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Abstract Computer vision is much more than a technique to sense and recover
environmental information from an UAV. It should play a main role regarding
UAVs’ functionality because of the big amount of information that can be extracted,
its possible uses and applications, and its natural connection to human driven tasks,
taking into account that vision is our main interface to world understanding. Our
current research’s focus lays on the development of techniques that allow UAVs
to maneuver in spaces using visual information as their main input source. This task
involves the creation of techniques that allow an UAV to maneuver towards features
of interest whenever a GPS signal is not reliable or sufficient, e.g. when signal
dropouts occur (which usually happens in urban areas, when flying through terrestrial
urban canyons or when operating on remote planetary bodies), or when tracking
or inspecting visual targets—including moving ones—without knowing their exact
UMT coordinates. This paper also investigates visual servoing control techniques
that use velocity and position of suitable image features to compute the references for
flight control. This paper aims to give a global view of the main aspects related to the
research field of computer vision for UAVs, clustered in four main active research
lines: visual servoing and control, stereo-based visual navigation, image processing
algorithms for detection and tracking, and visual SLAM. Finally, the results of
applying these techniques in several applications are presented and discussed: this
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study will encompass power line inspection, mobile target tracking, stereo distance
estimation, mapping and positioning.

Keywords UAV · Visual servoing · Image processing · Feature detection ·
Tracking · SLAM

1 Introduction

The vast infrastructure inspection industry frequently employs helicopter pilots and
camera men who risk their lives in order to accomplish certain tasks, and taking
into account that the way such tasks are done involves wasting large amounts of
resources, the idea of developing an UAV—unmanned air vehicle—for such kind
of tasks is certainly appealing and has become feasible nowadays. On the other
hand, infrastructures such as oil pipelines, power lines or roads are usually imaged
by helicopter pilots in order to monitor their performance or to detect faults,
among other things. In contrast with those methods, UAVs appear as a cheap and
suitable alternative in this field, given their flight capabilities and the possibility to
integrate vision systems to enable them to perform otherwise human driven tasks or
autonomous guiding and imaging.

Currently, some applications have been developed, among which we can find
Valavanis’ works on traffic monitoring [1], path planning for multiple UAV coop-
eration [2], and fire detection [3]. On the other hand, Ollero [4] has also made
some works with multi-UAVs. There are, too, some other works with mini-UAVs
and vision-based obstacle avoidance made by Oh [5] or by Serres [6]. Moreover,
Piegl and Valanavis in [7] summarized the current status and future perspectives
of the aforementioned vehicles. Applications where an UAV would manipulate its
environment by picking and placing objects or by probing soil, among other things,
can also be imagined and feasible in the future. In fact, there are plans to use
rotorcraft for the exploration of planets like Mars [8, 9].

Additionally, aerial robotics might be a key research field in the future, providing
small and medium sized UAVs as a cheap way of executing inspection functions,
potentially revolutionizing the economics of this industry as a consequence. The goal
of this research is to provide UAVs with the necessary technology to be visually
guided by the extracted visual information. In this context, visual servoing techniques
are applied in order to control the position of an UAV using the location of features
in the image plane. Another alternative being explored is focused in the on-line
reconstruction of the trajectory in the 3D space of moving targets (basically planes)
to control the UAV’s position [10].

Vision-based control has become interesting because machine vision directly
detects a tracking error related to the target rather than indicating it via a coordinate
system fixed to the earth. In order to achieve the aforemention detection, GPS is
used to guide the UAV to the vicinity of the structure and line it up. Then, selected
or extracted features in the image plane are tracked. Once features are detected and
tracked, the system uses the image location of these features to generate image-based
velocity references to the flight control.

In the following section briefly describe the different components that are needed
to have an UAV ready to flight, and to test it for different applications. Section 3,

Mauro Simoes


Mauro Simoes


Mauro Simoes


Mauro Simoes


Mauro Simoes


Mauro Simoes


Mauro Simoes


Mauro Simoes




J Intell Robot Syst (2009) 54:105–135 107

explains with details the different approaches to extract useful information to
achieve visual servoing in the image plane based on features and on appearance.
Some improvements in 3D motion reconstruction are also pointed out. Section 4
describes visual control schemes employed to aim visual servoing, and the particular
configuration of the control system assigned to close the visual control loop. Section 5
deals with the stereo configuration and theory to make motion and height estimation
based on two views of a scene. Next, in Section 6 the simultaneous localization and
Mapping problem based on visual information is addressed, with particular emphasis
on images taken from an UAV. Section 7 shows experimental results of different
applications, and Section 8, finally, deals with conclusions and future work.

2 System Overview

Several components are necessary to complete an operational platform equipped
with a visual system to control UAVs. It is a multidisciplinary effort that encloses
different disciplines like system modeling and control, data communication, trajec-
tory planning, image processing, hardware architecture, software engineering, and
some others. All this knowledge is traduced into an interconnected architecture of
functional blocks. The Computer Vision Group at UPM has three fully operational
platforms at its disposal, whereas two of them are gas powered Industrial Twim 52
c.c helicopters producing about 8 hp, which are equipped with an AFCS helicopter
flight controller, a guidance system, a Mini Itx onboard vision computer, and an
onboard 150 W generator. These helicopters are used for outdoors applications, as
shown in Fig. 1, where one of the powered gas platforms performs an experimental
autonomous flight. The third platform is a Rotomotion SR20 UAV with an electric
motor of 1,300 W, 8A. It also has a Nano Itx onboard vision computer and WiFi
ethernet for telemetry data. It is used on indoors and outdoors applications. In
this section, a description of the main modules, their structure and some basic

Fig. 1 Aerial platform
COLIBRI while is performing
an experimental detection and
tracking of external visual
references
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functionalities is provided. In general terms, the whole system can be divided into
two components:

1. An onboard subsystem composed by:

– Vision computer with the image processing algorithms and related image
treatment programs.

– Flight computer with Flight control software.
– Cameras.
– Communication interface with flight control and with ground subsystem.

2. A ground subsystem:

– Ground computer for interaction with the onboard subsystem, and data
analysis.

– Communication interface.
– Data storage.

Those components’ division can be reorganized into subsystems, which are de-
scribed below.

