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Abstract|

This paper considers the problem of systematically ex-

ploring an unfamiliar environment in search of one or more

recognizable targets. The proposed exploration algorithm

is based on a novel representation of environments contain-

ing visual landmarks called the boundary place graph. This

representation records the set of recognizable objects (land-

marks) that are visible from the boundary of each con�gura-

tion space obstacle. No metric information about the scene

geometry is recorded nor are explicit prescriptions for mov-

ing between places stored. The exploration algorithm con-

structs the boundary place graph incrementally from sensor

data. Once the robot has completely explored an environ-

ment, it can use the constructed representation to carry out

further navigation tasks. In order to precisely characterize

the set of environments in which this algorithm is expected

to succeed, we provide a necessary and su�cient condition

under which the algorithm is guaranteed to discover all land-

marks. This algorithm has been implemented on our mobile

robot platform RJ, and results from these experiments are

presented. Importantly, this research demonstrates that it

is possible to design and implement provably correct explo-

ration and navigation algorithms that do not require global

positioning systems or metric representations of the envi-

ronment.

Keywords| exploration, navigation, mobile robots, land-

marks

I. Introduction

Every year millions of tourists descend upon the Louvre

museum in Paris hoping to catch a glimpse of the Mona

Lisa, the Venus De Milo and I.M. Pei's controversial pyra-

mid. On arriving at the museum they are faced with the

problem of �nding these famous artworks in a large, un-

familiar, maze-like building. The problem encountered by

these hapless tourists is very similar to the kinds of explo-

ration and navigation tasks we would like mobile robots to

solve autonomously.

Consider the problem of programming a mobile robot to

load all of the white boxes in a warehouse onto a truck.

Or the problem of designing a mobile robot to perform au-

tonomous inspections of nuclear waste facilities in search of

leaking barrels of toxic waste [2] In each of these situations

neither the designer nor the user knows precisely where the

objects of interest are located. They must rely instead on

the robot's ability to discover these targets automatically.

This paper presents an exploration algorithm that en-

ables a mobile robot equipped with a visual recognition

system to carry out a systematic exploration of an unfa-
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miliar environment in search of one or more recognizable

targets. This algorithm could be employed to accomplish

the real-world tasks described in the previous paragraph.

The problem of searching for a particular target object is

actually equivalent to the problem of �nding all of the rec-

ognizable objects in the environment since the robot may

have to discover every object before it can decide whether

or not the target object is present. Therefore, the explo-

ration algorithm presented in this paper is actually de-

signed to search for all of the recognizable objects.

The proposed algorithm is based on a novel representa-

tion of environments containing recognizable objects (vi-

sual landmarks) called the boundary place graph. A visual

landmark is simply a distinctive object or pattern that the

robot can recognize with its vision system whenever it is in

view. In a typical o�ce environment tables, chairs or trash

cans could serve as landmarks. In an art museum, paint-

ings or sculptures may be used for this purpose. This paper

does not address the problem of recognizing or selecting an

appropriate set of landmarks in a given environment. In

the sequel we will assume that the robot can recognize some

set of objects and proceed to design algorithms based on

this capability.

The boundary place graph records the set of landmarks

that are visible from the boundaries of various con�gura-

tion space obstacles in the environment. It does not record

any representation of the geometry of the environment nor

does it store explicit prescriptions (trajectories) for mov-

ing between places. The exploration algorithm constructs

this representation incrementally from sensor data. Once

the robot has completed its exploration, it can use the

boundary place graph to plan and execute further navi-

gation tasks within the environment.

It is important to note that the exploration algorithm

presented in this paper does not assume any prior knowl-

edge about the geometric structure of the environment. It

is not provided with any prior information about the ab-

solute or relative positions of the obstacles or of the land-

marks and it does not attempt to measure these quantities.

Nor does the algorithm assume a priori knowledge about

the number of obstacles or landmarks it might encounter.

In order to precisely characterize the set of environments

in which this algorithm can be expected to succeed, we pro-

vide a necessary and su�cient condition under which the

algorithm is guaranteed to discover all of the landmarks in

its environment. Importantly, this research demonstrates

that it is possible to design and implement provably correct

exploration and navigation algorithms that do not require

global positioning systems or metric representations of the

environment.
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The remainder of this section is devoted to reviewing

related work. Section II describes all of the assumptions

made about the structure of the environment and the ca-

pabilities of the mobile robot. It also contains the de�ni-

tion of the boundary place graph representation. Section

III presents an analysis of a simple, sensor-based strategy

that the mobile could use to navigate between nodes in

the boundary place graph. Section IV presents an explo-

ration algorithm that enables the robot to construct the

boundary place graph from sensor data. Completeness and

complexity results for the algorithm are also presented in

this section. Section V describes the implementation of

the exploration and navigation algorithms on our mobile

robot platform, R.J., and discusses the experiments that

were carried out. Finally, Section VI discusses some of the

conclusions drawn from this research.

