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resumo 
 

O objectivo deste trabalho foi o desenvolvimento de um algoritmo para a 
localização de um robot móvel equipado com um medidor de distâncias laser. 
O processo devia integrar-se facilmente na linguagem para a definição de 
missões de navegação, LAMP, previamente implementada no robô. 
O primeiro passo deste procedimento é a procura nos dados laser de alguns 
objectos especificos. Estes objectos (faróis), inseridos expressamente no 
ambiente para o processo de localisação estão arranjados num certo padrão 
geométrico que permite a sua identificação. Esta identificação é seguida por 
um processo de confirmação onde os dados laser são examinados novamente 
para a existência de outra formação da sala cuja posição é descrita a partir dos 
potenciais faróis. 
A estimativa de localização é obtida através de “trilateração” e do 
conhecimento da posição dos faróis no sistema de coordenadas global. 
Numa fase final do trabalho, foram introduzidos simultaneamente vários faróis, 
arranjados de formas diferentes. 
Os resultados indicam um desempenho bom do algoritmo com erros na 
estimativa de posição de menos de cinco centímetros e erros de orientação de 
menos de um grau. A integração simples no sistema de navegação existente 
permite a utilização do método para um arranque fiável de uma missão de 
navegação. 
 

 



 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

abstract 
 

Mobile Robot Localisation using Laser Range Patterns: The work presented 
here involved the development of an algorithm to utilise data obtained from a 
Laser Range Finder -mounted atop a 4-wheeled robot - to estimate the pose of 
the robot (Coordinates x, y, and θ). The complexity and concept behind the 
method were to be kept in line with the LAMP navigation language already 
implemented on the same robot. 
A two stage procedure was designed by which the algorithm searched for 
points ranged on particular objects in the scan. These objects (beacons), 
planted specifically for localisation, are arranged in a certain geometric pattern 
which enables their identification. This identification is then followed up with a 
confirmatory procedure in which the scan is probed for the existence of some 
known permanent feature whose position is described relative to the beacons. 
The location estimate is then obtained using trilateration and a knowledge of 
the beacon position in the global coordinate system. 
An extension of the procedure saw the introduction of more than one set of 
beacons into the environment with the algorithm searching the laser scan for 
each possible configuration. 
The results indicate good performance with position estimate errors of less than 
five cm and orientation errors of less than one degree.A simple integration into 
the existing navigation system allows the method to be utilised to provide for a 
purposeful and abreviated start to a LAMP navigation mission. 
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1. Introduction 

Today, as some professionals in the field of mobile robotics will testify, many of the 
problems in the field of localisation and navigation of Mobile Robots have been solved. 
Although there still does not exist one unique solution to satisfy the vast gamut of 
problems, several techniques and approaches showing robust performance have emerged. 
Nonetheless, the quest for increased robustness and versatility continues. 
Localisation is the process by which the robot control system makes use of sensors or some 
other means to estimate its position in the real world. Various ideas have been put into 
practice over the years in an attempt to obtain satisfactory estimates of the location of 
robots at various instances. With the continuous improvement in sensor technology and 
their ever-reducing cost, more ambitious implementations of localisation algorithms have 
appeared. Research work in localisation is developed with particular operating conditions 
and specific environments or types of environments in mind. Tailoring the localisation 
procedure to the level of hardware and software sophistication of a particular situation is 
essential. 

1.1. Framework 

Activity on robotics at the Department of Mechanical Engineering, University of Aveiro, 
began in early 1997 when a mobile robotics platform (Robuter III from Robosoft) was 
purchased by the department. The main thrust has been to develop techniques for 
autonomous and semi-autonomous navigation, which obviously must rely on more or less 
developed perception. Early activities created a framework for robot higher-level control, 
by developing a modular navigation architecture where perception consisted only of 
odometry and ultrasonic sensors [Oliveira et al., 1999]. A higher level of control was 
achieved with the introduction of the concept of navigation mission made up of navigation 
tasks, intended to define a more robust navigation application. After a study on gyroscopes 
[Oliveira and Santos, 2000], a gyroscope from KVH was added to overcome some 
limitations imposed by odometry, and even to allow for enhanced navigation [Oliveira and 
Santos, 2000b]. In addition, a laser range finder from SICK was installed to overcome 
some of the limitations of the ultrasound, and navigation reached a new level of 
sophistication allowing automatic crossing of doors with much more efficiency than with 
ultrasonic sensors. The navigation mission concept had reached an interesting level to 
evolve towards robust autonomy [Santos and Oliveira, 2001]. 
In this context, from the remaining issues necessary to address for a more complete 
navigation system, robot self-localisation was the one with no dedicated activity so far. 
The presence of the laser range finder upon the robot allowed for an implementation of a 
laser-based localisation. 
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1.2. The robot platform  

The robot platform utilised in this work is the, four wheeled Robuter III from Robosoft SA, 
France equipped with twenty-four Polaroid ultrasound (US) sensors, an eye-safe Laser 
Range Finder (LRF) from SICK, a system for odometry and a fiber-optic gyroscope. The 
independently powered rear wheels allow for velocity and directional control. The 
odometry is updated every 50ms and has a resolution of 0.1mm. 
The US sensors have a range of around 8 meters with uncertainties of under 1cm under 
optimum conditions with low measurement rates of around 4-5 Hz. These were included in 
the original platform and are controlled by the robot hardware. 
The LRF is a SICK LMS200 laser range finder that provides a 180º-wide depth scan. The 
resolution, maximum measurable depth and other parameters of the range scanner can be 
set up as required. 

 

 

Figure 1-1. SICK laser range finder LMS 200 with direction of scan 

An IBM PC clone, running Linux, and referred to as the ‘onboard computer’, is placed on 
the robot. This machine, at present, is used primarily to control the communication link 
between the robot and the stationary remote computer. It is connected via serial and 
parallel ports to the robot CPU and by means of an Ethernet card to a station of a wireless 
Ethernet modem. The role of this computer, however, is set to grow in importance, as it 
shall host some navigational functions in the near future. The connections to the robot are 
made through the serial and parallel ports. One serial and the parallel port are used for the 
transfer of commands and programs to the robot CPU while the other serial port is 
exclusively used to monitor processes running on the Robuter. The ports on the robot CPU 
are utilized for the purpose of data exchange with the onboard computer and for 
communication with the LRF and the gyroscope. 
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Figure 1-2. Communications set-up 

The fixed station of the modem is connected to the Department of Mechanical Engineering 
network through a LAN hub. This arrangement allows any computer having access to the 
LAN to act as the remote workstation in order to ‘telnet’ the onboard PC, execute 
commands and transfer programs and data to and from the robot CPU. 
The robot runs a real-time operating system called Albatrostm, created specially to run 
multi-axis or multi-sensor machines efficiently. The system has a real-time kernel, I/O 
drivers, a generalized PID trajectory generator, sensor read modules and a command 
interpreter. The system can also run application programs developed by users. 

1.3. Navigation and mission control 

In earlier projects of the mobile robotics and automation laboratory (LAR) of the 
Department of Mechanical Engineering, a mission programming language has been 
developed for use on the robot platform. The Language for Autonomous Mission Planning 
(LAMP) is a tool that can be used by an operator to set up a mission, using a qualitative 
description of the topology of the environment [Santos et al., 2001]. The kernel feature of 
LAMP is that the robot mission may be planned and executed by utilizing the approximate 
position and layout of entities to trigger the beginning and the end of individual phases of 
the mission. 
Although the absolute position of the robot through odometry is maintained, the same is 
not utilised and the detection of objects in front of the US sensors provides a sort of 
external referencing. Individual stages are set up either as closed loop feedback or as open 
loops. This method partially obviates the necessity of the robot knowing where exactly it is 
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in the environment. Setting up one or more initial stages allows the robot to take a 
particular position and/or orientation, and thus work without an initial location estimate. 

 

MOVE LV –20 AV 0 USG 800 SEN 13 
Move backwards (straight down, linear velocity 
20, angular velocity 0) till sensor 13 measures 
less than 800 mm. 

MOVE LV 0 AV –10 ANL 90 Turn in same place, Clockwise Through 90º 

MOVE MV 25 PS 2 USG 700 SEN 1 DIL 1000 OR 
Follow parallel wall on side 2 at a mean velocity 
of 25, till sensor 1 meets obstacle at 700mm or 
till at least 1 meter of distance is covered 

SETP PS2 SD 0 Set parallel to side 2 (distance no issue) 
CROS SD 900 Cross doorway and travel 900 mm 
MOVE LV 15 DIL 700 Go 700 mm in straight line 

Table 1-1. Some typical LAMP commands 

By combining the low-level instruction sequences that the Albatrosstm provides, with the 
data from the sensors (Ultrasound sensors, LRF, Odometry and Gyroscope), LAMP allows 
the robot to follow flat walls, stop upon encountering a feature somewhere around the 
robot, cross doorways, etc. An illustrative mission is shown in Figure 1-3. 
While the method has proved to be quite successful for the purpose for which it was 
intended, it still has undeveloped features in the areas of obstacle avoidance and a means 
for absolute localisation. The latter would allow a mission to be less specific and less 
dependant on the robot’s initial position and orientation. It would also save on mission 
execution time. The present work aims to help fill the void left by the lack of such a means 
for initial localisation of the robot. 

 
Figure 1-3. A navigation mission with associated LAMP code. 

Sequence of 11 steps to execute the mission 
presented in the figure at left 

1. MOVP MV 2 0 PS 2 USL 500 SEN 1 
2. MOVE LV 0 AV 10 ANL 90 
3. MOVP MV 20 USL 1000 SEN 1 
4. MOVE LV 0 AV –10 ANL 90 
5. MOVE LV 20 DIL 1500 
6. CROSS 
7. MOVE LV 10 USL 3 00 SEN 1 
8. MOVE AV 2 0 ANL 90 
9. MOVP MV 2 0 PS 2 USL 500 SEN 1 
10. MOVE AV 20 ANL 90 
11. MOVP MV 20 PS 1 USL 300 SEN 1 
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1.4. Interfacing with the FMS 

As part of an ongoing project, there is the need to interface the mobile autonomous robot 
with the Flexible Manufacturing system installed in the CIM laboratory at the Department 
of Mechanical Engineering. In this situation, the robot will play the role of a flexible AGV. 

 

Figure 1-4. View of the CIM with the gantry robot and door connecting to the LAR 

More specifically, the Robuter must interface with a gantry robot, which at present 
simulates an Automated Storage and Retrieval System (ASTR). For this purpose, the 
Robuter will have to approach the gantry robot correctly, position itself beneath it and 
relay the host computer the exact position of the part pallet with respect to a coordinate 
system that the gantry robot can also reference. The precision of positioning required for 
this task is relatively high, typically of the order of one or two centimetres. 
The FMS runs using a proprietary ASCII-based messaging protocol implemented on a 
common Ethernet network. Using DDE transfer between the host computer and the various 
workstation controllers, ASCII messages are exchanged, through the Ethernet network of 
the department, between the host and remote stations with instructions, acknowledgements 
and combinations thereof [SantosJ et al., 2000]. Since the robot is accessible to the FMS 
controller, the robot shall be requested to approach the gantry robot, and queried as to its 
present position. 

1.5. The Problem to be solved 

The Figure 1-5 shows the workspace of the robot without any furniture, a region that spans 
two laboratories; the Laboratory for Automation and Robotics (LAR) and the Centre for 
Intelligent Manufacturing (CIM). A typical robot mission might involve starting up from 
its parking position, moving towards the door that joins the two laboratories, negotiating 
the narrow passage, heading for the gantry robot and positioning itself after which a part 
transfer might be executed. 



 
 
16

 

Figure 1-5. View of the robot workspace, laboratories LAR and CIM 

Localisation of the robot was defined as being necessary for two distinct stages of the robot 
mission. The first is at the time of initiating a mission and the second at the instance of 
interaction with the gantry robot of the FMS. These two stages of the robot mission require 
that the robot rely on some means of position estimation in order to be able to perform its 
tasks. 

