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Abstract

We present a new approach to integrate sensors into
robot motion planning by combining the concept of the
Perceptual Control Manifold (PCM) and the Topology
Representing Network (TRN) algorithm. Motion plan-
ning should incorporate sensing due to the presence of
uncertainty. Therefore, the PCM extends the notion of
robot configuration space to include sensor space. Ex-
ploiting the topology preserving features of the TRN
algorithm, the neural network learns a representation
of the PCM. The learnt representation of the manifold
is then used as a basis for motion planning with various
constraints. The feasibility of this approach is demon-
strated by experiments with a pneumatically driven ro-
bot arm (SoftArm).

1. Introduction

An important step toward autonomous robotics is de-
“veloping ways to generate motion plans for achiev-
ing certain goals while satisfying environmental con-
straints. Classical motion planning is defined on a
configuration space (C-space) which is assumed to be
known, implying the complete knowledge of both the
robot kinematics as well as knowledge of the obstacles
in the C-space [1]. Uncertainty, however, is prevalent
which often renders these motion planning techniques
inadequate for practical purposes. Sensors such as cam-
eras can help in overcoming these uncertainties. To
best utilize the sensor feedback, a robot motion plan
should incorporate constraints from the sensor system
as well as criteria for optimizing the quality of the sen-
sor feedback. Unfortunately, in most motion planning
approaches, sensing is completely decoupled from plan-
ning. In [2] we present a framework for motion planning
that considers sensors as an integral part of the defini-
tion of the motion goal. The approach is based on the
concept of the Perceptual Control Manifold (PCM), de-

0-7803-2978-3/96/$5.00 © 1996 IEEE

fined on the product of the robot C-space and sensor
space. The PCM provides a flexible way of developing
motion plans that exploit sensors effectively. However,
there are robotic systems, such as the pneumatic robot
arm we use for our experiments, where the PCM cannot
be derived analytically, since the exact mathematical
relationship between configuration space, sensor space
and control signals is not known. Instead of using the
analytical expressions for deriving the PCM we there-
fore propose the use of a self-organizing neural network
to learn the topology of this manifold.

2. Incorporating Sensor Constraints into
Motion Planning

Sensors such as the video camera have limited range of
operation and work well only when the objects in view
are optimally configured with respect to the camera [3].
Thus, to best utilize the sensor feedback, a robot mo-
tion plan should incorporate constraints from the sen-
sor system as well as criteria for optimizing the quality
of the sensor feedback. The role of vision in a motion
planning framework, such as the one based on config-
uration space [1], is to give an estimate of the current
position of the robot in the configuration space with re-
spect to the desired goal. For handling uncertainty in
sensing of the robot position different motion planning
approaches have been suggested (e.g., [4, 5]). However,
there is no general mechanism for including the varia-
tion of sensing parameters and sensor constraints into
the motion plan. There is thus a growing need for ex-
tending the configuration space planning paradigm to
bridge the gap between planning and sensing so that
the motion plans can benefit by optimally utilizing the
available sensing mechanism. In [2] we proposed a mo-
tion planning framework that achieves this with the
help of a space called the Perceptual Control Manifold
or PCM. The PCM is a manifold defined on the product
of the robot configuration space (defined in terms of the



Figure 1: Schematic diagram of a 6-DOF manipulator,
and the mapping to the image feature space.

set of robot joint parameters) and image feature space
(defined in terms of a set of image features from the im-
age of the robot hand). These concepts are formalized
next.

Configuration space C: The problem of motion
planning of an articulated robot is usually defined in

terms of the configuration space, C (or C-space), which

consists of a set of parameters corresponding to the
joint variables of the robot manipulator. C is an n-
dimensional manifold [1] for an n-DOF robot manipu-
lator, i.e.,C = @) X @3 X ...Q, C R™, when ¢; € Q;
is a joint parameter (See Figure 1). The obstacles and
other motion planning constraints are usually defined
in terms of C, followed by the application of an opti-
mization criteria that yields a motion plan. -

Image feature space S: In vision-based control, the
robot configuration is related to a set of measurements
which provide a feedback about the cartesian position
of the end-effector using the images from one or more
video cameras. We assume that this feedback is defined
in terms of measurable image parameters that we call
image features; s; (See Figure 1). Before planning the
vision-based motion, a set of m image features must be
chosen. Discussion of the issues related to feature selec-
tion for visual servo control applications can be found
in [6, 7, 8. The mapping from the set of positions
and orientations of the robot tool to the corresponding
image features can be computed using the projective
geometry of the camera. Since the cartesian position
of the end-effector, in turn, can be considered to be a
mapping from the configuration space of the robot, we
can also define image features with a mapping from C.
Thus, an image feature can be defined as a function s;
which maps robot configurations to image feature val-
ues, 8; : C — S;. The set of all possible variations
of the image features is termed image feature space,
S =8 x8 x...8;,. Although we refer to vision,
the discussion applies to any other sensor as well, and
the term “image” is thus used for the generic sensor
measurements. Moreover, we refer to geometric image
features (e.g., position, size, distance, or surface area of

objects in the image), as opposed to photometric fea-
tures (pixel intensities, colors, etc. ). In the following,
we consider a hand/eye setup where the image features
are derived from stationary cameras.