A. Related Work

In recent years, the problem of exploring an unknown

environment has received considerable attention from re-

searchers in the computer science theory community. Chin

and Ntafos [4] considered the \night watchman's problem"

of �nding a closed route through the interior of a simple

polygon such that every point on the interior of the polygon

is visible from some point on the path. They showed that

the general problem is NP-hard, however, for the special

case of a rectilinear polygon they described an O(n log n)
procedure for computing such a tour. Deng and Papadim-

itriou [6] investigated the problem of exploring an unknown

polygonal room with a bounded number of polygonal ob-

stacles. The length of the path taken by a robot that learns

the environment for the �rst time is compared to the length

of the shortest night watchman's tour. Kalyanasundaram

and Pruhs [9] considered the problem of conducting a sys-

tematic exploration of an unknown environment containing

a number of convex polygonal obstacles.

All of these algorithms assume that the environment is

populated with polygonal obstacles and that the robot can

accurately determine its position with respect to a global

frame of reference. In practice, it is quite di�cult to accu-

rately estimate the position of a mobile robot with respect

to an arbitrary frame of reference. In most mobile robot

systems, some form of odometry or dead reckoning is used

to determine the robot's global position. Every odomet-

ric system su�ers from the problem of cumulative error; as

the robot moves further and further from its starting point,

errors in the estimates of the robot's position grow mono-

tonically. There are several robot localization systems that

require the user to go through the trouble and expense of

installing a set of beacons at known locations in the robot's

workspace. Global positioning techniques based on GPSS

are inapplicable to indoor environments where structural

elements of the building may occlude the signals from the

satellites. One of the main advantages of the algorithms

presented in this paper is that they do not require a global

positioning system, which simpli�es their implementation.

Most of the research that has been reported in the

robotics literature casts the exploration problem in terms of

constructing a global metric map of the robot's workspace

[10],[1],[14] If the robot were able to construct such a map,

then it could employ classical path planning algorithms

[3],[16] to navigate through its environment.

Two systematic techniques (named the Sightseer and

Seed Spreader strategies) for exploring the geometry of

a two-dimensional con�guration space were proposed by

Lumelsky, Mukhopadhyay and Sun [19] They assume that

that the robot is equipped with a tactile sensor and that it

can accurately determine its position in a global frame of

reference.

Iyengar and Rao [8],[22],[23] developed exploration algo-

rithms inspired by the visibility graph approach to path

planning [16],[17]. The problem is modeled in terms of

a point robot moving through a 2-D con�guration space

populated with polygonal obstacles. In this case, perfect

sensing is assumed, and the robot learns the visibility graph

online.

Choset and Burdick recently developed the generalized

Voronoi diagram which is based on a deformation retract

and can represent con�guration spaces of arbitrary dimen-

sion [5]. An on-line method is presented for constructing

the representation from a sensor that can measure range

in the con�guration space. They also show how this repre-

sentation can be used for motion planning.

The main criticism of the algorithms described in the

previous paragraphs centers on their assumption that the

robot can construct a reasonably accurate metric map of

its workspace in a global coordinate system. In practice,

this is extremely problematic. Once again the main di�-

culties stem from the fact that it is not easy to determine

the position of the robot with respect to an absolute coor-

dinate frame of reference. Whenever the robot encounters

new features in the environment, it uses its estimate for its

current position to determine where these features should

appear in the map. This implies that any errors in the po-

sitioning system will be re
ected in the map that the robot

constructs.

Other researchers have developed navigation algorithms

that rely on recognition. Kuipers and Byun [11],[12] pro-

posed a scheme based on a place graph where a place is

de�ned as a speci�c point in the world that the robot can

recognize from sonar readings. The edges in this place

graph represent navigation operations, like wall following,

that take the robot from one place to another. Mataric

later designed and implemented a similar algorithm that

constructs a place map of portions of an o�ce environ-

ment from sonar data [21]. The basic idea behind both

of these approaches is to recast the navigation problem in

terms of �nding a route through the place graph from one

region to another. Neither of these approaches addressed

the problem of conducting a systematic exploration of an

environment containing multiple obstacles.

The Achilles heel of these place graph algorithms is their

reliance on heuristics to subdivide the world into recogniz-

able places. It is not entirely clear that these heuristics will

produce a useful or meaningful partitioning of an arbitrary

environment. In this paper, we explain how the obstacle
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boundaries and the visibility of speci�c landmarks induce

a well-de�ned partitioning of the freespace which the robot

can learn online.

Recognizable landmarks are the basis of many other nav-

igation strategies. Levitt et. al. [15] proposed a method for

partitioning an outdoor area into regions based on the vis-

ibility of pairs of recognizable landmarks. A robot can de-

termine its position with respect to a set of Landmark Pair

Boundaries which are virtual lines drawn between pairs of

landmarks in the environment. A path from one place to

another is planned by deducing the sequence of landmark

pair boundaries that the robot would cross to get from one

region to another. However, the method does not account

for occlusion of landmarks or unexpected obstacles.