1.6. Initial localisation 

 
Figure 1-6. View of the LAR with depiction of typical parking area of the robot 

This procedure can be characterized by two assumptions: 
1. No estimate of the robot position is available. 
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2. The need for localisation is expected to occur within the confines of a section of a 
hall, in which the robot is usually parked. 

It is pertinent to note that while the X and Y starting coordinates of the robot are 
coordinates of interest, the initial orientation usually has a greater utility for the LAMP 
mission definition. 
It is sought to automate the initial localisation procedure so that it can be seamlessly 
integrated within the existing mission definition. Since the system at the time of start-up 
has no other way of verifying the location estimate as provided by the localisation 
algorithm, the automation of this procedure requires that the probability of erroneous 
detection be kept to a minimum. 

1.7. Final localisation 

 
Figure 1-7. View of the CIM showing gantry robot with robot final position 

The robot must perform some of its functions in conjunction with the Flexible 
Manufacturing System (FMS) installed in the CIM laboratory. More specifically, the robot 
is to behave like an Automated Guided Vehicle (AGV) interacting with the computer 
controlling the FMS and transferring parts to and removing parts from the FMS with the 
aid of the gantry robot. To succeed in this role of AGV the robot has some position 
estimate needs. 
It must obtain a location estimate other than the one provided by an odometry update of its 
initial position. This allows for a relatively more precise localisation next to the FMS, the 
culmination of a robot mission. It also signifies that the error of the position estimate at the 
gantry robot is independent of the length and nature of the path that the robot followed, 
allowing the system mission capabilities to be augmented.  
In its role as an AGV, the interaction with the gantry robot of the FMS shall be utilized to 
transfer objects from the robot to the gantry robot and vice-versa. The upper bound on the 
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estimation error of the location estimate must be evaluated. In addition, a communications 
protocol must be implemented for the transfer of position requests, and confirmation 
commands. 
It was decided to utilize the same method developed for initial localisation to allow the 
robot to estimate its position at the gantry robot. An evaluation of the suitability of the 
algorithm to perform localisation with sufficient accuracy is necessary. 

1.8. A Brief description of the proposed solution 

If localisation is to be done with the aid of landmarks, the most attractive choices for use, 
in the interests of keeping the environment untouched, are natural features such as 
furniture, pillars or other structural features of the building. 
However, the absence of prominent similar features throughout the extents of the 
laboratories prompted the use of artificial features inserted in the environment to aid in the 
localisation process. The solution that was adopted, in an attempt to emulate pillars or 
similar natural features, was the erection of multiple poles (PVC pipes and vertical strips of 
paper were utilised), arranged in a regular pattern and oriented in some known way with 
respect to some other, permanent, feature of the environment. The process of localisation 
attempts to locate any feature that might be present (the individual distinct beacons that 
make up the ‘landmark’ together with the additional information as regards the relation of 
the feature with regard to the environment) and match it with the list of features that it has 
stored within the program. The program contains some information about the features, 
including its absolute position, allowing for an estimation of the location of the robot. 
The process of identification of the artificial landmarks has been broken up into two-
stages: 
In the first stage it is attempted to glean out ‘possible’ individual beacons from the data 
obtained from the laser range scan. Differences in the pattern and in the arrangement of the 
beacons allow more than one landmark to be set up at any time. 
The second stage involves confirming the hypothesis generated in the earlier stage. For 
each of the hypothesis generated, additional available information is utilised in order to 
confirm the identification of the beacons. This additional data is chosen in such a way that 
it is as unique as possible for each feature and identifies a landmark with a high 
probability. 
A pre-processing stage has also been incorporated to improve computational efficiency and 
increase algorithm efficacy. 
While initial algorithm development was attempted in C++, frequent alteration and a 
greater reliance on simulation to need to aid algorithm development led to the adoption of 
Matlab for Windows® environment. The program developed in this environment was then 
ported without much difficulty into the open source Matlab-like program Octave, which is 
provided along with most installations of Linux. Some functions that exist in Matlab had to 



 
 

19

be re-written for Octave. Computationally intensive functions were precompiled using the 
‘wrapper’ classes provided in Octave. 

1.9. Outline of this document 

Chapter 2 attempts to place the present work in the framework of research that has been 
carried out in the field of localisation. It presents the state of the art, focussing on 
localisation methods that specifically utilise LRF scanning. Chapter 3 describes the work 
undertaken, the physical characteristics of the landmarks as well as the software developed 
for the purpose of the algorithm. Chapter 4 presents the results obtained from the 
implementation of the algorithm. It presents details of the performance of the algorithm in 
different settings. In chapter 5 the way to set up the program for a particular beacon 
configuration and positioning is explained. Chapter 6 summarises the conclusions. 
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2. The State of the Art 

2.1. Introduction 

The problem of robot navigation in mobile robotics can be thought of, as having three 
broad, and often overlapping, sub-categories: 

1. Robot Localisation 
2. Environment mapping and  
3. Robot planning and control 

Most research in the field of mobile robotics is carried out in these three areas. They have 
been treated either as separate areas or as interdependent facets of the same problem. The 
solutions that have emerged either group together independent problem resolution 
techniques or result in new solutions that try to solve more than one problem 
simultaneously. The complexity of the problem at hand and the limitations imposed by the 
computing and sensing hardware has resulted in the fact that, despite there being many 
techniques that solve the problem of robot navigation most of these either impose severe 
constraints on the environment or attempt to solve a sub-problem in the field. 
While there have been quite a few relatively elegant solutions presented, to aid in the 
resolution of the problems of localisation and mapping taken individually (the location 
being known and the map unknown or vice versa), it has been only over the last decade 
that the resolution of the first and second problem, taken simultaneously, has had some 
success. Concurrent Mapping And Localisation (CML) or Simultaneous Localisation And 
Mapping (SLAM) are terms used to refer to algorithms that attempt to solve the problem of 
robot localisation and environment mapping and updating at the same time [Thrun, 2002]. 
Over the next few sections a brief examination of the current state of the art in the field of 
localisation is carried out. While issues in environment mapping are beyond the scope of 
this work, they will be mentioned in the course of the description of techniques in which 
localisation is inextricably linked to mapping. 
The next section attempts to situate current efforts in the history and evolution of research 
in the area of mobile robots, followed by a section that takes a look at the big picture in the 
area of localisation. A range of techniques that are current topics of research are mentioned 
here in brief. The last section introduces some of the work carried out with laser range 
finders by researchers in the field as a precursor to the presentation of the details of this 
work in chapter 3. 

2.2. General trends in robotics research 

The following was compiled based on a presentation by W Burgard at a summer school at 
the EPFL, Laussane in the summer of 2001[Burgard, 2001]. 
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2.2.1. Classical robotics 
With the onset of widespread automation in automotive plants in European and Japan, in 
the mid–70’s, similar technologies began to be applied to the field of mobile robotics. 
Namely, these techniques involved the resolution of tasks that could be defined with exact 
models. Sensing was kept to a minimum or altogether dispensed with. This initial phase 
was marked by the desire to show the usefulness of robots at repetitive, unchanging tasks. 
Versatility was still relatively unimportant at this stage. 

2.2.2. Reactive paradigm 
In an attempt to allow robots to live in the Real-world and work with others of their kind or 
with other types of entities, such as humans, robots began to be equipped with sensors, 
typically ultrasound sensors and, to some extent, light based devices. This phase can be 
characterised by the absence of an overall model that could utilise sensor inputs to attempt 
to convincingly produce an answer to the question “Where am I?” except in the case of a 
few extremely simple situations. Sensors were thus utilised to enhance safety, detect end of 
path and path interference. The emphasis here seemed to be on the completion of repetitive 
tasks with the added advantage of obstacle avoidance and some other interaction with the 
environment. In addition, robots began to be equipped with some computing power that 
could be programmed and re-programmed to deal with varying tasks, instead of the 
hardwired machines of the earlier generation. 

2.2.3. Hybrids 
With the development of reliable sensor technology and computers, robots began to 
experiment doing non-standard tasks. Equipped with the ability to better read their 
environment and a high-level model that tried to estimate the position after having 
accumulated and integrated the various sensor inputs, robots could now begin to attempt to 
answer the question “Where am I?” in a number of situations. Also, the robot tasks began 
to be separated out in levels. By organising the various tasks in a hierarchical fashion with 
basic tasks left to be implemented by independent modules at a lower levels and 
comparatively complex tasks being carried out by successive higher levels designers could 
now concentrate on the ‘whole picture’ and better implement models. 

2.2.4. Probabilistic approaches to robotics 
Robots soon came to be equipped with sophisticated models and better sensorial 
capabilities, developed so as to allow them to better respond to solicitations made by 
‘perfect’ or laboratory-controlled conditions. Researchers now turned their attention to less 
than perfect environments in which the earlier class of methods would lead a robot to get 
lost either because the robot’s knowledge of the environment was imperfect (or the 
environment itself had changed with time), because the robot’s sensors were not able to 
give a sufficiently clear and accurate idea of the environment around it, or because the 
actual environment was simply too complex for any exact model to handle. 
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In short, robots have to work in a world of noisy sensors and incorrectly represented 
environments that often change with time. In other words, both, the location of the robot 
and the map are uncertain. The answer here is to attempt to develop methods that account 
for inaccurate sensors, inaccurate models of the environment and attempt to compensate 
for this inaccuracy by relying on other information, typically from the past. This generation 
of robots, which have been around the mid-90’s, has also seen a better integration of 
environment models and sensing. 

2.3. Probabilistic techniques to handle sensorial inputs 

As mentioned above, sensor noise is an ever-present problem in mobile robotics. A study 
of the behaviour and limitations of the sensors employed usually allows for a development 
of a “sensor model” which attempts to relate the output provided by the sensor with 
various input parameters or factors that might affect sensor performance. By exploiting the 
uniqueness, or rather, the relative uniqueness of the sensor readings obtained under certain 
conditions, non-plausible possibilities can be eliminated and a measure of sensor reliability 
can be obtained. In mathematical terms, the concept of probability is used to quantify the 
chances of obtaining a particular set of sensor readings or, of being at a particular place. 
The principals of conditional probability are made use of in order to combine data from 
many sources to evaluate the probability of the outcomes. Baye's rule of conditional 
probability is the cornerstone of methods for this purpose. 

2.4. The basics of localisation 

Localisation is the process by which the robot control system makes use of sensors to 
estimate its position in the real world. With the continuous improvement and reducing cost 
of sensors, more ambitious forms of implementation have appeared. Most of these methods 
utilise one or more of the following basic methods and are utilised both for absolute 
localisation and pose tracking. 

2.4.1. Dead-Reckoning methods 
These are associated with the integration of incremental-motion information over time and 
are essentially pose tracking methods. Almost all commercially available robots come 
equipped with encoders that enable the robot control system to perform odometry. The 
easy access to this source of data means that most localisation systems make use of 
odometry data in their localisation algorithms. Another group of sensors that allow dead 
reckoning are heading sensors. Gyroscopes and accelerometers fall under this class of 
devices. These devices were quite expensive in the past but there has been a fall in the 
price of fibre-optic gyros, making them a very attractive proposition [Oliveira et al., 
2000b]. 
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The advantages of dead-reckoning methods derive from the fact that they are completely 
self-contained (do not require interaction with the environment) and allow high sampling 
rates. Their principle of operation, however, results in their continuously accumulating 
errors in proportion to the passage of time and distance covered. This means that besides 
the position estimate fed to the robot at start-up, correction of the odometry error is 
required if reliability is to be maintained over an extended distance and time. The 
following is quoted from [Borenstein et al., 1996] as being the reason for the continued 
popularity of dead-reckoning methods: 

“Odometry data can be fused with absolute position measurements to provide 
better and more reliable position estimation. 
Odometry can be used in between absolute position updates with landmarks. 
Given a required positioning accuracy, increased accuracy in odometry allows 
for less frequent absolute position updates. As a result, fewer landmarks are 
needed for a given travel distance. 
Many mapping and landmark matching algorithms assume that the robot can 
maintain its position well enough to allow the robot to look for landmarks in a 
limited area and to match features in that limited area to achieve short 
processing time and to improve matching correctness. 
In some cases, odometry is the only navigation information available; for 
example: when no external reference is available, when circumstances preclude 
the placing or selection of landmarks in the environment, or when another 
sensor subsystem fails to provide usable data.” 

