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resumo 
 
 

O principio por detrás da proposta desta tese é a navegação de ambientes 
utilizando uma sequência de instruções condicionadas nas observações feitas 
pelo robô. Esta sequência é denominada como uma 'missão de navegação'. A 
interacção com um robô através de missões permitirá uma interface mais 
eficaz com humanos e a navegação de ambientes de maior escala e duma 
forma mais simplificada. No entanto, esta abordagem abre problemas novos 
no que diz respeito à forma como os dados sensoriais devem ser 
representados e utilizados. Neste trabalho representações binárias foram 
introduzidas para facilitar a integração dos dados multi-sensoriais, a 
dimensionalidade da qual foi reduzida através da utilização de Misturas de 
Distribuições de tipo Bernoulli. Foi também aplicada a técnica de cadeias de 
Markov ocultas (Hidden Markov Models), que contou com o desenvolvimento e 
a utilização  dum modelo de cadeia de Markov original, esta que consegue 
explorar a informação contextual da sequência da missão. Uma aplicação que 
surgiu da aplicação do método de localização foi a criação de representações 
topologicas do ambiente sem ter que previamente recorrer à criação de mapas 
geométricos. Outras contribuições incluem a aplicação de métodos para a 
extracção de propriedades locais em imagens e o desenvolvimento de 
propriedades extraídas a partir de varrimentos dum medidor de distancia laser.
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abstract 
 

This thesis evaluates the requisites for the specification of mobile robot 
'Missions' for navigation within environments that are typically used by human 
beings. The principal idea behind the proposal of this thesis was to allow 
localization and navigation by providing a sequence of instructions, the 
execution of each instruction being conditional on the expected sensor data. 
This approach to navigation is expected to lead to new applications which will 
include the autonomous navigation of environments of very large scale. It is 
also expected to lead to a more intuitive interaction between mobile robots and 
humans. However, the concept of the navigation Mission opens up new 
problems namely in the way in which the sequence of instructions and the 
expected observations are to be represented.      
To solve this problem, binary features were used to integrate observations from 
multiple sensors, the dimensionality of which was reduced by modelling the 
binary data as a Finite Mixture Model comprised of Bernoulli distributions. 
Another original contribution was the modification of the Markov Chains used in 
Hidden Markov Models to enable the use of the sequential context in which the 
expected observations are specified in the navigation Mission. The localization 
method that was developed enabled the direct creation of a topological 
representation of an environment without recourse to an intermediate 
geometric map. Other contributions include developments that were made in 
the characterisation of images through the application of local features and of 
laser range scans through the creation of original features based on the scan 
contour and free-area properties. 
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Chapter 1

Introduction

Over the last two decades there has been enormous progress inthe field of robot navigation, with

techniques being borrowed from fields as diverse as biology,signal processing and data-mining,

to name a few, to solve the problems of Map-building and robotlocalisation. With improvements

in the computational power that is available on modern PCs andreductions in the cost and in the

size of components, the past few years have seen an acceleration in the attempts to apply the

lessons learned within University research laboratories to solve real world problems involving

autonomous vehicles. Such attempts involve assembling a host of technologies to create complex

albeit reliable systems. This endeavour is expected to continue over the foreseeable future with

an ever greater emphasis on the simplification of the machineinterface with humans and with

other machines.

Autonomous Robot Navigation is an ongoing and still a difficult problem to solve. Although

advances in the science of localization and mapping accompanied by great improvements in

computing hardware have yielded satisfactory results for small to medium indoor environments,

substantial challenges remain.

According to [Filliat 03] basic map-based navigation depends on three processes

• Map-learning: the process of memorizing the data acquired by the robot during explo-

ration in a suitable representation.

• Localisation: the process of deriving the current position of the robot within the map.

1
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• Path planning: the process of choosing a course of action to reach a goal, given the current

position. The definition of ’path planning’ varies with the time horizon and the nature of

the motion or action that must be planned for.

Amongst the authoritative reviews of the process of creation of maps, Sebastian Thrun’s

[Thrun 02a] ’Robotic Mapping: A Survey’ counts as a still valid and relevant introduction. As

Thrun mentions, most of the successful state of the art methods in Localisation and Mapping are

probabilistic in nature, albeit some methods are less overtthan others in the representation of the

uncertainties that affect sensing and robot control. In a similar vein Fox et al. [Fox 03], attempt

to classify the well known approaches in mobile robot navigation focusing on the differences in

the models that are used to represent the environment and theposition of the robot. As a result

of the legacy of ultrasound range sensors, many of the more successful maps still are actually

probabilistic representations of free-space boundaries.

This thesis applies a selection of techniques that are borrowed from other disciplines to ad-

dress the problems facing robot localization. These techniques are meant to aid mobile robots in

the navigation of environments that are habitually frequented by human beings.

Localisation methods place the robot at that place (or at more than one place) in the envi-

ronment which best explains its current sensor data. The choice of the Localisation method is

usually a function of the type of map that is used.

We have addressed a particular type of localisation problem: positioning the robot somewhere

along a known path. The information that the robot is given about its environment, the map, is

given to it in sequential form, corresponding to the things that it will sense if it moves down the

correct path.

By keeping the planning and the execution of robot motion out of the purview of the work

described in this thesis, focus has been retained on the creation of a representation of the envi-

ronment and on the localisation of the robot within this representation.

Our idea for robot localisation and the outline of the proposed solution are described in the

next section. This description of the problem will be followed by a section that attempts to

provide another way of looking at maps that have been described in the literature. This review
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focuses on maps from the perspective of mapevents. Section 1.3 will provide a backdrop for a

more detailed description of the problem that this thesis addresses. The section 1.4 introduces

the main ideas that will be tackled in the remainder of the document and presents a brief layout

of the thesis document.

1.1 Problem Description

Imagine a situation in which our friend Juliana is journeying, by car, to a meeting at a house in

the country. Juliana stops at a petrol station to ask for directions. The clerk at the petrol station

provides Juliana with a sequence of descriptions of the environment that she will encounter as she

progresses from a known landmark, say, the petrol station, to her final goal, as in Fig. 1.1. The

clerk also provides Juliana with a sequence of instructionsthat Juliana must execute, instructions

that are concomitant on the things that she will see as she successfully makes her way to her goal,

the house.

The clerk tells Juliana that a little down the road, after passing the petrol station, she will

come across a road junction. The road junction, is like many that Juliana might have previously

come across. Our guide does tell her that this intersection is special because a bridge will be

visible from it and because there will be some conspicuous trees that will be visible to the her

right-hand side. Juliana is instructed to turn right at thisjunction and drive a few hundred meters

till she arrives at her destination, at the house.

This sequential way of providing an agent with the expected observations against which the

agent can localize itself and perform the required actions is associated with the execution of a

definite mission or program. It does not require that the representation of the complete environ-

ment be provided at once and the actions that must be performed at each step are dependent on

the observations.

Applications for such a way of representing the environmentwould include, for example,

interfaces of social robots that interact with humans, receiving and relaying environment maps

in a way that is more intuitive and efficacious to the completion of a mission. If Juliana came to

be substituted with a computer that guides and runs the vehicle, a petrol station clerk (or a virtual
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...you will reach an intersection, where…

1. You should see a bridge ahead

2. You should see trees on your right

Turn right at the intersection

You will arrive at the house

..after passing  a petrol station...

Figure 1.1: A sequential conveying of expected observations might be sufficient to successfully
navigate along the Path. This is similar to the way instructions are given to people to allow them
to complete a task or mission, in this case, arrive at the house.

clerk as the case may be) might still be able to provide a sequential description of a path and the

instructions that are required to complete the mission.

Guiding a robot by providing only a sequence of expected sensor data opens a whole new

set of possible applications that could involve a more intuitive interaction with humans. Such a

concept, however, opens up new problems, namely in the question of how the sequence is to be

represented and how data association is to take place.

This thesis seeks to contribute to the discussion of how to best exploit the sequential descrip-

tion of a environment to effectively perform localisation.

1.2 Taxonomy of Maps used for Robot Navigation

The map of the London Underground, seen in Fig. 1.2, is one of the most recognizable maps

around. This map is instantly associated with the Metropolitan rail road and it has been adopted

as a template by urban rail transport planners the world over. The purpose of such a map is to

help travellers plan their journeys. The map is remarkable for the ease with which passengers

can identify stations lying on the same line, plan transfersto other lines and evaluate the cost of

the complete trip.
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Figure 1.2: The ’official’ map of the London Underground.

In the Fig. 1.2, along each line, the map indicates the names of the stations and the order of

appearance of the stations. At most, the map maintains the proportions of the distances between

stations lying on the same line. It has information about thebus and train services that users

can access upon exiting a station. This map does not seek to accurately represent the distances

between stations and the overall layout of the stations withrespect to each other. Thistopological

map of the underground does not reveal how far, geographically, a station on one line is from

any other station on the same or on a different line. Also, themap provides information only on

events occurring at certain finite number of places, the stations. Information about places lying

between stations is non-existent.

There are applications for which this map is not the most appropriate representation of the

tube network. For example, to a first time visitor to London, the Fig. 1.2 might not be sufficiently

informative to decide whether it is worth just walking between a pair of stations, rather than wait

for the next train that is delayed. The same map might, like-wise, not be an appropriate map for

maintenance and emergency services.
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Figure 1.3: The geographical layout of the London Underground.

Figure 1.4: The actual geographical map of the London Underground with Surface features
included.
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For these users, a geographical map of the tube, like the one shown in Fig. 1.3, would be far

more helpful. Such ametricmap lays out the stations and the lines according to their geograph-

ical coordinates. This a map allows comparisons to be made ofthe distance between every pair

of stations and of points lying on the lines, in between the stations. Additional information, such

as ground-level features can be added to this new geographical map can also be represented in

the same coordinate system, as depicted in Fig. 1.4.

The geographically accurate maps seen in Figs. 1.3 and 1.4 include large regions that are not

covered by the underground network (and hence are not usefulto commuters). The additional

information has also resulted in lines that are difficult to follow, visually, and the accompanying

text is sometimes small or uncomfortably positioned.

The additional information provided by the geometric or metric map improves the usability

of the map by non-passengers. However, it is not the most useful map for commuters who

simply want to execute a journey from station ’A’ to station ’B’ within the London Underground

system. This example is an demonstration of a situation involving localisation where sequential,

topological representation of the environment is more useful than precise metric positioning.

1.2.1 ’Maps represent sensory and motion events...’

From the point of view of the theory of probability, maps represent events that can occur when a

robot interacts with the environment. This interaction typically includes themotionof the robot

and thesensingthat can take place at any position. In other words, a map is a set of features,

from a sample space of sensor eventsand a set of positions which the robot can occupy,a sample

space of positions. Brief definitions of Sets, Sample Spaces and Events are included below.

Set: A set,A, is an aggregate or collection of objects. The members of thesetA are called

the elements ofA, or∈ A and, ifx is not an element ofA, x /∈ A...’ [Hines 90]

Experiments and Sample Spaces:Sensing the environment is the execution of an experi-

ment whose outcome cannot be predicted with certainty, being thus denoted as a random exper-

iment. Despite the fact that the outcomes cannot be predicted with certainty, it is still possible

to identify the set of possible outcomes, known as theSensory Sample Spaceof the experiment.
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Depending on the type of outcomes, Sample Spaces can be classified as discrete and continuous.

Robot motion can also be viewed as another experiment whereinthe outcome of a particular

robot motion cannot be predicted with certainty.

Events: An event is the outcome of an experiment. Static maps containevents that can be

sensed by the complement of sensors that the robot possesses. Sensory events can be simple, such

as detecting whether a particular region in the environmentis free or occupied, or complex, e.g.

the detection of a particular 2D pattern from observed data that is acquired at multiple positions.

Motion events are very summarily addressed in the course of this document.

Over the sections 1.2.2 through 1.2.4, three types of environment representations are re-

viewed with a view to scrutinize the differences that exist at the level of the representation of

sensed events. In this review, relatively little attentionhas been given to methods that are used

to create the maps and to the events that populate the map. Fora discussion along these lines

[Thrun 02a] provides an useful comparison.

An important point of discussion is the idea of Robot-centered versus World-centered repre-

sentations of the environment. At the time of building maps of the environment most methods

transform what the robot has sensed (which, by definition, isthe robot-centered representation)

into a world-centered representations, using the estimateof the position of the robot in the world-

centered representation. Range sensors, for example, return a sample of distances to the nearest

obstacles along some finite number of directions, thus returning robot-centered representations

of the robot’s neighbourhood.

Events on a geometric or topological map are usually termed,sometimes interchangeably, as

landmarks, objects or features. These landmarks and features are sensory events the robot can

identify, segment and recognize. The selection of the landmarks or features is a very relevant

topic while discussing maps and a wide range of features and landmarks have been used within

such maps. In robot platforms equipped with cameras local image features such as edges, cor-

ners, have been used. Topological maps have also included parametric groups of 2D and 3D

point clouds produced by range finders and stereo cameras. The events might be all inserted into

the same space of events or in different spaces.
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1.2.2 Geometric Maps

World-centered or geo-referenced representations lead tomaps such as the geometrical map of

the Underground shown in Fig. 1.4 where all the features are inserted in the same coordinate

system. Geometric maps allow the calculation of the distance that separates any two features

that are included in the map. When used by robots equipped withrange scanning sensors, geo-

metric maps frequently include ’distance’ events: i.e. thefeatures that are represented must have

definite coordinates and the robot must posses sensors that can measure the distance to the source

coordinates of these features. In fact, as the first robots were equipped mainly with sonar and

laser range sensors, geometric maps were used early on [Elfes 87].