2.1 Flight Control Subsystem

Most complex physical systems’ dynamics are nonlinear. Therefore, it is important to
understand under which circumstances a linear modeling and control design will be
adequate to address control challenges. In order to obtain a linear dynamic model,
the hover state can be used as a point of work to approximate the helicopter dynamics
by linear equations of motion. Using this approximation, linearization around this
state gives a wide enough range of linearity to be useful for controlling purposes.

The control system is based on single-input single-output (SISO) proportional-
integral-derivative (PID) feedback loops. Such a system has been tested to provide
basic sufficient performance to accomplish position and velocity tracking near hover
flight [11–13]. The advantage of this simple feedback architecture is that it can be
implemented without a model of the vehicle dynamics (just kinematic), and all
feedback gains can be turned on empirically in flight. The performance of this type of
control reaches its limits when it is necessary to execute fast and extreme maneuvers.
For a complete description of the control architecture, refer to [14–17].

The control system needs to be communicated with external processes (Fig. 2) in
order to obtain references to close external loops (e.g. vision module, Kalman filter
for state estimation, and trajectory planning). The communication is made through a
high level layer that routes the messages to the specific process. The next subsection
introduces the communication interface in detail.

2.2 Communication Interface

A client-server architecture has been implemented based on TCP/UDP messages,
allowing embedded applications running on the computer onboard the autonomous
helicopter to exchange data between them and with the processes running on the
ground station. The exchange is made through a high level layer which routes
the messages to the specific process. Switching and routing a message depends on
the type of information received. For example, the layer can switch between position
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Fig. 2 Control system
interacting with external
processes. Communication is
made through a high level
layer using specific messages
routed for each process
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and velocity control depending on the messages received from an external process.
The mechanism used for this purpose consists in defining data structures containing a
field that uniquely identifies the type of information and the destination of a message.
Some of the messages defined for flight control are: velocity control, position control,
heading, attitude and helicopter state.

Figure 3, shows a case in which two processes are communicating through the
switching layer. One process is sending commands to the flight control (red line),
while the other one (blue line) is communicating with another process.

Fig. 3 Switching Layer.
TCP/UDP messages are used
to exchange data between
flight controller and other
process. Exchange is driven by
a high level layer which routes
the data to the specific process
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2.3 Visual Subsystem

The visual subsystem is a compound of a servo controlled Pan Tilt platform, an on-
board computer and a variety of cameras and visual sensors, including analog/digital
cameras (Firewire, USB, IP-LAN and other digital connections), with the capability
of using configurations based on single, stereo cameras, arrays of synchronous
multiple sensor heads and many other options. Additionally, the system allows the
use of Gimbals’ platforms and other kinds of sensors like IF/UV spectrum cameras
or Range Finders. Communication is based on a long-range wireless interface which
is used to send images for ground visualization of the onboard view and for visual
algorithm supervision. Applications and approaches designed to perform visual
tasks encompass optical flow, Hough transform, camera calibration, stereo vision
to corner detection, visual servoing control implementation and Kalman filtering,
among others.

Scene information obtained from image processing and analysis provides data
related to the camera’s coordinate system. This information is useful for purposes
of automatic camera control, but not for the attitude and position control of the
UAV. This issue is solved by fixating and aligning the camera’s frame reference with
the vehicle body-frame. Next section enumerates some basic algorithms of visual
information extracted for controlling purposes.

3 Visual Tracking

The main interest of the computer vision group at UPM is to incorporate vision
systems in UAVs in order to increase their navigation capabilities. Most of this effort
is based on image processing algorithms and tracking techniques that have been
implemented in UAVs and will be described below.

3.1 Image Processing

Image processing is used to find characteristics in the image that can be used to
recognize an object or points of interest. This relevant information extracted from
the image (called features) ranges from simple structures, such as points or edges, to
more complex structures, such as objects. Such features will be used as reference for
the visual flight control.

Most of the features used as reference are interest points, which are points in an
image that have a well-defined position, can be robustly detected, and are usually
found in any kind of images. Some of these points are corners formed by the
intersection of two edges, and some others are points in the image whose context has
rich information based on the intensity of the pixels. A detector used for this purpose
is the Harris Corner detector [18]. It extracts a lot of corners very quickly based on
the magnitude of the eigenvalues of the autocorrelation matrix. However, it is not
enough to use this measure in order to guarantee the robustness of the corner, since
the purpose of the features’ extraction is to track them along an image sequence.
This means that good features to track have to be selected in order to ensure the
stability of the tracking process. The robustness of a corner extracted with the Harris
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detector can be measured by changing the size of the detection window, which is
increased to test the stability of the position of the extracted corners. A measure of
this variation is then calculated based on a maximum difference criteria. Besides, the
magnitude of the eigenvalues is used to only keep features with eigenvalues higher
than a minimum value. Combination of such criteria leads to the selection of the
good features to track.

Another widely used algorithm is the SIFT (scale invariant feature transform)
detector [19] of interest points, which are called keypoints in the SIFT framework.
This detector was developed with the intention to use it for object recognition.
Because of this, it extracts keypoints invariant to scale and rotation using the gaussian
difference of the images in different scales to ensure invariance to scale. To achieve
invariance to rotation, one or more orientations based on local image gradient
directions are assigned to each keypoint. The result of all this process is a descriptor
associated to the keypoint, which provides an efficient tool to represent an interest
point, allowing an easy matching against a database of keypoints. The calculation of
these features has a considerable computational cost, which can be assumed because
of the robustness of the keypoint and the accuracy obtained when matching these
features. However, the use of these features depends on the nature of the task:
whether it needs to be done fast or accurate.

The use of other kind of features, such as edges, is another technique that can be
applied on semi-structured environments. Since human constructions and objects are
based on basic geometrical figures, the Hough transform [20] becomes a powerful
technique to find them in the image. The simplest case of the algorithm is to find
straight lines in an image that can be described with the equation y = mx + b . The
main idea of the Hough transform is to consider the characteristics of the straight line
not as image points x or y, but in terms of its parameters m and b . The procedure has
more steps to re-parameterize into a space based on an angle and a distance, but what
is important is that if a set of points form a straight line, they will produce sinusoids
which cross at the parameters of that line. Thus, the problem of detecting collinear
points can be converted to the problem of finding concurrent curves. To apply this
concept just to points that might be on a line, some pre-processing algorithms are
used to find edge features, such as the Canny edge detector [21] or the ones based on
derivatives of the images obtained by a convolution of image intensities and a mask
(Sobel [22], Prewitt). These methods have been used in order to find power lines and
isolators in an inspection application [23].