2.4.2. Active beacon navigation systems 
In this class of methods, beacons emitting or receiving some energy, designed so that they 
can be easily picked out, are inserted in the environment. The robot is usually equipped 
with some means of picking up the angle that the beacons make with the robot axis and/or 
their distance from the robot. These are absolute positioning methods in which the absolute 
position of the beacons has to be known. The absolute position of the robot is then 
estimated using trilateration or triangulation. Three or more landmarks must be used in 
order to solve a typical pose problem ( )θ,, yx , unless some additional constraint is placed 
upon the robot’s operating space with respect to the beacons. The equipment is based 
either on radio, ultrasound, laser or infrared transducers. Outdoor systems utilising GPS 
have recently proved to be accurate and relatively inexpensive given their performance 
[Gray, 2000]. In certain cases an indoor GPS system is set up, though this method is 
expensive and does not lend itself to use in many indoor environments. Wulf [Wulf, 2001] 
describes a method by which a robot is led to a visible charging station with the aid of an 
IR beacon. 
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2.4.3. Landmark navigation 
This class of methods utilise beacons that reflect/return ambient or directed energy onto 
transducers that allow the robot control system to detect them from the input data. 
Landmarks can be natural or artificial. Artificial landmarks are those that are introduced in 
the environment for easy recognition by the robot sensory input device. Additionally, they 
might carry additional information such as a bar code or some special unique geometric 
characteristic. Methods utilising ‘natural landmarks’ usually work well in highly structured 
environments and are usually man-made [Borenstein et al., 1996]. The sensor of choice in 
this case is usually vision [Madsen and Andersen, 1998]. 
Usually the various methods work using features that contrast to the rest of the sensed 
environment. Many techniques get around the difficulty of choosing good landmarks by 
designing algorithms that, automatically, select landmarks during an initial training phase 
and utilise a similar method to pick out image features during actual localisation. The 
criteria for selection are the reliability (read uniqueness and high contrast) of a landmark 
and a low probability of occlusion. The performance of these methods is usually affected 
by various conditions including lighting, angle at which the image is taken and distance of 
the landmark from the robot [Sim and Dudek, 1999], [Thompson and Zelinsky, 2000]. 
While it is uncommon to see ranging devices being used without vision in such methods, 
features with distinct signatures such as edges, long walls might be chosen as landmarks to 
be extracted using range finders [Santos and Oliveira, 2001].  
The detection of artificial landmarks is usually much easier as these are optimised in terms 
of uniqueness, position and ease of separation (contrast) from the rest of the image. 
Variously shaped figures and objects have been placed, by different researchers, in the 
environment in attempts to come up with a fast and reliable method of detection. Neural 
networks have also been utilised in the extraction of artificial landmarks from images. In 
the case of outdoor navigation, especially, the above methods have shown great 
effectiveness.  
Another point of interest in the case of continuous pose tracking using Landmark detection 
(both natural and artificial) is that the robot should usually know its approximate position, 
since this allows it to search for landmarks faster. 

2.4.4. Map-based positioning 
This class, if they can be considered so, of methods work by using onboard sensors to draw 
up a local map of the environment after a pre-processing stage in which data from the 
sensors are filtered, evaluated and finally integrated. The system then compares the local 
map obtained at the current point with an appropriately modified image of a stored global 
map. Different procedures might be used to match the global map with the local map [Cox, 
1991], [Drumheller, 1987], upon which, an estimate of the position of the robot is 
obtained. Recently, a lot of research is being carried out in this field and some very 
interesting results have been obtained. The sensors of choice are ranging sensors (formerly 
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Ultrasound and more recently Laser Range finders), though the algorithms sometimes are 
provided with vision and dead reckoning capabilities. 
The global map can be obtained and represented in a number of ways. Two representations 
are frequently seen: geometric and topological representations, though it difficult to clearly 
classify the approach utilised by most methods. 
A geometric map represents subjects according to their absolute geometric position. It can 
be represented using a grid structure –a discrete representation, or using lines and polygons 
in a continuous representation of the environment. Using data from the robot’s current and 
past sensor measurements the existence and position of the various features are evaluated 
and updated. Topological maps on the other hand focus on the geometric relationship 
between features rather than on their absolute location in a coordinate of reference 
[Pradalier & Sekhavat, 2002], [Vale et al., 2001]. 

2.4.5. Vision based positioning 
The large processing power now available on personal computers, together with reduction 
in the cost of digital cameras has resulted in a focus of attention on the possibility of 
localising a robot using a very intuitive method -stereovision. Over the last two decades 
research in vision has resulted in big strides being made in the development of projective 
theory and practical methods to be applied in the case of vision sensors for quick image 
tracking and interpretation. 
In the case of stereovision, the problem essentially consists of trying to interpret the 3-D 
surroundings utilising two cameras aimed at the same scene but separated by some 
distance and angle. The problem boils down to identifying correspondent features in the 
two images. An extension of the problem involves calculating the position of the point in 
the environment that results in the two correspondent images. This might subsequently be 
used in order to reconstruct the surrounding environment. 
Digital cameras have also been utilised as sensors in order to extract certain environment 
features that might be easily reflected in a video image of the environment. For example, a 
large number of methods utilise a single camera, as the sole sensor, [Thompson and 
Zelinsky, 2000] or together with some other sensor such as a range finder [Arras and 
Tomatis, 1999], in order to extract edges. Many indoor environments abound with such 
edge data, commonly generated by wall edges, door, window and wall-picture frames, 
furniture outlines etc. This data is then integrated with the data obtained from other devices 
or from a possible position estimate on a previously constructed map and utilised for 
localisation. 

2.5. A word on probabilistic localisation 

The navigational requirements of robots, in most cases, require relatively precise position 
estimates. The problem of sensorial noise coupled with imprecise environment models 
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work to induce uncertainty in the estimate (after obtaining one). At any instance, a sensor-
equipped robot is armed with more than simply the readings taken by its sensors at that 
point. Namely, it might also possess sensor readings from (a) previous position(s), an 
estimate of the last position it occupied, two or more independent forms of estimating the 
current position, and/or an estimate of the relative location and state of other objects or 
entities in the environment. 
Some or all of this data and information might be utilised in order to improve the estimate 
of the localisation process. Through a variety of implementation schemes, past 
observations might be taken into account and provisions allowing the state of some entities 
to change over time (transitions) might be added. Bayesian filters allow the incorporation 
of new information obtained at each step into a robust estimate. 
The localisation problem involves the resolution of one or more of the following tasks 
[Burgard, 2001]: 

• Position tracking 
• Global Localisation 
• Recovery from kidnapping 

Some of the methods implement in the resolution of these tasks and which explicitly use 
probabilistic techniques are: 

• Kalman Filter- based systems 
• Multi-Hypothesis Tracking systems 
• Grid- based Systems 
• Topological maps 
• Methods that make use of particle filters 

2.6. Localisation using laser ranging devices 

With the reduction in the price of laser ranging devices, the high sampling rates possible, 
and their clear superior performance when compared to ultrasound, they appear to have 
become the ranging device of preference in mobile robotics. In many cases, range finders 
are used as the principal sensor, in conjunction either with odometry, vision and ultrasound 
or a combination thereof. Most of the methods mentioned below are essentially pose 
tracking algorithms, though some also include an initial localisation method. 
In [Cox, 1991] readings from a LRF are subjected to an iterative procedure of rotation and 
translation till ‘convergence’ results in the inverse transformation that produces the robot 
position estimate. Here the objective function to be minimised is the distance of each 
scanned point from the nearest line (as represented in a line model of the environment). 
The iterative procedure works so as to translate and rotate the scan till the sum of squares 
of these distances is minimised. Odometry data assists in reducing the iterations and in 
situations in which matching fails to yield an estimate. 
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Ribeiro and Gonçalves in [Ribeiro and Gonçalves, 1996] utilise pairs of vertical edges to 
obtain a localisation estimate. The environment is scanned selectively in the direction in 
which the edges are expected. An environment model is utilised in order to obtain the 
absolute position of the edges and to choose from among various possible edges. An initial 
position estimate, obtained, in case of a moving robot, from odometry is utilised to aid the 
search procedure and to strengthen robustness of the estimate. 
In [Arsénio, 1997], a LRF is mounted atop a Pan and Tilt Unit (PTU) and the laser beam is 
utilised to obtain a depth picture of the robots surroundings. This comprehensive work 
includes an algorithm that has access to a 3-D representation of the hall. In this map, 
objects with vertical edges, together with the sides that make up the edge, are represented, 
chosen on the basis of contrast and probability of being observed. After acquisition of the 
laser scan, vertical edges are extracted and an attempt is made to match them with the 
vertical edges of objects in the map. To simplify computation and improve results, some 
pre-processing of the data is carried out. In addition, the scanning for features based upon 
an initial estimate of the robot’s current position is performed in order to identify what 
objects might appear in the laser scan and what objects might be partially or fully 
occluded. Occlusion effects and the range of angles through which each edge is visible 
from each cell are taken into account. In order to account for the presence of more than one 
landmark a probabilistic method, Hough clustering, is utilised in which clusters of 
transformation parameters are obtained. While the work described is essentially used for 
pose tracking, whenever the error in positioning is very large a variant of the method is 
utilised to localize without a previous estimate. 
Another example of a feature-based system that utilises a LRF in conjunction with 
odometry is [Jensfelt and Christensen, 1999]. Here, a very reduced representation of the 
world model is utilised, usually limited to four walls representing the outer extents of the 
laboratory. Armed with the assumption of orthogonal walls, the values of the distance to 
the walls are used to update the position estimate, which, otherwise is updated by an 
odometry reading. The X and Y Cartesian coordinates are updated alternatively using 
different walls. The error in the angular orientation, a more serious problem in odometry-
based systems is corrected at every update. 
In [Sequeira and Gonçalves, 1993], a sweep of the LRF is utilised to give a scan, which is 
then matched with a line-representation of the hall in which the robot finds itself. Utilising 
a modified version of Cox’s [Cox, 1991] algorithm, an attempt is made to match the scan 
obtained with the line representation. The paper reported very good precision and a good 
performance, this considering the bulky hardware and slow processing power then 
available. However, from the scan representations presented, the hall seems to be quite 
bare and contains few objects that significantly alter the rectangular space. 
While this section deals with laser range finder–based localization, it is important to 
mention a specific work that, although it utilised ultrasound, is very relevant in the context 
of distance ranging methods. Drumheller in [Drumheller, 1987] describes a multistage 
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algorithm is utilised in which data from US sensors from all around the robot are used. 
From data obtained from an US scan, an attempt is made to extract line segments. Using 
interpretation trees, the lines scanned are then matched with actual walls (and null walls). 
Special techniques for refinement and ambiguity handling are also included. In a similar 
vein [Dudek and Paul MacKenzie 1993] provide another method by which the scan data is 
viewed as being essentially lines. An iterative matching scheme is then devised that 
attempts to fit the scanned lines to actual lines existing in the model. 
[Arras and Tomatis, 1999] attempt to introduce a vision sensor, a CCD camera, to a robot 
already having a localisation system based on a LRF. The stand-alone LRF-equipped 
system achieves good performance in rooms in which the environment is made up of 
distinct features. The performance of the system undergoes a drastic reduction in efficacy 
when presented with long corridors and situations in which the laser beam is subject to 
specular reflection. With the aid of a vertical-edge extraction procedure the method seeks 
to present data that are more reliable in situations in which the LRF is prone to provide 
unpredictable or highly ambiguous data. Pose estimation in the problematic environments 
mentioned improved with the addition of the CCD camera. 
[Vale et al., 2001] describe a robot navigation system for a structured environment 
consisting of corridors and crossings. Ranged measurements below a threshold value only, 
are utilised (to simplify data processing and to handle diffraction effects). The data is 
grouped and lines are fitted to the groups. The algorithm provides the possibility of using 
more than one line to characterize points in the same group. While the principal method of 
localisation is odometry, a filter is utilized that updates the odometry-provided estimate 
using laser range data. A lower level of control utilizes ranged measurements to correct the 
robot orientation and lateral position within the corridors, and a higher level of control is 
utilized to build the map, explore as yet un-revealed portions of the map, arrive at pre-
programmed destinations and avoid obstacles (stops and retreats in the face of objects in its 
path). The environment is defined in terms of nodes and arcs. Nodes are represented with 
their position, the number of times traversed and the arcs leading from them. 
[Pradalier and Sekhavat, 2002] present a method for localisation using a laser range finder 
and artificial landmarks. They call the method SMLAM for Simultaneous Matching, 
Localization and mapping since it involves a matching phase for localisation and a map-
building phase. The distinguishing feature of the method is the creation, from a map of 
features already mapped (and subsequently updated, the ALM), two properties of the 
layout of the map features. Termed ‘invariant’ properties, the authors have constructed 
triangles from the landmarks taken three at a time. Another set of ‘invariant’ properties, 
utilized when the triangles cannot be used, consists of distance segments between pair of 
landmarks. The ‘invariants’ are held in two different databases, (RDB) s ordered by area 
(or length). From the laser scan, possible landmarks are extracted. These then become the 
observed landmarks (O) s. Invariant properties are then calculated for these same. A 
matching is attempted with the list of invariants in the RDBs depending on the number of 
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Os and their layout (position estimate is utilized). Triangles are matched using area and 
subsequently superimposition matching. By the application of matched landmarks to the 
ALM, the rotation and translation transform required to obtain the position estimate are 
obtained.
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3. The Proposed Localisation Method 