Lazanas and Latombe [13] have developed provably cor-

rect navigation algorithms based on landmark recognition

and localization, assuming that the positions of the land-

marks and the obstacles are known a priori. The task is to

construct a navigation plan that will pilot the robot to the

target location even in the presence of signi�cant control

uncertainty. The problem considered in this paper is quite

di�erent since the robot will not be provided with any prior

information about the structure of its environment or the

landmarks contained therein.

II. World Model

This research was motivated by a desire to produce algo-

rithms that would enable mobile robot systems to navigate

successfully in cluttered, unstructured o�ce environments.

In order to tackle this problem, we needed to develop a

model of the environment which was simple enough to be

tractable, but realistic enough to allow us to implement the

resulting algorithms on our mobile robot platform. This

section describes all of the assumptions that were made

about the capabilities of the robot and the structure of the

environment.

Figure 1 shows the major aspects of the world model.

The robot is modeled as a holonomic vehicle with a cir-

cular cross section traveling through a planar workspace.

These assumptions allow us to represent the robot as a

point moving in a two-dimensional con�guration space.
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Fig. 1. Major features of the world model.

The robot is equipped with a vision-based recognition

system which allows it to recognize and localize some (but

not all) of the objects in the environment. More speci�-

cally, we assume that there is a set of distinct, recognizable,

�xed objects in the world which will be termed landmarks.

These landmarks are modeled as points in the workspace.

We do not assume that the robot has any prior information

about the absolute or relative positions of these landmarks.

We assume that the robot can measure the bearing to

every landmark that is visible from its current position as

shown in Figure 2 which implies that the robot is capable

of looking in all directions. This capability can be realized

by mounting the camera system on a pan-tilt head or using

an omni-directional camera [25].

We also assume that the robot can measure some quan-

tity that is monotonically related to the distance between

the robot and the landmark. For example, the robot may

be able to measure the height of the landmark in the im-

age which decreases monotonically as the robot gets further

from the landmark. It can use this measurement to deter-

mine whether it is closer or further away from the landmark

than it was at a previous time. In the sequel we will refer

to this measured quantity as the relative range. It is impor-

tant to note that the robot cannot compute its coordinates

with respect to the landmark using these measurements

from its vision system. Nor do we assume that the robot

has any means of estimating its position with respect to a

global frame of reference.

θ

r
obstacle

robot

landmark A

landmark B

obstacle

Fig. 2. The robot can measure the bearing, �, to every visible land-
mark. It can also measure some quantity that is monotonically
related to the range from the landmark, r. Note that landmark
B is not visible from the robot's current position.

The robot must also contend with a set of obstacles,

and these are modeled as simple closed curves in a pla-

nar con�guration space; no assumptions are made about

the shapes of the obstacles. There are a �nite number

of obstacles in the con�guration space, and each of these

has a �nite length perimeter. Since the robot has nonzero

diameter, a single con�guration space obstacle may actu-

ally represent several disjoint obstacles in the workspace.

For the sake of simplicity, we assume that the freespace is

bounded by one of the con�guration space obstacles.

The obstacles in our model come in two 
avors, opaque

and transparent. Opaque obstacles occlude landmarks

from the view of the robot, while transparent ones do not.

In the real world, opaque obstacles might include walls or
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bookshelves; transparent obstacles will block the robot's

progress, but the robot can either see through or over them

(e.g. tables, waste paper baskets, windows). A con�g-

uration space obstacle may contain components that are

both opaque and transparent. Every landmark in the en-

vironment must be contained within the boundary of an

obstacle. A single obstacle may contain any number of

landmarks or none at all.

We also assume that the robot is equipped with a prox-

imity sensor that can detect imminent collisions and can

be used to perform boundary following. We further as-

sume that the robot will be able to determine when it has

completely circumnavigated an obstacle.

A. De�nitions and Observations

Given the world model described above, we can make

the following de�nitions and observations:

De�nition: Visibility Region The visibility region of a

landmark is the set of points in the workspace from which

the landmark is visible. As seen in Figure 1 , the visibility

region of a landmark is always a simply connected, closed,

star-shaped set. Due to sensor resolution and measurement

noise, it is possible that a landmark will only be visible

when the robot is within some �nite radius.

B

C

A

A B C

Fig. 3. Boundary place graph representation for a simple environ-
ment.

De�nition: Boundary Place Graph

A boundary place is de�ned as the boundary of a con�gu-

ration space obstacle that contains at least one landmark.

Boundary place B is said to be connected to boundary place

A i� a landmark contained inside boundary B is visible

from some point on boundary A (i.e., the boundary of A

intersects the visibility region of a landmark within B).

