let us assume‖o(t)‖ = 1. For visualization purposes the
attitude is expressed in spherical coordinates.

knotcurr is a current (sub)goal (knot point),

Re is an emergency distance allowing to stop the vehicle moving with maximal
velocity

Re = v2
max

2amax
.

All the vector-based functions have one more argument. This argument is a
position inR3 when the vectors have their initial point, i.e., the current position of
the vehicle.

The task of a local trajectory planner relies on determining a path, velocity
and orientation for a vehicle following a prescribed path, possibly populated by
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Figure 1. Scheme of a local trajectory planner.

static or/and passive movable obstacles. The scheme of a local trajectory planner is
depicted in Figure 1.

A path to follow is supplied to a local trajectory planner by a higher level sys-
tem. It takes a form of a set of knot-points (knots) connected by straight lines in
Cartesian space (segments). An active segmentis the segment where the trajectory
is being planned. The first active segment has its left boundary at the starting point.
Two knots are distinguished. The initial knot where the vehicle begins its motion
and the final one which is a goal the vehicle is planning to reach. A neighborhood
of each knot, called a transition area, is a circle with a specific radius. When the
vehicle reaches the transition area around knot point within the radius, the active
segment is changed. Segment changes have been introduced to make the resulting
trajectory smooth. Otherwise, with segment changes, the trajectory would be sharp
at knots. Formally, the path can be described as follows:

PATH= {knoti ∈ R3, i = 0, . . . , N
}
,

RADII = {ri ∈ R, i = 1, . . . , N − 1}, (7)

whereN + 1 is the number of knots (knot0 is the the initial, and knotN is the final
knot). Theri denotes a radius of segment change for theith knot.

Vehicle equipped with sonar sensors obtains information about its environment.
After preliminary processing the data, it creates a physical map of the environment.
The map is just a sphere with unit radius divided into sectors. In each sector (x) a
resultant obstacle is assigned which includes obstacles within the sector. The obsta-
cle is characterized by a distanceMap(x) from the current position of the vehicle.
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The vehicle occupies a center of the physical map and is characterized by its current
velocity and orientation. Vehicle’s motion is constrained by parameters reflecting
its dynamic properties. Vehicle’s velocities, accelerations and reorientation abilities
are constrained

06 v(t) 6 vmax, a(t) 6 amax, (8)

1α = f (v(t)), (9)

wherev(t), a(t) are amplitudes of velocity and acceleration of the vehicle, respec-
tively; 1α is a maximal allowed orientation change in a unit interval of time. It
is reasonable to assume that the last quantity is velocity dependent. Actually, it is
computed according to the formula

1α
(
v(t)

) = αmin+ (αmax− αmin)

(
1− v(t)

vmax

)
, (10)

where αmin, αmax are prescribed values of minimal and maximal orientation
changes.

The physical map is supplemented by a physical goal (PG). PG is a unit vector
pointing at a current segment point towards which the vehicle would direct itself
in the absence of obstacles. In Figure 2 three different cases of determining PG are
shown:

(a) if a current segment lies within vehicle’s sonar range, then PG is one of the
two points where sonar range intersects with the segment line. It is always the
nearest point to the given segment end-point;

(b) if a goal (final knot) is within the sonar range, then PG coincides with the
goal-point;

(c) if a current segment is out of vehicle’s sonar range, then PG is a point where a
bisector of an angle between a line perpendicular to the segment from current
vehicle location and a line to the segment’s end point crosses the segment;

(d) if the distance from the current location of the vehicle to theith knot (segment
end-point) is smaller thanri then the current segment is changed for the next
in sequence of segments. Then, one of the (a)–(c) cases applies.

The map of physical world can be viewed as a picture taken from the current
position of the vehicle with a physical goal added. Real obstacles are lumped to-
gether to form a virtual obstacle which populates any given sector. Unfortunately,

Figure 2. Three cases of determining the physical goal (PG).
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such a map cannot be used directly for control purposes because the physical goal
may be obscured. One of the problems is related to movable obstacles. If obstacles
are passive, they should be filtered out from the map. If obstacles are active, they
must be transferred to locations which are most dangerous to the vehicle and their
previous positions (should be) filtered out as well. These modifications are the
basis for designing a control map (MapCTRL) which is a modified physical map. The
physical goal (PG) has an equivalent in the control map. In general, the vehicle will
be directed to the real goal (RG). RG may be just PG, if there is no obstacles, but
this is not true in obstacle-crowded environment. RG is determined in two possible
modes:

Decision mode.In this mode a direction of motion at a current location is deter-
mined basing of three factors: safety, goal reaching and difficulties in reori-
enting a vehicle.