3.1. Introduction 

The environment in which this work has been carried out consists of a hall containing a 
large number of objects (tables, laboratory-stools, cables, boxes, window-frames, etc) that 
appeared at the height of the laser scan, which means that the laser-scan is heavily laden 
with information. This information consists of points reflected off smaller features such as 
the legs of tables and chairs as well as other points reflected off larger planar surfaces. The 
proposed method for localisation in this work envisaged the utilisation of the presence of 
an artificial landmark placed somewhere in the environment at the height of the laser scan 
to perform localisation. This landmark would be effective for a certain set of pose 
variables, i.e. over a certain region of the environment and with the robot oriented through 
particular directions. Although only one landmark is used to localise at any given moment, 
more than one landmark might be set up in order to obtain robot localisation through a 
larger set of pose variables. While it seems a relatively easy task to use trilateration and 
geometric transformations (rotation and translation), after the identification of the 
landmark, to estimate the robot’s position, it was not certain if a two–dimensional laser 
range scan to detect landmarks would work consistently and with a sufficiently high rate of 
successful detections. The extraction, with the aid of a signature of a particular landmark 
from among all this information, with a low margin of error, seemed not to be a trivial task. 

 

Figure 3-1. A 360º-wide image of the LAR 

It was decided to utilize ‘composite’ landmarks, or landmarks made up of two or more 
individual and separable components. This was done for two main reasons: 

1. To better control the detection of landmark’s signature in the laser scan. In this way 
bounded regions, some containing points and others without points can be 
anticipated. The signature of a landmark would then consist of an organized pattern 
of regions some of which would include a certain number (or proportion) of ranged 
points while others would be noted for the absence of points. 

2. To make the procedure less dependent on the distance of the robot from the 
landmark. It is known that due to the fixed angular resolution of the LRF, the points 
obtained on the surface of an object become further spaced out as the distance of 
the object from the LRF increases. This means that the information about objects 
ranged at a larger distance is less than that in the case of closer objects. Since an 
object identification approach (and not a data-map matching approach) is sought, a 
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trace of the surface of the object is not required. By using distinct separable 
components, that, as a whole, represent a landmark, checks can be made for the 
presence or absence of surfaces rather than the shape of the surface. 

At this point, it might be mentioned that, in order to aid the task of landmark extraction, 
additional information such as the presence of natural (more permanent) features and open 
spaces and their distribution with respect to the objects inserted in the environment might 
be utilized. Attempts aimed at detecting and eliminating features such as walls, table-legs 
and others, allow for significant improvements in the performance of the algorithm. Since 
the absolute position of the landmarks is known beforehand to the application, it will then 
be able to calculate the position of the robot and its orientation using simple algebraic 
expressions. In addition, the same program might be utilized to pick out one among many 
landmarks, making use of known variations in geometry to accomplish this task. 
This project involves two main aspects: 

1. Choosing a good template for the landmark configuration so that the pattern 
detected by the LRF is as unique as possible (i.e. the intersection of the laser beam 
with the other features in the environment should not result in erroneous 
identification of the landmark). 

2. Designing an algorithm that, though simple to implement, is effective in the 
recognition of the landmarks. While it is possible to implement complex 
algorithms, the aim was to design and utilize a set of simple algorithms that might 
be easily run on the onboard computer or on the Robuter processor itself. The 
challenge is to discard points that are thought not to belong to the landmarks, while 
avoiding the discarding of those that might actually represent the landmarks. 

Since the robot has no estimate of the position it occupies at the start of the mission, the 
algorithm must work without any previous position estimate. Thus, the signature of the 
landmarks must be very distinct if a positive identification of the landmark is to be made 
with a high confidence. 

3.2. Setting up the landmarks 

Multiple vertical poles (hereafter referred to, interchangeably, as markers or poles) are 
arranged along a straight line with a constant lateral separation. Sets of three cylindrical 
plastic pipes were utilized in the exercise, though the program can easily accommodate a 
greater number or poles (a smaller number of poles would not work as there would be no 
pattern to confirm in the alignment of the poles). A greater number of poles might be 
thought to be desirable for reasons of greater reliability in the identification phase  
However, a greater number of poles presents other problems, mainly as a result of a larger 
landmark (which reduces the region over which the landmark is visible in its entirety and 
without suffering occlusion. 
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In Figure 3-2 a set of three poles is shown arranged against a wall, the region around the 
poles and between the poles and wall being free from other objects. The ‘wall’, in this 
case, is actually a glazed surface (covered by a curtain to prevent the beam from passing) 
that is largely free of furniture and other objects. The pipes are common, commercial-grade 
PVC drainage pipes, with the external diameter measuring ca. 13 cm. The space between 
the poles, in the above case, was fixed at 0.5 m, giving us a total landmark width of ca. 1m. 
The parameters such as the distance of the landmark from the wall, the length of the wall, 
the open spaces in front of and behind the landmark can be configured and adjusted for 
other landmark configurations and environments. 

 

Figure 3-2. An example of a typical landmark set-up. 

The broad ideas behind setting up a landmark are as follows 
1. Poles are set up along a straight line that is either parallel or perpendicular to a 

major surface 
2. The poles must be uniformly spaced out. Additionally, the distance from any one of 

the extreme poles to the nearest object, other than an adjacent pole, must be 
superior to the sum of the pole spacing and the pole width. 

3. Any landmark will be effective over a region of the work environment. The choice 
of where the poles are located and their orientation should reflect not only the 
general orientation and position usually taken by the robot but also the path taken 
by the robot. 

By varying the factor variables mentioned above such as the orientation of the poles, the 
spacing and their position in the hall, the algorithm shall distinguish between different 
landmarks. The algorithm must be able to distinguish a landmark from among background 
information and from among other landmarks. The signature of the landmarks as they 
appear in the ranged data must not only be distinct from one another, they must be 
distinguishable from other spurious landmarks. The task of identifying the poles from 
among the other data in the laser scan is left to the algorithm described in the next section. 
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3.3. Processing the laser range data 

Whenever localisation is required, a procedure is run to fetch a data string from the LRF, 
process the laser range scan (as shown in Figure 3-3) and attempt a positive recognition of 
the previously defined landmarks in the environment. 

 

Figure 3-3. Example of a raw laser scan (180º wide with 1º of resolution) 

In all the laser scans the rotating mirror of the LRF is located at [0,0], Cartesian 
coordinates. The X axis is defined by the intersection of the horizontal plane at which the 
range is obtained and the vertical plane of symmetry of the range finder. The Y-axis is 
defined by applying the right-hand rule to the scan as viewed from above the LRF. 

 

Figure 3-4. Radial plot of laser range data 

The range measurements in radial ( )θ,r  coordinates are transformed into Cartesian ( )yx,  
coordinates using: 
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x laser_data = rlaser_data x cos(θlaser_data) 
y laser_data = rlaser_data x sin(θlaser_data) 

 
The Laser Range Finder (LRF) was set up to obtain scans with angular range of 180º and a 
resolution of 1º. System error is put at a typical ± 4 cm (for a distance of less than 20 m) 
and the standard deviation is typically 5 mm. The LRF is set up to detect the emitted laser 
beams that are reflected by features in its path; the distance to the reflected surface is 
obtained through ‘time of flight’ (TOF) calculations. In some cases, the beam passes 
through windows and open doors giving large range values, the limiting case being the 
value corresponding to a ‘time-out’ of the LRF. The LRF is set to standard sensitivity, 
which is adequate for the indoor conditions expected. 
The data processing consists of subjecting the ranged points to agglomerative clustering 
procedures and a series of heuristic eliminatory tests. The purpose of these tests is to 
recognize and extract points that represent the landmarks and the other features. Successive 
tests serve to steadily eliminate walls, other large surfaces, table legs, cable etc and finally 
the landmark. The agglomerative clustering procedures group the points obtained on the 
same feature and also features that are related to their neighbours. 

3.4. The principle of the data-processing algorithm 

The algorithm has passed through at least two evolutionary stages. In a first version, a 
procedure in which range discontinuities aided the identification of salient features was 
utilized. The following procedures were undertaken: 

1. A check for discontinuities in the laser scan data was performed. A central 
differences procedure was utilized on the radial data as a measure of the point to 
point-to-point discontinuity for each ranged point. Only those points that were 
sufficiently separated from their neighbours (after partially accounting for the 
distance of the robot from the surface) were subsequently processed. 

2. These were then subjected to checks for the pole-width and pole-separation criteria. 
Results showed, however, that too many groups of points passed the test resulting in a 
rather large number of false detections together with the correct detections. The differences 
procedure that was employed to make the points stand out was found to work 
unsatisfactorily in some cases as the data points on a pole were sometimes discarded (this 
situation often occurred whenever the robot was quite close to the poles). Another problem 
was the setting-up of the algorithm for the identification of multiple landmarks, a task that 
proved to be computationally very time-consuming. 
To get around the shortcomings of the earlier approach a new procedure was implemented. 
Here, 

1. Points are grouped based on their nearness to others. The nearest neighbour 
agglomerative clustering technique is used with a particular value of the distance as 



 
 
36

the threshold. Clustering stops when the distance between the nearest neighbours is 
greater than this threshold. The resulting groups are then represented by their area 
centroid. Thus, the points lying on the same pole are now represented by a single 
new point. 

2. The separation between these groups of points is tested against a pole separation 
parameter. In other words, the distance between the representative centroids are 
tested. The occurrence of points in this space would signify that the centroids in 
question do not represent the poles. 

Once again, however, it was seen that too many groups of points passed the test. The actual 
procedure is a modification of the two-step approach mentioned above. However, before 
proceeding with the search for landmarks, the algorithm adds a data processing phase to 
eliminate points in the LRF scan that cannot possibly belong to the landmarks. The 
remainder points are now grouped and attempts are made to identify the poles from among 
the groups. In addition, as explained further, a final confirmatory step is performed in 
which checks are carried out for the presence of permanent features and unoccupied spaces 
at some position defined relative to the landmark 
The stages of the algorithm are as follows: 

1. Data Preparation and Pre-processing 
1. Grouping of points. 
2. Elimination of large groups and limiting number of members in a group. 