These de�nitions allow us to de�ne a boundary place graph

as shown in Figure 3 where the nodes represent boundary

places, and the directed arcs represent connections between

these places. Note that there may be any number of con-

�guration space obstacles in the environment that do not

contain landmarks; however, these obstacles will not be in-

cluded in the boundary place graph.

Observation 1: In order for a landmark to be visible in

the robot's freespace, it must be visible along some portion

of the enclosing obstacle boundary.

Proof: This proposition can be proved by constructing

a straight line between the landmark and the point in

freespace where the landmark is visible. Since light travels

in straight lines, the landmark must also be visible from ev-

ery point along that line and since the landmark lies in the

interior of an obstacle, the line must cross the that obsta-

cle's boundary at least once by the Jordan curve theorem.

2

Observation 2: If the robot circumnavigates all the ob-

stacles that contain landmarks, it will eventually discover

all the visible landmarks in the workspace.

Proof: Since every landmark must be visible from the

boundary of the obstacle that encloses it (from Observation

1), a robot that circumnavigates all the obstacle boundaries

will eventually �nd all the landmarks. 2

This observation is particularly relevant to our task since

it means that the robot does not have to investigate every

point in the 2-dimensional con�guration space in order to

�nd all the landmarks; it can accomplish its goal simply by

following a �nite length path around the boundaries of the

obstacles. The exploration algorithm described in Section

IV is based on this observation.

III. Navigation Algorithm

This section presents an analysis of a simple, sensor-

based control strategy that allows the robot to navigate

between two boundary places that are connected by an arc

in the boundary place graph. Once this basic capability has

been established, it can be employed by the exploration and

navigation algorithms, described in the following sections.

Consider two boundary places, A and B, that are con-

nected by an arc in the boundary place graph. Since the

two places are connected, we know by de�nition that at

least one landmark located inside boundary place B is vis-

ible from boundary place A. The robot can simply circum-

navigate boundary place A until one of these landmarks

became visible and then employ the approach algorithm

outlined below to move to boundary place B. Since a trans-

parent obstacle may lie between place A and the landmark

in place B (See Fig. 4), the robot cannot simply travel in

a straight line towards the landmark.

Approach Algorithm:

1) Head towards landmark until obstacle encountered.

2) Circumnavigate the obstacle boundary and let L
denote the point on the section of the boundary

from which the landmark is visible where the robot

comes closest to the target.

3) If the target landmark appears to lie inside the

obstacle boundary at the point L
then

terminate,

else

follow the boundary back to L.
4) Goto step 1.

Figure 4 shows an example of the execution of this ap-

proach algorithm. This example demonstrates that the

robot may leave the visibility region of the landmark during
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H1

H2

L2

L1

Fig. 4. Execution of the approach algorithm.

the execution of this algorithm. Note that this algorithm

relies on the robot's ability to determine when it has com-

pletely circumnavigated an obstacle. Note also that the

robot does not need to measure the actual distance to the

target. It only needs to be able to detect when it is closest

to the landmark.

This approach algorithm is similar to the Bug1 algorithm

proposed by Lumelsky and Stepanov [18],[20]. However,

the Bug1 algorithm is based upon the assumption that the

robot is equipped with a global positioning system which

allows it to measure its position with respect to the target

at all times. In our model, the robot can only measure the

relative range and bearing to the landmark when it is in

view; it does not have any way of measuring its coordinates

with respect to the target.

The di�erence between the two approaches can be illus-

trated by considering the problem faced by a tourist in

Paris who wishes to visit the Ei�el tower. In the Bug1 al-

gorithm, the tourist would be provided with a GPSS unit

and would be given the exact latitude and longitude of the

tower. In the approach algorithm described in this paper,

the tourist would be shown a photograph of the historic

landmark so that she could recognize her target. During

the course of her journey, she would use the apparent size

of the tower to gauge the relative range to her goal when-

ever it was in view. Note that she cannot always see the

landmark nor can she measure her position with respect to

the tower or her actual distance from the landmark, but she

can use the apparent size of the tower to decide whether

she is nearer or further away than she was at some previous

time.

Both algorithms will get the tourist to her destination,

but the underlying assumptions about her sensory capabili-

ties are markedly di�erent. We are obliged to demonstrate

that the approach algorithm does in fact converge under

these more restrictive assumptions.

The remainder of this section is devoted to proving that,

when guided by this approach algorithm, the robot will

converge in a �nite amount of time to the boundary of the

obstacle containing the landmark. The proof has been di-

vided into two parts: the �rst part discusses the procedure

that the robot uses to decide whether the target landmark

lies inside or outside of a con�guration space obstacle; the

second part demonstrates that the robot will, in fact, con-

verge to the correct obstacle boundary and gives an upper

bound on the total distance that the robot would have to

travel before termination.