Since geometric maps are, by their very nature, world-centered distributions, the robot-

centered data must be translated and rotated appropriatelyin order to be incorporated into the

world-centered representation. This incorporation procedure is usually performed by creating

a physical model of the behaviour of the sensor in the environment and by making convenient

assumptions about how to associate the different measurements.

In order to account for sensor noise and to allow an easy update of the map when new data

becomes available, there occurred a shift towards discreterepresentations, to the so-called occu-

pancy maps or evidence grids. Given the nature of range sensors in use, the limited computing

and memory available and the need to map ever larger indoor spaces, the maps started out as a

deterministic 2-D representations of the extents of the sensed open space. These were quickly

improved to incorporate the uncertainty in sensor readingsand the resultant inconsistencies that

are bound to occur when the robot passes through the same stretch of environment multiple times.

Representing only the free-space boundaries in a geometric map or a single type of feature

within a map presents both advantages and drawbacks. The advantages are the lower level of

complexity required to register and incorporate the data from a single sensor. This is an im-

portant advantage since the sensor models may be very different and since the data from each

sensor-centered representation must later be incorporated into a common map. The drawbacks of

such maps are that the reduced variety of local regions in themaps results in a poor capability to

determine how to register the sensor-centered data gathered at any instant with the map. This re-
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sults in an increase in situations that suffer from the well-known problem of aliasing and from the

general difficulty of data-association between the sensor-centered measurements and the world-

centered representations. Additionally, in an effort to make the localisation of the robot tractable,

non-linear motion equations are frequently linearised resulting in a gradual accumulation of an

unbounded positioning error.

The Expectation Maximisation (EM) technique and other incremental mapping techniques

have been applied to reduce the severity of these problems. Further evolution of the method

might improve on the techniques required to perform registration. Other methods might also add

to the capability of adding new features to the map and to the capacity to create, maintain and

use larger maps effectively.

Geometric Maps enforce a consistency on the distances between every pair of places by

defining a single coordinate system. If a sensory event must be represented in the geometric

map, it must first be possible to represent it within the coordinate system of the map. This step

ensures that the joint probability distribution of the events will be valid and that putting together

sensed events from different sensors will result in consistent probability distributions. Therefore,

data fusion requires the registration of the various sensors into the same single coordinate system

within which all the features will be represented.

1.2.3 Topological Maps

Topological maps, on the other hand,need nothave a consistent coordinate system in which all

the map sensory events are represented. Topological mapping methods might use information

about free-space boundaries or obstacle locations and in some cases local metric maps might be

created and used in order to communicate results or interactwith operators, e.g. [Silver 04] or

to improve the place-recognition capability of the robot. The latter approach allows the use of

place-recognition capabilities developed within the context of geometric maps, to create compact

graph representations of the overall environment, appropriate for the creation of maps for larger

environment [Thrun 98]. While geometric mapping is still popular, some researchers increas-

ingly feel the need to adopt mapping techniques for what are called Large-scale environments.
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Large-scale environments are defined as environments that cannot be observed all at once, using

the sensors that the robot is equipped with [Savelli 05]. Forthis the drawback attributed above

to geometric map-building methods must be addressed.

One such popular approach is to use a metric map created usingrange sensors and reduce it to

a one-dimensional representation using a Generalised Voronoi Diagram. Such a method, while

not having to store the range measurements within the topological map, results in the storage of

a ’high-level’ feature which can be easily sensed from the range scan sensor data [Choset 01],

[Silver 04].

Increasingly, alternative methods have been developed to create Topological maps for nav-

igation and Localisation. An important class of such methods are termed as appearance-based

or view-based methods. In [Ulrich 00], Ulrich and Nourbakhsh, histograms are used as features

to mark places in the environment. A distance metric based onthe Jeffrey divergence between

histograms is utilized as a metric and a set of adjacency Mapsare utilised to account for robot

motion. A generation of new methods for creating topological maps succeeded the seminal work

called Topological SLAM by Choset and Nagatani [Choset 01].

Since topological maps typically contain sparser information than metric maps, they must

contain better data-association methods, either in the form of a richer map-feature set or in the

form of better global localisation algorithms.

In the context of a topological map for mobile robots, placesare distinctive points in the

environment that the robot can occupy or has previously occupied, at least once. The topological

map can also specify whether a transition between a pair of places is possible and can include

additional information regarding these possible transitions.

1.2.4 Hybrid Maps

Hybrid approaches to map-building are usually employed in applications that require the charac-

teristics and advantages of both geometric and topologicalmaps.

By definition, hybrid mapping would include a geometric representation and a topological

representation, that is usually linked in some way to the geometric one. One of the earliest and
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Figure 1.5: A Schematic of the Spatial Semantic Hierarchy [Kuipers 00]. Closed-headed ar-
rows represent dependencies, open-headed arrows represent potential information flow without
dependency.

possibly one of the most well known approaches in this category is the Spatial Semantic Hierar-

chy or the SSH developed by Ben Kuipers [Kuipers 00]. The SSH, shown in Fig. 1.5, is described

as ’a model of knowledge of large-scale space consisting of multiple interacting representations,

both qualitative and quantitative’. The representation ofthe environment is maintained in the

form of a hierarchy of maps each of which allows some abstraction of the perception and in-

teraction of the robot with the environment. These hierarchical’levels’ include a Causal layer, a

Control layer, a Topological layer and a possible (if enough information is available) a high-level

Metrical layer. The advantages gained from using SSH or similar hierarchical model of repre-

sentations is that incomplete information or uncertainty in the information is handled in different

forms depending on which particular Localisation or navigation problem is to be solved. Lo-

cal metric maps help to perform place recognition, [middle-level] topological maps help create

consistent maps in the face of challenges such as loop-closing problems, and the global metric

maps maintain an overall consistency in the global positionof the robot. Savelli and Kuipers

[Savelli 05], utilise a probabilistic modelling of motionsbehaviours to move the SSH from a rule
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based method to a graph-based topological map framework based on Bayesian networks.

There are also attempts to utilize graph-based approaches to solve particular problems that

appear at the time of creation of metric maps. Methods such as[Folkesson 04], use graphical

methods to maintain hypothesis for map expansion and closure, i.e. graph-like methods are used

to maintain multiple map hypothesis of the main map which is geometrical.

There are works that enhance the applicability of metric maps and the ability of users to

interact with these such as representing individual objects. In [Limketkai 05], Limketkai et.

al. store the representation of objects (some of which mightalso be used by persons) using a

technique called Random Markov networks.

As in the case described in the section on topological maps, in certain mobile robot systems,

there is a need to maintain local geometrical maps around certain regions. The reason for main-

taining these maps however is not to perform place recognition, but to allow better and faster

planning of trajectories and re utilization of the map by robots equipped with different sensor

configurations [Konolige 04].

1.3 Representing Places sequentially along a Path

A Mission, from the Latin Missum, refers to persons sent or appointed to perform any service; a

delegation; an embassy. In the context of mobile robot navigation, a mission can be defined as

an ordered series of descriptions and instructions given toa robot that will take it from one place

in the environment to another.

In the context of this work, a Mission consists of a sequential description of situations and

motion behaviours that the robot will sense along the way. Werefer to the sequence of descrip-

tions as the Reference Sequence. When a sequence of behavioursor actions are needed to move

the robot from a point, A, to another, B, are added to the Reference Sequence, a robot Mission is

defined.

The Mission is communicated to the robot in the form of a string of motion behaviours

that are concomitant on the expected observation. Initial development of the specification of

such mission strings was based on previously developed work[Santos 01] and is described in
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Appendix C. The lack of previous experience with semantic representations and has led us to

concentrate on the sequential representation of sensor information.

Thus, instead of manually creating a mission string and communicating it to the robot, the

robot is driven along a path during an Environment or Path familiarisation phase. Since the

motion of the robot has not been integrated into the representation of the environment, we will

normally deal only with the Reference Sequence in the remainder of the thesis. It is our opinion

that motion behaviours could be inserted into this ReferenceSequence at a later stage to create a

Mission if the capability of the system to recognise places and localise itself is verified.

Two distinct questions must be answered for a Reference Sequence to be specified in the

form of a sequential description of the environment. These are:

1. How are observations represented in the Reference Sequence?

2. How can the sequential description of observations improve the localisation within the

Reference Sequence?

These are questions for which, answers will be sought, over the course of the next two chap-

ters. The exploitation of information, that is implicit in the sequential description of sensor

data, that results in better place recognition is the key element that differentiates the approach

described in this work from other map-building approaches in the literature.

1.3.1 Some Previous Work

The genesis of our attempt to navigate along a path by localising the robot within a Reference

Sequence lies in previous work. A mission programming tool was developed for use on the

robot platform at the Mobile Robotics and Automation Laboratory (LAR) of the Department of

Mechanical Engineering, of the University of Aveiro [Santos 01]. This tool, the Language for

Autonomous Mission Planning (LAMP) [Santos 01] could be used by an operator to set up a

mission, using a qualitative description of the topology ofthe environment. The kernel feature of

LAMP is that a robot mission may be planned and executed by utilizing the approximate position

and layout of entities to trigger the beginning and the end ofindividual phases of the mission.
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Although odometry is utilised to execute individual stagesof the mission, the initialisation

and termination of each stage resets the odometry effectively removing any accumulated error.

Individual stages are set up either as closed loop feedback or as open loops. This method partially

obviates the necessity of the robot knowing where exactly itis in the environment. LAMP still

required a boot-strapping localisation procedure.

LAMP allows the environment to be described in terms of obstacles that the robot will sense

around itself as it executes the various stages of its mission. The robot motions that can be in-

cluded in a LAMP mission include: wall following, obstacle avoidance, in-place turning, execut-

ing a short trajectory in open-loop mode and crossing narrowopenings. An illustrative mission

comprising of 11 mission stages and the plan view of the result of each stage is described in

Fig.1.6.

1. MOVP MV 2 0 PS 2 USL 500 SEN
1

2. MOVE LV 0 AV 10 ANL 90

3. MOVP MV 20 USL 1000 SEN 1

4. MOVE LV 0 AV 10 ANL 90

5. MOVE LV 20 DIL 1500

6. CROSS

7. MOVE LV 10 USL 3 00 SEN 1

8. MOVE AV 2 0 ANL 90

9. MOVP MV 2 0 PS 2 USL 500 SEN
1

10. MOVE AV 20 ANL 90

11. MOVP MV 20 PS 1 USL 300 SEN 1

Figure 1.6: A navigation mission with associated LAMP code.

LAMP served to demonstrate the concept that the sequential description of the expected

perception could be used to trigger the start and end of a sequence of motion behaviours that
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could propel the robot from the beginning to the end of a mission. It does suffer, however, from

limited sensory capabilities that, in turn, limit its application in real-world environments.

LAMP handles its single feature in a trivial manner with the sonar sensors indicating the

presence or absence of an obstacle. Its inability to handle more than one type of feature means

that it cannot be applied to more conventional robot platform navigating robustly within a real-

world environment. An expansion of the method to include multiple sensors would have to

include more sophisticated methods to integrate the different features.

The application of LAMP-like methods would be much enhancedif realistic methods to

create LAMP missions were developed and if vision and range scan features were used within

the missions to provide robust robot localisation capabilities.

1.3.2 Individual Place Recognition and the temporal context of Places

Consider a hypothetical robot equipped with a special sensorthat allows it to identify certain

environmental features. With the aid of this sensor our robot can identify doors, corners and

walls. To keep this exposition simple, it is assumed that therobot can sense these landmarks

only if they lie close to it.

Supposing our robot is lead on a sightseeing tour of a building. At regular intervals of time

our robot looks around, identifies the landmarks that are in sight and records the sighting in a

table. The sequential description of what the robot found onthe path has been represented in

Table 1.1 and a plan-map of a section of the environment wouldappear similar to Fig. 1.7.

If the description of the observations seen from places 1 through 10 in the environment de-

scribed in Table 1.1, were provided sequentially to a robot we would denote it as the Reference

Sequence. Each place is associated with particular landmarks and with a motion behaviour. By

correctly identifying the place at which it finds itself, therobot can recover the actions that are

required to get it to the next way point/place. If the actionsthat led the robot from each place

to the next place were added to the Reference Sequence we wouldobtain a robot mission. A

mission that would allow the robot to move from the starting place 1 to the final place 10 would

have been created.
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Place with Abrupt Corner Landmak

Place with Door Landmak

Place with Other Intersting Landmark

Figure 1.7: The figure illustrates a sequence of places, in a corridor, where each place is recog-
nised because of the landmarks perceived at that place.

Table 1.1: Table of Places included in the Reference Sequencefor the path depicted in Fig. 1.7.

1 2 3 4 5 6 7 8 9 10
Corner Landmark 0 1 0 0 0 0 0 0 0 0
Door landmark 0 0 1 1 0 1 0 1 1 0
Wall landmark 1 0 0 0 1 0 1 0 0 1
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Our hypothetical robot has the ability to distinguish between a limited number of landmarks.

As a result it is not always possible to accurately distinguish one place from every other places.

In particular, using a single observation, it is impossibleto distinguish between the various ’door’

places, because the doors are ambiguous landmarks (and the same applies to the walls). In the

context of the mobile robotic Localisation problem, this challenge is commonly referred to as

’perceptual aliasing’.