2. Beacon Extraction. 
3. Landmark confirmation. 

At this point, it might be useful to formalize the schematic of the set-up of the coordinate system and the 
nomenclature that shall be used in the description of the algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-5. Coordinate system set-up 
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All the references, except at the time of calculating the robot position (X robot, Y robot), in 
global coordinates, made to the ranged points, group centroids and beacons are in terms of 
this robot coordinate system. 
Point: A point refers to an x and y Cartesian coordinate pair in the robot coordinate 
system. 
Group: A group refers to a collection of points that are related to each other by the fact of 
their proximity to one another. Groups are formed at the Data preparation and pre-
processing stage by an agglomerative clustering procedure. All points in the same group 
have the same group number. Groups are represented in space by the centroid of the points 

within the group, [ ]
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the group. 
Clusters: In the beacon extraction stage, A second agglomerative clustering is carried out , 
using the nearest neighbour method on the group centroids It is sought to include all the 
beacons into the same cluster and thus ease the computation, especially the fitting of a 
straight line to the centroids potentially representing the beacons. 
Point and Group Removal: The algorithm is fed with the ( )yx,  coordinate pairs obtained 
from the LRF scan. At the outset, any of the 180 points is treated in the same fashion and 
has the same probability of affecting the identification of the landmark. Through the 
successive algorithm stages, points are eliminated from the body of points that will provide 
the position of the beacons. The term removed has been utilized to refer to this elimination. 
The points that are removed might, however, still be utilized in the landmark confirmation 
stage. 
In the following sections, the algorithm details are explained. The illustrations utilized are 
taken with the robot position at a particular position in the hall with a view as seen in 
Figure 3-6. The scan in Figure 3-3 was obtained from this position. 

 

Figure 3-6. A panoramic view of the environment from the robot position 

3.5. Data preparation and pre-processing 

After obtaining the string containing the 180 measurements from the Robuter processor, 
the data are treated to aid the actual search procedure that follows. 
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.  

Figure 3-7. Raw laser scan with box showing sub-region referred to in text below 

The search algorithm for the poles was found to work much faster when the points are 
subject to clustering. This comes from recognising that points lying close to one another 
might belong to the same feature, or belong to features that are related in some way. This 
fact, besides providing information as to the origin of the ranged point also means that all 
the points in the same group can be treated in the same way. 
In this section are described the parameters used to set up the algorithm. To aid the text, a 
specimen laser scan (Figure 3-7) is presented, wherein a sub-region is examined in detail. 
In brief, the steps undertaken in this phase might be summarised thus, following the initial 
clustering, an elimination criterion was utilized in order to remove from consideration 
groups that spanned across an area wider than a specified value. This second step allowed a 
narrowing down of the number of groups within which the beacons might possibly lie, 
resulting in an increase in algorithm efficacy and a reduction in computational time 

3.5.1. Grouping of points 
Great advantage was obtained in the aggregation of the data into groups and their 
subsequent submission, in grouped form, to subsequent processing stages. Through the 
nearest neighbour (also called the single-linkage technique) hierarchical clustering 
technique points separated by a distance inferior to a defined value are included in the 
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same group. A threshold value that attempts to groups points on the same feature together 
(but keeps apart the points belonging to separate landmarks) is used. The value of this 
parameter, the Landmark contiguous spacing, depends on a number of factors as shall be 
explained next. 

Landmark contiguous spacing (LCS) 
The classic way in which the nearest neighbour technique is executed is by the calculation 
of the inter-point distance matrix by using a distance measure (Euclidean or otherwise) for 
every pair of points [Everitt, 1993]. The smallest value in this matrix is then utilised to 
agglomerate the two groups which contain the pair of points involved. Here the matrix is 
recalculated (one row and one column), taking into consideration the constituents of the 
new group. Agglomeration stops when only one group remains, or, when some criterion 
related to the number of groups or the number of points within the groups or the least value 
in the distances matrix is applied. 
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where, for example the element D(3,2), b, is calculated as the Euclidean distance 

( ) ( )2
23

2
23 yyxx −+−  between ( )33 , yx  and ( )22 , yx . This matrix is symmetric. 

Since the end criterion for the clustering is known to be the distance between the nearest 
neighbour, a modification of the above procedure is employed. The LCS is the threshold 
distance to limit the growth of an individual cluster.  
The laser scan is swept one point at a time from beginning to the end. Initially, each 
individual point is taken to represent a distinct group. An iterative process that joins groups 
is then run. Beginning with the first group, the distance of all the points constituting the 
group from all the points belonging to other groups is calculated. Each of these distances is 
then tested against the LCS, and agglomeration takes place wherever the distance is 
inferior to the LCS. The procedure is repeated for the same group till no new 
agglomeration results. Attention is then shifted to the next group. Each group is 
represented by the area centroid, i.e. the mean value of the x and y coordinates, of the 
points that comprise the group. The result of the procedure is demonstrated graphically in 
Figure 3-8. 
In Figure 3-8 the circles, drawn around the points, have a radius that represents half the 
LCS. An intersection of two circles thus indicates that the two points lie within a distance 
inferior, or at most equal, to the LCS. 
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Figure 3-8. Illustration of the group creation procedure using LCS. 

The procedure in the form of pseudo-code is provided below. 
 
for i = 1 to no_of_points_to_be_grouped 
  no_of_grps = +1 

do 
   calculate distance of points in grp to points not in group 
   if(distance < LCS), then agglomerate 

while (agglomeration successful) 
end 
 

This parameter must be decided keeping two things in mind:  
1. Width of the poles: Intuitively the width of the poles should correspond to the 

minimum value of the LCS. This allows for an aggregation of all the range points 
arising out of a single pole into a single group. In practice, a value larger than the 
pole width is utilized in order to account for angular and linear uncertainties of the 
LRF and other effects that result in some dispersion of points. 

2. Distance of the closest object to a landmark-pole (including another landmark-
pole): An attempt is made to include the points obtained on an individual pole in a 
single group, separate from the points obtained from the incidence of the laser 
beam on other surfaces. If the LCS is greater than the distance that separates a point 
on a pole from any other surface (be this another pole, some nearby object or even 
a spurious data point), then the points on the pole will be included in the group 
representing the other surface or vice-versa. Either way, the ability to isolate the 
points representing the pole and the feature(s) shall be lost.  
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The LCS can be varied from a very small value that would result in no aggregation of 
individual points into groups to a large value that would agglomeration all the points into a 
single, very large, group. The number of groups obtained as a result of a particular value of 
the LCS usually depends on the distance of the opaque surfaces from the robot.  
The LCS should be as large as possible as a larger value gives rise to a smaller number of 
groups, each containing, on average, a greater number of points. This results in faster 
processing at the later stages. 

3.5.2. Elimination of large groups  
After grouping, an initial ‘segmentation’ of the data is performed in order to extract and 
remove groups that might belong to large surfaces such as walls, large boxes, cupboards 
etc. The points that are eliminated are not examined further for consideration as part of a 
set of possible poles but will still be used in the Landmark confirmation stage. 

 

Figure 3-9. Elimination of large groups. 

Group spread (GS) 
The previous section described the grouping of points that serve, essentially, to identify 
and isolate, into distinct groups, those points lying on the same surface. A number of 
different features are to be found all around the laboratory. Walls are a especially 
troublesome type of feature since points ranged by the LRF on a wall satisfy the linearity 
criteria required for points lying on the poles and may sometimes satisfy the separation and 
dispersion (groups separated by regions not containing groups) criteria specified for the 
landmark. It is desirable to eliminate walls and other similar, often large features. 
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Large, linear features can, however, be identified and then eliminated by means of a simple 
test. For this, the extent of the feature is verified and then all the features (groups) that are 
longer (larger in a particular direction) than a particular length are eliminated. In this 
process, other features such as clutches of cable, points ranged on curved surfaces, etc 
might also be eliminated. 
The distance separating points in the same group furthest away from each other is 
calculated for each group and compared with the GS. This scheme is acceptable though it 
was originally meant for the elimination of linear features. As mentioned earlier, a number 
of large (spread over space) non-linear groups are also eliminated in the process. It can be 
seen in Figure 3-9 that groups six and eight are large enough to be removed. The size of 
the groups, besides depending upon the features scanned, also depend upon the value of the 
LCS utilized.  
The GS parameter affects the algorithm by separation and elimination of walls and other 
larger linear features and by reducing the number of points in the scan that are passed on to 
subsequent tests. If the value of the GS is too high then all or most of the points will be 
considered and passed on to subsequent test increasing the computing load greatly. This 
value must, therefore, be tuned in order to keep the proportion of points passed on to the 
subsequent tests to a minimum while maintaining in consideration the groups representing 
the poles. 

 

Figure 3-10. Elimination of large features (darker points remain in consideration) 

The procedure utilised to obtain the extreme points of a group is reproduced as follows in 
the following pseudo-code 

for i = 1 to number_of_groups 
 Px = find (min_value, index of min_value) of x coordinates of points in group i 
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   Py = find (min_value, index of min_value) of y coordinates of points in group i 
 

Qx = find (max_value, index of max_value) of x coordinates of points in group i 
Qy = find (max_value, index of max_value) of y coordinates of points in group i 

 
if (max_x – min_x > max_y – min_y), then  

span_of_group = Euclidean dist bet Px and Qx 
 else 

span_of_group = Euclidean dist bet Py and Qy 
 end 
  

reject groups if span_of_group > GS 
end 
 

The lower limit for the GS is the size of the pole. If the GS is set to less than the width of 
the pole, the groups representing the individual poles might get eliminated. By eliminating 
features that are clearly larger than the poles, a large number of points can be removed as 
seen in Figure 3-10. 

 

Figure 3-11. Isolated groups eliminated (dark Points remain in consideration) 

Besides the above two procedures that are carried out in pre-processing, an additional 
procedure has also been included in order to increase computational efficiency. Here 
groups in relative isolation are removed. These include the odd cable, furniture legs, 
persons moving around the hall and other isolated instances. The occasional odd group 
obtained by specular reflection was also eliminated in this step. These groups are removed 
by verifying that each of them has no neighbours closer that the distance given by the sum 
of the pole separation and the pole width. This criterion is provided to prevent the 
elimination of groups that represent the poles. In pseudo-code: 
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for i = 1 …no_of_centroids 
 for j = 1 …no_of_centroids, j ≠i 
  if Euclidean distance(Ci, Cj) < pole_separation + pole_width,  
then score(i) = +1 
 end 
 if score(i) <= 1 eliminate centroid i 
end 
  

The result, at the end of this procedure is seen in Figure 3-11. 
At the end of this stage, from the original data there only remain groups that represent 
features whose dimensions are approximately the size of the markers.  

3.6. Beacon extraction 

At this stage, a reduced number of groups of points exist, some of which might contain 
some of the three markers. As mentioned earlier, these groups are represented by their 
centroids. 

 

Figure 3-12. Beacon extraction (polygons indicate estimated centres of the poles) 

The earlier tests were designed to minimize the chances of elimination of groups that might 
possibly hold the markers, but there is still a chance they might have been inadvertently 
discarded. Such a situation is not remediable. In addition, if the scan were taken in a 
random fashion, there would be a high probability that the complete landmark is not 
observed at all, and, hence, does not even appear in the scan. If, however, the markers do 
lie in one of the groups, this step is entrusted with the task of extracting them. 
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A new clustering is carried to bunch together the existing groups. A procedure similar to 
the one used in the Data preparation and pre-processing stage is carried out, the 
coordinates centroids of the groups being used to calculate the Euclidean distance between 
the groups. 
For each new cluster formed, combinations of centroids taken three (the number of 
beacons) at a time are then analysed. A linear regression analysis is run to test the co-
linearity of the centroids, resulting in a total of ∑

= mi

n Ci

…1
3 (for m clusters and ni centroids in 

cluster i) different linear regression calculations. In order to reduce the number of 
calculations, clusters containing 5 or more centroids were rejected. The regress(Y, X) 
function in Matlab and the corresponding OLS(Y,X) function in Octave were utilised. 
Combinations that are sufficiently collinear, defined through a minimum value of the 
coefficient of regression (a value of 0.8 was utilized in the experiments) are then tested for 
the linear separation between the poles. 
The distance of separation between the three poles is one of the landmark properties 
provided in the problem statement. The distances that separate each of the two extreme 
centroids from the middle one are compared to the inter-pole separation. After 
experimenting with different values a tolerance of 10% was introduced in order to account 
for errors in range measurements and imprecise set-up of the poles. If the two instances of 
linear separation are satisfied, a set of three groups that might possible represent the three 
poles is obtained. After having searched the entire scan for such combinations of points, 
these are then passed on to the confirmation stage (more than one successful combination 
can be passed on for verification). 

