The PWM circuit is made from a 555 timer, (see figure 6). By using two transistors Q1 and Q2 and potentiometer with the 555 timer we can create an output with a relative constant frequency with a variable duty cycle.
When the output from the timer (pin 3) goes high, both transistors Q1 and Q2 turned on. The current through Q1, R3 and portion of the Potentiometer (R4) designated RA charges the timing capacitor C1. When the voltage on C1 reaches 2/3 Vcc, the output on the 555 timer (pin 3) goes low.
At this point both transistors Q1 and Q2 turn off. Capacitor C1 begins to discharge through the portion of the potentiometer (R4) designated as RB and R5 via pin 7 (Discharge pin) of the 555 timer. When the voltage on C1 drops to 1/3 Vcc the output switches high and the timing cycle repeats.
The duty cycle of the square wave output can be changed by varying the resistance of the potentiometer.
The output of the 555 timer (pin 3) connects to a MOSFET transistor that switches the current on and off to the nitinol wire. If the current from the PWM circuit is too powerful to control the nitinol wire proportionally, place an 8-ohm (2 watt or greater) resistor in series with the nitinol wire to reduce power.
| Next Page (Superelasticity) | Previous Page | Online Catalog | Articles | Secure Order Form |