Trace mode. In this mode decisions worked out by the decision mode are ex-
ecuted. The vehicle follows obstacle boundaries until the decision mode is
invoked again.

Below details of the two modes are presented.

2.1.1. Decision Mode

In the decision mode all obstacle-free (x ∈ OFree) sectors are evaluated according
to the following performance index

J (x) = k1J1(x)+ k2J2(x)+ k3J3(x), ‖x‖ = 1, (11)

and the optimal sector becomes the real goal

J (RG) = min
x∈OFree

J (x). (12)

Components of the criterion functionJ (x) are the following:

• J1(x) represents the angle distance from the physical goal to the sectorx

J1(x) = ‖x,PG‖ang, ‖PG‖ = ‖x‖ = 1, (13)

• J2(x) represents safety measures in maneuvering among obstacles

J2(x) = π − distF (x,OPop). (14)

Theπ term has been introduced to reflect small values of this component for
the safest sectors. Note, that in case ofJ2(x) sectors with smaller distance
from PG than the prescribed one,J2 assumes value 0. This design allows for
not to punish sectors which are fairly safe.
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• J3(x) represents difficulties in reorienting the vehicle

J3(x) = ‖x, o‖ang, ‖o‖ = ‖x‖ = 1, (15)

whereo is a current attitude of the vehicle.

Positive coefficientsk1, k2, k3 are introduced to allow for a comparison among dif-
ferent quantities and, more importantly, to weight components of the performance
indexJ (x).

The algorithm is designed in such a manner that after selecting the real goal,
a distance from the current position to the next knot point is saved as distPG =
‖pos− knotcurr‖. This distance is important in switching from a trace to a decision
mode.

2.1.2. Trace Mode

This mode has been introduced to prevent the vehicle from stopping at a local
minimum of the criterion function defined in the decision mode. The real condition
to switch from the decision to trace mode does not require stopping the vehicle. To
switch modes, the following condition must be satisfied:

distP (PG,OFree) > distD2T , (16)

where distD2T is a given constant. The switching condition states that the physical
goal and its neighborhood is populated with obstacles. The condition (16) prevents
the vehicle from getting too close to an obstacle, just to minimize the distance to the
goal-point. It invokes a trace mode when the vehicle is relatively far from obstacles
and on its way to the goal. In the trace mode the vehicle traces obstacle boundaries
(at some distance). The tracing procedure is as follows:

1. When trace mode is called, distPG, PGmem and RGmem are recorded. PGmem and
RGmem are values of PG and RG in the last moment of the decision mode,
respectively. Moreover, the pointA is determined in the PGmem,RGmem plane
which shows boundary of the obstacle to be traced (Figure 3).

2. All directions evaluated in the trace mode to determine a real goal should belong
to the strip,

RG∈ Strip

(
RGmem× PGmem

‖RGmem× PGmem‖ , η
)
.

The condition imposed on RG states that RG should be kept in proximity of the
plane PGmem,RGmem within a prescribed angleη.

3. In the successive iterations, when new maps are built, obstacle populated sec-
tors from the strip are evaluated to determine a “successor” of the boundary
point A. The “successor” is simply a new coordinate of the pointA in the
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Figure 3. Determining RG in trace mode: (a) immediately after switching from decision
mode, (b) couple of iterations later.

next iteration. The point A indicates the boundary of the currently traced ob-
stacle (edge of the obstacle). Let us assumeβ as a safety-range parameter. If
the successor has no obstacles in the range of 2β, measured clockwise in the
PGmem,RGmem plane, then a real goal is determined according to the formula

RG= Rot

(
RGmem× PGmem

‖RGmem× PGmem‖ ,−β
)
· Succ(A). (17)

Rot(w, θ) is a rotation transformation about a given vectorw = (w1, w2, w3)
T

by the angleθ (Spong and Vidyasagar, 1989):

Rot(w, θ) =
 w2

1ξθ + cosθ w1w2ξθ −w3 sinθ w1w3ξθ +w2 sinθ
w1w2ξθ +w3 sinθ w2

2ξθ + cosθ w2w3ξθ −w1 sinθ
w1w3ξθ −w2 sinθ w2w3ξθ +w1 sinθ w2

3ξθ + cosθ

 ,
whereξθ = 1− cosθ . If the successor does not satisfy the safety condition,
next successor ofA is searched clockwise, cf. Figure 3.