Perceptual Control Manifold PCM : In order to in-
clude the image feature space, S, in the planning space,
we consider the C X S space, or CS-space. We know that
an n-dimensional configuration space C maps to an m-
dimensional feature space S. This mapping can be de-
fined in terms of the vector-valued function f:C — S.
This mapping defines the PCM, an n-dimensional man-
ifold in (n + m)-dimensional space, and is used for de-
veloping a motion planning framework.

For the robot in Figure 1, consider the variation of an
image parameter, s;, when a joint parameter, say g, is
varied, while keeping the rest of the joints fixed. With-
out considering the joint limits for the time being, this
would define an ellipse in the Q; x &; space. Simi-
larly, when two of the joints, say ¢; and ¢, are var-
ied simultaneously, a hyper-ellipsoid will be defined in
Q1 x Q2 x 81 x S; C R, For ease of visualization, we
project the corresponding PCM to S; xSaxQ; C R3, as
shown in Figure 2. Analogously, in higher dimensions,
the PCM for a hand/eye setup is defined by varying all
the joints and considering the parametric hypersurface
defined in Q x S space.
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Figure 2: Positions of the manipulator mapped into the
PCM.

A given robot configuration maps to exactly one point
on the PCM. The corresponding image features are not
necessarily unique for a given position, but because the
joint is also represented this leads to the uniqueness
property that is needed for motion planning and con-
trol. Since the PCM represents both the control para-
meter and the sensor parameter, an appropriate control

law can be defined on it [2]. '

A robot task task can be defined as a problem of tra-
jectory planning on the PCM from the initial position



of the manipulator to some goal position on PCM. This
motion planning requires the system to satisfy con-
straints presented by robot kinematics, the control sys-
tem and the visual tracking mechanism. The aim is to
get a feasible solution space for motion planning that
satisfies these constraints. In current approaches to mo-
tion planning, different types of constraints are handled
independently by each subsystem. This makes it hard
to achieve optimal performance, because there is no
unified framework to consider all type of constraints
simultaneously; the solution obtained by considering
one type of constraint at a time may not yield a glob-
ally optimal solution. Further, the use of the PCM
makes some of the sensor constraints easier to express
compared to a potentially awkward C-space representa-
tion. An example, of such a constraint is image feature
singularity [9]. Constraints can be classified as being
hard or soft. Hard constraints, e.g., joint velocity lim-
its, must be satisfied in a motion plan. Soft constraints,
e.g., image singularity avoidance, should preferably be
satisfied, and can be included with the help of a cost
function in motion planning.

Optimizing motion plans: Once the necessary hard
constraints have been applied to yield a feasible solu-
tion defined on the PCM, any path on the PCM, from
the point corresponding to the initial position of the
robot to a desired point on PCM, will give rise to a
valid solution. However, the path chosen should be the
one that optimizes a set of desired objectives. Some of
these objectives could be related purely to the robot,
e.g., minimizing joint movement, minimizing relative
velocity of the robot end-effector and a moving target,
etc. ; others could be related purely to the sensor, e.g.,
maximizing the variation in the image features. How-
ever, there are some objectives that involve both the
robot and the sensor. These objectives directly effect
the control and mainly depend on how the image fea-
tures vary with an infinitesimal movement of the robot.
The objective could be to steer away from image sin-
gularities or to find the robot trajectory such that it
follows a singularity. The PCM framework has the ad-
vantage that it allows a variety of optimization criteria
to be expressed in a unified manner so that the optimal
sensor-based plan can be generated.

With a complete knowledge of the robot kinematics and
camera parameters, it would be possible to model the
PCM analytically and carry out the motion planning
on this space. However, as mentioned in Section 1,
such an analytical model would be hard to derive un-
der incomplete information, especially for a robot like
the pneumatically controlled arm that we use in our
experiments. This motivates us to consider learning of
the PCM and using the learned space for sensor-based
motion planning. We next consider the neural network
architecture for learning a representation of the PCM.

