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Abstract

Thegoalof thisresearclis to developarealtime obsta-
cle avoidancesystenfor autonomousnobile robotsusing
astereovision sensor

At first, an obstacledetectionmethodis proposed. It
is basedon stereomeasurementvithout ary searchof
the correspondingpointsto matchthem. This methodis
fast enoughfor a mobile robot which haspoor capabili-
ties to carry out respectablémageprocessing. However
therehappened problemthat someghostobjectsarede-
tected.We’'ll describehe solutionandanexperimentake-
sultwhichshavstheeffectivenes®f theimprovedmethod.

Then, a stratgy of obstacleavoidanceand an imple-
mentationof the proposednethodto the mobile robotare
described.

1 Intr oduction

Whenmobilerobotsmovein arealervironment,recog-
nition of surroundingobjectsis a big subject.Visualinfor-
mationis widely usedfor navigationandobstacledetection
of mobilerobot[1-8].

In thisresearchye considerto usestereovision sensor
But steredmageprocessingnethodusuallydemand$iuge
amountof time. The mostimportantpoint for real-time
sensings how to dealwith this informationeffectively.

Thepurposeof thisresearclis to realizeanautonomous
obstacleavoidancein an usual ervironment. To realize
that,bothareliablesensoanda suitablepathgenerateys-
temareneeded.

In this paper at first we cover the obstacledetection
methodwhich processings fast enoughfor the robot to
find 3D objectsat quick rate. We also talk aboutdetec-
tion failure with this methodandhow to improve it with
anexperimentalresult. Next, the systemof whole motion
control containsroute running and obstacleavoidanceby
planingsuitablepaths.Finally conclusiorandfutureworks
aredescribed.

Figurel: Mobile robotequippedwith stereovision sensor

2 StereoVision Sensor

The setof stereovision sensorsve usein this research
is composedf two monochromeCCD camerasquipped
with about90 deggreeswide-anglelenseswhich arefixed
on the left andright sidewith the sameheightat the top
of therobot(Seerigurel). Two imagesarecapturedsyn-
chronouslyon animageprocessindoard.

It alwaysrequireslarge mountof processingime to
searchcorrespondingpointsbetweerright andleft images
for recognizing3D objects. Somemethodshave beenal-
readyproposedn orderto obtaindataof obstaclexistence
atfastrate[9][10. Theirprinciplesareasfollows: First,all
objectswhich aretakenin eachimageare supposedo be
completelydravn on the floor. Secondpneimageis esti-
matedfrom the otherby the matrix calculatedwith relative
position. Third, comparesachpointontherealimagewith
the correspondingne on the estimatedmage. If thereis
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Figure 2: The principle of obstacledetectionin this re-
searchlt makegealtime obstacleletectionpossiblewith-
out ary searchof the correspondingpoints on eachim-
ages.Ifboth right and left of the brightnesseof corre-
spondingpointsare almostequal,thereis not ary obsta-
clesthere. The differenceof brightnessesneansthereis
somethingaroundthe point.

a certaindifferenceof brightnessaroundthereary 3D ob-
jects are detected. Thesemethodssucceededo shorten
processindime.

But mostof themasusualneedconsiderabléime. Then
we suggestednappropriatanethodfor obstacledetection
asarealtime processingf thevisualinformation(Seéd~ig-
ure 2). In this methodwe alsotake adwvantageof theidea
of the previousmethod but only for asmallareain theim-
ageswhich is necessaryo considerthe future motion of
the robot. Insteadof calculatingthe estimateimage, we
needto preparethe table of correspondingoointsin ad-
vance. Using it andjust comparingeachbrightnesssalue
atthe samepoint, we canunderstandf thereis something
atthe supposegbositionor not.

Thedetectionneedsnly 35.2[msec]this numberis an
averageof repeated. 000timesdetectionsaccordingo the
following conditions: Using a table which includes150
correspondingooints location data; they are actually as-
sumedto be on the floor, 40[cm], 65[cm] and 100[cm]
in front of the robotin the line of 150[cm] length. Fig-
ure 4 shows thosepoints’ location. 35.2[msec]includes
33[msec]of capturetime, soit shavs how fastthis process
is executed.An objectof 5[cm] width x 5[cm] heightcan
be detected.
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Figure3: The sampleresultsof a flat(paper)and3D(can:
obstacle)objects. Horizontal axis meanscorresponding
pointsfrom left to right, vertical axis shows the brightness
of eachpoint, solidline is for rightimageanddottedoneis
for left. Therearedifferencedetweerright andleft value
atthepointaroundbothendof thecan.
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Figure4: Therelative locationof correspondingpointsfor
stereccamerarom therobot.
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Figure 5: Experimentalresult dealing with obstacle(1),
blacktapeonthefloor(2) andreflectedight(3), before(up-
per part) and after (lower part) improvement. Horizontal
axis shavs the locationof the correspondingointson the
floor. Uppergraphs vertical axis displaysbrightnessesf
thosepoints and lower graphs one expresseghe experi-
mentalresult after improvement. Areaswhereobstacles
are detectedare markedby coloredbars. In the upper
graph,therearedetectionerrors,in thelower onethey dis-
appearedhanksto improvement.