3.7.  Landmark confirmation 

The Beacon extraction stage sometimes passes more than one combination of points, either 
because of a false identification or because more than one valid landmark is visible. 
In this stage therefore, other properties, concerning the layout of the landmarks that were 
not included during the search for the beacons, are introduced. More specifically, 
information regarding some possible wall or other natural, more permanent, feature with a 
known location relative to the landmark is utilized. Information regarding some open space 
(clear of features) somewhere in the vicinity of the landmark might also be added. These 
additional properties are defined in terms of the existence of and absence of, respectively, 
scanned points in demarcated rectangular regions around the landmarks. The potential 
trio(s) of centroids is (are) tested against information about the features. 
If the rectangle within which ranged points are expected is defined by the 2 pairs of 
parallel lines 011 =++ cybxa , 011 =++ dybxa  and 022 =++ eybxa , 022 =++ fybxa .   
A voting scheme as explained in the pseudo-code below is set up: 

 
for i = 1 ….l80  (all the ranged points) 
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 if( ),max(11),min( dciybixadc ≤+≤ and ),max(11),min( feiybixafe ≤+≤ ), then 

  vote = +1 
end 

if vote > minimum_vote, then  confirm landmark 
 

In the case of open spaces the vote should be less than a threshold defined for such a 
situation. 

 

Figure 3-13. Bounded regions with and without points 

For example, in the scenario presented in Figure 3-2, if the landmark is related to the wall 
that lies behind poles, and the open area in front of the poles. The original scan data is 
analysed for the presence of points lying in a thin strip that represents the glazed surface 
behind the markers and a large rectangular area in-front of the poles. While the presence of 
the solid feature is necessary, the inclusion of the space devoid of features is optional. 
This confirmatory step is carried out for all the sets of points passed on by the earlier step, 
The last set of points, that pass the confirmatory step are utilised to calculate the robot 
position, i.e., at present, there is no way to handle more than one combination of points. 

3.8. Calculating robot position 

Upon the successful identification of the landmark, the program retrieves the absolute 
position of this particular landmark and works out the rotation and translation 
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transformations required to match the landmark actual position to the position occupied by 
it in the environment. This allows us to calculate the robot pose ( )θ,,YX  in global 
coordinates. 
Referring to Figure 3-5, we can come up with the transformations (rotation and translation) 
required to convert the scan (and the corresponding origin which describes the robot 
position) into global coordinates. 
Suppose the poles are arranged parallel to the X axis of the Global coordinate system and 
in the first quadrant, as illustrated in  
 
If kermrobX −  and kermrobY −  represent the coordinates of the landmark in the robot’s frame of 

reference, and robotmX −ker  and robotmY −ker  are the projections of the distance between the 

landmark and the robot in the global frame of reference (specified in the program), thus: 
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Y  and ξ  = the angle that the x-axis of the robot makes 

with the line containing the poles1. The sum of θ  and ξ gives ϕ . 
Now, 

robotmkerrobotmker XXX −+=  

 
    robotmkerrobotmker YYY −+=  

Giving us: 

robotmmrobot XXX −−= kerker  

 

robotmmrobot YYY −−= kerker , Xmker and Ymker being given parameters. 

 
To obtain the position of the scan points in global coordinates, they shall have to be rotated 
using the matrices for rotation: 

                                                 
1 If the line makes an angle other that zero with the X axis of the global coordinate system, this angle must 
be added in order to obtain ξ . This angle is provided in the landmark parameters and is also utilised in 

order to demarcate the regions within which to check for confirmatory landmarks  
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Combining the two, the general transformation matrix is obtained 
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If the scan is represented by the matrix Original_Scan[] 3xn the final position of the points 
is given by the matrix Transformed_Scan[] 3xn where: 

[ ] [ ] nscann ScanOriginaltionTransformaScandTransforme ×× ×= 33 __  

 

 

Figure 3-14. Superimposition of rotated and translated scan upon diagram of laboratory. 

For visualization purpose, the laser scan has been superimposed on an outline drawing of 
the extents of the environment (bereft of furniture) in Figure 3-14. The Robot pose as 
calculated by using trilateration and linear transformations has been presented. As can be 
noted, the scan after transformation does not exactly superimpose the line drawing of the 
laboratory, there being a translation and rotation error. 
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At the end of the data pre-processing, the beacon search and the landmark confirmation 
stages two outcomes are possible, depending on the results obtained from the Landmark 
confirmation stage, either the application succeeded in isolating the landmarks or failed. 
Failure might arise either because the LRF was not able to scan the complete landmark 
(poles and confirming surface) or because the laser scan did not successfully represent the 
landmark. Occlusion, far-away beacons, incorrect parameters and spurious points are the 
usual reasons for failure of localisation. Chapter 4 presents the results of a system of four 
landmarks that was implemented so that localisation could be carried out through a wider 
range of directions and over a larger area. Such a system might be implemented in part or 
as a whole so that localisation might be more effective and occur over a shorter time. 
The flowchart of the algorithm described in this chapter has been described in Figure 3-15. 
The description of the landmarks and their properties are provided by the user. 

Localisation 
requested

Request 
and obtain 
laser scan

Searched for all 
defined 

Landmarks?

Retrieve absolute 
position from 

identified 
landmark

Calculate 
transformations

Apply transformations 
and output 

localisation estimate

STOP

Identified at 
least 1 

landmark?

Group points 
using LCS Keep 

only groups 
smaller than GS

Cluster groups using 
marker width + marker 
spacing and eliminate 

long groups

Cluster groups using marker 
spacing and eliminate clusters 

containing less than 3 
components

Any goups 
left?

Any 
clusters 

left?

Search for collinear 
groups and verify 

spacing

Possible 
landmarks?

Search for 
presence and 

absence of 
confirmatory points

Yes

Yes

Yes

Yes

No

No

No

No

Yes

No

Define expected 
landmarks

Notify 
localisation 

failure

Figure 3-15. Algorithm flowchart
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4. Experimental Results and Performance Testing 

The efficacy of the algorithm in obtaining a location estimate is a measure of the 
algorithm’s performance. Performance should be evaluated especially at the time of 
mission start-up and at the time of final positioning at the gantry robot. 
Upon the completion of a mission, the robot is usually parked somewhere within the LAR 
(referred to as the common parking region in Figure 1-6). This position might be manually 
altered upon robot shutdown. Consequently, the robot position within the parking space in 
the hall is not known a priori. As mentioned in the introductory chapter, the principal 
reason behind the development of this work was to enable the robot to acquire an initial 
position estimate at the start-up of the robot’s mission. Thus, the ability of the algorithm to 
pick out the landmark from laser range scans taken from several distinct places shall be 
evaluated. The ability of the algorithm to obtain a localisation estimate in the presence of 
multiple landmarks shall be tested. The repeatability of the algorithm is also a property of 
interest, i.e. whether the algorithm is able to consistently detect the landmark when 
different scans, taken from the same spot. 
The ability of the robot to obtain a good localisation estimate (an estimate with a low error) 
at the site of the gantry robot (Figure 1-4) must also be tested. Therefore, the error obtained 
while calculating the position estimate at close range shall be evaluated. An estimate of the 
error that might be obtained in various situations around the gantry robot shall be obtained. 
The following were the tests carried out: 

1. Attempts at localisation at various points in the common parking region given the 
presence of a single landmark. 

2. A test to obtain some measure of the positioning error of the algorithm at a given 
position in the start-up region (comparing the algorithm estimate with another 
obtained using a measuring tape). 

3. Attempts to obtain a localization estimate at various points in the start-up region 
with four different landmarks set up. The ability of the algorithm to discern 
between different landmarks and a demonstration of the landmark layouts that can 
be used is tested here. 

4. Tests to obtain a measure of the positioning error at a few different positions near 
the gantry robot. 

4.1. Test 1- Localisation through the extent of the start-up region 

The robot was placed at various points in the hall and scans were made after a cursory 
check to verify that the poles did indeed lie within the 180º sweep of the laser scan and that 
they were not occluded by other features. A set of three 12.6 cm external diameter poles 
each separated by a distance of 50cm from the other was erected. In a total of 161 readings 
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the algorithm detected 132 instances correctly, corresponding to a success rate of 81%. The 
remainder 19% of non-detections were attributed to various causes. The most frequent 
reason was thought to be due to spurious points that appear between the poles, or points 
that influenced the orientation of the estimated straight line. These ‘spurious’ points could 
not be eliminated by the screening tests and originally appeared with greater frequency due 
to the averaging of ranged data and problems related to the angular resolution of the LRF. 
A modification of the laser set-up parameters allowed for a reduction in the number of 
unsuccessful detections. Other non-detections occurred due to partial or total occlusion of 
the landmark. Importantly, the algorithm made no erroneous detection in all 161 scans. 

Trials 
Correct Landmark 
Detections 

False landmark 
detections 

161 132 (82%) 0 

Table 4-1. Test 1 - Summary of results. 

The actual execution time varied, depending upon number of potential landmark sets in the 
tests. Also, the total time of execution was substantially longer because of the time 
required to obtain the data string from the LRF. 

 

Figure 4-1. Test 1 - Superimposed robot positions and scans. 

4.2. Test 2-Repeatability of the estimate. 

Tests were conducted for two different pole-spacings, each using two different pole sets. 
This allows for a comparison of the effect that the pole spacing has upon the error of the 
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position estimate. The effect that total pole array length has upon the error of the estimate 
may be evaluated. 

 

Figure 4-2. Test 2 - Localisation in the LAR (single scan). 

With the help of a measuring tape, the robot right rear wheel was positioned at (–7.95, 
3.57) and the left wheel at (–8.49, 3.90). The LRF mirror is situated approximately at the 
position (–8.11, 3.90) and the X axis of the robot makes an angle of around 58º with the 
absolute X axis of the environment. The results have been tabulated in Table 4-2. As can 
be seen, the fourth case shows an abnormally high standard deviation, due to a shift in the 
robot position during the execution of the test. 
 

Configuration 
No. of 
trials 

Mean 
X 

Meters 

Mean 
Y 

Meters 

Mean 
θ 

Degrees 

Std Dev 
 X 

Meters 

Std Dev 
Y 

Meters 

Std Dev
θ 

Degrees 
7.5cm poles 25 cm apart 50 -8.34 4.12 52 0.092 0.027 1.24 
7.5cm poles 60 cm apart 50 -8.15 4.05 54 0.022 0.013 0.29 
12.6 cm poles 50 cm apart 50 -8.13 4.02 55 0.028 0.017 0.36 
12.6 cm poles 60 cm apart1 50 -8.09 4.06 54 0.176 0.139 2.07 

Table 4-2. Test 2 - Summary of results of position estimates 

4.3. Test 3-Localisation using multiple landmarks. 

Four different, independent landmarks were set up using the same procedure for setting up 
landmarks defined in chapter 3. Software parameters were accordingly added in the 
program. While the program searches for the existence of each of the landmarks, only the 
last identification is utilised to obtain an estimate of the position of the robot. 
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 Figure 4-3. Test 3 - Position estimation using four different landmarks 

Using these four landmarks, the parking space of the robot is almost completely covered, 
allowing a position estimate to be obtained anywhere within this region and in almost all 
directions. 

 

Figure 4-4. Test 3 - Schematic of four landmarks set up in the LAR 

The results obtained using the 4 landmarks are seen in Figure 4-5. The localisation was 
performed using one identification, though in some cases, as can be seen, more than one 
landmark was completely visible in the same scan. 
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Figure 4-5. Test 3 - Localisation utilizing one of four different landmarks. 