3.2 Feature Tracking

The problem of tracking features can be solved with different approaches. The
most popular algorithm to track features like corner features or interest points
in consecutive images is the Lukas–Kanade algorithm [24]. It works under two
premises: first, the intensity constancy in the vicinity of each pixel considered as a
feature; secondly, the change in the position of the features between two consecutive
frames must be minimum, so that the features are close enough to each other. Given
these conditions to ensure the performance of the algorithm, it can be expressed
in the following form: if we have a feature position pi = (x, y) in the image Ik, the
objective of the tracker is to find the position of the same feature in the image Ik+1

that fits the expression p′
i = (x, y) + t, where t = (tx, ty). The t vector is known as
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the optical flow, and it is defined as the visual velocity that minimizes the residual
function e(t) defined as:

e(t) =
W∑

(Ik(pi) − Ik+1(pi + t))2w(W) (1)

where w(x) is a function to assign different weights to comparison window W. This
equation can be solved for each tracked feature, but since it is expected that all
features on physical objects move solidary, summation can be done over all features.
The problem can be reformulated to make it possible to be solved in relation to all
features in the form of a least squares’ problem, having a closed form solution. In
Section 3.3 more details are given. Whenever features are tracked from one frame
to another in the image, the measure of the position is affected by noise. Hence, a
Kalman filter can be used to reduce noise and to have a more smooth change in the
position estimation of the features. This method is also desirable because it provides
an estimation of the velocity of the pixel that is used as a reference to the velocity
flight control of the UAV.

Another way to track features is based on the rich information given by the SIFT
descriptor. The object is matched along the image sequence comparing the model
template (the image from which the database of features is created) and the SIFT
descriptor of the current image, using the nearest neighbor method. Given the
high dimensionality of the keypoint descriptor (128), its matching performance
is improved using the Kd-tree search algorithm with the Best Bin First search
modification proposed by Lowe [25]. The advantage of this method lies in the
robustness of the matching using the descriptor, and in the fact that this match
does not depend on the relative position of the template and the current image.
Once the matching is performed, a perspective transformation is calculated using the
matched Keypoints, comparing the original template with the current image. Then,
the RANSAC algorithm [26] is applied to obtain the best possible transformation,
taking into consideration bad correspondences. This transformation includes the
parameters for translation, rotation and scaling of the interest object, and is defined
in Eqs. 2 and 3.

Xk = HX0 (2)
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where (xk, yk, λ)T is the homogeneous position of the matched keypoint against
(x0, y0, 1)t position of the feature in the template image, and H is the homography
transformation that relates the two features. Considering that every pair of matched
keypoints gives us two equations, we need a minimum of four pairs of correctly
matched keypoints to solve the system. Keeping in mind that not every match may
be correct, the way to reject the outliers is to use the RANSAC algorithm to robustly
estimate the transformation H. RANSAC achieves its goal by iteratively selecting
a random subset of the original data points, testing it to obtain the model and then
evaluating the model consensus, which is the total number of original data points
that best fit the model. This procedure is then repeated a fixed number of times,
each time producing either a model which is rejected because too few points are
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Fig. 4 Experiments with
planar objects in order to
recover the full pose of the
tracked object using SIFT. In
the sub-figure a a template is
chosen from the initial frame.
In b the SIFT database is
generated using the extracted
keypoints. In c points are
searched in a region twice the
size of the template in the next
image using the previous
position as initial guess.
d Subfigure shows the
matching achieved by the
tracking algorithm

a b

c d

classified as inliers or a model that better represents the transformation. If the total
trials are reached, a good solution can not be obtained. This situation enforces the
correspondences between points from one frame to another. Once a transformation
is obtained, the pose of the tracked plane can be recovered using the information in
the homography. Figure 4 shows an implementation of this method.

3.3 Appearance Based Tracking

Tracking based on appearance does not use features. On the other hand, it uses a
patch of pixels that corresponds to the object that wants to be tracked. The method
to track this patch of pixels is the same L–K algorithm. This patch is related to the
next frame by a warping function that can be the optical flow or another model
of motion. The problem can be formulated in this way: lets define X as the set of
points that forms the template image T(x), where x = (x, y)T is a column vector with
the coordinates in the image plane of the given pixel. The goal of the algorithm is
to align the template T(x) with the input image I(x). Because T(x) is a sub-image
of I(x), the algorithm will find the set of parameters µ = (µ1, µ2, ...µn) for motion
model function W(x; µ), also called the warping function. The objective function of
the algorithm to be minimized in order to align the template and the actual image
is Eq. 4

∑

∀xεX

(I(W(x;µ) − T(x))2 (4)

Since the minimization process has to be made with respect to µ, and there is no
lineal relation between the pixel position and its intensity value, the Lukas–Kanade
algorithm assumes a known initial value for the parameters µ and finds increments
of the parameters δµ. Hence, the expression to be minimized is:

∑

∀xεX

(I(W(x;µ + δµ) − T(x))2 (5)
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and the parameter actualization in every iteration is µ = µ + δµ. In order to solve
Eq. 5 efficiently, the objective function is linearized using a Taylor Series expansion
employing only the first order terms. The parameter to be minimized is δµ. After-
wards, the function to be minimized looks like Eq. 6 and can be solved like a “least
squares problem” with Eq. 7.

∑

∀xεX

(
I(W(x;µ) + ∇ I

∂W
∂µ

δµ − T(x)

)2

(6)

δµ = H−1
∑

∀xεX

(
∇ I

∂W
∂µ

)T

(T(x) − I(W(x; µ)) (7)

where H is the Hessian Matrix approximation,

H =
∑

∀xεX

(
∇ I

∂W
∂µ

)T (
∇ I

∂W
∂µ

)
(8)

More details about this formulation can be found in [10] and [27], where some
modifications are introduced in order to make the minimization process more
efficient, by inverting the roles of the template and changing the parameter update
rule from an additive form to a compositional function. This is the so called ICA
(Inverse Compositional Algorithm), first proposed in [27]. These modifications
where introduced to avoid the cost of computing the gradient of the images, the
Jacobian of the Warping function in every step and the inversion of the Hessian
Matrix that assumes the most computational cost of the algorithm.