Keeping close to the plane prevents the vehicle from wandering on the obstacle
surface.

The decision mode is called when PG is clearly visible and a distance to the
current goal is smaller than the value stored in the memory when the trace mode
was originally invoked, i.e.,

distF (PG,OPop) > distT 2D, ‖ knotcurr−pos‖ 6 distPG, (18)

with constant parameter distT 2D. It should be noted that by following boundaries
of obstacles the vehicle could increase the distance to the (sub-)goal, yet, purpose-
fully, it avoids to be trapped in a local optimum of the criterion function.

2.2. VELOCITY AND ORIENTATION CONTROL RULES

All concepts introduced previously were geometric in nature. The control rules
module (Figure 1) which takes into account vehicle’s dynamic characteristics will
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be discussed next. The module (using control map and a current vehicle’s attitude
and velocity) works out the next values of the attitude and velocity. Instead of
using rather complicated procedures (Elnagar and Base, 1993), it is proposed that
a very simple mechanism based on the concept of negative feedback should be
considered. The feedback works as follows: the vehicle compares its current ve-
locity with a velocity considered safe in the given environment. If the difference is
negative, it increases the current velocity, otherwise decreases the velocity. Below,
this concept is presented more formally.

The objective of control system rules is to derive(v(t + 1t), o(t + 1t)) on a
basis of(v(t), o(t)) andMapCTRL(t). Let us start from the simpler component: the
attitude

o(t +1t) = Rot

(
o(t)× RG(t)

‖o(t)× RG(t)‖ , γ
)
, (19)

where

γ =
{
1α ·1t, if 1α ·1t 6 ‖o(t),RG(t)‖ang.
‖o(t),RG(t)‖ang, otherwise.

(20)

1α is computed according to Equation (10).
The velocity control rule is as follows

ṽ = v(t)+ g(t) ·1t · amax,

(21)

v(t +1t) =


0, if ṽ 6 0,
ṽ, if 0 < ṽ < vmax,
vmax, otherwise,

whereg(t) = g(v(t),MapCTRL(t)) ∈ [−1,1] is a function selected by designer.
This should increase the speed, if there is no obstacles, and decrease, if obstacles
may be dangerous to the vehicle. In order to formalize what may constitute “the
dangerous situation” to the vehicle, the measure of “safe distance” from obstacles
has been introduced. This measure takes the form of the following function

distsafe= v2

2amax
= Re · v

2

v2
max

. (22)

This distance is compared with other distances to obstacles inan active area, AA,

dist= min
x∈AA

MapCTRL(x), (23)

AA = {x ∈ Trian
(
S2
)
, |‖x, o‖ang+ ‖x,RG‖ang− ‖o,RG‖ang| < δ

}
, (24)

whereδ is a prescribed constant ando is the current orientation of the vehicle. The
differencey = dist−distsafe is an argument ofg(t) = g(y) function depicted in
Figure 4.
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Figure 4. Theg(a) function.

Let us analyze how the negative feedback works in this case. If there is no
obstacles, dist> distsafe, and the vehicle is sped up until it reaches its maximal
allowable velocityvmax. If there are some obstacles, all depends on vehicle’s cur-
rent velocity. When it is small enough that dist−distsafe > 1y, the vehicle is
sped up slightly. When the difference is positive, yet smaller than1y, the vehicle
is slowed down, but not drastically. When obstacles are dangerous to the vehicle,
dist−distsafe6 0, maximal allowable deceleration is applied. The vehicle reduces
its velocity (sometimes even to zero) and by reorienting itself finds sectors for
which dist−distsafe has a value which allows to increase velocity. Consequently,
the negative feedback stabilizes velocity. Now, let us consider the most demanding
case when a movable obstacle periodically appears and disappears at the boundary
of the perception (sonar range) area in the direction towards the goal. Because the
obstacle is far from the vehicle, then the velocity might decrease, but only slightly.
More serious problems may be encountered when the vehicle tries to change its
orientation. Obviously, sudden changes of the orientation are forbidden, cf. Equa-
tion (19), but chattering in orientation is theoretically possible. In order to prevent
this extremally rare case, the obstacle is to be added to the physical map when the
obstacle enters the area with the radiusRs−1Rs , slightly smaller thanRs centered
at the current vehicle’s location. The obstacle is written off from the physical map
when it leaves the area of the radiusRs. In this case, no obstacles can disappear
suddenly, so no chattering in orientation is possible. The value of1Rs can be
selected in advance based on estimated motion abilities of possible obstacles.