There is another problem, one that has not been described in this example, the problem of

’Scene Variability’, in which the same landmark appears differently at different times, either

because of changing observation conditions, noisy sensor readings or as a result of the robot

moving within dynamic environment (moving objects or changing nature of the objects).

The problems of perceptual aliasing and scene variability can be diminished by using a larger

set of landmarks or by using combinations of landmarks, suchthat each combination of land-

marks is unique. Unless a sufficient number of unique landmarks are available, it is going to be

difficult to increase the size of the map whilst simultaneously ensuring reliable place recognition.

A logical improvement to using asingle observationof landmarks would be to observe the

order in whichmultiple observationsof landmarks are made by the robot. In practice, the cost of

implementing algorithms to identify different and unique landmarks is high, and the twin prob-

lems of scene variability and place aliasing is so common, that virtually all localisation algo-

rithms make inferences from observing multiple observations. This accumulation of information

is done in two ways.

The most common method is to utilise an estimation filter to accumulate the information

gained by observing a sequence of observations. At the time of each observation, the evidence

gathered over the multiple previous observations are addedto the current observation in the form

of a prior probability.

The other approach is to gather the combinations of featuresthat are viewed while travelling

along a path to create larger, and hopefully more unique combinations of landmarks. Such an

approach can be utilised all the time as in the topological approach Kuipers [Kuipers 02] or

occasionally, when there is a greater risk of place aliasing, such as when applied to the problem

of loop closure while map building [Newman 06].
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1.3.3 Modelling the Sequence as a Topological Path

Reference Sequence Topological Path
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Figure 1.8: Representation of the Topological path as a Graphof Places arranged sequentially.
The graph itself is created from a sequence of sequentially obtained sensor views.

Within the scope of the discussion from the last sections, a graph of places denotes an ordered

set of places, along a path in the environment, at each of which the robot perception is defined.

Importantly, the places that are represented in these graphs are not identified by their physical

position in a common coordinate system. Some perception or landmark is associated with each

place in the Topological path as seen in Fig. 1.8.

Localising the robot in the path and consequently in the graph of places that represents the

Topological Path entails estimating the place that is currently occupied by the robot.

1.3.4 The Place of the ’Lost’ Robot

The Reference Sequence is created by sampling the environment, which is a discrete procedure.

It is not possible to take observations continuously and often it is not very feasible to sample the
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environment at very high rates. Doing so would seriously limit the size of the environment that

can be usefully represented.

In this work, a definition of thePlace of the Lost Robot(no relationship with Isaac Asimov’s

Little Lost Robot), or theLost_Place was found to be useful. TheLost_Place represents the

positions in the environment at which the robot does not knowwhat combination of landmarks

can be seen.

In the graph of places, theLost_Place, has also been added to the previously defined places.

The Place of the Lost Robot is useful in two distinct situations: in the first, the robot has simply

no recollection of a particular combination of features currently in view because of the problem

of sampling. In the second situation, an unintended maneuver, or a substantial change in the

environment results in the robot not recognising a place that is represented in the Reference

Sequence.

Thus, theLost_Place representsall the possible places that the robot might encounter in the

environment that are not represented in the graph of places and the locations in the environment

that fall outside this path.

In the literature, recognition at places that are difficult to identify is often done by attempting

some sort of back-tracking. In this thesis, behaviours to recover from a failure to localise are not

implemented and the robot simply declares itself as lost. Inother words, when a robot is at a

Lost_Place it is expected to eventually stop and declare itself as being’lost’.

1.3.5 A hierarchy of representations

The proposal of the Reference Sequence as a representation ofa topological path can be viewed

in the context of map building algorithms that have been described in the literature. As a repre-

sentation of the environment, the Reference Sequence contains the least amount of information.

The hybrid geometric and topological maps presented by Thrun in [Thrun 02b] have been

used as a comparison to our approach. The different amounts of information that are maintained

by different representations can be viewed as giving rise toa hierarchy as seen in Fig. 1.9.

As seen in the figure, the higher we move up the hierarchy, lesser is the information that is
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Figure 1.9: Navigating the environment along a topologicalpath can be looked at as a repre-
sentation containing lower information as compared to a complete geometric or even a complete
topological representation of the physical environment.

maintained.

The geometric map attempts to represent all the informationthat can be extracted by the

sensors within a single joint probability distribution. This joint probability distribution is broken

up resulting in the graph structure of the topological map where the perception is stored at the

various nodes of the graph. The Reference Sequence maintainsinformation pertaining to only a

single path in the global topological map.

1.4 Proposed Organization of this Thesis

This thesis document is chapter-wise organised according to three successive objectives of 1) de-

signing an un-biased place recognition method, 2) making use of the sequential context in which

place recognition takes place and 3) modification of these techniques to improve the usability of
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the methods.

When the robot navigates the environment using the Reference Sequence, a number of sources

of uncertainty must be dealt with. There is uncertainty in the process of detection of the land-

marks (due to noise and different perception conditions) and there is uncertainty in the accuracy

of the motion along the Reference Sequence (due to dynamic environments). As compared to

the term ’landmarks’, ’features’ are a more generalized form of representing the properties of

current scene, since it avoids certain semantic difficulties that are associated with the use of the

term, Landmark. A feature is taken to mean any artifact or property that can be extracted from a

sensor view, be it from a Laser Range Scan or from an image or anyother sensor data. This def-

inition opens the way to using multiple features extracted from data from different sensors. Any

feature that is chosen must be relatively robust to changes in the conditions of the observation.

This thesis has made use of robust features that are extracted from images and from Laser Range

scans.

Chapter 2 presents an algorithm to perform context-independent, non-informative prior, place

recognition using a Bernoulli Mixture Model. In chapter 3, place recognition results are shown

to improve when the currently observed view is compared witheach view in Reference Sequence

in the context of appearance with respect previous observations. In chapter 4, the problem of cre-

ating topological maps from individual Reference Sequences(topological paths) is considered.

Chapter 5 begins with the description of the complete system as implemented on two robots and

lays out the architecture of the system and a brief description of the applications and libraries

that were developed. Finally, chapter 6 lists the main contributions of this thesis and the resul-

tant articles that were accepted at peer-reviewed conferences and journals. The close of this last

chapter also provides an opportunity to present issues thatwere addressed but which could be

solved in useful time and which now indicate the direction for future work.

In the remainder of this section, the proposal for place recognition using sequences of views

from multiple sensors is described.
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1.4.1 Place Recognition using a single View

A key issue of using a method based on features is the choice ofthe frame of reference. The

fact that features must be extracted from a number of different sensors and pooled into a single

set of multi-sensorial feature forces us to choose between choosing a single common frame of

reference or ignoring the ordering and position information that the features possess within the

frame of reference. The features extracted from an image or from a Laser range scan, each have

their frame of reference. The ordering of the features in thecoordinate system of the frame of

reference of the sensor can provide substantial information to aid the matching of a view.

Because the features to be integrated are very different fromeach other, a registration or

sensor calibration procedure would be required to integrate each additional type of feature. Ad-

ditionally, it would be impossible to integrate features that provide bearing/distance from the

robot with other features that have no such obvious property. Also, because features from dif-

ferent sensors will not be inserted within a common coordinate system, the ordering information

within a single view has been completely ignored while integrating the different features. If a

need arises to include the information about the ordering between two or more features, this

ordering can be explicitly included in the form of additional features.

The term ’Perception’ is used to signify both, the act of perceiving or sensing the world and

also the result of this sensing. Given some sort of environment representation, robot Localisation

involves using the ’Current View’ to help determine the likely ’Current Position’.

A schematic for such place recognition from a Single View is shown in Fig. 1.10. This figure

depicts an Environment or Path Familiarisation stage at left in which a sequence of views are

collected together. Each view is an index that refers to a particular place along the path taken by

the robot during the Environment Familiarisation stage. Place recognition or localisation involves

the recovery of this index by the comparison of the current observation with all the views in the

Reference Sequence.

The current view is compared with each of the views in the Reference Sequence through a

comparison of the features that appear in the views, using anappropriate algorithm. In order

to be able to use the information from the sequence as efficiently as possible, it is important
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that the algorithm provide an unbiased estimate of the distance between the current view and

each of the views in the Reference Sequence. When large numbersof features are employed

to represent a view, it becomes increasingly difficult to design and use a metric that provides

unbiased distances between views. This problem, often referred to as the curse of dimensionality

[Bellman 61], results in the failure of matching. Given a noisy observation, it is more probable

that any random view will be closer to the current view than the actual corresponding view in the

Reference Sequence. For a distance metric to provide un-biased results on the high-dimensional

feature data, some sort of dimensionality reduction is imperative.

The algorithm described by us, in chapter 2, as a solution to this problem is the reduction of

the dimensionality of the ’space of features’ using a Bernoulli Mixture Model.

An important assumption that is required throughout the work described in this thesis is

that the initial Environment Familiarisation stage must beperformed in an environment that is

as reliable as possible. In subsequent travel through the environment, statistical treatment of

differences in perception allow the robot to handle changesin the environment.

1.4.2 Place Recognition using the context of the View Sequence

As was mentioned in section 1.3.2, despite the use of a large number of features, the twin prob-

lems of scene variability and place aliasing implies that itmight not always be possible to cor-

rectly and uniquely identify a place using a single observation.

A better way would be to make an inference inference of the position of the robot in the

Reference Sequence after collecting observations over a finite number of positions, as shown in

Fig. 1.11. This approach would still utilize the distance metric used in the case of a single view

and would still require dimensionality reduction methods to be able to make unbiased estimates

using a large number of features. Such a scheme could improvethe performance of the method

by using a Prior Probability to favour the chances of matching latter observations based on the

estimation results of previous observations.

Utilizing multiple views implies that the motion of the robot must be taken into account in

some way. In this work, a simple model for robot motion has been employed to consider the
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possible views as the robot moves along the Reference Sequence. This model leads the robot

down the Reference Sequence and provides a very imprecise estimate of the next views that

might be seen.

We propose to use a particular type of Dynamic Bayesian Network, the Hidden Markov

Model, HMM to infer the position of the robot in the Reference Sequence from multiple obser-

vations. The application of HMM to this problem is describedin chapter 3.

1.4.3 The Lost View

In an earlier section the concept of the Place of the Lost robot was introduced. When referring

to views that are visible from the different Places, it becomes essential to ask the question: what

will be the observed view at theLost_Place, or what will theLost Viewbe like?

The Lost View is a paradox, since, not knowing where theLost_Place is, the robot cannot

know what will appear at such a place were it to be lost. In thiswork it has been assumed that the

view that is obtained at such aLost_Place is theaverage combination of features for the entire

Reference Sequence.

This is based on the assumption that, in the absence of any additional information, the dis-

tribution of features at a view taken at any place in the environment that is not included in the

Reference Sequence should be the same as the distribution of features in the views in the Refer-

ence Sequence.

It is possible that one or more views in the Reference Sequencemight also have this same,

’average’ distribution of features, though, in the high-dimensional feature-space this probability

is very low.

1.5 Summary

This chapter presented the proposal of this thesis which started out with the aim to extend previ-

ously developed work in which the robot executes a sequence of motion behaviours, conditional

on the sequential description of the expected perception.
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Before describing the approach in detail a review of the typesof Maps used in robot Locali-

sation, with special emphasis on separation of the distribution of the motion of the robot from the

distribution of the sensory perception was presented. An important conclusion that can be made

from the comparison of Metric and Topological approaches tothe representation of an environ-

ment is the fact that the Metric map allows a joint probability of the events that can be sensed by

the robot to be expressed within a single coordinate system such as on a piece of paper, whereas

a topological map will use two or more conditional distributions to represent the same events.

The idea for place recognition by matching the currently observed sensory data with a se-

quence of views previously gathered during a Environment-Familiarization phase is presented in

two parts, the first of which involves the use of a single view followed by the application of a

View sequence to perform Place Recognition.



Chapter 2

A Model to Represent Individual Views

2.1 Introduction

The problem of assigning indices to combinations of features and the retrieval of this index upon

presentation of a new observation, is found in many domains.It lies at the heart of applications

involving detection of objects within a scene, image retrieval from a database, face recognition

and gesture recognition, among others. These applicationswork by extracting features or proper-

ties that describe a scene or a face or some gesture primitiveand then identify sufficiently unique

combinations of features that allow the recognition of eachobject view, scene, face, gesture,

etc. The question that we seek to answer is: ’How are observations represented in the Reference

Sequence?’.

In most applications, a trivial comparison of features froma pair of views, is not enough.

Sensor data is usually noisy and because there might be some changes in the views. Some of

the features will be correlated with others and this correlation will vary among the features.

Mathematical techniques must be employed to perform un-biased estimations using the reduced

or noisy data.

Robot localisation must, almost obligatorily, be probabilistic in nature in order to account

for the impossibility of modelling an activity as complex asperception. Among the methods

that have been applied, ’Bayesian Inference’ is, for many researchers, the preferred way of han-

29
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dling uncertainty in the perception process. As presented elegantly in [Reporter 00], Bayesian

Inference is a tool that allows the integration of new evidence such that it may be used imme-

diately (even as it slowly drips in). In mathematical terms,the probabilistic Localisation of a

robot in an environment plugs in new evidence into the well-known Bayes equation (2.1) where

P (Current View|Current Position) stands for the model of the system that defines the expected

observations given a particular robot position. Localisation methods differ in the way they cal-

culate the numbers to plug into this equation and the result that they draw from it.

