
ABSTRACT

New actuator technologies are moving closer towards the creation of artificial muscles.  For these muscles to behave in synergy
with natural human muscle then they must be controlled in a similar manner. It has been postulated that the control of human
motion is achieved through a force and position control strategy termed impedance control.

An impedance controller has been developed for implementation on an ionic polymer-metal composite (IPMC actuator).  The
basis for this controller is a PID position controller that is demonstrated to accurately control the position response of the IPMC
actuator.  This position controller is extended to form an impedance controller with a force control loop and impedance filter.
Inspite of identified non-linearities in the polymer force output during motion, the impedance controller has been successfully
implemented demonstrating the controller design process and good performance of the control strategy.
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1. INTRODUCTION

Conventional actuators such as electric motors, pneumatic and hydraulic cylinders are not viable artificial muscles for in vitro use
within the human body due to their size and shape. Over the last decade the development of artificial muscles has gained
momentum resulting in new actuators with greater potential to assist human muscle.  These alternative actuators vary from
pneumatic muscle actuators (PMA) [1], piezo electric actuators [2] to electroactive polymers [3].  Of these recent advances, a
type of electroactive polymer called ionic polymer-metal composite (IPMC) offers great potential due to its relatively large
displacement, great force to weight ratio and the ease at which it can be shaped and manipulated.  IPMC actuators are created by
chemically plating a sheet of Nafion® polymer with platinum [4].  When voltages are applied to the platinum electrodes, stress is
generated within the membrane causing bending motion.  A simplified model of the mechanism that causes bending has been
produced by [5].  Research is ongoing to improve the performance of these actuators by methods such as increasing the thickness
of the polymer [6] and an additional coating of metal [7], however at their present state of development these actuators exhibit
excellent power to weight ratio combined with large relative displacement.  

The force output and bandwidth of modern actuators have been evaluated against that of human muscle [8].  However, if these
artificial muscles are to be compared against human muscles, comparable control methods must also be considered.  Indeed if
controlled appropriately, artificial muscles may not be required to exhibit physical properties similar to human muscle.  To
understand the control requirements for artificial muscles it is useful to consider the manner in which the central nervous system
utilises human muscles.  Control of human motion is not yet fully understood, however the theory postulated by Hogan [9]
decomposes human motion into an a task planning stage and a motor application stage.  The human consciousness plans global
movement tasks, which are then broken down into movement stages and then implemented by the subconscious. 

To illustrate this, consider an example of arm movement (figure 1).  The movement that the arm is to undergo is specified by the
human consciousness (A).  This movement is then broken down into discrete points (virtual reference points) (B). The human
arm moves to each new virtual point, altering its position if any external forces are encountered.  The position alters as if the arm
behaved as an ideal stiffness and damping (C,D).  This results in the arm’s position and the external forces applied to the arm
effecting forces applied by the muscles to move the arm  (i.e muscles within the arm implement a force and position strategy
resolved through the kinematic links (bones) of the arm).  This ensures stability of movement in the presence of an unknown
external environment.  By varying the stiffness and damping parameters the amount the human effects the environment can be
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Figure 2   Impedance control free body diagram
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changed.  Low stiffness causes the human to exert little force on objects interfering with motion, conversely high stiffness causes
large forces to be exerted to objects interfering with motion.  It is interesting to note that the separation of movement into distinct
points (B) is apparent in the motion of humans suffering illnesses such as stroke where damage to the brain causes jerky,
segmented motion [10].

Over the last decade this force and position strategy ‘termed impedance control’ has begun to be applied to robotic systems to
enable them to function more successfully in unpredictable environments.  Note that full implementation of impedance control
includes an inertial element so robots can mimic the physical properties of objects for applications such as haptic interfaces [11].
For movement purposes the inertial element is not used, with the controller is required to mask the physical inertia of links and
joints.  

2.   IMPEDANCE CONTROLLER DESIGN

The free body diagram of the impedance controller is shown in figure 2 (where M is the inertia, K is the stiffness, C is the
damping). 

Due to impedance control being a force and position control strategy the controller design can either consider position the input
(xi) and force (Fx) the output (equation 1) or force as the input and position the output (equation 2).   This result is known as the
duality of impedance control.

Figure 1   Example of arm movement
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The majority of researchers have opted to use a force based impedance controller when implementing the controller on robots
due to the ease at which motor output torque (hence force) can be controlled [12].  However the majority of advanced modern
actuators exhibit non-linearities in their force output and as such force based impedance control is not appropriate.  

Force output of IPMC

Research has been performed to analyse the force output of IPMC actuators at varying voltages and distances from its clamp [13].
The output force of IPMC actuators also varies with movement of the actuator.  To demonstrate this the output force of a piece of
IPMC (Nafion ® 117, cut to 5mm x 20mm) at 15mm from its clamp for 5V applied voltage has been measured at various
endpoint displacements (figure 3) when 5V is applied.  The output force is shown to be a non-linear function of endpoint
position.