Some vehicles, e.g., an aircraft, cannot reduce their velocities below a given
velocity limit. Such constraints are to be introduced into admissible velocity (Equa-
tion (21), and attitude changes, Equations (9), (19), (20). Also they can be taken
into account by the performance index given by Equation (11) to punish sudden
velocity changes and/or their exhaustive reduction. With the use of modified per-
formance index, the aircraft selects a reorienting policy rather than a significant
velocity decrease.

Quite different problems one can encounter with using the proposed local tra-
jectory planner while planning a trajectory for (small) ships. Those objects are
very sensitive to wind and water currents. For ships, the performance index should
reflect the fact that effective velocities depend on the mentioned above factors.
Consequently, the cost of exerting velocities at different directions may not be the
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same. However, even in the worst case, when the vehicle’s engine is too weak to
keep desired course, the planner still tries to minimize an error measured by the
difference between the current and desired course.

Discussed examples of vehicles show that the planner is general and flexible
enough to cover different and rare cases of navigation. The planner behaves ra-
tionally even when it cannot accomplished a given task. There are three main
reasons for possibility of the failure. First one is due to constraints on maximal
admissible velocity and acceleration of the vehicle when a fast moving obstacle
crosses the vehicle trajectory. The second one is when the vehicle is surrounded by
many obstacles cannot escape the trap. The third reason is due to numerous, slow
moving obstacles colliding with trajectory of the vehicle. The latter two cases of
failure are characteristic to local trajectory planners as the planners, having only
local information (within their sonar ranges), do not perceive dangerousness of the
situation which can be clear only when a global information is involved.

3. Numerical Examples

In order to evaluate the proposed 3D local trajectory planner, several tests were
performed. The objective of the first test was to verify overall performance of the
3D local planner. The assumptions for the experiment are as follows: there are
only static obstacles (cuboids) whose parameters are shown in Table I. The path
to follow is given also in Table I. The following initial data have been assumed:
o(0) = (0,−1,0), v(0) = 0 [m/s], k1 = k3 = 1, k2 = 0, vmax = 10 [m/s],
amax = 10 [m/s2], αmin = 20◦/s,αmax = 100◦/s. Simulation results are presented
in Figures 5–8. Let us analyze the resulting path presented in Figure 5. At the very
early stages of motion, the vehicle works in the decision mode. As its orientation is
not the same as the direction to the first sub-goal, it requires to reorient itself and its
path approaches dashed line starting at(0,0). A crucial role in reorienting the ve-
hicle plays theJ1(x) component of the performance indexJ (x), see Equation (11).
At the point markedA, the vehicle faces obstacles on its way to the first subgoal.

Table I. Obstacle parameters (x, y, z coordinates of the lower left
corner of a cuboid,1x, 1y, 1z lengths of its edges) and knot points
– a path to follow. All data expressed in [m].

Obstacles Path

x y z 1x 1y 1z x y z Radius

20 30 45 20 20 5 0 0 0 0

35 30 25 5 20 20 40 70 50 10

20 45 25 20 5 20 80 70 40 10

65 65 0 5 5 100 90 35 20 5

65 80 0 5 5 100
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Figure 5. Motion in 3D space.

Figure 6. Velocity along the path and the distance to the nearest obstacle.

Figure 7. Vehicle orientation – a nutation (alpha) and a precession (beta) angle.
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Figure 8. Coordinates of the object along the path.