Besides the performance improvements that can be done to the algorithm, it
is important to explore the possible motion models that can be applied to warp
the patch of tracked pixels into the T(x) space, because this defines the degrees
of freedom of the tracking and constrains the possibility to correctly follow the
region of interest. Table 1 summarizes some of the warping functions used and the
degrees of freedom. Less degrees of freedom make the minimization process more
stable and accurate, but less information can be extracted from the motion of the
object. If a perspective transformation is applied as the warping function, and if the
selected patch corresponds to a plane in the world, then 3D pose of the plane can be

Table 1 Warping functions
summary

Name Rule D.O.F

Optical flow (x, y) + (tx, ty) 2
Scale+translation (1 + s)((x, y) + (tx, ty)) 3
Scale+rotation+ (1 + s)(R2x2(x, y)T + (tx, ty)

T ) 4
translation

Affine
(

1 + µ1 µ3 µ5

µ2 1 + µ4 µ6

)
6

Perspective




µ1 µ2 µ3

µ2 µ5 µ6

µ7 µ8 1



 8
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(a) (b)

Fig. 5 Experiments using appearance based tracking were conducted to track a template in the
scene. a Is the initial frame of the image sequence. Image region is manually selected and tracked
along image sequence, using a scale + translation model (see Table 1). b Shows the tracked template
50 frames later from image (a). Sub-images in the bottom of each figure represent the initial template
selected and the warped patch transformed into the template coordinate system

reconstructed from the obtained parameters. Figure 5 shows some tests carried out
using a translation+scale motion model.

4 Visual Flight Control

4.1 Control Scheme

The flight control system is composed of three control loops arranged in a cas-
cade formation, allowing it to perform tasks in different levels depending on the
workspace of the task. The first control loop is in charge of the attitude of the
helicopter. It interacts directly over the servomotors that define the four basic
variables: cyclic/collective pitch of the principal rotor, cyclic/collective pitch of the
tale rotor, longitudinal cyclic pitch, and the latitudinal cyclic pitch. The kinematic
and dynamic models of the helicopter relate those variables with the six degrees
of motion that this kind of vehicle can have in the cartesian space. As mentioned
above in Section 2.1, the hover state can be used as a point of work to approximate
the helicopter’s dynamics by linear equations of motion. Using this approximation,
linearization around this state gives a wide enough range of linearity that is useful for
control purposes. For this reason, this control is formed of decoupled PID controllers
for each of the control variables described above.

The second controller is a velocity-based control responsible of generating the
references for the attitude control. It is implemented using a PI configuration. The
controller reads the state of the vehicle from the state estimator and gives references
to the next level, but only to make lateral and longitudinal displacements. The third
controller (position based control) is at the higher level of the system, and is designed
to receive GPS coordinates.The control scheme allows different modes of operation,
one of which is to take the helicopter to a desired position (position control). Once
the UAV is hovering, the velocity based control is capable of receiving references to
keep the UAV aligned with a selected target, and it leaves the stability of the aircraft
to the most internal loop in charge of the attitude. Figure 6 shows the structure of the
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Fig. 6 Schematic flight control system. The inner velocity control loop is made of three cascade
decoupled PID controllers. The outer position control loop can be externally switched between the
visual based controller and the GPS based position controller. The former can be based on direct
feature visual control or alternatively on visual estimated world positioning

flight control system with more details, and the communication interface described
in Section 2.2, that is the key to integrate the visual reference as an external loop.
Next subsection describes how this has been achieved.

4.2 Visual References Integration

The first step to design the control task in the image coordinates is to define the
camera’s model and the dynamics of a feature in the image, in order to construct
a control law that properly represents the behavior of the task. Figure 7 shows
the basic PinHole model of the camera, where Pc(x, y, z) is a point in the camera
coordinates system, and pc(i, j)T denotes the projection of that point in the image
plane π . Velocity of the camera can be represented with the vector V = (vc

x, v
c
y, v

c
z)

T ,
while vector ω = (wc

x, w
c
y, w

c
z)

T depicts the angular velocity. Considering that objects
in the scene don’t move, the relative velocity of a point in the world related to the
camera’s optical center can be expressed in this form:

Ṗc = −
(
V + ω × Pc) (9)

Using the well known Eq. 10 based on the camera calibration matrix that expresses
the relationship between a point in the camera’s coordinate system and its projection
in the image plane, deriving Eq. 10 with respect to time, and replacing Eq. 9, it is
possible to obtain a new Eq. 11 that describes a differential relation between the
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Fig. 7 PinHole camera model
to describe the dynamic model,
where P(x, y, z) is a point in
the camera coordinates
system, p(i, j)T represents the
projection of that point in the
image plane π and the vector
ω = (wx, wy, wz)

T is the
angular velocity

xc

yczc

camera coordinates system

image coordinates

πC

P(x,y,z)
i

j

wy

wz

wx

optical axis

velocity of the projection of a point in the image and the velocity vector of the camera
V and ω.

pc = KPc (10)

ṗc = −K
(
V + ω × Pc) (11)

Since the visual servoing task is designed to only make lateral and longitudinal
displacements, and the camera is fixed looking to the front, it is possible to assume
that the angular velocity is despicable because of the short range of motion of the
pitch angles and the velocity constraint imposed to the system. Hence, Eq. 11 is
reduced to this expression:

ṗc =





di
dt
dj
dt



 = −





f
xc 0

0
f

xc




[
vc

x
vc

z

]
(12)

This expression permits the introduction of the references described in Section 3
as a single measure, using the center of mass of the features or the patch tracked by
the image processing algorithm, and using the velocity control module of the Flight
Control System described above in this section.

5 Stereo Vision

This section shows a system to estimate the altitude and motion of an aerial vehicle
using a stereo visual system. The system first detects and tracks interest points in
the scene. The depth of the plane that contains the features is calculated matching
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features between left and right images and then using the disparity principle.
Motion is recovered tracking pixels from one frame to the next one, finding its
visual displacement and resolving camera rotation and translation by a least-square
method [28].