P (Current Position|Current View) =
P (Current View|Current Position)× P (Current Position)

P (Current View)
(2.1)

2.2 Using Features to represent Places

Robot sense the environment using a variety of sensors [Borenstein 94]. In our work, we have

been primarily interested in using Laser Range Finders and cameras. These sensors are fairly

common on today’s robotic platforms and the science of extracting scene information using these

sensors has progressed considerably.

In an attempt to obtain more reliable features in the environment, many range-sensor based

methods extract lines and other primitive features from thelaser scan. Cox [Cox 91], attempts

to match points extracted in the laser range scan with the lines in the map. He subjects readings

from a LRF to an iterative procedure of rotation and translation until convergence results. Here,

the objective function to be minimised is the distance of each scanned point from the nearest line,

the environment itself being represented as a line model. The iterative procedure translates and

rotates the scan till the sum of squares of these distances isminimised. The inverse transforma-

tion that produces the robot position estimate. Odometry data assists in reducing the iterations

and provides localisation in the absence of new sensor data.

In Sequeira [Sequeira 93], a range scan is matched with a line-representation of the hall in

which the robot finds itself. Utilising a modified version of Cox’s algorithm, an attempt is made
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to match the scan obtained with the line representation. Thepaper reported very good precision

in localisation and a good performance of the navigation system, considering the bulky hardware

and small processing power. However, from the scan representations presented, the hall seems to

be quite bare and contains few objects that significantly altered the rectangular shape of the hall

boundaries.

Other methods make strong assumptions about the environment that generated the scans. For

example in [Jensfelt 99] the assumption of orthogonal wallsis made and the values of the dis-

tances to the walls are used to update the position estimate.The X and Y Cartesian coordinates

are updated alternatively using different walls. The errorin the angular orientation, a more seri-

ous problem in odometry-based systems, is corrected at every update. A reduced representation

of the world model, limited to four walls representing the outer extents of the laboratory, reflects

on reduced information content that is typical in 2D range scans.

Ribeiro and Gonçalves in [Ribeiro 96] utilise pairs of vertical edges in the environment (cor-

ners in the laser scan) to obtain a localisation estimate. The environment is scanned selectively

in the direction in which the edges are expected. An environment model is utilised in order to

obtain the absolute position of the edges and to choose from among various possible edges. An

initial position estimate, obtained in case of a moving robot from odometry, is utilised to aid the

search procedure and to strengthen robustness of the estimate.

Dynamic environments present a problem for Scan Matching algorithms. In [Bengtsson 98],

Bengtsson and Jonasson present the ’iterative Dual correspondence’ algorithm, a method for

matching consecutive scans so that the pose change can be recovered. This estimated pose change

is then integrated using a Kalman Filter.

In [Arsénio 98], a LRF is mounted atop a Pan and Tilt Unit (PTU) and was utilised to obtain

a depth picture of the robots surroundings. That comprehensive work includes an algorithm that

has access to a 3-D representation of the hall. In that representation, objects with vertical edges,

together with the sides that make up the edge, are represented, chosen on the basis of contrast and

probability of being observed. Vertical edges are extracted from the laser scans and an attempt is

made to match them with the vertical edges of the objects in the map. To simplify computation

and improve results, some pre-processing of the data is carried out. In addition, the scanning
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for features based upon an initial estimate of the robots current position is performed in order to

identify what objects might appear in the laser scan and whatobjects might be partially or fully

occluded. Occlusion effects and the range of angles throughwhich each edge is visible from

each cell are taken into account.

Drumheller, in [Drumheller 87], describes a multistage line-extraction algorithm in which

data from US sensors from all around the robot are used. Usinginterpretation trees, the lines

scanned are then matched with corresponding features in an available map. In a similar vein,

Dudek and MacKenzie in [Dudek 93], provide another method bywhich the scan data is viewed

as being composed essentially of lines. An iterative matching scheme is devised that attempts to

fit the scanned lines to actual lines existing in the model. The extraction of lines from the laser

scan continues to be a popular approach in the extraction of information through a segmentation

of objects using the laser scan data, [Nguyen 05], [Nock 03] and [Sack 04].

Some methods have tried to improve on the original line-feature extraction algorithms by per-

forming some pre-processing. For example, Tang et al. [Tang04], aim to reduce the roughness

of the range finder data before isolating points by employinga method that is supposedly similar

to the scale-space approach used in images. The line fitting algorithms is said to work better on

this lower-frequency data.

Still other methods seek to parameterize laser range data, for example, by converting the

scan into an ordered set of polylines, [Lakaemper 05]. The proponents of the system claim

better matching properties between a pair of scans and easier integration of a new scan within an

existing map.

Representing places only in terms of lines (and corners) provides a limited amount of in-

formation. Many places in the environment are found to have similar representations and these

methods do not scale up easily to larger environments.

In [Tovar 03], Tovar et al. use a combination of places and motion paths to represent a portion

of the environment that has been previously explored. Usingonly range measurements, the gaps

between obstacles make up the features of interest and the behaviours that merge/close gaps or

that create new ones are noted. The path to the goal is the combination of these behaviours.

The environment for which the method has been tested seems tobe small and the placement
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of obstacles appears to excessively facilitate the detection and characterisation of the above-

mentioned gaps.

Other publications have expanded of the set of features thatare segmented from laser scan

data to include trees, kerbs and other features in select outdoor environments. Manandhar and

Shibasaki in [Manandhar 01] extract roads, buildings, tunnels and other outdoor features by mod-

elling 3D range data. In indoor environments too, compositelandmarks including lines and other

simpler features have been used, [Xiang 04].

There have been attempts to represent places in the environment with unique sets of the

features, sometimes termed as ’fingerprints’. The fingerprints consist of a list of features (a string

of symbols to be more precise) that lie around the robot. Eachfeature is represented in terms

of a symbol and each place is denoted in terms of a string of these symbols. This approach can

hope to draw from the wealth of string-based matching algorithms. A serious point of concern

is that most of the simpler string-matching algorithms workon the principal of independence of

bit errors and this might not be most appropriate approach when there are correlations between

the presence or absence of certain features. Also, althoughthe method aims to be multi-sensor,

the features still need to be integrated into the same stringimplying that the features must still

possess certain basic similarities.

In [Lee 00], for example, each feature that is extracted fromthe laser range scan is given a

symbol and each scan is described in the form of a string, e.g.mMmMmMmMmDCm. The

string alphabet, in this case (M)axima, (D)iscontinuity, (m)inima, (c)onnection), depends on the

features extracted from the laser scan. Other methods use ’sections’ of the laser range scan so as

to minimise the effect that changes in one part of the scan will have representation of the place.

The idea is also the gist of the so-called ’fingerprint’ approach described in the section discussing

Map Topology, [Lamon 03, Tapus 04a, Tapus 05, Tapus 04b].

Vision sensors or cameras have been used independently, seeAppendix A for vision features,

or coupled with Laser Range Finders to aid the segmentation ofscan data. Arras and Tomatis

in [Arras 99] attempt to introduce a vision sensor, a CCD camera, to a robot already having

a localisation system based on a LRF. The stand-alone LRF-equipped system achieves good

performance in rooms in which the environment is made up of distinct features. The performance
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of the system undergoes a drastic reduction in efficacy when presented with long corridors and

situations in which the laser beam is subject to specular reflection. With the aid of a vertical-edge

extraction procedure the method seeks to include data that is more reliable in situations where

the LRF is more prone to provide unpredictable or highly ambiguous data.

A number of modern mobile robot platforms have employed multiple sensors with a view to

minimising the situations in which a particular type of sensor can fail or provide less accurate

data. In [Lamon 06] the configuration of the ’Smarter’ platform is described as including mul-

tiple laser range finders, omni directional and monocular cameras, inertial measurement units,

differential GPS and other sensors. Information from thesesensors is filtered into an estimate

for the vehicle position, but only those features can be usedto which a distance (or bearing) is

associated.

2.2.1 Multiple Feature Integration

Perception is usually performed in environments that are atleast partially ’dynamic’ . Addition-

ally, sensor data is often noisy or incomplete. Gathering ’good’ or unchanging features is one

way of ensuring that there is some chance of localisation [Marsland 01]. It is even more impor-

tant to build redundancy into the perception process. Robot localisation methods, should make

use of a large number of features so as to be robust against theabove problems.

Tebo [Tebo 97] says that ’Sensor Integration is concerned with the synergistic use of multi-

ple sources of information. Sensor Fusion is divided into three classes: complementary sensors,

competitive sensors and cooperative sensors’. While such a definition is useful in understand-

ing the need for sensor integration, in practice, integrating measurements taken by sensors with

different measurement and error models is not a trivial tasksince all the above three usually

occur simultaneously, in varying degrees. Multiple sensors are usually employed to address the

weaknesses of individual sensors and increase the sensory capabilities of the robot.

Two principal approaches to feature integration are possible; filter-based and wrapper-based.

In filter-based methods, preception models for sensors thatintegrate the different sensors are

assumed and these are imposed on the data. Such methods usually require a ’registration’ step
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to be performed in order to express the features from one sensor in terms of the feature space of

the other sensor (usually distance and bearing). Wrapper-based approaches, on the other hand,

attempt to facilitate the (usually NP-hard) mathematical procedures employed to approximate

the integration of all features simultaneously [Kohavi 97].

Given that several thousands of features must be integrated, approximate techniques to reduce

the dimensionality of the features seem to be most appropriate. A reduction in the number of

correlated features also reduces the amount of redundant data and can reduce the time required

for the procedure to run. Wrapper based methods are commonly employed in the literature,

for example Ohba [Ohba 97] suggests the use of a ’Global Goodness’ test to select windows

of interest in an image. This criteria has the characteristic of testing the uniqueness of a single

feature rather than of a combination of features (see also [Winters 02], [Gerstmayr 04]). Other

approaches, including [Fleuret 04], [Peng 05], [Vlassis 00], have attempted to use methods based

on Information theory to select a smaller subset of independent features.

The integration of features from multiple sensors is a topicof keen research in the area of mo-

bile robot localisation. A typical combination of sensors is a camera and a LRF where disconti-

nuities in the Laser range scan is associated with features in the image. For example, Castellanos

et al. [Castellanos 01] employ vertical edges extracted froman intensity image and correspond-

ing corners in the Laser Range Scan. The robot is obliged to know the rigid transformation that

links the features in one sensor with those in the other. Thisform of [sensor] coupling requires

a calibration process to obtain the transformation and the transformation itself may be of little

use if the sensors have different ranges and accuracy. Vale [Vale 05] performs an evaluation of

different sensor data for greater suitability to Localisation after travelling through the environ-

ment and evaluating how many times the robot localized itself. Interaction between the features

extracted from different sensors is incidental and the set of features to be used must be decided

before-hand.

Other approaches have been proposed to combine data from thesensors used in this work,

and given the variety of features-based methods using vision and range scans, the combina-

tions are many (see the bibliography maintained by Keith Price at http://iris.usc.edu/Vision-

Notes/bibliography/match-pl502.html).
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Methods that explicitly reduce the dimension of features with continuous values are com-

mon in many perception fields including face recognition, speech recognition, etc. Principal

Component Analysis (PCA) and more application-specific methods derived from PCA such as

the Eigen-Images constitute an important class of data-reduction methods. Mixture models are

a common solution to modelling data that is believed to follow non-parametric distributions. In

[Sajama 05], Sajama and Orlitsky demonstrate the use of Mixture models composed of Gaussian,

Bernoulli and Exponential distributions as a solution to theclassification problem. Clustering or

classification methods based on Mixture models seek to identify features that are more corre-

lated with members of their own group than with members from other groups. McLachlan and

Peel [McLachlan 00] provide a good reference to the general topic of Finite Mixture models.

While most of the work in the field is in the area of Gaussian and Exponential distributions,

other distributions have also been discussed.

A central part of this thesis involves a different approach to the task of feature integration.

After extracting different types features from each view, using diverse techniques, these features

are represented using binary symbols,[0, 1] through one of the following:

1. matching extracted features against a feature database to detect their presence (or absence),

2. categorising features, and

3. discretizing continuous-value features, as shown in Fig. 2.1a.

The ultimate goal of this step is to integrate large numbers of features into a common repre-

sentation to perform place recognition and, ultimately, toachieve a a robust robot Localisation

estimate. The robot is first led through the environment during an Environment Familiarisation

phase. The sensors sample the environment, generating a sequence of views, which we call the

Reference Sequence. This procedure was depicted graphically in Fig. 1.10 and the views of the

Reference Sequence are indices for places in the environmentthat lie along the path covered by

this Reference Sequence.

A matrix of binary features that represent the features extracted from the views of the Refer-

ence Sequence is denoted as the Feature Incidence Matrix, FIM , as depicted in Fig. 2.1b, where
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Figure 2.1: The process of categorisation of the features tocreate binary features is performed in
diverse ways, depending on the sensor and on the type of feature.

each row denotes a particular feature that was extracted from one or more images or laser range

scans. Each column represents a place at which sensor data was obtained. The presence of a ’1’,

depicted as a black square in Fig. 2.1b, in any column signifies that the feature was observed in

an image or laser scan taken at that place.