Consider the portion of the obstacle boundary from

which the landmark is visible, and let A denote the point in

this section that is closest to the target. In the sequel, this

point will be referred to as the closest observable point.

Note that this point may be di�erent from the point on

the boundary that is actually closest to the target since

the landmark may not be visible from every point on the

obstacle boundary.

In general, the closest observable point on a boundary

will be unique; however, it is possible to construct situa-

tions where this is not the case. Consider, for example, a

landmark placed in the center of a circular obstacle. This

special case does not a�ect the correctness of the arguments

advanced in this section since the important properties of

the closest observable point are shared by all the points

that satisfy the de�nition. In the sequel we will discuss

the case for a single closest observable point without loss

of generality.

The robot can locate the closest observable points as it

circumnavigates the obstacle boundary by keeping track of

the relative range to the target whenever the landmark is

visible. Whenever the robot needs to return to one of the

closest observable points, it can simply track the obsta-

cle boundary until the landmark is visible and the relative

range to the target is equal to the smallest relative range

recorded along the obstacle boundary. Note that the robot

does not have to record the actual coordinates of the closest

observable points.

If the landmark appears to be inside the boundary at the

closest observable point, then it must lie inside the obstacle

boundary, otherwise it must lie outside. This implies that

the termination condition given in step 3 of the algorithm

will only succeed when the obstacle has circumnavigated

the obstacle that contains the target.

Lemma 1: The line segment between the closest observ-

able point and the target landmark only intersects the ob-

stacle boundary at the closest observable point.

Proof: If there were another point on the obstacle bound-

ary that was also on the line segment between the closest

observable point and the landmark, that point would also

lie in the visibility region of the landmark and it would be

closer to the target than the supposed closest observable

point. 2

Observation 3: If the line segment between the closest

observable point and the landmark is directed into the ob-

stacle at the closest observable point, then the landmark

must lie within the obstacle boundary, otherwise it must

lie outside.

Proof: Lemma 1 states that the line segment between the

closest observable point and the landmark will never inter-

sect the obstacle boundary more than once. So if the line

segment is directed into the obstacle at the closest observ-

able point, the target must lie inside the obstacle boundary
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by the Jordan Curve Theorem. Similarly, if the line seg-

ment is directed away from the obstacle at that point, the

landmark must lie outside. 2

The following Lemmas prove that the robot will converge

to the boundary of the obstacle containing the target land-

mark in a �nite amount of time. This section of the proof

follows the structure of the analysis provided in [20].

Lemma 2: When the robot leaves an obstacle boundary

in order to head towards the target landmark, it never re-

turns to any point on that obstacle.

Proof: Let O be an obstacle that the robot encounters

along its path that does not contain the target landmark.

Let Hi denote the point where the robot �rst encounters

the obstacle and Li denote the point where it leaves that

obstacle boundary to head towards the target as shown in

Figure 4. The integer i indicates the order in which the

obstacles are encountered.

Since the robot encounters Hi while it is moving in a

straight line towards a visible target, Hi must lie in the

visibility region of the landmark. The algorithm will choose

the leave point, Li, to be the closest observable point on

the obstacle boundary.1 From the de�nition of the closest

observable point, we can infer that d(Hi) > d(Li) where

d(P ) denotes the distance between the point P and the

target landmark. We can also deduce that d(Li) > d(Hi+1)

since the robot travels directly towards the target when it

leaves the obstacle boundary.

Taken together, these observations imply that if we con-

sider the sequence of hit and leave points that the robot en-

counters along its journey, the distance between the robot

and the target landmark decreases monotonically until the

robot reaches the boundary of the obstacle enclosing the

landmark.

The only way that the robot could return to a previously

visited obstacle is if it encounters that obstacle at a new

hit point H 0. This hit point H 0 would have to be closer

to the target than the previous leave point Li associated

with that obstacle, which would imply that Li was not the

closest observable point on the boundary after all. 2

Lemma 3: If di denotes the perimeter of an obstacle that
the robot encounters during its journey, then the robot will

travel a distance no more than 2di along the boundary of

that obstacle.

Proof: The robot will circumnavigate every obstacle it en-

counters during its journey which means it will travel a

distance of at least di along the obstacle boundary. In ad-

dition, it may have to travel a maximum distance of di
along the boundary to get back to the leave point associ-

ated with that obstacle. 2

If the robot had some means of measuring the distance it

has traveled along the obstacle boundary, it could choose

the shortest path along the boundary back to the leave

point which would reduce this upper bound to 1:5di.

1If there are many points on the obstacle boundary that could serve
as the closest observable point, the robot can choose any one of these
without a�ecting the correctness of the algorithm.

Lemma 4: The robot can only encounter obstacles that

intersect the portion of the landmark's visibility region that

lies within a disc of radius D centered around the tar-

get landmark where D denotes the distance between the

robot's start point and the landmark.