5.1 Height Estimation

Height Estimation is performed on a stereo system using a first step to detect features
in the environment with any of the technique mentioned in Section 3. This procedure
is performed in each and every one of the stereo images.

As a second step, a correlation procedure is applied in order to find the correspon-
dences between the two sets of features from the right and left images. Double check
is performed by checking right against left, and then comparing left with right. The
correlation stage is based on the ZNNC—zero mean normalized cross correlation—
which offers good robustness against light and environmental changes [29].

Once the correspondence has been solved, considering an error tolerance, given
that the correspondence is not perfect, and thanks to the fact that all pixels belong
to the same plane, the stereo disparity principle is used to find the distance to the
plane that contains the features. Disparity is inversely proportional to scene depth
multiplied by the focal length ( f ) and baseline (b). The depth is computed using the
expression for Z shown in Fig. 8.

Figure 9 shows the algorithm used to estimate the distance from the stereo system
to the plane. In the helicopter, the stereo system is used in two positions. In the
first one, the stereo system is looking down, perpendicular to ground, so that the
estimated distance corresponds to the UAV altitude. In the second configuration,
the stereo system is looking forward, and by so doing the estimated distance
corresponds to the distance between the UAV and an object or feature.

Fig. 8 Stereo Disparity for
aligned cameras with all pixel
in the same plane. Stereo
disparity principle is used to
find the distance to the plane
that contains the features
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Fig. 9 Height estimation using
the Harris Corner detector and
ZNNC. Height is obtained
employing the stereo disparity
principle

5.2 Motion Estimation

Motion estimation is performed using at a first stage the same technique used for
feature correspondence between left and right corners: the zero mean normalized
cross-correlation (ZNNC). Correlation is performed within a certain pixel distance
from each other keeping those points in a correlation coefficient higher than 0.85.
The motion problem estimation is done aligning two sets of points whose corre-
spondence is known, and finding the rotation matrix and translation vector, i.e,
3D transformation matrix T that minimizes the mean-squares’ objective function
minR,t

∑
N ‖ T Pk−1 − Pk ‖2. Problem can be solved using Iterative Closes Point

(ICP) registration and motion parameter estimation using SVD. Assuming there
are two sets of points which are called data and model:P = {pi}Np

1 and M = {mi}Nm
1

respectively with Np '= Nm, whose correspondence is known. The problem is how to
compute the rotation (R) and translation (t) producing the best possible alignment
of P and M by relation them with the equation M = RP + t. Lets define the closest
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point in the model to a data point p as cp(p) = arg minm∈M ‖ m − p ‖. Then, the ICP
step goes like this:

1. Compute the subset of closest points (CP) , y = {m ∈ M | p ∈ P : m = cp(p)}
2. Compute the least-squares estimate of motion bringing P onto y:

(R, t) = arg minR,t
∑Np

i=1 ‖ yi − Rpi − t ‖2

3. Apply motion to the data points, P ← RP + t
4. If the stopping criterion is satisfied, exit; else goto 1.

Calculating the rotation and the translation matrix using SVD can be summarized
as follows: first, the rotation matrix is calculated using the centroid of the set of points.
Centroid is calculated as yci = yi − ȳ and pci = pi − p̄, where ȳ = 1

Np

∑
Np

cp(pi) and

p̄ = 1
Np

∑
Np

pi. Then, rotation is found minimizing minR
∑

Np
‖ yci − Rpci ‖2. This

equation is minimized when trace (RK) is maximized with K = ∑
Np

yci pT
ci

. Matrix
K is calculated using SVD as K = V DU T . Thus, the optimal rotation matrix that
maximizes the trace is R = VU T . The optimal translation that aligns the centroid is
t = ȳ − Pp̄.

Section 7.3, shows tests and applications’ development using the stereo system and
algorithms explained in this section.

6 Airborne Visual SLAM

This section presents the implementation of an aerial visual SLAM algorithm with
monocular information. No prior information of the scene is needed for the proposed
formulation. In this approach, no extra absolute or relative information, GPS or
odometry are used. The SLAM algorithm is based on the features or corners’
matching process using SURF features [30] or on the Harris Corner detector [18].
First, the formulation of the problem will be described. Then, the details of the
Kalman filter will be explained and, finally, this section will end with the description
of this approach’s particularities.

6.1 Formulation of the Problem

The problem is formulated using state variables to describe and model the system.
The state of the system is described by the vector:

X = [x, s1, s2, s3, ...] (13)

where x denotes the state of the camera and si represents the state of each feature.
Camera state has 12 variables. The First six variables represent the position of the
vehicle in iteration k and in the previous iteration. The Next six variables, vector
[p, q, r], represent the rotation at iteration k and k-1. Rotation is expressed using
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Rodrigues’ notation, which expresses a rotation around a vector with the direction
of ω = [p, q, r] of an angle θ =

√
p2 + q2 + r2. The rotation matrix is calculated from

this representation using

eω̃θ = I + ω̃ sin(θ) + ω̃2(1 − cos(θ)) (14)

where I is the 3 × 3 identity matrix and ω̃ denotes the antisymmetric matrix with
entries

ω̃ =




0 −r q
r 0 −p

−q p 0



 (15)

Therefore the state of the camera, not including the features, is composed by the
following 12 variables,

x = [xk, xk−1, yk, yk−1, zk, zk−1, pk, pk−1, qk, qk−1, rk, rk−1] (16)

Another implementation of monocular SLAM uses quaternion to express the
rotation [31]. The use of Rodrigues’ notation, instead of quaternion, allows the
reduction of the problem’s dimension by only using three variables to represent
the rotation.

Each feature is represented as a vector [si] of dimension 6 using the inverse depth
parametrization proposed by Javier Civera in [31]. This parametrization uses six
parameters to define the position of a feature in a 3-Dimensional space. Each feature
is defined by the position of a point (x0, y0, z0) where the camera first saw the feature,
the direction of a line based on that point and the inverse distance from the point
to the feature along the line. This reference system allows the initialization of the
features without any prior knowledge about the scene. This is important in exterior
scenes where features with very different depths can coexist.

si = [x0, y0, z0, θ, φ, ρ] (17)

6.2 Prediction and Correction Stages

Extended Kalman filter (EKF) is used to implement the main algorithm loop, which
has two stages: prediction and correction. In the prediction stage, uncertainty is
propagated using the movement model. The correction stage uses real and predicted
measurements to compute a correction to the prediction stage. Both stages need a
precise description of the stochastic variables involved in the system.