2.2.2 Using Features in Binary Form

As seen in the previous sub-section, the features that are obtained from the sensors reflect log-

ical information (the presence or absence of a feature in thecurrent observation), or numerical

information (the number of doors or the free space as measured by the range scan). This idea

of converting numerical (continuous or discrete) valued features into binary form is not new and

can be seen in [Wang 05], [Fleuret 04].

Both of the types of features described above are representedusing[0, 1] symbols and treated

like binary data. We have used different techniques, described Appendices A and B, to extract

a large number of features from each view comprising of vision and laser scans. When SIFT or

similar local features are captured from images, the numberof features grows quickly into the

thousands whereas the number of views might measure only a few hundreds. This large number

of features makes the estimation of the current view from a comparison of feature values an ill-
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posed problem, as referred to earlier as the curse of dimensionality. A discussion on the nature

of the features used within the views was initiated in section 1.4.1.

We can describe a ’feature space’ as a coordinate system where the value along any coordi-

nate axis is discrete and can take values of0 or 1. Each of the features from the very large number

of binary features that are used to describe each view in the view sequence can be looked as an

additional dimension. Each view is represented as a point inthe feature space, and because of

the presence of noise that can affect the sensors, there are regions and dimensions of the feature

space that are very sparsely populated with views. Therefore, before comparing a view with all

the views in the sequence, a data dimensionality reduction procedure should be performed on the

feature space.

Data dimensionality-reducing methods such as PCA are not meant to handle binary data.

Mixture-Models have been utilised essentially with Gaussian distributions but, more recently

have been applied in the context of binary data in the form of mixtures of Bernoulli distributions.

Articles such as [Wang 05] and [Kaban 00] go some way to demonstrate the usefulness of binary

features. In [Gonzalez 01] the contexts in which the words are used in a sentence are converted

into binary features. Mixtures of Bernoulli distributions have been used to model data containing

binary features in [Gonzalez 01], [Juan 04] and [García-Hernández 04].

We have adopted a finite Mixture Model in which the individualmixture components are

Bernoulli distributions to reduce the dimensionality of thefeature space. Over the next sections,

the technique to match a current view with each view in the FIMshall be described in greater

detail and look at a concrete application where features that can be extracted from a Laser range

scan and from multiple cameras can be integrated for better place-recognition results. Section

2.3 first introduces the Bernoulli Mixture model beginning with a description of the method

following which an application to a toy example whose simplicity is meant to demonstrate the

results achievable by the Bernoulli Mixture model. In section 2.4 examples are presented of

some of the approaches that have been used to perform to extract features in range scan and in

images.
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2.3 Integration of Binary Features

Each view that is gathered by the sensors of the robot is converted into a column vector of binary

symbols. This section describes a solution to the problem ofmatching a binary column vector

with the FIM,V. Each row of the FIM corresponds to a featurej and each column represents a

separate vectorVk, identified by an index,k. Each entry in the FIM (2.2) might be represented

asjVk where the first subscript indicates the feature and the second subscript, the vector index.

jVk takes value1 if featurej appears (is visible) in vectorVk and takes the value0 otherwise.

V =

















1V1 1V2 . . . 1VK

2V1 2V2 . . . 2VK

...
...

.. .
...

NV1 NV2 . . . NVK

















(2.2)

Suppose we wish to retrieve the index of the vector that is most similar to an observed vector

Vobs. A distance metric could be designed to evaluate the similarity betweenVobs and each vector

Vk in the FIM. One such metric could be the number of corresponding binary features in each

vector that are unchanged, the ’Hamming distance’.

A direct comparison using a metric such as the Hamming distance makes the assumption

that the individual features in each vector are independent. If the features were not independent,

inferences that are made, based on this comparison, might bebiased toward certain vectors in

the FIM. In such circumstances a Mixture of Bernoulli Distributions is used to model the binary

FIM and reduce the dimensionality of the vectors in the FIM before retrieving the index of the

vector most similar toVobs.

2.3.1 Formulation of the Bernoulli Mixture Model, BMM

Mixture models assume that there exist a finite number of parametric distributions which, when

mixed together in a particular proportion, result in a distribution that best describes the data to be

characterized. In this case, the observationVobs can be assumed to be vector of binary features

{0, 1}N , obtained from a particular mixture of Bernoulli distributions, as in (2.3).
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P (Vobs|Θ) =
C

∑

c=1

αcP (Vobs|Θc) (2.3)

In (2.3), Θ denotes the parameters of the distribution of the vectors that compose the Mix-

ture. These parameters include theC component vectors, theΘcs, and the proportions in which

these are mixed, theαcs. Eachαc can also be looked at as a sort of prior probability of the

componentc within the complete mixture model, subject to the constraint
∑

c αc = 1. The term

P (Vobs|Θc) can be determined using (2.4) where eachΘc is a multivariate vector of Bernoulli

probabilities each of whoseN rows indicate the probability of success for a particular feature.

EachP (Vobs|Θc) is a measure of the similarity ofVobs and the componentΘc and since the fea-

tures that make up the components can be assumed to be independent, it can be calculated as in

(2.4).

P (Vobs|Θc) =
∏N

j=1 jΘ
jVobs
c (1− jΘc)

(1−jVobs) (2.4)

To obtain the parameters of the component vectors and mixture priors, it is assumed that

the component vectors are independent and the likelihood ofthe mixture satisfying the FIM is

expressed as in (2.5).

P (V|Θ) =
K
∏

k=1

P (Vk|Θ) = L(Θ|V) (2.5)

The optimisation task to find the mixture that best explains this V can be expressed as in

(2.6), i.e. to find the value ofΘ that best satisfies the distribution of features inV.

Θ∗ = argmax
Θ

L(Θ|V) (2.6)
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The preferred method of solving the Mixture Model problem isthe Expectation Maximisation

algorithm. McLachlan ([McLachlan 00], page 19) states ’...it will be seen that conceptualization

of the mixture model ...(hidden data + component distributions)... is most useful in that it allows

the Maximum likelihood estimation of the mixture distribution to be computed via a straight-

forward application of the EM algorithm.’. The EM method applied to the Mixture problem

assumes that the data is only partially available. It becomes fully known through the use of a

matrix of coefficients denoted henceforth asZ, called the ’missing data’ or the ’hidden data’ or

still the ’unobserved data’. Two notations forZ are used:zk is used to refer to the vector inZ

that corresponds to the viewk andzkc to the element inZ that corresponds to the viewk and the

componentc. If this Z is introduced to expression (2.3), the likelihood of the observations given

the entire data can be expressed as in (2.7) and further simplified to (2.8).

L(Θ|V , Z) =
K

∑

k=1

zk log(
C

∑

c=1

αcP (Vobs|Θc)) (2.7)

L(Θ|V , Z) =
K

∑

k=1

C
∑

c=1

zkc(log(αc) + log(P (Vobs|Θc))) (2.8)

The EM algorithm proceeds in two stages: theExpectationstage attempts to reach the best

value for the missing dataZ, by keeping the parameters of the Mixture model constant (2.9),

while the subsequentMaximizationstage attempts to optimise the components and mixing pa-

rameters themselves by using the values of the ’missing data’ obtained in the expectation step

just performed (2.10), (2.11). The method then alternates between the two steps until some

termination criteria is satisfied.

zki =
αiP (Vk|Θi)

∑C

c=1 αcP (Vk|Θc)
(2.9)

αc =

∑K

k=1 zkc

K
(2.10)
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Θc =

∑K

k=1 zkcVk
∑K

k=1 zkc

(2.11)

As a termination criteria we have adopted a lack of change in the mean error when the Mixture

parameters are applied to the original data. In the case of such applications, where the parameters

of the Mixture models are required for the purpose of classification, the process is usually stopped

quite early, when the reduction in the Mean Error in 2 successive iterations is not significant.

Mixture models used for classification make use of both, the Mixture parameters and the

posterior probabilities over the components, theZ are used to evaluate the likelihood in the

space of the vectors in the Reference Sequence as in (2.12) where P (Vk) represent the prior

probabilities on each indexk.

P (k|Vobs) =

∑C

c=1 P (Vk)zkcαcP (Vobs|Θc)
∑K

k=1

∑C

c=1 P (Vk)zkcαcP (Vobs|Θc)
(2.12)

The Maximum Likelihood Estimationapproach is used to obtain the matching vector, the

indexk∗, in V that best describes the vector to be matched,Vobs.

P (k = k∗|Vobs) = max
k

P (k|Vobs) (2.13)

2.3.2 An Application of Bernoulli Mixtures to a Toy Problem.

To obtain a feel for the Bernoulli Mixture model, two toy FIMs are presented in Fig. 2.2. As was

explained earlier, a row in the Feature Incidence Matrix denotes a single feature. Each column

denotes a particular vector. The presence of a feature is indicated by a black square and the

absence by a white square.

For simplicity and ease of visualisation, both the toy FIMs are created from two distinct

combination of features. Each of the two combinations is a complement of each other meaning

that the features that are present in one combination are notpresent in the other.

The FIM at left is easily recognised as being composed from a combination of two distinct
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vectors, each of which is a complement of the other. The features are perfectly (and consistently)

correlated. These complementary vectors would be the expected result when the FIM is modelled

as a Bernoulli Mixture model.

The FIM at right is identical in layout to the left FIM, but, inthis case, some features have

flipped in order to simulate the presence of noise. If this FIMis also modelled as a mixture

model, one would still expect to see the original vectors as the main components given that the

’injected noise’ is quite small.

The two FIMs can be modelled as a Bernoulli Mixture model whoseparameters are given by

the EM algorithm. The left FIM in Fig. 2.2 was modelled using two components since it has

been obviously created from two different column vectors. In an attempt to gauge the effect of

the added ’noise’, the right FIM was modelled using a Mixturemodel with four components.

Note that a greater number of components could be used, but four components should be able to

demonstrate the effect of the small amount of noise.

After running the EM algorithm for Mixture Models, with two and four components respec-

tively, component with values as shown in Table 2.1 and Table2.2 and the mixture coefficients as

shown in Table 2.3 and Table 2.4, are obtained respectively.As can be seen, most of the layout of

the noisy FIM is explained by componentsΘ1 andΘ3 (the original components in the noiseless

data) and the distribution of these components is quite similar to the corresponding components

for the noiseless FIM.

2.4 Real Features for Place Recognition

If we return to our localisation problem as described in section 2.2, and take each (column)

vector in the FIM to be a vector obtained during the Environment Familiarisation phase, then

the parameters of the BMM allow us to retrieve the index that ismost similar to the currently

observed view,Vobs.

This section and the next presents results from experimentsperformed using a ’Robuter’

robot platform by Robosoft and a Segway RMP 200. A LRF and two Unibrain Firewire cameras

have been added as in Fig. 2.3. The forward-looking camera, Camera #1, looks in the direction of
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(b) FIM for Noisy Samples.

Figure 2.2: Sample binary FIMs, where the FIM at left shows vectors sampled from two pop-
ulations. The FIM at right shows the same vectors with some added noise (the binary features
in some vectors have been flipped). The black squares (value of 1.0) indicate the presence of
features.

Camera 2

Laser Range Scanner

Camera 1

Figure 2.3: Arrangement of sensors on the Robuter mobile robot platform. The sensors used
in this work include the forward-facing Camera #1, the lateral-facing Camera #2 and the LRF
mounted on the front of the robot.
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Table 2.1: Components for noise-
less FIM shown in Fig. 2.2a

Θ1 Θ2

1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0

Table 2.2: Components for noisy FIM shown in Fig.
2.2b.

Θ1 Θ2 Θ3 Θ4

1 1 0 1
0.90 1 0 1
0.90 1 0 1
0.90 1 0 1
0.90 1 0 1
0.90 1 0 1

0 0 0.91 0
0 0 0.91 0
0 0 0.91 0

0.90 1 0 1
0.90 1 0 1
0.90 1 0 1
1.00 0 0 0

0 0 1 0
0 0 0.91 0
0 0 0.91 0
0 0 0.91 0

0.90 0.50 0 0.44
0.80 1 0 1
0.90 1 0 1

Table 2.3: Coefficients for noise-
less FIM shown in Fig. 2.2a.

α1 α2

0.52 0.48

Table 2.4: Coefficients for noisy FIM shown in
Fig. 2.2b.

α1 α2 α3 α4

0.44 0.06 0.48 0.02
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(a) Scan 3 (b) Scan 29

(c) Scan 77 (d) Scan 107
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Figure 2.4: Representative laser range scans from a ReferenceSequence of 118 scans taken along
a Hallway. The Feature Incidence Matrix created from the features extracted from the 118 scans
taken is also shown.
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(a) Image 12. (b) Image 32.

(c) Image 40. (d) Image 63.
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Figure 2.5: Seen here are four representative images from a sequence of sixty seven images taken
by Camera #2 as the robot moves inside a large room. The figure atright is the resultant Feature
Incidence Matrix, FIM.
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robot motion while the lateral camera, Camera #2 is mounted ata sufficient height to view posters

and other texture appearing on the walls of the building. Thecameras are capable of taking VGA-

sized images and the SICK laser range finder provides a set of 361 range measurements taken

through a 180 degree interval.

SIFT features were extracted from images captured from Camera #1 and Camera #2 and

various types of features were extracted from the LRF. The presence of a particular SIFT feature

in a particular view is indicated with a binary value of ’1’. The background on SIFT features

and the details of the implementation in a library developedin the course of work performed

on this thesis is detailed in Appendix A. In Fig. 2.5 a few images recorded by Camera #2,

while travelling within a large room are displayed. The corresponding FIM for the SIFT features

extracted from the whole set of sixty seven images is shown inFig. 2.5e.