The PG becomes hidden behind obstacles, velocity of the vehicle drops, and the
trace mode is invoked. The vehicle selects a plane of motion and traces a boundary
of obstacles at a reasonably safe distance, Figure 6. At the point markedB, the
mode is changed to the decision one, as the first subgoal becomes visible. The
vehicle directs to the subgoal. At its neighborhood, pointC, the subgoal is changes
to the third knot of the path, Table I. Finally, at pointD, the vehicle carefully, with
a low pace (the last decrease of speed in Figure 6), passes the gate formed by two
obstacles. After reaching the obstacle-free area, the vehicle increases its speed to
maximal admissible value, and therefore not immediately directs to the goal knot,
see pointE.

The effect of delay in reaching a prescribed path in obstacle-free regions can be
reduced by the increase of reorienting abilities of the vehicle. Results of increasing
αmax to 130◦/s, with other data kept the same as in the basic task, are presented in
Figures 9 and 10. As can be seen in Figure 9, the resulting path is more compact
than the path in Figure 5. Nevertheless, comparing the times of completing the
motion in Figures 6, 10, one can notice that increasing the orientation abilities not
necessarily decreases the total time.

The second experiment shows the need for a two level map. In the case of
passive movable obstacles they are just filtered out from the physical map and they
are not seen on the control map. If we do not perform filtering (only the physical
map), the vehicle may react to the moving obstacles which do not interrupt its
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Figure 9. Motion in 3D space.

Figure 10. Coordinates of the object along the path.
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Figure 11. Path followed by vehicle in(x, y)-plane and vehicle’s velocity profile for
obstacle’s velocity equal to 3, 5, 7 [m/s] (the 1st, 2nd and 3rd row, respectively).

motion. Assumptions for this experiment are as follows: there is only one obstacle
(x = 0, y = 10, z = 0), (1x = 20, 1y = 5, 1z = 20) moving alongx-axis
with different speed. The vehicle should reach the point(50,50,0). Other data
are the same as in the basic task. Results are presented in Figure 11. It could be
seen from plots in Figure 11 (the left column) that the vehicle may not choose
the best strategy of avoiding movable obstacles (the best strategy would be to
pass the obstacle by moving to the left from the goal direction not to the right
as in the plots), because local information can be sometimes too poor to work out
a right decision. Moreover, when the obstacle moves relatively fast, its presence
only slightly slows down the speed of the vehicle, cf. the third row in Figure 11,
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as the obstacle is not considered dangerous to the vehicle mission and is filtered
out from the control map. When the moving obstacle collides with the path of the
vehicle, the vehicle has to slow down significantly and reorient itself. The effect of
reorientation is visible when the obstacle is passed by the vehicle. When the vehicle
reduced its speed significantly, as for the obstacle velocity equal to 3 [m/s], it can
return reasonably fast to the prescribed path (dashed line). When the vehicle speed
is high after passing the obstacle, as for the obstacle velocity 5 [m/s], the vehicle
needs some time to drive back to the prescribed path.

4. Conclusions

In this paper a local trajectory planner has been proposed, working in 3D environ-
ment populated with static and passive mobile obstacle. The task for this planner
falls somewhere in between a local path planner and a global planner. The local
path planner is able to produce fast collision-free trajectories with a weighted safety
and goal approaching criterion. It can be adjusted in higher level system by chang-
ing its weights. Moreover, the planner takes kinematic and dynamic constraints into
account. Those constraints are given in the form of maximal allowable velocity,
acceleration and attitude changes. The planner has been presented as a complete
algorithm of autonomous navigation ready to be used in real applications. The
algorithm is general and flexible, and applicable to many classes of autonomous
guided vehicles. The novelty of the proposed algorithm is in splitting map of the
vehicle’s world into two components: the physical and the control map. This al-
lows to represent the world effectively for control applications and avoids a serious
drawback related to planners based on potential fields. In the latter case, a vehicle
could be trapped in local optimum of the criterion function. The second advantage
of the system is that a control velocity loop of the vehicle has been proposed based
on a negative feedback from the environment. The feedback stabilizes velocity
around a value which is considered safe in a given environment. Computational
requirements needed to apply the algorithm in real situations are not very heavy
and therefore, it may be applied in real-time mode to the 3D case for free-flying
robots as well as to 2D case for mobile robots. Computational load can be varied
by changing the number of sectors considered at a given vehicle’s location. In
obstacle-free areas, this number can be reduced, while in navigation in obstacle-
cluttered areas the number should be increased. Computations for each sector are
virtually independent, so parallel data processing could also be applied.
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