3. Topology Representing Networks for
Motion Planning

Topology representing networks, as introduced by Mar-
tinetz and Schulten [10, 11], can be formulated as a
combination of a vector quantization scheme and a com-
petitive Hebb rule. Although related to Self-Organizing
Feature Maps (SOFM) [12], a priori knowledge of the
input dimensionality is not crucial and the algorithm
adjusts to the topological structure of a given input
manifold M forming a perfectly topology preserving
mapping. A rigorous definition of the terms ‘neigh-
borhood preserving mapping’ and ‘perfectly topology
preserving map’ based on Voronoi polyhedra and De-
launay triangulations is given in [11]. In the following,
we will outline the implemented algorithm, including
the extension of the original sequence to provide addi-
tional output weights w¢* which will be used to link a
desired control action to a specific sensory input.

Following the initialization of input weights wi", out-
put weights w9t for all units i = 1... N with random
numbers and resetting all connections to ¢;; = 0 the
learning cycle reads:

1. Read input vector u and determine current rank-
ing order.

[we" —ull < Wit ~ull < ... < lwi_, —u|| (1)

2. Update input weights wi" and output weights
w2 according to:

wit(t +1) = wit(t) + v(r,t) - (u — Wi () (2)

W (E+1) = Wi (E) +y(r, ) - (u — Wi (1)) (3)

with
1rt) = eft) - 77O @

for i = 1...N, where r; is the current rank of
neuron i as determined in step 1. €(t) determines
the change in the synaptic weights and X(t) rep-
resents a neighborhood function.

3. Update the connection cg; between the units cur-
rently ranked 0 and 1. If co; = 0 then set ¢g; = 1
and the age of the connection ty; = 0; if cg; > 0
refresh the connection age.

4. Increase the age of all connections co; to to; =
to;j+1 for all units § with co; > 0. Remove connec-
tions co; which exceed a given lifetime to; > T'(t).
Continue with step 1.

Both €(t) and A(t) as well as T'(¢) are a function of time
and depend on the current learning step t in the same
manner?.

Le(t) = ei(eg/e:)t/ tmaz, A(t) = Ai(Ap /i) tmas,

T(t) = Ti(Ty /T;)t/tme= with €; = 0.3, €5 = 0.05, ); = 0.2N,
As =001, T; = 0.1N, Ty = 2N




After the topology preserving map of the input mani-
fold M, which in our case is equivalent to the PCM , has
been established, a locally optimized path can be deter-
mined by minimizing the Euclidean distance dg from
the current position to a given target. The motion plan
can be generated as follows:

1. Read current position wy,rens and target position
Wiarget
H H in in
2. Find best matching neurons w3, .., and win. .,

3. Move from current unit w2 ___ . to a neighboring
unit ¢ with ccurrent,i > 0 that satisfies

in in — . in in
dE(wi ’Wtarget) = mzn{dE(wi awtarget)} (5)
4. I Wi one = Win. e then stop, otherwise con-
tinue with step 1.

In Figure 3 we plot a sample path on a 2d network
from the lower left unit to the upper right using this
algorithm.

In the presence of obstacles within the workspace, step
3 has to check if a move will result in a collision and
avoid it. Finally, if the motion plan meets a given goal,
movement can be initiated using the corresponding out-
put values wi¥ of the map to generate the sequence of
commands necessary to navigate the robot from start
to target. Other global optimization strategies can be
applied to the learnt representation of PCM as well.
However, these will be computationally expensive espe-
cially when complex obstacles are taken into account.
A promising algorithm, based on a diffusion process,
which we plan to explore in this regard is described
in [13].

As means of demonstrating the practical capabilities
within an engineering framework for motion planning
and control, the following sections will describe the
SoftArm robotic system and the implementation of the
topology representing network algorithm on this pneu-
matic robot arm.

4. Motion Planning for the SoftArm Robotic
System

The SoftArm is a pneumatically driven robotic mani-
. pulator, modeled after the human arm. It exhibits the
essential mechanical characteristics of skeletal muscle
systems employing agonist-antagonist pairs of rubber-
tuators which are mounted on opposite sides of rotat-
ing joints. Pressure difference drives the joints, aver-
age pressure controls the force (compliance) with which
the motion is executed. This latter feature allows op-
eration at low average pressures and, thereby, allows
one to carry out a compliant motion of the arm. This
makes such robots suitable for operation in a fragile
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Figure 3: 2d topology representing network after the learn-
ing has been finished. A sample path from lower
left unit to upper right unit of the map has been
generated by locally minimizing the Euclidean
distance between current and target position.

environment, in particular, allows direct contact with
human operators. The price to be paid for this de-
sign is that the response of the arm to pressure signals
(P1,P2,---,0n)" and (Ap1,Aps,...,Apy)T cannot be
described by a priori mathematical equations, but rater
must be acquired heuristically. Furthermore, one ex-
pects that the response characteristics change during
the life time of the arm through wear, after replace-
ment of parts and, in particular, through hysteretic ef-
fects. In consequence, accurate positioning of the Sof-
tArm presents a challenging problem and can only be
achieved by an adaptive control mechanism. For a more
detailed introduction to the mechanics of the SoftArm
see [14]. Visualfeedback is provided by two color video
cameras, joint angle data is available from optical en-
coders mounted on each joint.

