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Abstract

This paper presents a method to track straight lines path with
a car-like tricycle vehicle thanks to a straight line tracking
controller. The method is validated with several
experimental results.

1    Introduction

For wheeled mobile robots, the easiest path one can plan is
composed of several and successive segments of straight
lines. Brooks [7] proposes to follow this path by a translation
movement on a line until the crossing point with the next
segment where it has to stop. Then it turns on itself to obtain
the heading orientation of the new straight line segment and
moves on it. Path following can then be summarized as
several sequences of "Move on a line; Stop; Turn; Move on
the next line". So the time to track a path is too long. An
approach consisting in joining two crossed segments with
arcs of circle was proposed by Nelson and Cox [2]. This
method permits to reduce the time needed to track the path in
the precedent case. To overcome the discontinuities of path
curvature in the above cases, arcs of clothoïds have been used
to join two crossed lines by Kanayama and Miyake [8] and
by Fleury et al.,[9]. While Nelson [10] solves the problem
with polar polynomials, Segovia and Rombaut [11] provide a
solution to the continuity problem of curvature between two
segments thanks to Bezier's curves. Nevertheless, in what
follows the above easiest path will be taken into account.
This paper consists in two parts :
The first part deals with the presentation of a straight line
controller designed for an autonomous mobile robot which
has three wheels : two free rear wheels with a common axis
and one driving and steering front wheel. The driving and
steering actuators are respectively a DC series drive and a
permanent magnet DC motor. The linearization method
proposed in this paper is close to the solution presented by

Sampei et al. [3] for path tracking problems.
The second part is devoted to path tracking with a path
composed of several successive or adjacent straight lines with
different orientations, the absolute value of the orientation
difference between two adjacent lines being less than 90
degrees. A strategy for leaving a line being tracked to track
the next one as the robot moves, thanks to the controller
above designed is developped. Several experimental results
of this control strategy are presented.

2    Straight line tracking controller

In this section, a control strategy for straight lines path
tracking is presented. The used notations are defined in the
following figure :
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Fig. 1 Robot architecture

CIR denotes the intantaneous center of rotation of the vehicle.
The following differential equations describe the kinematics
of the tricycle robot :
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VC is the velocity of the point C, the middle of the rear
wheels axis and will be taken as the velocity of the vehicle.



a  is the distance between the points C and B. The aim is to
design a controller which makes the vehicle follow the X-
axis, i.e y → 0, ψ → 0 and θ → 0 when it moves forward.
Let a straight line i in the global and fixed frame (O, X, Y)
and Oi  its origin whose coordinates in that frame are XOi

and YOi  (see figure 2). Let Φi  and Φ denote the orientation
angles respectively of the line and of the vehicle with respect
to the axis OX of the frame and X  and Y  the robot's
coordinates in the same frame. A direct local frame
( )O x yi i i, ,  is defined as shown in figure 2 with i = 1 for
instance.
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Fig. 2  A straight line in the global frame

The O xi i  axis must be always colinear to the line i. So the
vehicle has always to track that axis. Tracking a straight line
i will then be equivalent to tracking the corresponding xi

axis. Then the coordinates xi and yi  of the vehicle, expressed
in the local frame, and its orientation ψi  with respect to the
O xi i  axis , are obtained as :
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Considering a new time scale in x , i.e. the distance along
the desired path ( )x xi= , the equation (1) becomes
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while the behaviour of the new time scale x  is given by &x  in
equations (1). The exact linearization of the state equation
(3) is obtained by defining the following states variables
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and tan cosθ ψ= av 3  where v  is the new input variable. In
fact the derivative of the new state vector ξ  with respect to
the new time scale x  gives
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Writing 
d
dx

v
ξ2 = , we easily obtain

tan cosθ ψ= av 3                                                            (6)

Therefore the linearized system is
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for which a state feedback controller
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can be designed, using pole placement, for instance, to
ensure the stability of the system. f1 and f 2  are constants to
be defined. If the poles p1 and p2  are chosen then
f p p1 1 2= −  and f p p2 1 2= + . In fact the closed loop

linearized system is equivalent to the second order
differential equation (9) in y ( )y yi=

′′ − ′ − =y f y f y2 1 0                                                            (9)