As can be seen, most of the region where the robot is usually kept to recharge batteries 
after the end of a mission is covered successfully. This, in terms of X and Y coordinates 
together with orientation. 
Of the twenty-five scans taken, at least one localisation estimate was obtained in twenty 
cases 

4.4. Test 4- Measuring localisation accuracy for near landmark 

The LRF was utilised to obtain range data from the region around the gantry robot where a 
set of three beacons, of external diameter of 0.075 cm were erected, separated by equal 
distance of 35 cm, with the central pole at (3.03, 4.85) and at a known distance from the 
conveyor belt, one side of which acts as the confirmatory surface (Figure 1-7). A quick 
check was undertaken to include the strips in the field of view of the LRF. The set-up is 
shown in Figure 4-6. 
Localisation was carried out from three different positions. In one such position the 
algorithm failed to obtain a location estimate. In the case of the other two instances the 
results are as shown in the Table 4-3. 
 

Distance of LRF 
from Central Pole 

No. of 
trials 

Mean 
X 

Meters

Mean 
Y 

Meters

Mean 
θ 

Degrees

Std Dev 
X 

Meters 

Std Dev 
Y 

Meters 

Std Dev
θ 

Degrees
1.45 m 50 1.59 4.98 -5 0.004 0.011 0.45 
1 m 50 2.08 5.12 16 0.005 0.006 0.38 

Table 4-3. Test 4 - Summary of results 

Once more, no false detections were obtained. 
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Figure 4-6. Test 4 - Set-up for localisation at the CIM 

4.5. Observations 

The following are some findings that came to light during development and testing. The 
effect that the inter-pole spacing has on the position estimate, the occurrence of incorrect 
identifications, the effect of presenting multiple landmarks and the extent of the region 
over which the localisation algorithm works have been discussed here. 

4.5.1. Effect of varying distance between the markers 
The algorithm was tested for a number of situations in which the distance between the 
poles was varied from a lower limit of (pole width x 2) to 0.75 metres (for a set of 12.6 cm 
diameter poles). The algorithm worked successfully in all cases after the necessary 
modification of the parameters. The success rate obtained in some layouts was inferior to 
others and though this might simply be an effect of sampling, it might have to do with 
geometrical errors in the layout of the landmark. 
Another effect that was noted was the variation of the angular error with the variation in 
the distance between the poles. The standard deviation of the angular estimate is inversely 
proportional to the distance between the extreme poles. This appears to be because the 
errors introduced in the scanning process seem to be non-correlated to the actual distance 
being ranged. This means that while the spread of the ranged values for each pole (the 
source of the angular and position errors) was the same, a smaller angle was subtended as 
the distance between the poles was increased. 

4.5.2. False detections 
The program proved to be adequately resilient to false detections. The combination of the 
checks for pole width, the open spaces between and on either end of the poles combined 
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with the data preparation steps of grouping and elimination of large features allow for the 
practical non-existence of false detections. This has an implication in that the choice of 
landmark and pole configuration need not depend on the environment that is being ranged.  
Throughout the testing phase one false detection was encountered. This came about due to 
a combination of circumstances in which the distance of a surface from the robot and the 
layout of surrounding surfaces construed to create a pattern similar to that created by a 
bonafide landmark.  
In this regard, it must be mentioned that the algorithm is designed for a relatively imprecise 
set-up of the poles. Quite a large tolerance is provided in the set-up of the distance between 
the poles, in their inclination (due to imperfect horizontal surface or pole base) and in their 
orientation. The rate of detection is however affected. For example, in one case, with poles 
of 7.6 cm diameter the middle pole had sufficient inclination to result in the co linearity of 
the poles being affected resulting in non-detection of the landmark.  

4.5.3. Presence of spurious points 
There is a continued presence of spurious points in the laser scan obtained from the LRF. 
These are found to be especially troublesome when they occur around the poles where they 
upset the aggregation of points into groups representing the poles. These are consistently 
found behind the poles and in the blank spaces between the poles thus forming a “bridge” 
between the poles themselves or between the poles and other nearby surfaces. They also 
upset the separation criteria specified. 

 

Figure 4-7. The problem of spurious range points. 

Their presence (or absence) does not seem to be correlated to the distance of the robot from 
the poles. This was verified by taking multiple readings while the robot stayed at the same 
place. The presence of spurious points meant that the robot failed to extract (group, 
correctly match against specified configuration) the poles and failed to localise.  
These spurious points seem to be related to certain conditions of multiple reflections that 
exist on some surfaces. At the beginning of the present work the problem was more serious 
as the LRF had been set up for multiple evaluation (the LRF is set to two evaluations-per-
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scan by default), which resulted in large occurrences of ‘spurious points’. The LRF settings 
were later modified to remove multiple evaluations. 

4.5.4. Presentation of multiple landmarks to the same algorithm 
The same program was utilised to search for more than one landmark. Here the same data 
was present repetitively to the program, which applied tests with different parameters to 
the same data set. In Test 3, the program attempts to identify one of four landmarks, which, 
through a choice of parameters are sufficiently different from each other (see chapter 5 for 
setting up the landmark) 
While the introduction of provisions for the recognition of more landmarks in the program 
is feasible (as long as no two landmarks are too similar), the way the algorithm is written at 
present means that the computation time increase is of O(n), where n is the number of 
landmarks the program can identify. 

4.5.5. Effect of the distance between the robot and the landmark 
Also, when more than one point is obtained on each pole an averaging effect is obtained 
resulting in an estimate with a smaller error. Since the number of points ranged on a pole 
depends on the distance between the LRF and the pole, position estimates become less 
accurate as the LRF is moved away from the poles. However, since beyond a certain 
distance the LRF is not able to range all the poles there is an upper limit on the error. 
In a similar way, the confirmation stage requires that there be a sufficient density of points 
ranged on the surface chosen for the confirmation of the landmark. At certain positions, 
because the distance of the robot to the surface is large and/or because the point of view of 
the robot is such that too few points are obtained on the surface chosen for confirmation, 
localisation fails to occur. 
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5. Setting the Algorithm Parameters 

As described in Chapter 3, the algorithm can be thought to be made up of 3 steps; the first 
a pre-processing stage followed by a beacon search procedure and a landmark confirmation 
stage. This Chapter explains the various parameters that must be set up in the program and 
their significance. It first deals with two parameters that must be set up for the pre-
processing of the scan and then with the remaining parameters that are necessary for the 
beacon search, landmark confirmation and robot position calculation procedures. All the 
distance parameters are expressed in meters. 

5.1. Pre-processing of range points 

For the pre-processing stage, the software requires that the following parameters be set: 
1. The Landmark Contiguous Spacing (LCS) 
2. The Group Spread (GS) 

5.1.1. Landmark contiguous spacing 
Tests were performed on landmark configurations in which the same poles were arranged 
in different configurations with varying inter pole distance. Good localisation results were 
obtained for a range of LCS values. The value of the LCS is linked to the pole width. It 
could be varied from a value slightly less than the width of the pole to values somewhat 
greater than the width of the pole. For the poles with a diameter of 0.126 m, values ranging 
of LCS from 0.1 m to 0.25 m were found to be effective. 
Note: the value of the LCS that gave the best results varied, but this seems to be partially 
explained by the variance in the sample range scans and due to the presence of spurious 
points.  

5.1.2. Group spread 
The effective value of the GS was linked to the value of the LCS and the nature of the scan 
(whether the robot is exceptionally close to walls and other features). The value of the GS 
should be as small as possible as this means that fewer points qualify for subsequent 
processing and computational time is saved. The values for which good results were 
obtained depend on the value of LCS, the actual spacing between landmarks and the 
distance of the robot from some large feature or laboratory extreme. For a pole diameter of 
0.126 m and LCS values in the range 0.1 to 0.25 m, good performance was obtained for GS 
values between 0.15 m to 0.4 m 
It should be noted the LCS and the GS must be considered together. While values of 0.15 
m and 0.2 m respectively worked for poles of width 12.6cm, better results were obtained 
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with parameters of 0.25 m and 0.4 m (in this case the arrangement of markers allowed for 
these values). 
The reason because the choice of the two must be made together is because a larger LCS 
means that the total number of different groups gets reduced and that the average size of 
the groups increases, leading to larger groups and point eliminations for the same GS, 
altogether resulting in a fewer number of points for processing. 
This relation between parameter values and efficacy is modified/altered by specific pole 
arrangements and by the presence of spurious points that serve to bridge the gap between 
the poles (and other features) and increase the observed pole width. 
As a rule of thumb, the LCS is fixed at a value slightly greater than the pole width while 
the GS takes values 30 to 60 percent higher. 

5.2. Beacon search  

The actual search procedure checks for clusters that are sufficiently collinear and, then 
verifies if the groups are separated by the necessary spacing. 
The parameters that must be set are 

1. The pole width 
2. The inter-pole separation 

5.2.1. Pole width 
This parameter reflects the physical width of the poles that comprise the landmark. Its 
value should be equal to or slightly greater than the diameter of the poles used. 

5.2.2. Inter-Pole separation 
This parameter is a reflection of the physical distance separating the poles. By this it is 
meant the distance between the centres of the cross-section of two adjacent poles. The 
program utilises the value of this parameter, together with the pole width specified earlier 
to account for the fact that range points might be obtained anywhere on the surface of the 
poles. 
It is this parameter together with the earlier one that serves to distinguish one landmark 
from another. While the parameters in the pre-processing stage help to reduce the 
probability of false detection (beside their primary effect of improving computation 
efficiency), if the Pole width and Inter-Pole separation are not sufficiently different, 
erroneous detections will result. 

5.3. Landmark confirmation 

The verification phase in which other information that might be known about the range 
points in the neighbourhood of the landmark are checked against the results of beacon 
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search. Namely, the verification of the presence and the absence of ranged points in some 
regions described with respect to the poles is carried out. 
The parameters that must me set in the program are 

1. Resolution of robot position ambiguity relative to landmark 
2. Rectangular area containing range points 
3. Rectangular area not containing points 

5.3.1. Resolution of ambiguity in the position of the robot relative to 
landmark 

Since the feature that is utilised is a linear one there always exist two symmetrical points 
between which the algorithm will be unable to distinguish, in the absence of additional 
information. This has been resolved by constraining the construction of the landmarks. The 
layout allowed for the landmark specifies that the robot can occupy positions only on one 
side of the line that defines the row of poles. This region that can be occupied is defined in 
terms of the global coordinate system. Four configurations are possible in all depending on 
the orientation of the line of beacons and region occupied by the robot. They are illustrated 
in the Figure 5-1. The value of the parameter to be used for each of the cases is as follows 
a) 0, b) –90, c) 180 and d) 90. 
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5-1. Resolution of robot position ambiguity relative to landmark. 
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5.3.2. Rectangular area containing range points 
As mentioned earlier, the search process includes two stages; that of separating out 
potential beacons followed by the verification stage. The following two parameters deal 
respectively with the specification of regions in the hall that contain points and those 
regions that are not supposed to contain points. 
This parameter (consisting of 4 specifications) specifies the completely bounded region 
that is supposed to contain ranged points that represent a certain permanent feature. Since 
rectangular regions were chosen to bind these regions, 2 pairs of parallel lines that are 
perpendicular to each other were chosen. The specification is made with respect to the 
position of the central marker in the global coordinate system. 
Each pair is specified in terms of the distance from the central pole together with a 
‘tolerance’ that specifies the distance that separate the pair of lines. The position of the 
second line is given by the value of this tolerance (sign of the tolerance value x sign of the 
distance of the first line from the central pole), added to the position of the first line. One 
pair is parallel to the row of poles while the other is perpendicular to the same row. 

5.3.3. Rectangular area not containing points 
The specification of the boundaries of this region is performed in the same way as in the 
case of the “Rectangular area containing range points” since, again, the boundaries of this 
region are rectangular. 

5.4. Calculating robot position 

For the program to calculate the transformations matrices to perform the necessary rotation 
and translation the absolute position of the beacons in terms of the global coordinate 
system must be known. The algorithm requires that the coordinates of the central pole be 
provided. 

5.4.1. Absolute coordinates of the middle pole 
In the above experiments, an edge of the Automation and Mobile Robotics laboratory 
(LAR) was taken to represent the origin of the 2-dimensional global coordinate system. 
The axes were taken to lie parallel to the walls of the same laboratory. The parameter 
specified here is the position of the centre of the central pole in terms of the global 
coordinate system. 