In the case of the Laser Range Finder, a number of different features were developed and

utilised in the same fashion as the SIFT features from cameras. Details about the various fea-

tures and how they are represented as binary features are included in Appendix B. Previously

developed algorithms that allowed segmentation of door-like openings were extended and the ex-

tracted doors were classified according to their distance from the robot, resulting in the creation

of new features. New feature extraction algorithms were developed to extract and classify walls.

In a novel application of image description techniques, HU moment vectors were created from

the profile of the Laser Range Scans and used as features.

The features that are continuous valued, are discretised and the discrete values converted into

binary representation as discussed in section 2.2. Discrete-valued features such as counting the

number of walls and doors, are directly converted into a binary representation.

2.4.1 Bernoulli Mixture Model applied to View sequences from a Single

Sensor

The SIFT features from a single sensor (Camera #2 in Fig. 2.3) are converted into binary form.

These SIFT features, extracted from a sequence of images lead to the creation of the FIM. The

technique described in section 2.3 is employed to model thisFIM as a Bernoulli Mixture model.
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Two modifications that make the calculation of the mixture model feasible for the large num-

ber of features are are available. These are

1. The distance or metric between a component and a view is calculated using a modified

expression described below, and

2. Only visible features from the FIM are used at any moment tocalculate the BMM param-

eters.

When features measure in their thousands, it becomes necessary to impose limits on the

probabilities obtained from the Bernoulli distributions. In this case the value that the elements

of the components can take is restricted to0 and1. The purpose behind this idea is that, among

thousands of features, it does not matter whether the probability of a feature appearing is90% or

95%. The expression for calculating the likelihood becomes (2.14) instead of the earlier (2.4).

The costj term is a penalty term for featurej with values between0 and1. It should take values

close to0 for invisible features and values closer to1 for visible features. The expression that

was developed independently during this work was found to bequite similar to one of the models

proposed by Nadif and Govaert in [Nadif 98].

P (Vobs|jΘc) =
∏N

j=1(costj)|jVobs−jΘc|(1− costj)(1−|jVobs−jΘc|) (2.14)

For as short as a 100-meter-long stretch of indoor environment the system yielded a few

thousand of features from a sequence of images obtained froma single camera. Instead of using

all the features, visible and invisible, in the FIM it was found to be more advantageous to use

only the visible features whilst calculating the parameters of the BMM. The calculation of the

parameters is much quicker (due to the smaller number of operations required in the EM) and the

parameters are more stable. In a personal communication with Alfons Juan, one of the authors

of [Juan 04], this was put down to the possible difficulty of the EM algorithm to overcome local

minima. The problem of local minima is more serious in higherdimensional (more features)

problems. Better results in terms of faster convergence of the BMM parameters and a lower
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error of the parameters were obtained by using the reduced FIM (obtained by using only the

currently visible features) to calculate the BMM parameters. We have also reason to believe that

that the visible features contain greater information thanthe invisible features as depicted in Fig.

2.6.

By ignoring the visible features in (2.14) and by keeping the penalty term constant across the

features cost, equation (2.15) is obtained, where cost takes values between0.8 and0.95. Thus, at

the completion of each maximisation stage,degenerateBernoulli Distributions where the vectors

contain either zeros or ones are obtained.

P (Vobs|Θi) =
∏N

j=1(cost)|jVobs−jΘi| (2.15)

Yi = 1
(visible)

Yi = 0
(invisible)

Is feature
present ? 

Is feature   
within 
range ?

Is feature  
within
view ?

Yes

Yes

Yes

No

No

No

i

i

i

Figure 2.6: An invisible feature is more difficult to explain(more data is needed) as compared
to a visible one. While the features that are currently invisible do contain useful data, using only
visible features will require comparatively less data.

The entire procedure for comparing a sensor view with the Feature Incidence Matrix can be

described as in Algorithm 1. The failure to successfully obtain the parameters of the BMM,
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results in the setting of the posterior probability of the matching as an uniform distribution.

The initialisation of the hidden dataZ is performed by assigning some percentage of the

components inΘ to the views in the FIM,Vk. As such these components partially reflect the

the composition of the views to which they have been assigned. The remaining portion of the

components inΘ are initialised randomly. In this work, no automatic adjustment of the number

of components is performed. The number of components is previously fixed and restricted to a

fraction of the number of views.

Algorithm 1 Evaluation of the posterior probability of the comparison of a view with the Refer-
ence Sequence

Vobs = current view (binary column vector).
FIM =Feature Incidence Matrix corresponding toK viewsVk from the Reference Sequence.
Θ; % C components of the BMM, initialised with random parameters.
α = 1

C
% C mixture proportions, initialised with an uniform distribution.

Z; hidden data withC rows andK columns.
N = 0; number of iterations of the EM method.
cost= {0.8, 0.95}; cost penalty term set between{0.8, 0.95}.
Pres =∞; residual probability of view match using current BMM parameters.
while (Pres < ǫres) do

zki = αiP (Vk|Θi)
∑M

j=1 αjPj(Vk|Θj)
%CalculateZ, Expectation Phase

αi =
∑K

k=1 zki

K
%Calculateα, Parameter Maximisation Phase

Θi =
∑K

k=1 zkiVobs
∑K

k=1 zki
%CalculateΘ, Parameter Maximisation Phase

Pres = 1− P (Vobs|Θi) =
∏N

j=1(cost)|jVobs−jΘi| %Calculate residual error
if N = Nmax then

P (k|Vobs) = 1
K

; for all k % set uniform posterior
EXIT

end if
end while
P (k|Vobs) =

∑C
c=1 P (Vk)zkcαcP (Vobs|Θc)

∑K
k=1

∑C
c=1 P (Vk)zkcαcP (Vobs|Θc)

% Calculate posterior probability
EXIT

Mixture models were created for a FIM obtained from the Reference Sequence of sixty seven

images taken with Camera #2 in the Mobile Robotics Laboratory at the Department of Mechan-

ical Engineering, see Fig. 2.5. The posterior probabilities obtained from images captured while

leading the robot over a similar path are shown in Fig. 2.7. These posterior distributions are

defined over all the views contained in the FIM shown in Fig. 2.5e. Although the posterior prob-
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ability distribution is not always very narrow, the method works remarkably well given that the

images in the Reference Sequence are taken with so much overlap and have so much in common

with each other.

The SIFT features work very well and allow the successful recovery of the views in most

cases. For some views, however, e.g. in attempts 5, 7 and 8, the single sensor is simply not

able to match sufficient features for a successful view indexrecovery resulting in imprecise and

sometimes erroneous view index recovery.

2.4.2 Bernoulli Mixture Model applied to View Sequences with Multiple

Sensors

The technique described in the previous sub-section has been extended to the case where the

features arise from different, even dissimilar sensors. Inan experiment that was performed using

three sensors, two cameras and the Laser range scanner, the binary features from the three sensors

are combined in the same FIM.

While the earlier subsection demonstrated the usefulness ofbinary features when these origi-

nate from the same sensor, this section demonstrates the application to robot platforms equipped

with multiple sensors. Once again, the results are presented in the form of the posterior prob-

ability distribution over the views in the Reference Sequence. Representative images taken by

Camera #1 are shown in Fig. 2.8, those taken by Camera #2 are shown in Fig. 2.9 and corre-

sponding scans taken by the laser range scanner are shown in Fig. 2.4.

The results of matching are good, given that no additional constraint was imposed on the

matching and that the prior probability for matching any image was assumed to be uniform. As

seen in Figs. 2.11b and 2.11c, while the features from Camera #1 and Camera #2 are not very

useful, the features from the laser range sensor help produce a good estimate when combined

with the other sensors. In the case shown in Fig. 2.11a the presence of many unique features in

Camera #2 help us to recognize the place correctly.

The effect of using the single camera over the entire Reference Sequence can be seen in Fig.

2.13a.
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Probability over images of reference sequence

Image 1

Image 2

Image 3

Image 4

Image 5

Image 6

Image 7

Image 8

Image 9

Image 10

Image 11

Figure 2.7: The figure shows plots of the posterior probability distribution over each of 67 images
that are included in the FIM depicted in Fig. 2.5. The probability is plotted on the y-axis and the
x-axis represents the index of the Reference Sequence view.
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(a) Image 19. (b) Image 29.

(c) Image 77. (d) Image 107.

Figure 2.8: Representative images from a sequence of 118 taken by Camera #1 along a hallway
for the experiment demonstrating the use of multiple sensors, section 2.4.2.

(a) Image 19. (b) Image 29.

(c) Image 77. (d) Image 107.

Figure 2.9: Representative images from a sequence of 118 taken by Camera #2 along a hallway
for the experiment demonstrating the use of multiple sensors, section 2.4.2.
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Figure 2.10: The Feature Incidence Matrix for features fromthe Camera #1, Camera #2 and
LRF.

The effect of using the two additional sensors in the recovery of the view index over the entire

Reference Sequence can be seen in Fig. 2.13b. It can be seen that there are now fewer views at

which the place recognition is not achieved, as compared to Fig. 2.13a.

2.4.3 Bernoulli Mixture Model applied with a Prior View Probability Model

Until this point each view in the FIM has been assumed to be equi-probable. This is the case

of the uninformative prior for place recognition. The probability on each viewk is defined as

P (Vk). The termsP (Vk) in (2.12) is the prior probability thatVobs is actually the same as a

particular viewk in the FIM and up until this point thisP (Vk) has been taken from an uniform

distribution.

If some views were more likely to be observed than others, this additional information, the

prior probability on each view, theP (Vk) term in the right hand side of (2.12) might aid place

recognition.

To obtain this prior probability for the next view, a simple robot motion model that updates

the probability on every view can be used. This model assumesthat the probability of being at
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(Cam 1)

(Cam 1 + LRF)

(Cam 2 + LRF)

(Cam 1 + Cam 2)

(Cam 1 + Cam 2 + LRF)

(a) For Image/Scan 9 of working sequence.

(Cam 1)

(Cam 1 + LRF)

(Cam 2 + LRF)

(Cam 1 + Cam 2)

(Cam 1 + Cam 2 + LRF)

(b) For Image/Scan 39 of working sequence.

(Cam 1)

(Cam 1 + LRF)

(Cam 2 + LRF)

(Cam 1 + Cam 2)

(Cam 1 + Cam 2 + LRF)

(c) For Image/Scan 52 of working sequence.

Figure 2.11: Results showing the posterior probability distributions over the views of the Ref-
erence Sequence for another sequence with different combinations of sequences. Each figure
shows the result of the application for single camera Camera #1, for Camera #1 and the LRF, for
the Camera #2 and the LRF, for two cameras Cameras #1 and #2 and, finally, for the Cameras #1
and #2 and the LRF.
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any view after localising at a particular view is a function of the estimated amount of elapsed

time or distance since the last place recognition attempt.

This probability comes from two distributions: the first distribution models a smooth transi-

tion to neighbouring views in subsequent observations and the second distribution tries to regu-

larise the prior probability to account for an erroneous previous place recognition result and to

recover from a robot ’kidnap’.

Given the ready availability of odometric data from the robot, the distance rather than the

time was used as the parameter for the first distribution. This distribution displaces the cur-

rent probability distribution on the views directly proportional to the distance covered since the

last observation and with an uncertainty inversely proportional to the same distance covered, as

described below.

Index of views in the FIM, k

P
ri

o
r

P
ro

b
ab

ili
ty

 o
f 

cu
rr

e
n

t 
vi

e
w

, P
(V

   
  )

o
b

s

Figure 2.12: Prior probability distribution on the views inthe Reference Sequence after the robot
after has moved since the last observation.

The second distribution that contributes to the prior is a uniform, non-zero, probability added

to all the views to reduce the effect of erroneous past place recognitions (2.16). This probability

also reflects the prior that must be applied to the place recognition given that the robot is lost. A

genericLost_Place refers to the robot starting out from an unknown place.

P (kt|Lost_Place) =
1

K
for all k (2.16)

The probability is then defined as a weighted sum of the above two distributions as in (2.17),

whereαreg is a parameter. The value ofαreg reflects the reliability of a localisation estimate
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obtained from the motion model and lies between0 and1. The resultant prior probability distri-

bution for the current view, on all the possible views in the FIM, after the robot has moved since

the last observation can be seen in Fig. 2.12.

P (kt) = αreg × P (kt|dodo) + (1− αreg)× P (kt|Lost_Place) (2.17)

The improvement in the recovery of the view index over the entire Reference Sequence can

be seen in Fig. 2.13c. The probability is concentrated quitetightly around the correct views as

compared to the earlier case in which no model for the robot motion was utilised.

2.5 An Insight into the Information Provided by Multi-feature

Views

The Localisation within the Reference Sequence might be viewed from an Information Theory

approach (see [Cover 91] for an excellent introduction to Information Theory). There is a un-

certainty associated with position occupied by the robot inthe Reference Sequence. Each View

provides some information in the form of multiple features that could potentially reduce some of

the uncertainty of the location within the Reference Sequence.

LetV denote a generic view in the Reference Sequence and it can takethe valuesV1, V2, ...VK

denoting one ofK distinct and detectable Views in the Reference Sequence. Thepresence and

the absence of individual features within eachV is correlated with the positionk of the robot in

the Reference Sequence. This correlation may not be perfect however (the function that expresses

the values of the features in terms of the view number is not injective), indicating that the same

combination of features might be obtained at more than one viewVk in the Reference Sequence.