The change in output force can be easily explained by examining the basic working’s of the actuator.  As the IPMC bends it acts
against the natural elastic properties of the material.  At the limits of motion the elastic properties of the actuator cancel out the
internal bending stress caused by the applied voltage.  Therefore the force that can be asserted is zero in the direction of the
motion is zero.  Throughout the movement the same effect alters the actuator force output. 

This results in a non-linear force output characteristic during motion and, more importantly, results in tailing off of actuator force
close to the limits of motion. An end-point movement range of ±3mm enables the IPMC to apply bi-directional force.

Position controller

The controller is to be position based so the position controller is the dominant element.  A simple PID controller controls the
actuator position (figure 4).  This approach does not require a mathematical model of the actuator response, which can be difficult

Figure 3   IPMC force output against endpoint displacement
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Figure 4   PID controller

to obtain.  The IPMC position was measured at 15mm from the clamp using a laser sensor.  The PID controller gains were
selected using the ultimate frequency method [14].  The gains for the PID controller are listed in table 1.

Proportional Derivative Integral

Gain 5.4 0.065 0.26
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Figure 9   IPMC impedance controller behavior
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it so that it could interact freely with any environment.  Due to size limitations and low force output the force sensor has been
mounted externally. 

When the IPMC moves into contact with the spring a force is exerted upon it with the impedance controller determining whether
the IPMC moves into the spring or whether the spring restricts IPMC motion.  So to put the controller in context with the earlier
example of arm motion.  The desired motion is split into a virtual point (figure 9 A,B).  The polymer is then desired to move to
the virtual point whilst responding to any external forces as if it were a spring and damper system.  If external forces are
encountered the virtual point will not be reached, instead a compromise position will be reached between the two conflicting
demands of zero externally applied force and the virtual position (D). 

It is important to understand there are now three position traces:
1 The virtual position (demand position (xp) - an arbitrary point of desired motion, which is unaffected by IPMC movement or

externally applied forces.   
2 The desired position  (xd) – The virtual position modified by external forces (this would be the virtual position if no external

forces were encountered).
3 The IPMC position (x) – The position of the IPMC measured by the laser sensor (if the position controller was ideal this

would be equal to the controller desired position).

   

2  Impedance controller results

Results were obtained for a selection of damping and stiffness parameters.  The first response implemented a damping coefficient
of 0.1 and a stiffness of 50.  As a result of the relatively high stiffness the virtual position and desired are almost identical (i.e the
external forces encountered are too small to noticeably compress the impedance filter spring and damping arrangement).  This
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Figure 7   Impedance controller block diagram Figure 8   Experimental layout
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Figure 12   IPMC impedance response (K=5 C=0.1)

Figure 10   IPMC impedance response (K=50 C=0.1)

Figure 11   IPMC impedance response (K=5 C=0.1)

requires the IPMC to exert sufficient force to
move through the spring.  Figure 10 is the IPMC
response with the above mentioned damping and
stiffness parameters.
After 15s the spring and force sensor are placed
in the line of motion of the polymer.   The
response time of the polymer is effected and a
larger potential difference has been applied
across the polymer to produce the additional
force to act against the spring.  However the
IPMC achieved the steady state position.  

Decreasing the stiffness of the impedance
controller causes external forces to have a
greater influence.  The controller response (K=5
C=0.1) is shown in figure 11.  The external
force causes the desired position to change
significantly. The desired position is tracked,
however there are delays in response.  Finally
the spring is brought into permanent contact
with the actuator (figure 12).  Inspite of the
presence of external forces the actuator still
moves, however the controller behaviour is
effected.  The output voltage approaches
saturation when these forces are applied.  

The PID controller behaves well and offers
some robustness to external forces (i.e the IPMC
actuator almost follows the desired trajectory
inspite of the external forces).  It possible to
include a feed-forward force element to reduce
some of the burden on the position controller
due to these external forces [16].  However an
approximate model of the actuator force output
would be required.

3.  CONCLUSIONS

The control of artificial muscles from a
biological perspective has been discussed and
been demonstrated by implementation on IPMC
actuator.  In its current form the IPMC actuator
would have limited practical applications due to
the small force output obtainable.  However it
has been demonstrated that advanced force and
position controllers can be effectively
implemented on the polymer actuator.  Including
a feed-forward force element would improve the
position controller’s robustness to external
forces.  Increasing the force output of these
actuators through improved fabrication would
increase the potential applications. It is vital that
for any actuator to behave as an artificial
muscles it must be controlled by a force and
position control strategy to ensure stability and
safe function.  For practical applications force
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sensing must be mounted on the actuator itself so that it is capable interacting autonomously in any environment.  Further work
will investigate improving the force output of the IPMC and improving the controller strategy.
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