3 Impr ovementof DetectionMethod

However therearetwo detectiorerrorsthatoccurusing
this method.Thatmeanssomeghostobjectsareoccasion-
ally detected.

Oneis causedyy reflectedlights (seethe right picture
of Figureb), andthe otheris by high contraston the floor
(themiddleone).

3.1 Reflectedceiling lights on the floor

First error is causedby reflectedceiling lights on the
floor. The causeis the positionwherelights arereflected
in the imagedependson the location of the right andleft
camerasit leadsto a certaindifferenceof brightnessatthe
samecorrespondingoints. It canseenat Figure5 right
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Figure6: Improved methodfor high contraston thefloor
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handuppergraph(3) thatthereis nothingon the floor but
sensohasmadewrongjudgment.(Coloredbarsmeanthat
obstaclesare existing aroundthem.) However, thereis a
big differencebetweena reflectedlight anda real object,
thatis how distinct their edgesare. Reflectionof light is
blurred,whereasa real objecthasa clearcontrastfrom its
surroundings.Soit is possibleto distinguishreal objects
from reflections.

Lower graphof Figure5 hastwo typesof lines. Result
of thisimprovementfor reflectedlights is shaved at solid
line(1). It presentghe valueof eachpoint thatis affected
by both its brightnessand edgeintensity — calculatedby
differenceof the point’s brightnessand next point’s one.
Thesharpetheedgeof objectsaroundthe point, thelarger
thevalueof the pointbecomesCertainthresholchasbeen
setandsomeexperimentshave beenmade. The detection
errorsrelatedto reflectedights have beencanceledFigure
5'sright handgraphsshav thatthis methodworkssuccess-
fully.

3.2 High contrast on the floor

Seconderror happensaroundthe borderon the floor
betweendifferentcolorswhich intensitiesare remarkably
changed(Se&igure 5 upper(2)). The reasonwe guess
is the correspondingpoints on eachright and left image
which arepreviously calibratedusingoriginal processare
notcorrespondingtrictly. But exactnes®f calibrationhas
alimit, andit is necessaryo improve the objectdetection
methodwith allowablemaigins of exactness.

Thenwe replacethe detectionalgorithmby a moretol-
erantone. Previousmethodcompareshe averagef nine
points’ brightnesseshown in Figure6(a). New onecom-
paresthe brightnessof the points shovn in Figure 6(b).
If a certainnumberof correspondingointshave different
brightnesswe deducethe existenceof an obstaclearound
thesepoints. So dottedline(2) in Figure 5 lower graph,



correspondso integersfrom 0 to 9. Herethresholdis set
to 4. After this improvement,errorsare significantly de-
creased.

Tablel: Original statetransitionlist

Whenboth (1) and (2) are greaterthancertainthresh-

olds, real obstacleexists aroundthe point. The judgment| 0 || straight]| Xy,

if thereis anobstacleor notis the resultof thelogical and | 1 ||

betweenthe two comparisongresentecbove. Thus ex-

perimentalresultsshowv that both implementationswere
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successful. This can be seenon Figure 5 wherethe col-

ored barsdisappearedn the caseof (2) and (3) afterthe

new processingvhereaghey remainedpresenin the case
of arealobstacle.

4 Realization of Obstacle Avoidance Behav-
ior

First we decidedsome preconditionsfor autonomous
obstacleavoidanceby mobile robot. Robotalreadyknows
the pathto follow which is given by human,usesthe in-
formationof pathandobstacleaxistenceto planasuitable
new pathto thegoalby itself.

Thereforethe route descriptionaffects every decision,
andin the beginning we needto defineits details. What
kind of motionsare suitablefor our robot equippedwith
stereovision sensoron the top of it? Mention sensorin-
formation,its sensingareadepend®n the motion of robot
itself andthe areahaslimit, that meansto realizetotally
safe movementrequiresto plan the pathsonly in well-
known ervironment. Corversely some motions contain
running on unknovn area,thereforespin turn should be
banned.For thesereasonseachrunningpathis described
asastraightline or anarc. Wholeroutedescriptionwhich
binds eachpathssmoothlybecomesa tamget route to fol-
low.