Proof: In proving Lemma 2, we showed that the distance

between the hit points and the target landmark decreases

monotonically over time which implies that every hit point

must be less than D units away from the target landmark.

We also noted that every hit point must lie within the land-

mark's visibility region. Taken together, these observations

imply that every obstacle that the robot encounters must

have some section of its boundary intersect the portion of

the landmark's visibility region that lies within a disc of

radius D centered around the target landmark. 2

Observation 4: The maximum distance that the robot

will travel before it converges to the boundary of the obsta-

cle that contains the target landmark is given byD+2
P
di

where
P
di represents the sum of the perimeter of the ob-

stacles that intersect the portion of the landmark's visi-

bility region that lies within a disc of radius D centered

around the target landmark.

Proof: If there were no extraneous obstacles, the robot

would have to travel a distance of at most D before it en-

countered the obstacle boundary enclosing the target land-

mark. Lemma 4 states that the robot will only encounter

those obstacles that intersect the portion of the landmark's

visibility region lying within a disc of radius D centered

around the target landmark. Lemmas 2 and 3 imply that

the robot will travel no more than 2
P
di along the bound-

aries of those obstacles. 2

IV. Exploration Algorithm

Observation 2 states that if the robot is able to circum-

navigate all of the obstacles that contain landmarks, it

would eventually discover all visible landmarks. The al-

gorithm presented below is based on this observation. Ef-

fectively, the algorithm will cause the robot to perform a

tour of the boundary place graph of the environment where

visiting a node in the place graph corresponds to circum-

navigating the boundary of that obstacle. We will term

a particular landmark in the environment explored i� the

robot has circumnavigated the con�guration space obstacle

that encloses that landmark. By exploring each of the land-

marks that it sees, the robot can incrementally learn the

entire boundary place graph of the environment. Once the

entire graph has been explored, the robot can use the con-

structed representation for further navigation tasks. The

entire exploration algorithm is outlined below in pseudo

code. At the beginning of the exploration, we assume that

the robot can see at least one landmark from its current po-

sition. If not, it would carry out some variant of a random

walk until it found its �rst landmark.

Note that this exploration algorithm does not require

any a priori information about the structure of the envi-

ronment. It does not require any information about the
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number of obstacles in the environment nor is it given any

information about the number of landmarks in the envi-

ronment or their positions in the scene.

Exploration Algorithm:

Find �rst landmark.

While h unexplored landmarks i
Select unexplored landmark, �.
Plan path through explored part of the

boundary place graph to region where

� is visible.

Approach �.
Circumnavigate boundary that contains �, and

record any observed landmarks.

Update the place graph.

The robot maintains two data structures during this ex-

ploration procedure: L the list of landmarks it has seen and

B the list of boundary places it has circumnavigated. For

each boundary place, the robot records which landmarks

are visible from that obstacle boundary. These landmarks

are divided into two categories: interior landmarks which

lie inside the obstacle boundary and exterior landmarks

which lie outside. These lists, L and B, represent the por-
tions of the boundary place graph that the robot has ex-

plored so far.

Figure 5 shows the progress of the exploration algorithm

on a typical environment at various stages. In this �g-

ure, the thicker lines along the robot's path denote sec-

tions where the robot would employ the approach algo-

rithm while the thinner segments indicate places where the

robot would use simple boundary following. The graphs

below each �gure denote the current state of the bound-

ary place graph that the robot has constructed. In stage

1, the robot circumnavigates obstacle A and determines

that there are two unexplored landmarks visible from the

boundary of A which need to be explored. These unex-

plored landmarks correspond to unexplored edges in the

robot's representation of the boundary place graph. In

stage 2 the robot traverses one of the unexplored edges

and ends up circumnavigating obstacle B; after it has �n-

ished its circuit around this obstacle, it concludes that there

is still one unexplored edge in the graph, and so it plans

a path back through the graph to boundary A and tra-

verses the unexplored edge to boundary place C. In the

�nal stage it visits obstacle D and concludes that there are

no more unexplored landmarks in the environment. By this

stage, the robot has built a complete representation for the

boundary place graph of the environment which it can use

in future navigation tasks.

Notice that by circumnavigating an obstacle the robot

discovers all of the landmarks that can be seen from the

boundary of that obstacle. These landmark sightings cor-

respond to edges in the boundary place graph. Since the

landmarks are all distinct, the robot can determine which

of the landmarks lie within obstacles that it has already

explored and which lie in unexplored nodes. To completely

instantiate the boundary place graph, the robot does not

have to traverse every arc, just visit every node.

D

A

B

B

A

C

A

robot

B

A

C

D

a b

c d

D

C

A B

D

C

D
B

A

C

A

B

B A C D

Fig. 5. Progress of the exploration algorithm: The thicker lines
along the robot's path denote sections where the robot would
employ the approach algorithm while the thinner segments indi-
cate places where the robot would use simple boundary following.
The dashed lines in the graph denote unexplored edges while the
vertical arrow indicates the current position of the robot in the
graph.