There are mainly two approaches to implement this filter: extended Kalman filter
and particle filter (FastSLAM). Both filters use the same formulation of the problem
but have different approaches to the solution. The advantages of the Kalman filter
are the direct estimation of the covariance matrix and the fact that it is a closed
mathematical solution.

Its disadvantages are the increase of computational requirements as the number
of features increase, the need of the model’s linearization and the assumption
of gaussian noise. On the other hand, particle filters can deal with non-linear,
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non-gaussian models, but the solution they provide depends on an initial random set
of particles which can differ in each execution. Prediction stage is formulated using
linear equations

X̂k+1 = A · Xk + B · Uk

P̂k+1 = A · Pk · AT + Q (18)

Where A is the transition matrix, B is the control matrix and Q is the model’s covari-
ance. Camera movement is modeled using a constant velocity model. Accelerations
are included in a random noise component. For a variable n, which represents any of
the position components (x, y, z) or the rotation components (p, q, r), we have:

nk+1 = nk + vk · *t (19)

Where vk is the derivative of n. We can estimate vk as the differences in position,

nk+1 = nk +
(

nk − nk−1

*t

)
*t = 2nk − xn−1 (20)

Feature movement is considered constant and therefore is modeled by an identity
matrix. Now, full state model can be constructed
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(21)

Correction stage uses a non-linear measurement model. This model is the pin-hole
camera model. The formulation of the Extended Kalman Filter in this scenario is

Kk = P̂k · JT (
J · P · JT + R

)−1

Xk = X̂k + Kk ·
(

Zk − H
(

X̂k

))

Pk = P̂k − Kk · J · P̂k (22)

where Zk is the measurement vector, H(X) is the non-linear camera model, J is the
jacobian of the camera model and Kk is the Kalman gain.
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The movement of the system is modeled as a solid with constant motion. Accel-
eration is considered a perturbation to the movement. A pin-hole camera model is
used as a measurement model.




λu
λv

λ



 =




f 0 0
0 f 0
0 0 1



 · [R|T] ·





xw

yw

zw

1



 (23)

where u and v are the projected feature’s central coordinates and λ is a scale factor.
Distortion is considered using a four parameter model (k1, k2, k3, k4)

r2 = u2 + v2

Cdist = 1 + k0r2 + k1r4

xd = u · Cdist + k2 (2u · v) + k3
(
r2 + 2u2)

yd = v · Cdist + k2
(
r2 + 2v2) + k3 (2u · v) (24)

State error covariance matrix is initialized in a two-part process. First, elements
related to the position and orientation of the camera, x, are initialized as zero or as a
diagonal matrix with very small values. This represents that the position is known, at
the first instant, with very low uncertainty. The initialization of the values related to
the features, si, must be done for each feature seen for first time. This initialization is
done using the results from [31]:

Pnew
k|k = J




Pk|k

Ri
σ 2

ρ



 JT (25)

where

J =
[

I 0 0
∂s

∂xyz
∂s

∂pqr 0 0 · · · ∂s
∂xd,yd

∂s
∂ρ0

]
(26)

∂s
∂xyz

=





1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0




; ∂s
∂pqr

=





0 0 0
0 0 0
0 0 0
∂θ
∂p

∂θ
∂q

∂θ
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∂φ
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∂φ
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0 0 0




; ∂s
∂xd, yd
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0 0
0 0
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∂θ
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∂θ
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∂φ
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; ∂s
∂ρ0
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0
0
0
0
0
1




(27)

Taking into account that a robust feature tracking and detection is a key element
in the system, a Mahalanobis’ test is used in order to improve the robustness of
feature matching. The filter is implemented using Mahalanobis’ distance between the
predicted feature measurement and the real measurement. Mahalanobis’ distance
weighs Euclidean distance with the covariance matrix. This distance is the input to a
χ2 test which rejects false matches.

(Z − J · X)t · C−1(Z − J · X) > χ2
n (28)
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where

C = H · P · HT + R (29)

Finally, it should be noted that the reconstruction scale is an unobservable system
state. This problem is dealt with using inverse depth parametrization [32], which
avoids the use of initialization features of known 3D positions. This permits the
use of the algorithm in any video sequence. Without these initialization features,
the problem becomes dimensionless. The scale of the system can be recovered using
the distance between two points or the position between the camera and one point.
Computational cost is dependant on the number of features in the scene, and so
an increase in the scene’s complexity affects processing time in a negative way.
Robust feature selection and matching are very important to the stability of the filter
and a correct mapping. Experiments carried out successfully were made offline on
sequences taken from the UAV.

7 Experimental Application and Tests

7.1 Visual Tracking Experiments

Tracking algorithms are fundamental to close the vision control loop in order to
give an UAV the capability to follow objects. Hence, it is important to ensure the
reliability of the tracker. Some experiments were conducted on images taken on
test flights. Such experiments, where interest points were extracted with the Harris
algorithm and tracked with the Lukas–Kanade algorithm, have proven to be fast
enough so as to close the control loop at 17 Hz. However, if there are too many
features selected to represent an object, the algorithm’s speed slows down because
of the calculation of the image derivatives.

SIFT features are very robust and rely on the advantage that the matching process
does not depend on the proximity of two consecutive frames. On the other hand, the
computational cost of the extraction is expensive. For that reason, they are suitable
for visual servoing only if the displacements of the helicopter are forced to be very
slow in order to avoid instabilities when closing the loop.

Tracking based on appearance proves to be very fast and reliable for acquired
sequences at frame rates above 25 fps. This procedure is very sensitive to abrupt
changes in the position of the tracked patch as long as the number of parameters of
the motion model is higher than 3. This can be solved using stacks of trackers, each
of which must have a different warping function that provides an estimation of the
parameter to the next level of the stack. Simple warping functions give an estimation
of more complex parameters. In the case of a simple tracker the translation-only
warping function is the most stable one. Figure 10a shows the evolution of the
parameters in a sequence of 1,000 images, and Fig. 10b the SSD error between the
template image and the warped patch for each image.