Previous applications of TRN in robotics {15, 14, 16],
used the neighborhood preservation to average over the
output of several adjacent units in order to achieve a
more accurate positioning. In the present study we fo-
cus on exploiting the topology to generate a motion
plan from a current position to a given target satisfy-
ing several constraints. These constraints can include
obstacles defined in C-space, obstacles given through
vision space and limitations of the camera feedback [9].
The PCM , as introduced in Section 2, is defined as the
product of C-space and sensor space S . Therefore, two
different types of information converge upon neurons
within the network. Visual input s = (s5...5,)7 is de-
rived from video cameras; vision preprocessing resolves



the gripper location in the video frames. Angular posi-
tion of the manipulator, denoted by q = (g ...q,)7, is
derived from the feedback of optical encoders mounted
on each joint. Following a suitable training period,
the topology of the network resembles the PCM . In
addition, the network provides the nonlinear mapping
between the position in work space u = (s,q)T and
the corresponding pressure commands p to achieve this
configuration.

2d control:

First, we test our approach in a 2d environment, gen-
erating a motion plan in one camera plane. Therefore,
we use 2 joints of the SoftArm to control the position.
In this case, the network provides a mapping between
the 4d input vector u and the 2d pressure vector p.

(31)32y ‘11;92)T (6)

(pl)pZ)T (7)

A sample network is depicted in Figure 4 by plotting
the visual components s of the 4-dimensional input vec-
tors wim. This network was trained with a dataset of
800 random moves within a subset of the workspace and
consists of 75 neural units. In Figure 5 we use the learnt
representation to generate a motion plan from a start
point to a given target. Both, start and target, are only
given in visual space s (as would be obstacles), the cor-
responding encoder readings need not to be known. By
selecting the best matching neurons for current position
and target position in vision space the resulting neurons
also provide the values for the encoder readings. This is
possible, because s and q represent redundant informa-
tion. The motion plan, shown in Figure 4 on the right
hand side, finally is generated in CS-space to ensure a
smooth motion in terms of joint angles.

input : u
output : p =

Figure 4: (SoftArm robot system and network structure
in the workspace as seen by the camera. The
learning has been accomplished and the net-

_ work represents the topology of the PCM .
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Figure 5: Visual components of the mapping and a mo-
tion plan (grey units) generated in configura-
tion (encoder) space after start and target have
been defined in vision space.

3d control:

Extending the algorithm to a 3d workspace increases
the information that needs to be processed by the net-
work. The image feature space S is now represented
by the position s = (sy, s, 53,54)7 of the gripper in 2
camera planes, the configuration space C is given by the
encoder readings q of 3 joints, resulting in a 7d feature
vector and a 3d output vector respectively.

(31;32, 83,84,41,42, q3)T (8)
(p1,p2,p5)T 9

input : u
output : P =

In this case, the network is trained with 1000 random
moves within the workspace by sending random pres-
sure values to the robot and observing the end effector
position as well as reading out the encoder values. In
Figure 6 we plot a sample path in the camera planes
and the corresponding encoder readings. Start and tar-
get are given in vision space, while the motion plan is
generated on the learnt representation of the PCM by
the procedure mentioned in Section 3. As the main
problem in the 3d environment, we can identify the
discretizing effect.- With a network of 750 neurons, the
resulting path generated on the learnt representation
of the PCM is only 12 steps long, which in a realistic
environment can only be seen as a rough motion plan.
Nevertheless, it can be taken as a piecewise linear ap-
proximation of the final path. This discretizing effect
that results from the use of small numbers of neurons to
map a. high dimensional input space can be alleviated
by introducing interpolation strategies [14] which also
improve fine motion control.
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Figure 6: 3d path in vision and encoder space: The im-
age features (1, 82, 53, 34)7 are given by the po-
sition in camera plane 1 and 2, the encoder
readings (gi,g2,¢3)7 represent the configura-

tion space C.

5. Conclusions

Learning the representation of the PCM provides a very
general framework for robot motion planning in which
the sensing (in the form of video feedback) is factored
automatically into the planning process, leading to a
flexible way of visually controlling a robot manipula-
tor. The 2d implementation on a pneumatically driven
robot manipulator proves the technical feasibility of our
method. It can be generalized to control robotic sys-
tems with more degrees of freedom in a 3d environment
as our experiments demonstrate. Future work, how-
ever, will have to address the discretization effect in
higher dimensions to achieve fine motion control on the
SoftArm. Furthermore, we are planning to implement
more sophisticated path planning strategies on basis of
the learnt representation of the PCM and study the role
of redundancy for planning.
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