Next discussionis abouthow to dealwith thosepaths
corveniently We adopteda statetransitionlist, regarding
astraightline or anarcasa statementOnestatecontains
its statenumber which motion(line or arc), startandend
positions(x,y, 8), the radius of the circle (if stateof arc)
andthenumberof next stat§Shavn at Table1). Usingthe
above list andthe preseration of currentstate,the robot
cancontrolits objective behaior.

While therobotexecuteggeneraimotionthelist is han-
dledin order If ary obstaclesarefound, suitableavoid-
anceandrecovery aredemandedSowe considerthatthe
list dynamically changesaccordingto the detectedpoint
andcanbe performedsuitablyin orderto accomplistboth
avoidanceandreturning. Concretemeansarethe follow-
ing: 1) Plannew route which avoids the point wherean
obstaclehasbeendetected?2) After statepreserationpart
recognizeshata new statewasaddedattheendof thelist,

target route

Figure7: The methodto constructavoidancepaths. The
positionwherean obstacles detected O), the currentpo-
sition of therobot (A) andthe original routelist (Table1)
areused.[B hasto becalculatedasthe pointwherearobot
recover to the original route, C is decidedasa relay point
betweerA andB. The pathsaredeterminedy thosethree
pointsusingsomearclines.]



Table2: Thelist aftergeneratiorof avoidancepaths
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it movesthe pointerof currentstateto top of new state.3)
Thelaststates next statewill bechangedsthestatewhich
containstherecovering point. Usingthelist like this, just
updatingit enableghemanagemennotionof therobotas
well aswe expected.

5 Planing AvoidancePaths

Whenthe obstaclds found, the pathshouldbe bended
by replacingthe original pathwith a new pathto avoid it.
Thenew pathcanbe constructedisingthe detectedbsta-
cle positionandcurrentrobotposition(Sed-igure 7).

Next the points where robot should passthrough to
avoid an obstacleand recover to original route are de-
mandedto be decided. The recorery point is definedas
follows: Calculatetwo pointswherethe line — according
to the given list —, andthe circle — its centeris detected
obstacleposition andits radiusis the length betweende-
tectedobstaclepositionandcurrentrobotposition— cross
eachother The point which doesnot correspondo the
currentrobot positionis definedasthe recovery position
to the original route. Also the positionto passis the posi-
tion wherebothhalf of theanglemadeby abose mentioned
threepointsandfar certaindistancefrom the detectedbo-
sition. Consideringhesizeof robot,thedistances before-
handdecided.

The sameconditionsmentionedn lastsectionarealso
adoptedto new route as avoidanceones, so every path
shouldbe describedy astraightline or anarc. Hereevery
path canbe generatedastwo arcswhenthe locationand
orientationof two end pointsare given. For smoothmo-
tion of therobotthe radiusof eacharcwould like to be as
large aspossible.Thatmeansabove two arcsdesignedhe
sametiming will becomeequalradius.

Following thoserules, a uniqueavoidancepathcanbe
constructedrom the informationof the detectedobstacle
position,currentrobotpositionandthe original routelist.

(
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Figure8: Stereovision sensoisystem

6 Implementation

In this research we use the mobile robot
“YAMABICO"[11] with a stereo vision sensor (Fig-
ure 1). Master control, locomotion control and image
processingoardsput on the rack of robothave eachown
CPU (TransputerT805 /20MHz) seenat Figure 8. We
can control its motion easily thanksto original softwares
that have alreadybeendevelopedin our laboratory A
high level commandfor example,“Trackthe straightline
whichincludesposition(x,y)andits orientationis thetaon
the predefinedcoordinatessystem”,cancontrol the robot
exactly.

The systemwe implementeds composedas follows:
The above mentionedstatetransitionlist, the currentstate
managemerprocessthe routerunnerprocessvhich con-
trol the robot’s motion accordingto the list, the process
generatinghew pathsusingthe detectioninformationand
currentrobot position. Thosework eachotherto aim at
completeexpectedmotionsincluding both route running
andobstacleavoidance.

7 Conclusion

In this paperwe describedhigh speedobstacledetec-
tion method and the way to decreaseits detectioner
rors. Thenwe presentedhe methodof obstacleavoid-
anceand its implementation. It alreadyconfirmed that
robotautonomouslyunsaccordingto givenlist, it proves
thatsomeof necessaryunctionsweresuccessfullymple-
mented.The restof implementationis the pathgeneration
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processes.

Futuretaskis to completewhole implementationand
conductsome experiencesin various ernvironment with
several obstaclego evaluatethis system.Our final goalis
real-timeautonomougxecutionof givenmovementavoid-
ing obstaclesaturally
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