7.2 Visual Servoing Experiments

The basic idea of visual servoing is to control the position of the helicopter based
on an error in the image, or in a characteristic extracted from the image. If the



J Intell Robot Syst (2009) 54:105–135 125

(a) (b)

Fig. 10 Evolution of the translation parameter during the tracking process of a patch along 1,000
frames (a). b shows the SSD error of warped patch with respect to the template

control error is in the image plane, the measure of the error is a vector (in pixels) that
represents the distance from the image’s center to the feature’s position. Figure 11
shows the basic idea of the error and the 2D visual servoing. In this sense, there are
two ways to use this error in different contexts. One approach is to track features
that are static in the scene. In this case, the control tries to move the UAV to align
the feature’s position with the image’s center by moving the helicopter in the space.

Vision-based references are translated into helicopter displacements based on the
tracked features. Velocity references are used to control the UAV, so that when
the feature to track changes—as happens, for example, when another window of a
building is chosen—velocity references change in order to align the UAV with the
window.

The displacement of the helicopter when it tries to align with the feature being
tracked is displayed in Fig. 12a. Vertical and lateral displacements of the helicopter
are the consequence of the visual references generated from the vertical and hori-
zontal positions of the window in the image. Figure 12b shows the displacement of
the helicopter when the window above displayed was tracked, and Fig. 13 shows the
velocity references when another window is chosen.

Fig. 11 Error measure in 2D
visual servoing consists in the
estimation of the distance of
the reference point to the
image’s center
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(a) (b)

Fig. 12 Window being tracked during a visual servoing task (a), in which the UAV’s vertical and
lateral displacements are controlled by the visual control loop in order to fix the window in the
center of the image, while the approaching movement is controlled by the GPS position controller.
b Shows UAV vertical and lateral positions during the visual controlled flight. After taking off, the
UAV moves to two positions (marked with the red rectangles) in order to consecutively track two
external visual references that consist of two different windows

Another possible scenario is to keep the UAV hovering and to track moving
objects in the scene. Experiments have been conducted successfully in order to proof
variation of the method with good results. Control of the camera’s Pan-Tilt Platform
using 2D image servoing tries to keep a moving object in the image’s center. In this
case, position references are used instead of velocity in order to control the camera’s
pan and tilt positions. Figure 14 shows a car carrying a poster being tracked by
moving the camera’s platform.

Fig. 13 Velocity references
change when a new feature is
selected, in this case when
another window is selected as
shown in Fig. 12. Visual
control takes the feature to the
image center sp
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Fig. 14 Tracking of moving
object. Servoing is perform on
the pan-tilt platform. Notice
that velocity in the cartesian
coordinates is 0.0 (each
component is printed on the
image) since the UAV is
hovering. Tracking is
performed using corner
features as explained in
Section 3.2

7.3 Height and Motion Estimation Using a Stereo System

Stereo tests are made using a Firewire stereo system camera onboard the UAV.
In these experiments, the helicopter is commanded to fly autonomously following
a given trajectory while the onboard stereo vision algorithm is running. The exper-
iments find the correlation between the stereo visual estimation and the onboard
helicopter state given by its sensor suite. Figure 15 shows the results of one flight
trial in which the longitudinal displacement (X), lateral displacement (Y), altitude
(H) and relative orientation are estimated. Altitude is computed negative since the
helicopter’s body frame is used as a reference system. Each estimation is correlated
with its similar value taken from the onboard helicopter state, which uses an EKF
to fuse onboard sensors. Table 2 shows the error analysis based on the mean square
error of the visual estimation and the helicopter’s state. Four measures of the mean
squared error are used: the error vision-GPS Northting (MSEV

N), the error vision-
GPS Easting (MSEV

E), the error vision-yaw (MSEV
ψ ) and the error vision-altitude

(MSEV
H).

7.4 Power Lines Inspection

Besides visual servoing and image tracking applications, other experiments have
been conducted to achieve object recognition in inspection tasks. Major contribu-
tions and successful tests were obtained in power lines’ inspection. The objective
of the application developed at the computer vision group is to identify powered
lines and electrical isolators. The methodology that has been employed is based on
the Hough transform and on Corner detectors that find lines in the image that are
associated with the catenary curve formed by the hanging wire. Interest points are
used to locate the isolator. Once both components are detected in the image, tracking
can be initiated to make close up shots with the appropriate resolution needed for
expert inspection and detection of failures. Figure 16 shows images of the UAV
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(a) Visually Estimated X and Northing (N). (b) Visually Estimated Y and Easting (E).

(c) Visually Estimated H and helicopter altitude. (d) Visually Estimated Yaw and helicopter Yaw.

Fig. 15 Results using a stereo system. Four parameters are estimated for this experiment: the
longitudinal displacement (X) (a), the lateral displacement (Y) (b), altitude (H) (c) and relative
orientation (yaw) (d)

approaching a power line while in the sub-image the onboard camera displays the
detection of the line and the isolator.

Stereo System has also been used to estimate the UAV distance and altitude
with respect to power lines. In these tests, the line is detected using the Hough
Transform. If the camera’s angles, stereo system calibration and disparity are known,
it is possible to determine the position of the helicopter relative to the power line.
Some tests using the Stereo system onboard the helicopter were carried out to obtain
the distance to the power line from the helicopter. The power Line is detected using
Hough transform in both images. In this test, the helicopter was initially 2 m below
the power line. Afterwards, it rises to be at the same altitude of the cable and then

Table 2 Error analysis for the
helicopter’s experimental trials

Exp. Test

MSEV
N m 1.0910

MSEV
E m 0.4712

MSEV
ψ deg 1.7363

MSEV
H m 0.1729
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Fig. 16 Power line and
Isolator detection using the
UAV vision system

it returns to its original position. Figure 17 shows the distance and height estimated
from the UAV to the power line during this test. Additional tests can be seen on the
Colibri Project’s Web Page [33].

7.5 Mapping and Positioning using Visual SLAM

The SLAM algorithm explained in Section 6 is used in a series of image sequences
of trajectories around a 3D scene that were performed flying in autonomous mode
navigation based on way points and desired heading values. The scene is composed
of many objects, including a grandstand, a van and many other elements, and also
of a series of marks feasible for features and corners’ detection. For each flight test,
a 30 fps image sequence of the scene was obtained, associating the UAV attitude
information for each one. That includes the GPS position, IMU data (Heading, body
frame angles and displacement velocities) and the helicopter’s position, estimated by
the Kalman filter on the local plane with reference to takeoff point. Figure 18 shows
a reconstruction of one flight around one scene test.