The ’mutual information’ termI(Vk; k) denotes the overlap of information betweenV andk, i.e.

it specifies how much the appearance of ViewV reduces the uncertainty of the robot position

k. The way in which individual views can contribute to the reduction in the uncertainty of the

position within the Reference Sequence is shown graphicallyin Fig. 2.14.

From the image in Fig. 2.14 it can be seen that the best resultswill be obtained when the
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(a) Cam 1 only

(b) Cam 1 + Cam 2 + LRF

(c) Cam 1 + Cam 2 + LRF + robot motion model

Figure 2.13: These figures present an overview of the resultsobtained in sections 2.4.2 and 2.4.3.
The figures show the posterior probability distribution over the Reference Sequence when the
robot is driven along the same path over which the Reference Sequence was obtained, a second
time.
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H(K)

H(V1)

H(V1|K) I(V1; K)

H(V2)

H(V2| K)I(V2; K)

H(V3)

H(V3| K) I(V3; K)

H(V4)

H(V4| K) I(V4; K)

H(V5)

H(V5| K)I(V5; K)

H(V6)

I(V6; K)

Figure 2.14: Multiple features potentially allow a reduction in the uncertainty in the Localisation
within the Reference Sequence. This figure describes how individual featuresfs might aid in the
reduction ofk by being correlated with different parts of the distribution of k (different views of
the Reference Sequence)

information provided by each of the views overlaps the least.

2.6 Summary

Robust place recognition has been obtained by resorting to sensor views containing a large num-

ber of features. It is important to highlight that the role ofthe Bernoulli Mixture model in this

work is to reduce the dimensionality of the views and to describe the environment in some re-

duced ’space of features’. It should be easy to view this utilization of a mixture model as part of

a solution to the generalised ’Data association problem’.

The addition of multiple sensors improves the place recognition capability of the robot im-

mensely. In the example described in the earlier sections, SIFT features seen by forward-facing

Camera #1 and located deep in the hallway persistently appearin the views and crowd out less

salient, but possibly more useful, features appearing at the periphery of the images. In situations

where localisation using this sensor fails, features from Camera #2 and from the LRF still allow

for successful place recognition.

The place recognition method described in this chapter treats all the features in the same way.

The Bernoulli Mixture model works by apportioning the individual components between blocks

of features so that the variation can be accommodated. In thepresence of features from multiple
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sensors, the components of the Bernoulli Mixture Model are especially sensitive to the much

larger number of vision features (numbering in the hundredsper image) as compared to the LRF

features (each scan results in a few tens of features).

While the results seem to be promising and sufficiently robustfor application to localisation,

improvements to the method are still required. In particular, methods to reduce the number of

features, before application of the EM algorithm will result in the reduction of the time required

to calculate the parameters of the BMM.
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Chapter 3

Sequential Context of Views on a Path

3.1 Introduction

In chapter 2 the approach utilised to represent a view using binary features was presented. This

approach utilised the information associated with matching asingleview against the Reference

Sequence to infer the location of the robot. But the Reference Sequence can yield additional in-

formation, information that is implicit in the ’order’ in which the views occur. This chapter aims

to extend the method in chapter 2 by modelling this sequential order of the Reference Sequence

and then simultaneously matching multiple views. The use ofthis ’contextual’ information of the

Reference Sequence is depicted in Fig. 1.11. This chapter seeks an answer to the second question

posed in section 1.3.1; How can the information that is inherent in the order of the sequence of

observations aid the inference of the position of the robot in the Reference Sequence?

The information contained in the sequential context of the Reference Sequence is useful

because, by using a single view, it might not be enough to disambiguate between similar places

lying on a Reference Sequence. If a sequence of current views are to be used for localisation,

the problem in chapter 2 modifies into a problem of aligning this sequence, called the query

or localisation sequence, with sections of the Reference Sequence. The method that is used to

model this additional information, a Hidden Markov Model, will exploit the sequential context

information in two ways:

63
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1. It will provide a consistent framework to use the prior probability of matching each view

in the Query Sequence, and

2. Consequently, it will prevent inconsistent or unfeasiblesections of the Reference Sequence

from explaining the sequence of views in the Query Sequence.

Over the next few sections of this chapter, the problem of recovering the current position

of the robot in the Reference Sequence is modelled in terms of awell-known and often utilised

version of a Bayesian Network, the Hidden Markov Model (HMM).An original layout for the

Markov Chain that is used to represent the hidden states in theHMM was developed.

Most autonomous robot localisation systems assume that thenumber of possible changes in

the position of the robot, between observations, are finite and that future positions that could be

occupied by the robot are predictable (probabilistically speaking). These systems assume that the

robot motion is governed by a motion model and this model can be used to provide an estimate

of the prior probability of the robot being at different places in the environment, just prior to

making the next observation.

Usually, the distance covered by the robot since the last known position, as measured by

the odometry or inertial sensors, is used as an unbiased estimator of the distance between the

states. In the section 2.4.3, the distance covered by the robot since the last observation was

utilised to generate aninformativeprior distribution that improved the place recognition results

of each fresh observation (view). The motion model that was utilised in that section set the prior

probability of the robot being at a particular place according to the distance covered by the robot

since the last observation, Fig. 2.12.

This approach is actually using the sequential context information that exists between pairs

of views when these are matched against the Reference Sequence. This happens thus:

1. The robot is assumed to be lost before the first observation.

2. The posterior probability after the first observation is obtained by applying the uniform

prior in (2.12).
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3. After the robot has moved and just before the next observation, the robot motion model

is used to alter the posterior probability at the time of the last observation to provide an

informative prior probability for the new observation.

4. The posterior probability is obtained by applying the informative prior once more using

(2.12).

5. Repeat from 3.

An extension of this procedure is desired so that a query sequence that is longer than 2

observations.

In the next section a review of the application of HMMs to other areas, not related to robot

Localisation is presented. In section 3.3, details regarding the calculation of the parameters

required to model the Reference Sequence as an HMM, namely thetransition between hidden

states and the probabilities of observation will be presented. In section 3.4, results are presented

with emphasis on the comparison with the results of place recognition without resort to HMMs.

Finally, a discussion about why the HMM is an appropriate model for use with the Reference

Sequence is initiated.

3.2 Sequence Matching using Hidden Markov Models

A Hidden Markov model (HMM) is a stochastic model of a processthat can take a fixed number

of mutually exclusive states. These states are taken to correspond to the hidden nodes of a

Markov chain. The system is measured at a finite number of instances, where the time variable

takes some discrete values.

As depicted in Fig. 3.1, the initial state is the state of the process att = 1 and the final state is

the state of the process att = T . At every subsequent time, between1 andT , the system jumps

to another state or remains at the current state. Transitions are represented as arcs between the

nodes and there is a probability associated with each such transition, called the state-transition

probability. Impossible transitions between nodes have a probability of zero.
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Figure 3.1: A classic representation of a HMM for Localisation in a Reference Sequence showing
the [same] action that will propel the robot from one state toanother until it comes to state ’t’,
the current state.

While the system occupies one of the mutually-exclusive states at any one of the intervals

from 1 to T , this fact is not visible and the states are said to be hidden.However, an output

measurement is produced for each time T and this output is observable. The sequence of output

vectors, O = (O1, ..., OT ), is referred to as the observation sequence. This arrangement of hidden

states and observations, seen in Fig. 3.1, is referred to as the Moore model as opposed to the

Mealy model in which observations are visible during the transitions between the hidden states.

λ = 〈N,M, {πi}, {aij}, {bi(n)}〉 (3.1)

The notation used in Rabiner’s [Rabiner 89] tutorial on HMMs for speech recognition has

been utilised. The parametersλ of the HMM are specified as in (3.1), whereM corresponds

to the number of possible states,N the number of observation symbols,π represents the initial

probability on the states, theaijs correspond to the transition probabilities between a pairof states

i andj andbi(n) represents the probability of viewing symboln at statei. Rabiner [Rabiner 89],

also specifies three basic problems to be solved with HMMs, asreproduced in Fig. 3.2. This

chapter deals with the second type of problem: what is the probable path (defined in terms of the

sequence of views in the Reference Sequence) that the robot took, given what the robot has seen

so far?
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Figure 3.2: Rabiner’s [Rabiner 89], description of problems for HMMs.

3.2.1 Application of HMMs to Robot Localisation problems

In the field of Robot Localisation, probabilistic methods have become the de-facto standard given

their flexibility and the development of Bayesian Inference methods that have popularized the use

of Bayesian Networks. Although it is quite impossible to exhaustively mention even the most

important contributions in the field, the following works are mentioned because of similarities

to the work presented in this thesis [Kosecka 04] [Theocharous 04] [Rachlin 05] [Nikovski 02]

[Fox 99].

3.2.2 Application of HMMs to problems unrelated to Robot Localisation

One of the earliest application of Bayesian Networks in the form of HMMs was to solve the

problem of speech recognition. Rabiner’s tutorial [Rabiner 89] continues to provide a good in-

troduction to the problem of speech recognition (and to the application of HMMs in general). The

area has also seen the application of a number of modifications to the vanilla HMM to account

for the complexity of the problem and the robustness that is required of any successful applica-

tion. Modifications include the use of continuous variable duration HMM [Levinson 86]. The

recognition of passages of music or the retrieval of the complete music using a shorter passage

is another extension of this problem [Pikrakis 06].

Recognising what is written by one person or by multiple persons hand is a difficult problem

because of the ambiguity that is introduced in the actual writing procedure. Besides errors in

the spelling and the variations that are due to the persons individual style of writing, there is the
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difficult problem of identifying where a character ends and where another one begins. Besides the

methods developed originally for speech recognition, one type of technique that has resulted in

considerable success in the recognition of handwriting is the so called Variable Duration HMMs.

In the handwriting recognition applications this technique allows for increases in the distance

between hand written characters [Chen 95]. Other extensionsof the variable duration HMMs

can also be viewed as more complex Bayesian Networks [Vlontzos 92]. These techniques are

built upon variations of the vanilla HMM model to perform an explicit modelling of the duration

for which the system remains at the same state and allow for the use of larger dictionaries and

impose fewer restrictions on the handwriting styles that can be recognised [Kundu 98]

The importance and sheer scale of the Human Genome Mapping project provides another

example of the importance of the application of HMMs in Biology. The problem of matching

described earlier is known in this field, of Bio-informatics,as theprotein sequence alignment

problem. While there have existed alternatives to the HMM profile-based methods such as pair-

wise matching and Neural-Network based methods, HMMs ‘now provide a coherent theory for

profile[matching] methods’ [Eddy 98]. With the human genomecompletely sequenced, profile-

based (HMM) methods have often been used to compare a DNA sequences of as yet unknown

function with others having known function [Conant 04].

The problem of sequence alignment of protein sequences actually bears much resemblance

to the problem of robot Localisation within a sequence of observations. These are enumerated

below:

• A protein sequence, as in the case of the Reference Sequence,is seen as a first-order

Markov Chain where only the symbol sequence (corresponding to the view sequence) is

visible. The chains are modeled as directed (left-to-right) graphs, where the transition

between ’consensus nodes’ are represented using a transition probability Matrix.

• Profile HMMs allow the incorporation of information regarding the predisposition of pro-

tein sequences to contain spurious sub-sections (called insertions) as well as missing pro-

teins (called deletions). Given that the Reference Sequenceis composed of sampled views

of the environment, insertions are expected in between the views in the Reference Se-
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quence. Additionally, limitations in the perception process, incorrect executions of the

required behaviours, and possible changes in dynamic environments might result in an

unmatched (reference-sequence) view.

• Profile HMMs are suited to short-term correlations in the views [Eddy 98] rather than long-

term correlations. This would be analogous to applying the HMMs to detect Localisation

using short-term correlations but not to the problem of loop-closures.

• As in the case of the localisation with the Reference Sequence problem, the profile HMM

method forces us to assume what would be the emission probabilities for the insertion

states. The insertions are assumed to result in any of the views in the Reference Sequence

with a uniform probability.

3.3 HMMs applied to Place Recognition in the Reference Se-

quence

At this point, we formalise a concept of the Reference Sequence as a connected graph. Each

place in the environment that produced a view in the ReferenceSequence is represented as a

node in this graph.

K - 1i
P 

0 i - 1 i + 1 i + 2P P P P P 

Figure 3.3: This figure depicts Reference Sequence in the formof a left-to-right graph composed
of ’K ’ views in the order in which they were sampled during the Environment Familiarisation
phase.

Transitions between the places are indicated by edges that connect pairs of nodes. The Ref-

erence Sequence was created by leading the robot along a pathin the environment. As a result of

this procedure, the graph is connected in a special way. Eachnode/place in the graph is connected
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to two other nodes/places. When we consider the sequential order of the Reference Sequence,

there is one edge that could bring the robot to a particular node/place and another that takes the

robot to the next node/place.Such a graph is called a straight, directed graph or a left-to-right

graph as depicted in Fig. 3.3.
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Figure 3.4: The single-step transitional probability matrix for the Environment Familiarisation
phase indicates a single known transition between views or placesk along the Reference Se-
quence.

In this left-to-right graph (with no loops and overlapping edges), a transition probability

matrix can be created to account for all the possible transitions between places/nodes in the

graph. During the Environment Familiarisation phase, whenthe robot moves along the path

which generates the Reference Sequence, the transition probability matrix might appear as in

Fig. 3.4 since the only information that is known is the single-step transitions that are possible.