′y  and ′′y  denoting the first and the second derivatives of y
with respect to the new time scale x . Its cross over pulsation
ωn  and its decay coefficient z  are given in the relation (10).
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The choice of the stable poles for the system can be done by
giving a value to z . This implies
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In critical case (i.e. z = 1), giving for instance, a value to f1

is a manner to determine a real double poles ( p p1 2= ) and
the cross over pulsation of the system. The steering speed is
obtained thanks to the equation (12) :
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Because of the definitions of the coordinates transformation
(4) and the feedback (6), this control is defined only if ψ , θ
and y  belong respectively to ] [− π π2 2, , ] [− π π2 2,  and

] [−∞ ∞, .
The simulations results of this controller for z = 1,
f m1

24= − −  (i.e. f m2
14= − − ) and a constant speed

V m sC = 015.  are shown in the figure 3. The path to follow
in the global frame is expressed as Y X= − +3 4. Initial

conditions are ξ1 10= − m , ξ
π

2 3
= tan  and x m= −10 . The

robot follows the desired straight line.
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Fig. 3.a :  A straight line tracking - simulation result
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3    Path tracking strategy

3-1 Problem statement

The absolute value of the orientation's angle difference
∆Φ Φ Φ= −+i i1  between the lines i +1 and i is assumed less
than π 2  radians. The origin of the first line is chosen
everywhere and the origin of the line i ( )i > 1  is the crossing
point between lines i and  i −1.

Let the path in figure 4 be the reference one and θ i  the
needed steering angle to track the straight line i while the
robot is at any position in the global frame respecting the
validity domain defined before for the controller.
With the system (2) the robot's position in the local frame of
any line i is easily obtained. For instance, on the figure
θ1 0= , ψ1 0= , x O C1 1= , y1 0=  and y O D2 2= .
Considering that the vehicle is tracking the line 1 and has
the position shown in the figure 4, at what position x1 it will
stop tracking this line and begin to join the next one (line 2)?
Sampei et al [3] sayed that at least, the steering angle must
be continuous i.e. θ θ2 1= . But this continuity condition can
be obtained in several positions x1 for several values of f1

when the decay coefficient is fixed. As seen before, to give a
value to f1 is equivalent to choose the dynamics of the robot.
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One can then work in this sense considering the continuity of
the steering angle. Here the strategy which permits to track a
line as long as possible and indicates exactly the position
from which the robot will stop tracking a current line and
begin to join the next one is presented.

3.2 Tracking strategy

At the position where the line changes, the relations (6) and
(8) and the continuity of the steering angle give
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Then, while tracking the first straight line (i.e. θ1 is
calculated), the steering angle θ 2  needed to follow the next
one, the line 2, must also be computed. At the configuration
where θ θ2 1= , the robot will stop tracking the first line and
start to follow the second and next straight line. To simplify
this idea, we only consider the path whose first straight line



is colinear to the longitudinal axis of the vehicle i.e. the first
line has the initial orientation of the robot in the global frame
with the robot exactly on the line as shown in figure 4. With
this in mind, in figure 4, ψ2 1 2= − = −Φ Φ ∆Φ. As ψ1 0=
and y1 0=  then θ1 0=  and y2  can be expressed as
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The exact position from which the robot will stop tracking a
current line (line 1) and begin to join the next (line 2) can
now be indicated. This will be done without need to compute
the steering angles.
Except the last line of the path, we impose a security distance
di  (see figure 5) from the end of each line i, with in mind
that the end of the line i is the origin of the line i +1. Then
the needed change on the straight line i  will occur when
x O O di i i i= −+1  i.e. d COi i= +1 . With ∆Φ Φ Φi i i= −+1  one
has

y d di i i i i+ += = −1 1sin sin∆Φ ψ                                          (16)

Then, on figure 5 this relation (16) becomes

y d d2 1 1 1 2= = −sin sin∆Φ ψ                                              (17)

The relations (14) and (17) imply
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With the robot on the line i , the general expression of the
security distance is given by the relation (19)
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The above variables are shown in the figure 5.
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The relation (19) shows that for fixed values of z  and f1,
the security distance di  is a function of ∆Φi  the orientation
difference between the next line to join and the line actually
tracked.
Two cases will be presented :
Case 1 : The lines are long enough. Here, all straight lines of
the  reference  path  are  sufficiently long  to  permit the
robot which is moving on a line i to reach the security
distance di , then, join the line i +1, moves on it before
reaching the corresponding security zone d i+1 from which it
starts to join the next straight line and so on.
Case 2 : Some lines of the path are not long enough. A
straight line can be shorter than the corresponding security
distance (computed from equation 19) needed to perform the
continuity of the steering angle i.e. the vehicle is already in
the security zone of the straight line it has to track. In this
case, the robot has to directly follow the next line.