Fig. 17 Distance and height estimation to the power lines using a stereo system onboard the UAV



130 J Intell Robot Syst (2009) 54:105–135

Fig. 18 Three-dimensional flight trajectory and camera position reconstruction obtained using the
flightlog data. The blue line depicts the translational movement and the red arrows represent the
heading direction of the camera (pitch and yaw angles). Superimposed images show the different
perspectives obtained during the flight sequence around the semi-structured scene

Results for tests using a tracking algorithm for scene elements are shown on
Fig. 19a. Reconstructed features are shown as crosses. In the figure, some reference
planes were added by hand in order to make interpretation easier. Figure 19b shows
an image from the sequence used in this test.

Results show that the reconstruction has a coherent structure but that the scale of
the reconstruction is function of the initialization values. The scale can be recovered
using the distance between two points or the positions of one point and the camera.

The camera movement relative to the first image is compared with the real flight
trajectory. For this, the (x, y, z) axis on the camera plane are rotated so that they are
coincident with the world reference plane used by the UAV. The heading or yaw
angles (ψ) and the Pitch angle (θ) of the helicopter, in the first image of the SLAM
sequence, define the rotational matrix used to align the camera and UAV frames.

The displacement values obtained using SLAM are rotated and then scaled to
be compared with the real UAV trajectory. Figure 20 shows the UAV and SLAM
trajectories and the medium square error (MSE) between real flight and SLAM
displacement for each axe. The trajectory adjusts better to the real flight as the
features reduce their uncertainty, because the more images are processed, more
measurements refine features estimation.
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Fig. 19 Scene reconstruction. The upper figure shows reconstructed points from the scene shown in
the lower figure. Points are linked manually with lines to ease the interpretation of the figure
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Fig. 20 SLAM reconstructed trajectory vs. UAV trajectory. a Three-dimensional flight, b north axe
in meters, d east axe in meters, c altitude in meters. The reconstructed trajectory adjusts best to the
real flight as soon as more images are processed and the uncertainty of the features is thus reduced
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8 Conclusions

This paper dealt with the researches, results and discussion of the use of several
techniques of computer vision onboard an UAV. These computer vision techniques
are not merely used for acquiring environmental visual information that can be used
afterwards by off-line processing. That’s why the paper also shows how computer
vision can play an important role on-line during the flight itself in order to acquire
the adequate sequences necessary to actively track targets (fixed or moving ones)
and to guide and control flight trajectories.

Image processing algorithms are very important, and are often designed to
detect and track objects along the sequences, whether key points are extracted by
the algorithm itself or are externally determined visual targets. Successful, wide
spread algorithms onboard an UAV have test bed challenges and thus provide a
source of inspiration for their constant improvement and for achieving their better
robustness. Some of those test bed challenges are the non-structured and changing
light conditions, the highly vibrating and quick and sharp movements, and on-line
requirements when necessary.

Some improvements have been presented and tested in the following two types of
image processing algorithms: feature tracking and appearance-based tracking, due
to the above mentioned characteristics. When using the SIFT key point detector, the
algorithm reduces and classifies the key points for achieving a more robust and quick
tracking as stated in Section 3. When tracking a whole visual target, an ICA based
algorithm is used in a multi-scale hierarchical architecture that makes it robust for
scaling. In both type of algorithms, a Kalman filter has been implemented in order
to improve the consistence of the features and targets’ movements within the image
plane, a feat that is particularly relevant in quick changing sequences, as stated in
Section 3.3.

The filtered outputs of the image processing algorithms are the visual measure-
ments of the external references that, when compared to their desired position,
are introduced in a decoupled position control structure that generates the velocity
references in order to control the position of the UAV according to those external
visual references. Depending on the type of information extracted by the image
processing algorithms (i.e. bi-dimensional translation, rotation, 3D measurements,
among others), the UAV’s position and orientation control can be a mix of visual
based control for some UAV coordinates and GPS based control for some others. A
Kalman filter can also be computed in future developments to produce unified UAV
estimation and control based on visual, GPS, and inertial information.

This paper also shows that it is possible to obtain robust and coherent results using
Visual SLAM for 3D mapping and positioning in vague structured outdoor scenes
from a mini UAV. The SLAM algorithm has been implemented using only visual
information without considering any odometric or GPS information. Nonetheless,
this information has been later used in order to compare and evaluate the obtained
results. The state of the system comprises a 12 variable array (position, orientation
and their rates), where the inverse depth parametrization has been used in order to
avoid the initialization of the distances to the detected visual features, that otherwise
becomes a drawback when using SLAM outdoors in unknown environments. The
rest of the state array is made up of the tracked features, being ten the minimum al-
lowed number. The prediction stage in EKF has been modeled considering constant
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velocity for both the position-orientation coordinates and the feature movements in
the image plane. The correlation stage in the EKF uses a non-linear camera model
that includes a pin-hole distortion model for the sake of more accurate results. Within
the implemented SLAM algorithm the Mahalanobis’ distance is used to discharge far
away matched pairs that can otherwise distort the results.

Based on the results of our work, we conclude that the UAV field has reached
an important stage of maturity in which the possibility of using UAVs in civilian
applications is now imaginable and in some cases attainable. We have experimentally
demonstrated several capabilities that an autonomous helicopter can have by using
visual information such as navigation, trajectory planning and visual servoing. The
successful implementation of all these algorithms confirms the necessity of dotting
UAVs with additional functionalities when tasks like outdoor structures’ inspection
and object tracking are required.

Our current work is aimed at increasing these capabilities using different visual
information sources like catadioptric systems and multiple view systems, and extend-
ing them to 3D image-based visual servoing, where the position and orientation of
the object will be used to visually conduct the helicopter. The challenge is to achieve
real-time image processing and tracking algorithms to reduce the uncertainty of the
measure. The field of computer vision for UAVs can be considered as a promising
area for investing further research for the benefit of the autonomy and applicability
of this type of aerial platforms, considering that reliability and safety have become
major research issues of our community.
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