Since the exploration problem has been cast in terms of

a graph traversal, it should not be surprising that the nec-

essary and su�cient condition required to ensure success

should be framed in the following manner.

Necessary and su�cient condition: The exploration

algorithm presented above is guaranteed to discover all the

landmarks that are visible from the robot's freespace re-

gardless of which landmark it discovers �rst i� the bound-

ary place graph of the environment is strongly connected.

A directed graph is termed strongly connected i� it is pos-

sible to construct a path from any node in the graph to any

other node.

Proof: Proving that the condition is necessary follows from

the de�nition of a strongly connected graph. If the graph is

not strongly connected, then we can always �nd two nodes

A and B such that there is no path from A to B through

the graph. This means that if the exploration procedure

started at node A, it would never be able to carry out a

complete tour of the graph since it could never reach node

B.

In order to prove that this condition is in fact su�cient,

we �rst divide the place graph into two parts, the explored

section and the unexplored section. If there is no unex-

plored section, the exploration algorithm will terminate

normally. Otherwise, we can select any node T in the un-

explored section of the graph and consider a path from the

robot's current location, S, to that node; since the place

graph is strongly connected, we know that such a path

must exist. Since the robot's current position, S must lie

in the explored part of the graph, we can conclude that

at some point along this path there must be an unexplored

edge that connects a node in the explored part of the graph

to a node in the unexplored part in the graph. This implies
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that the robot can always plan a path through the explored

part of the graph to some unexplored node. 2

B
A C

A B C

Fig. 6. The exploration algorithm will �nd all the visible landmarks
i� the boundary place graph of the environment is strongly con-
nected. This environment, where the boundary place graph is
not strongly connected, could cause problems.

Figure 6 shows an example of an environment that could

cause problems for the exploration algorithm. Notice that

boundary place A is not connected to any of the other

boundary places in the environment since the landmarks

contained within B and C are occluded from all viewpoints

on the boundary of A. If the robot were to start from

boundary place A, it would terminate its exploration after

circumnavigating that obstacle and would not discover the

other landmarks. If the boundary place graph is strongly

connected, the exploration will succeed regardless of which

node in the graph is selected as the starting point.

A. Exploration Complexity

This section discusses some of the complexity issues re-

lated to the online graph exploration algorithm described

earlier in this section.

Observation 5: In order to carry out a complete explo-

ration of a boundary place graph with n nodes the robot

will have to traverse at least (n� 1) edges.

Proof: Given a graph with n nodes the robot will have to

traverse at least one edge for each new node it visits, this

implies that the robot will have to traverse at least (n� 1)

edges in order to visit all n nodes. 2

Observation 6: In order to carry out a complete explo-

ration of a boundary place graph with n nodes the robot

will have to traverse at most n(n+ 1)=2 edges.
Proof: At any stage in the exploration process, the worst

that could happen is that the robot might have to travel

through all the previously visited nodes in order to get

to an unexplored edge. That is, at stage i it might have
to traverse i edges which implies that the total number

of edges required to explore the entire graph would beP
n

i=1 i = n(n+ 1)=2. 2

It is quite simple to construct graphs where the number

of edges that the robot has to traverse in order to visit all

of the nodes is O(n2). Consider the graph shown in Figure

7a where the n nodes are divided evenly between two sets:

the trunk nodes and the leaf nodes. To visit a leaf node in

this graph the robot has to travel through all of the trunk

nodes. This means that the total number of edges that the

algorithm will traverse is given by (n=2)� (n=2) = (n2=4).

trunk nodes, (n/2)

leaf nodes, (n/2)

1 (n/2)

(n/2)

1

trunk nodes, (n/2)

leaf nodes, (n/2)

1 (n/2)

(n/2)

1

a b
Fig. 7. (a) It will take O(n2) edge traversals to completely explore

this graph. (b) The ratio between the number of edge traversals
taken by the best online algorithm and the worst o�ine algorithm
on this graph is (n� 1) : (n=2 + 1)(n=2).

By a similar construction, we can show that there is no

competitive deterministic online algorithm for exploring an

arbitrary strongly connected graph. An online algorithm

is termed competitive i� the number of steps required by

that algorithm is no more than a constant times the mini-

mum number of steps required by an o�ine algorithm with

complete information [6],[24].

Observation 7: There is no competitive deterministic on-

line algorithm for exploring an arbitrary strongly connected

graph.