5.5. Description of the parameters in graphic form 

The following is a brief summary of the parameters that must be set. 
1. Spacing between the poles 
2. Width of the poles 
3. X-coordinate of the central pole. 
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4. Y-coordinate of the central pole. 
5. Parameter used to group belonging to the same object in the scan (LCS). 
6. Parameter used to eliminate objects larger than the poles (GS). 
7. Defines one limit of the region that must contain points (line parallel to line of 

poles). 
8. Defines other limit of the region that must contain points (line parallel to line of 

poles). 
9. Defines one limit of the region that must contain points (line perpendicular to line 

of poles). 
10. Defines other limit of the region that must contain points (line perpendicular to line 

of poles). 
11. Defines one limit of the region that must not contain points (line parallel to line of 

poles). 
12. Defines other limit of the region that must not contain points (line parallel to line of 

poles). 

 

Figure 5-2. Graphical description of a landmark with the required software parameters 

13. Defines one limit of the region that must not contain points (line perpendicular to 
line of poles). 

14. Defines other limit of the region that must not contain points (line perpendicular to 
line of poles). 

15. Orientation of the poles with respect to the coordinate axis 
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5.6. Example of a localisation set-up 

The following is a description of a set-up for localisation that demonstrates, in brief, the 
nature of the tasks required to erect and use a landmark. 

 
Figure 5-3. Setting for robot mission. 

The robot is located in a wide hall with (Figure 5-3) with ample space for the robot to 
move around. A mission for the robot is defined, in LAMP, wherein the robot must: 

1. Approach a certain wall, 
2. Set itself such that its left side is parallel and closest to that wall, travel straight 

ahead till 
3. It comes upon a narrow passage that it must negotiate, 
4. Travel some distance before turning around and negotiating the same path in 

reverse order. 
In the absence of an initial localisation procedure, some more instructions would have to 
be added at the start of the mission in order to bring the robot to some initial orientation 
and/or position. With the addition of the localization algorithm the insertion of two 
instructions allows the robot to achieve the same effect. The instructions are to attempt 
localisation and, in case of failure, to rotate about itself by some angle and try again  
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Figure 5-4. Sample robot mission illustration 

Three PVC pipes of diameter circa 13 cm are arranged in a line at a distance of about 70 
cm from the wall, separated by about 50 cm. In this particular application, only the 
orientation of the robot can be used, ignoring the actual position of the robot. The wall 
itself (white wall below staircase in Figure 5-3) is utilised as the confirming surface for the 
confirmation phase of the algorithm. Also, the region that should be devoid of points for 
purposes of confirmation is not utilised (only the region containing points, in this case the 
wall, is specified). 
The parameters for the algorithm are listed below followed by a listing of the mission in 
LAMP. 

1. Spacing between the poles = 0.5 
2. Width of the poles = 0.13 
3. X-coordinate of the central pole = 0. 
4. Y-coordinate of the central pole = 0. 
5. Landmark Contiguous Spacing (LCS) = 0.25 
6. Group Spread (GS) = 0.4 
7. Limit of region that must contain points (line parallel to line of poles) = -0.6. 
8. Tolerance of region defined by above line (line parallel to line of poles) = 0.3. 
9. Limit of region that must contain points (line perp. to line of poles) = -1 
10. Tolerance of region defined by above line (line perp. to line of poles) = 1 
11. Limit of region that must not contain points (line parallel to line of poles) = 0. 
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12. Tolerance of region defined by above line (line parallel to line of poles) = 0. 
13. Limit of region that must not contain points (line perp. to line of poles) = 0 
14. Tolerance of region defined by above line (line perp. to line of poles) = 0 
15. Orientation of the poles with respect to the coordinate axis = 0 
 

MOVE LV 25 AV 0 USG 500 SEN 1 Move with a linear velocity of 25 cm/s till the 
sensor one measures 500mm. 

MOVE LV 0 AV -10 ANL 80 Turn 80º, in a clockwise direction 
MOVP MV 25 PS 0 DIL 500 Travel parallel to the wall, at least some 

500mm, at mean velocity of 25 cm/s. 
CROS SD 1200 Cross narrow passage and travel 1200mm 
REVR Reverse direction (turn about 180º). 
CROS SD 900 Cross narrow passage and travel 900mm 
MOVP MV 25 PS 0 DIL 1500 Move parallel to the wall on the closest side 

some 1500m at a mean velocity of 25 cm/s 
MOVE LV 0 AV 10 ANL 90 Turn through 90º, anticlockwise 
MOVE LV 25 AV 0 DIL 2500 Travel 2500 mm at a velocity of 25 cm/s 

 
A C shell script file for Linux defines the entire mission including the initial localization 
algorithm. This script begins with a loop that includes a command to obtain the laser data 
string and run the localization algorithm. As long as the algorithm fails to recognize the 
landmarks from the laser data, the robot is rotated some 60º about itself and the loop is run 
again. A successful localization exits the loop and the Robuter CPU begin executing the 
lamp commands sequentially. 
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6. Conclusions 

This work involved the use of an LRF to obtain a position estimate of the robot, relative to 
a specified landmark. The estimate would have to be obtained without the aid of any prior 
position information. The same method works in two distinct instances; localisation of the 
robot at the start of a mission, and localisation at the gantry robot of the FMS system. 
The conditions defined for the success of the algorithm were: 

1. Successful localisation within a defined area, 
2. In the language of hypothesis testing, generation of a hypothesis with a low type II 

error at the expense of a higher type I error 2, i.e. the probability of obtaining a false 
estimate was to be kept to an absolute minimum, despite a resulting reduction in the 
rate of successful localisation. 

3. Knowledge of the typical value of the error estimate in case of final localisation at 
the gantry robot (localisation at close range). 

An important aspect of the method to be implemented is that it should reflect the principal 
idea behind the development of the LAMP programming language, namely the absence of 
a model of the environment. The method that was implemented involved the extraction and 
identification of special beacons inserted in the environment for the purpose of 
localisation. The beacons make up a composite landmark (consisting of more than one, 
individual, separable components), set up with respect to some other, more permanent, 
feature of the environment. After passing through a two-step procedure that seeks to 
extract and then identify the beacons, the existence of landmark is confirmed using the 
relation that is known with respect to the permanent feature of the environment (typically a 
wall). The output of this confirmation stage is then utilised to obtain the position of the 
robot. In this regard the position of the landmark in the desired 2-D coordinate system 
maybe communicated to the algorithm. 
From previous discussions the following is summarised: 

1. The method focuses on the robust extraction and identification of a single, defined 
landmark. No allusion is made to the use of a map model either for matching or for 
the identification of natural features existing in the environment. In fact, besides the 
information necessary for the placement of the landmark no information regarding 
the environment is utilised. 

2. While an idea of the mean error of the estimate (at a particular distance, and for a 
particular landmark configuration) can be experimentally obtained, the error has 
not been mathematically quantified. 

                                                 
2 A Type I error refers to the rejection of the hypothesis given that it is true, while the type II error refers to 
the acceptance of a hypothesis when the same is actually false 
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6.1. Inferences 

The method implemented seems to be effective for the conditions specified for the initial 
localisation in the laboratory. The typical parking space of the robot can be covered in 
terms of position and orientation using either four separate landmarks or through the use of 
a single landmark (provided the robot can change its orientation), ensuring a short and 
purposeful mission start. The presence of a greater number of landmarks increases the 
chances of obtaining a correct location estimate. Setting the beacons such that a particular 
landmark configuration is linked to a particular position in the coordinate system of the 
laboratory, allows a quick set up for initial localisation. 
The results of implementation of the algorithm at a public exhibition showed that the 
requisites of the algorithm, i.e. an unobstructed view of the beacons and of the confirming 
surface coupled with unoccupied spaces, is not without problems in the presence of many 
dynamic objects having access to the region of operation of the robot. The onlookers 
tended to place themselves in such a way that they either distorted the pattern presented by 
the beacons, so as to make it unusable, or obstructed the view of the beacons and the 
confirming planar surface. It is a situation in which Real-World conditions differed from 
laboratory settings. The presence of multiple landmarks alleviates this problem. 
The lack of free space around the gantry robot allowed for the positioning of the poles in a 
particular layout that made them visible only when the robot was close to its final parked 
position. This brings up another algorithm requirement, namely, the need for some free 
open space (visible from the robot) around the area of operation in order to erect the poles. 
For the purpose of final position estimation at the gantry robot, the localisation algorithm 
provides position estimates at close range with standard deviations of around one cm and 
angular deviations of less than three degrees. The orientation error and, to some extent, the 
position error might be reduced by using the known orientation of some major surface. 
This means that in some cases it might be acceptable to make some assumptions as to the 
nature of the walls in the building, more concretely, assuming the walls are orthogonal to 
each other. 
It is important to note that most of the works reviewed in chapter 2 were methods in pose 
tracking. While some authors also include special schemes for localisation without a 
previous estimate (to be used at start-up and when the robot gets lost), these are usually 
modifications of the method implemented for pose estimation. Pose tracking requires that 
the robot posses some model of the environment. The various methods either provide such 
a model at the outset or allow for an initial map-building phase. The methods vary in the 
type of environment representation, the treatment of sensor data, the handling of 
environmental features and the form in which sensor data is integrated with map 
information. This work, however, does not deal with pose tracking. This means that it has 
no use for an environment model. Instead, somewhat detailed information regarding one or 
more features of the environment is explicitly specified and an identification of this/these 
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feature/s is attempted. It does not depend on the nature of the method for navigation and 
pose tracking implemented on the mobile robot. While it has its obvious limitations, it is 
extremely easy to implement and has been shown to work in different indoor 
environments. 

6.2. Future work 

In its present state, the work is a simple implementation of a method for obtaining an initial 
location estimate. It fits well with the idea behind the LAMP mission language with good 
results in terms of precision and success in a variety of settings. While it is sufficiently 
robust in that the chances of a false localization are very low, it is not efficient enough to 
be utilised as a stand-alone method for localisation in a Real-World type of environment 
containing people and other objects having similar dynamic behaviour. In addition, it 
requires some modification, although minimal, of the environment. In the future, attention 
might be focussed upon the following possibilities: 

• While the algorithm was implemented with success, first using Matlab and later 
Octave for Linux, the scripts written in the above two languages are slow in 
execution. The speed of execution should improve with the implementation of the 
algorithm in the form of a compiled executable file using a programming 
language such as C++. 

• Replacement of the artificial landmarks with natural landmarks such as pillars, 
which possess similar characteristics. Some modified, more robust procedure 
might be found to achieve the goal of localisation in an unmodified environment. 
Such a method could then be applied as a procedure for localisation without a 
prior estimate, as in the current case, or even for pose tracking. 

• Though it has not been explored in this work, the method might be utilised as a 
rough-and-ready means for obtaining the position of the robot in the laboratory 
either for the purpose of obtaining a second estimate, independent of a primary 
one or in aiding of a task such as environment mapping. In case of the former, an 
alternative to manual measurement using a scale might offer certain advantages. 
In the latter case it must be mentioned that the environment as ranged by the LRF 
appears very different from an architectural representation or even from a 
representation of the environment as produced from the US sensors. The different 
planes in which they work and the presence of unmapped or changing features, 
means that obtaining a map of the environment in the plane of the LRF is not a 
very straightforward procedure. The localisation algorithm presented in this work, 
together with inputs from a CAD model of the environment, might be utilised in 
methods aiming to build maps for use with the LRF. 
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6.3. Conclusions in a nutshell 

The main features and the contribution of this work might, in point form be summarised as 
under: 

• Absence of a map of the environment  
• No a priori estimate of the robot position and orientation 
• Requires landmarks that utilise multiple vertical poles together with information 

regarding some neighbouring permanent natural feature such as a wall. 
• Extremely robust to false detections 
• Easy to set up 
• Good integration in existing navigation solution 

The algorithm development was done primarily in Matlab for Windows® and subsequently 
ported to Octave, a Matlab clone for Linux. 
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