3.3 The tracking strategy algorithm

As written before, at initial time, the robot will be on the first
line with Φ Φ= 1. The algorithm below takes into account the
above presented cases to obtain the correct continuity of the
steering angles while tracking a desired path. For given
values of z  and f1, the algorithm to track a path of N
straight lines ( )N > 1  is as follows :
1-) Give a low value of the moving speed VC

2-) i = 1 (i is the number of the line).
3-) Compute ∆Φ Φ Φi i i= −+1

4-) Compute the security distance di  thanks to (19).
5-) Compute xi , yi  and ψi  thanks to the relation (2)
5-1) If x O O di i i i< −+1  then

* Track the line i (i.e.- Compute θ i  and &θ i  - Reach 
the angle θ i  with the steering speed &θ i  - Move the 
robot with the constant speed VC) and go to 5

5-2) Else
* Increment i
* If i N=  then track the line i until its end point 
and stop.
  Else go to 3.

4    Path tracking experimental results

The above strategy has been implemented on an industrial
tricycle [6] with low values of the moving speed
( )V m sC < 0 3.  and for a decay coefficient z = 1. The obtained
experimental results are good as shown next, in the figures 7,
8 and 9, for f m1

24= − − , V m sC = 0 15.  and for three cases.
These results use only basic sensors : an incremental encoder
for the displacement, a tachogenerator for the moving speed,
a tachogenerator for the steering speed and a potentiometer



for the steering angle. Their implantation on the robot is
summarized in figure 6.
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Fig. 6 :  Vehicle sensors

case 1) The desired path is composed with three lines whose
equations in the global frame (O, X, Y) are in order

Y1 0= , ( )Y X2 3 4= −  and Y3 4= . Calling ( )X Y, ,Φ  the
position of the robot in that frame, the initial and desired
final positions of the vehicle are respectively ( )0 0 0, ,  and

( )10 3 4 0. , ,m m . The experimental results are in the figure 7.
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Fig. 7.a :  Reference path and robot trajectory
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Case 2) The reference path is composed with four lines
which are in order Y1 0= , ( )Y X2 3 7= − ,

( )Y X3 3 7 4= − − +  and Y4 4= . Initial and desired final
positions of the vehicle are respectively ( )0 0 0, ,  and

( )3 3m m rad, ,π . The results are in the figure 8.
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Fig. 8.a :  Desired path and robot trajectory
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Case 3) Case of a short first straight line. The path is
composed with three lines Y1 0= , ( )Y X2 3 0 2= − .  and
Y3 4= . The initial and desired final positions of the robot are

respectively ( )0 0 0, ,  and ( )6 5 4 0. , ,m m . The obtained results
are shown in the figure 9.
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The proposed tracking strategy developped before and using
the straight line controller is very satisfactory.

At this stage it is important to note the sensitivity of the the
dynamic response to the choice of f1. In fact for the critical
case(z = 1), as the absolute value of f1 increases, the vehicle
response becomes faster to reach the reference straight line.
This observation can be seen in figure 10.
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Fig. 10 : Experimental results for different values of f1 (z=1)

Two experimental results are shown for the same moving
speed VC and initial position ( )0 1 0, m,  of the robot in the
global frame. In both cases the desired path is the X-axis.
The first case is for f m1

21= − −  and the results are indexed

with 1 i.e. ( )θ θ ψC m T1 1 1 1, , ,  in the figure. θC1 and θm1 are
respectively the computed (or desired) and the measured (or
effective) steering angles. T1 is the trajectory of the robot.

The other case is for f m1
20 25= − −.  and the results are

indexed with 2.

5    Conclusion

Experimental results have been presented for the robust
control of an industrial nonlinear tricycle robot. Dynamics
effects, as the vehicle inertia, the tyres analysis for instance,
have been neglected by choosing low moving reference speed
VC . The obtained performances are very satisfactory and
have been performed using the straight line controller.
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