Proof: Consider the graph shown in Figure 7b. This graph

is similar to the one shown in Figure 7a, the only di�erence

being that in this case the leaf nodes are connected together

by a sequence of edges. By adding these edges we have

made it possible to completely explore the graph with the

minimum number of edge traversals (n � 1). The online

algorithm, however, does not have the bene�t of complete

knowledge of the graph, so in the worst case it would have

to carry out the same exploration sequence that it would

have used if the extra edges were not there. That is the leaf

nodes would get visited in the order indicated on Figure 7b,

1 through n=2. The ratio between the cost of the online

algorithm and the o�ine algorithm is O(n) so the online

algorithm is not competitive. 2

V. Experimental Results

The algorithms presented in the previous sections have

been implemented on our experimental mobile robot plat-

form, RJ which is shown in Fig. 8a. The simple targets

shown in Figure 8b were employed as landmarks in our ex-

periments. These targets were recognized in real time by

making using of a projective invariant known as the cross-

ratio [7]. The height of the bar-code target in the image

was used as the relative range measurement.

Figure 9 shows the progress of the robot through an of-

�ce complex that was used to test the exploration algo-

rithm. This environment consisted of 4 distinct con�gu-

ration space obstacles and 11 landmarks distributed over

3700 sq. ft. of 
oor space. The robot circumnavigated each
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a b

Fig. 8. (a) RJ, an experimental mobile robot platform. (b) Bar
code landmarks used in our experiments. Note that the recogni-
tion algorithm must �nd these targets even in cluttered indoor
environments with many vertical edges.
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Fig. 9. This �gure shows the progress of our mobile robot during

its exploration of an o�ce environment. During the course of the
exploration, the robot circumnavigated each of the c-space obsta-
cles in this o�ce complex in the order indicated by their labels
(0 thru 3). The boundary place graph that the robot constructs
is shown in (e). The small black dots indicate the positions of
the landmarks while the dark regions indicate opaque obstacles.

of the con�guration space obstacles as indicated in the �g-

ure and eventually discovered all of the landmarks. The

robot traveled several hundred meters during the course of

this exploration procedure which took a little over half an

hour. The robot was successful even in the presence of vi-

sual clutter and numerous small obstacles such as chairs,

trash cans, etc. Since the robot was not equipped with

a global positioning system, it had no means of plotting

its course on a global map. Figure 9 is simply a sketch

of the robot's path as seen by an outside observer. Once

again, the darker lines denote segments of the path where

the robot is executing the approach algorithm while the

lighter lines denote the segments where the robot is carry-

ing out simple boundary following.

Another experiment that was run on RJ is shown in Fig-

ure 10. In this experiment, the robot was �rst instructed

to carry out a complete exploration of its environment;

the resulting boundary place graph is shown in Figure

10e. The robot then used this place graph to navigate

from one boundary place to another. Figures 10a-d show

some of the paths that the robot generated and executed

autonomously. Figures 10a,b,d show the robot executing

paths that involve only one edge traversal of the boundary

place graph while Figure 10c shows a plan with two edge

traversals.

Recall that each edge traversal is composed of two parts

(A) circumnavigating a boundary place until the target is

in view and (B) approaching the target using the algo-

rithm of Section III. As illustrated in Figure 4 the robot

may encounter other transparent obstacles during the ap-

proach phase. This situation occurred when the robot ex-

ecuted the paths shown in Figure 10c (while approaching

Boundary Place 1 from Boundary Place 0). Note that the

approach algorithm implemented for the purposes of these

experiments di�ers from the one described in Section III

since the robot did not circumnavigate the intervening ob-

stacles, it simply followed the boundary until it discovered

a leave point that was closer to the target than the initial

hit point. This version of the approach algorithm is anal-

ogous to the Bug2 algorithm proposed by Lumelsky and

Stepanov [18],[20] and has similar convergence properties.

302 41
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e
Fig. 10. Paths generated and executed by the robot are shown in a-d.

The thicker lines along the robot's path denote sections where
the robot employed the approach algorithm while the thinner
segments indicate places where the robot used boundary follow-
ing. Note that the robot may perform some boundary following
while executing the approach algorithm.

VI. Conclusion

The main contribution of this research has been to

provide novel exploration and navigation algorithms that

would enable a mobile robot equipped with a vision-based

recognition system to carry out a systematic exploration
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of its environment in search of one or more recognizable

objects. These algorithms are based upon a surprisingly

simple representation for environments containing visual

landmarks, the boundary place graph. For each of the con-

�guration space obstacles that have been visited, the explo-

ration algorithm simply records a list of the landmarks visi-

ble from the boundary of that obstacle. This representation

di�ers substantially from others proposed in the literature

since it does not attempt to record any metric information

about the structure of the environment nor does it store

any explicit prescriptions for getting between places. This

approach o�ers a considerable advantage over previously

proposed exploration algorithms since it does not require

a global positioning sensor. Section IV presents a detailed

analysis of this algorithm and describes a necessary and

su�cient condition under which the robot will discover all

of the landmarks.

Another important feature of these exploration and

navigation algorithms is the fact that they only require

the robot to perform two types of navigation operations:

boundary following and navigation with respect to a visible

landmark. Both of which can be carried out using simple,

closed loop control strategies that only rely on local sensor

data.
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