During localisation, the robot attempts to repeat these transitions as it moves along the path.

This might not always be possible since the robot might skip aplace and find itself situated at

a node/place that lies later in the Reference Sequence. The rest of this chapter addresses these

problems by proposing modifications in the left-to-right graph and detailing the application of the

Hidden Markov Model, to find the most likely place in the Reference Sequence that is currently

occupied by the robot.

The sequence of observations that is currently available, and which must be matched against

the Reference Sequence is called the Query sequence or the Localisation sequence. These terms

have been used interchangeably in this chapter and in the rest of this document.
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The HMM has been applied to mobile robot localisation by a large number of researchers.

Its popularity has been due to two convenient properties that can be incorporated in the HMM.

The first property is that the position occupied by the robot can be modelled as a hidden variable

(not directly observable state) which must be inferred fromthe outcome of another, observable

variable, the sensor data. The second property is that this hidden variable is assumed to have the

Markov property, where future states that the system occupies are dependent on the current state

and independent of past states. The first property is useful when we assume that sensor data at

each point is not unique as a result of which a prior probability is required to make the inference

of the robot position. The second property applies quite well to the problem of robot localisation

since a robot will usually move smoothly in an environment. It is also desirable because it makes

the whole inference problem tractable by not requiring pastpositions to be considered.

A problem with the application of HMMs that is often not addressed by robot localisation

systems is that the HMM might not make unbiased estimates when the sensor data at different

places is highly correlated. The fact that a first-order Markov Model cannot, in general, capture

the relationship between two observations [Dietterich 02]can pose a problem in Mobile robot

Localisation. In our method, the dimensionality reductionmethod that has been previously em-

ployed to capture the correlations between the views in the Reference Sequence in chapter 2

is re-utilised as the observation model of the HMM. This utilisation of the Bernoulli Mixture

model, BMM, as a dimensionality reduction method is expectedto deal with the above problem

and reduce its severity.

In subsection 3.3.1, the way to create the Reference Sequenceis shown. The application

of a Hidden Markov Model (HMM) to model this sequence so that aDynamic Programming

algorithm, the Viterbi algorithm, can be used to match the observation in the context of the

Reference Sequence is shown.

3.3.1 Modifying the Graph of States for Place Recognition

The creation of the Reference Sequence during the Environment Familiarisation phase was previ-

ously defined as a sampling procedure. It is important to notethat the place recognition procedure



72 CHAPTER 3. SEQUENTIAL CONTEXT OF VIEWS ON A PATH

is also a sampling procedure. The ’sampling rate’at the timeof localisation may be different from

that during the Environment Familiarisation phase. The acquisition of views might be controlled

by the distance travelled by the robot- a noisy quantity thatis not always controllable in certain

environments. Additionally, the Reference Sequence assumes that a behaviour executed at each

view propels the robot to the next view in the Reference Sequence. Actions other than the one

executed in the Reference Sequence will result in the robot seeing things differently as compared

to the Reference Sequence. A view-based localisation methodfor a robot must recognise when

the robot is lost.

Keeping this in mind, the Markov chain that represents the places in the Reference Sequence

in the Environment Familiarisation phase has been modified to include additional nodes/places

and some additional edges or transitions. This Markov chainis termed the Original Reference

Sequence. The modified Markov chain for application to localisation, with some additional

states, a fragment of which is shown in Fig. 3.5, is called theComplete Reference Sequence.

Any action other than the one performed in the Reference Sequence will take the robot to

a some previously unvisited Place. To the original set ofK nodes, anotherK ’Lost_Places’

are added so that the possible values that the state can take are now described in the discrete by

M = 2 × K, which includes theK originally sampled Places and theK Lost_Places (there

is a Lost_Place before the first state too). As a result the HMM depicted in Fig. 3.3 will be

modified to Fig. 3.5. It is important to note that, if inference is to be made across multiple

actions or behaviours, it will be reflected in terms of an increased complexity of the graph in Fig.

3.5. The ’Lost_Places’ perform the following function:

1. They take into account the fact that the robot might see views that are not included in the

Reference Sequence.

2. They indicate the last position at which robot was localized, directly indicating the proba-

bility of the robot being lost.

The Complete Reference Sequence with itsLost_Places is actually quite similar to some of

the models used for profiling gene sequences [Durbin 98]. An example of a ’profile HMM’ used
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in such application is shown in Fig. 3.6. The ’Lost_Places’ correspond to the ’insertion’ nodes

in the profile HMM.

3.3.2 Applying the HMM on the Reference sequence

The Hidden Markov model is completely defined in terms of the three probability distributions:

the transition probability matrix, the observation or emission probability matrix and the initial

probability matrix.

P
i

P
i - 1

P
i + 1

P
i + 2 P

 0

P
Lost_0

P
K - 1

P
Lost_i-1

P
Lost_i+1

P
Lost_i

P
Lost_i+1

P
i

Insertion or 
Lost nodes

Views in the  Original 
Reference Seqiemce

Figure 3.5: The figure depicts a modified Markov chain, with ’Lost_Places’ inserted within
the original Reference Sequence, to perform place-recognition. The dotted lines indicate the
transitions to each of the Places in the original Reference Sequence which have not been drawn
to avoid cluttering the figure.

Figure 3.6: The figure describes a profile HMM [Durbin 98]. Thelower-most layer of states
correspond to the ’main’ states, the diamond-shaped statesrepresent the ’insertion’ states and,
the circles represent the ’deletion’ states. The profile HMMis somewhat analogous to the Markov
chain used to represent subsequent travel along the Reference Sequence where previously unseen
views are observed.



74 CHAPTER 3. SEQUENTIAL CONTEXT OF VIEWS ON A PATH

The transition probabilities on the places, theaij s

The transition probabilities reflect the feasibility of moving from one place to any another place

in the Reference Sequence. The transition probability is always conditioned on the possible be-

haviour that will take the robot to the next state or to on of the Lost_Places. The transitions

that are allowed from state are to the next state in the Reference Sequence and to theLost_Place

lying after the current state. If the robot is allowed to transition from each place to the neighbour-

ing places and to the respectiveLost_Place, a transition probability matrix is drawn up, which

can be represented in terms of Fig. 3.8b, where white represents a transition probability of 0 and

black a transition probability of 1.

A robot motion model is used to apply a probability on every view, as a function of the

estimated amount of travel that the robot has completed while performing a particular behaviour.

The probability on each viewk asP (Vk) and the value of the probability on the view at any time

t is defined asP (kt). The probability for each viewk, P (kt) is then used as a prior probability

before actually matching the view.

A model that modifies the probability distribution of the internal state Fig. 3.7. The vertical

line through the bars indicate the value of the odometry as obtained by the sensor. The wider

bar indicates the region in which the robot might be with higher, uniform, probability, while the

thinner bar indicates the region that the robot has crossed or not arrived at with lower probability

though non-zero probability.

The first distribution displaces the current probability distribution on the views as in (3.2),

wheredodo is the distance covered since the last observation andd(i− j) is the distance between

placei andj.

P (it|dodo) =

∑K

j=1 P (jt−1)× d(i− j)/(2× dodo)
∑K

i=1 P (it|dodo)

if |d(i− j)| < dodo
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Expected Distance covered = d1

Sj Sk Sl Sm Sn SoSi

Sj Sk Sl Sm Sn SoSi
States

Expected Distance covered = d3

Expected Distance covered = d2

Sj Sk Sl Sm Sn SoSi

Figure 3.7: A model that for the probability distribution ofthe internal state.

P (it|dodo) = 0 otherwise (3.2)

P (kt|Lost_Place) =
1

K
for all k (3.3)

P (Lost_Placem|Lost_Placen) = 0 ...for all m 6= n (3.4)

P (Lost_Placet|Placet−1) = 0.5 (3.5)

P (Placet|Placet−1) = 0.5 (3.6)

With regards to theLost_Places, the sequence begins withPLost_Place_0 which indicates

that the robot is completely lost or has never localised. Also, before every original placePi,

there is aPLost_Place_i. By moving forward from oneLost_Place , the robot can transition from

PLost_Place_i to any nodePk wherek > i. Similarly, fromPi the robot can transition toPk : k > i

or to PLost_Place_i+1. The graph does not allow a single-step transition from onePLost_Place_i to

anotherPLost_Place_j.
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The observation model, thebi(n) s

The Bernoulli Mixture model from chapter 2 is used as an observation model for the HMM.

The components of the mixture model are estimated and the current view is compared to these

components. The Bernoulli Mixture Model when used as the observation model, has two partic-

ularities:

1. The observations ’Oi(n)’ at each and every state of the HMM are defined in the same space

as the sampled views (3.7)from the Reference Sequence. This is not a property of HMMs

but rather a result of the adoption of the Bernoulli Mixture model for matching pairs of

views. Since the posterior probability for the Bernoulli Mixture Model is calculated in the

’space’ of the views of the Reference Sequence and not in the space of the components,

the observations have the corresponding number of events asin K.

2. Since the environment is sampled, not every observation might be assigned to a place

in the Reference Sequence. Thus, when the robot is between places that were sampled

earlier, it sees an un-defined view. This undefined view is called the ’Lost View’ and any

place that generates this view is defined as a ’Lost_Place’ Fig. 3.5. In the absence of

any information, the observation probability is arbitrarily defined over the setK at any

Lost_Place as an uniform distribution (3.8). This statement is made on the assumption

that the distribution of the features is maintained throughout the environment.

Oi(n) ∈ K (3.7)

bLost_Place_i(n) =
1

K
(3.8)

In the speech analysis field, given a set of training sequences, a standard way of obtaining the

Observation Probability Matrix is to assume that they correspond to a normal distribution, each

observation being centered around the symbol that is phonetically most similar to the underlying

states, see Fig. 3.8a. This approach is acceptable because there exists previous information that
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the phonemes are reasonably distinct since they are utilised in human language and do not come

from sound clips with an arbitrary sequence of frequencies and amplitudes.

In the case of Place Recognition, it is not possible to ensure that different places in the en-

vironment will be sufficiently different. In this case the observation probability will be obtained

by comparing the sequence of views with itself. Additionally, given that each View can be com-

posed of hundreds of features, and given that the results of matching depend on which features

are absent, it is not feasible to take into account all the emission probabilities for all combinations

of features.

The emission probability matrix has been created using a distribution that is based on the

similarity between views. Thus, if a view is different from all others, the emission probability

for a robot at a position giving that view is very certain. On the other had if a particular view

is similar to a number of other views, then the emission probability for the robot occupying that

place will be spread among the various similar views.

This distribution is regularized to ensure that matching will occur despite the fact that some

noise might exist in the observation vector.

The initial Probabilities State

At the start of the matching procedure or when the robot is completely lost, the robot always

departs from the first place.

P (Lost_Places0
0) = 1 (3.9)

It is natural that the probability at the beginning of the Localisation be concentrated in the

first Lost_Place, before the first state. Thus, the first hidden state is alwaysmatched to the

Lost_Place PLost_Place_0. This firstLost_Place has a non-zero probability associated with the

robot reaching each place in the original Reference Sequence, i.e. P0, P1, . . . , PK−1.

In the context of this work, where a mixture model is used to generate the observations,

the above arrangement has some useful properties since, a concentration of the probability in

the firstLost_Place, PLost_Place_0, results in an uniform probability distribution over the places
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Figure 3.9: The 4 steps of the Viterbi Algorithm

P0, P1, . . . , PK−1 for the Bernoulli Mixture model.

3.3.3 Estimating the likely sequence of Places

The Viterbi algorithm is commonly used in the context of HMMsto determine the most probable

sequence of hidden states that gave rise to a particular sequence of observations. In the context of

the profile HMMS, where the HMMs are used to solve the problem of identifying substrings, the

Viterbi algorithm is employed to find the ’best alignment’, or the one with the highest probability,

between two fragments of a string.

The algorithm itself is a type of Dynamic Programming algorithm [Forney 73], [Rabiner 89].

By focusing on only one hidden state at a time, the Viterbi algorithm calculates all the outcomes

that could be possible for that state - and then keeps only themost likely one. After traversing the

length of the HMM, the ’surviving’ sequence is the sequence that is most likely to have generated

the observation.

The algorithm is described in terms of 4 steps in the tutorialby Rabiner [Rabiner 89] and
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Bin Feature
Extraction

Dimentionality
reduction, BMM

Viterbi 
Decoding

Decision rule, 
max liklihood rule

Recognised 
Place

Vocabulary of
Places

Match features 
in current View

Environment Familiaristaion

Multiple
Sensor Data

Figure 3.10: A schematic of the Algorithms used to perform place recognition

shown here in Fig. 3.9.

3.4 Experiments and results

The complete Place recognition algorithm is now built around the HMM. The HMM used the

BMM as part of the observation model to perform dimensionality reduction. The schematic of

the process is depicted in Fig. 3.10.

The results of applying the Viterbi algorithm for a set of 4 place recognition experiments are

compared in Table 3.1. The Hidden Markov model that was 5 observations long. Only a single

sensor, Camera #1 has been utilised in the place recognition experiments in this section so as to

illustrate the improvement in results obtained by using a HMM. In the results presented in the

table, two Reference Sequences, taken at very different times of the day (consequently in differ-

ent lighting conditions) are used. As can be seen the percentage of successful place-recognition

attempts varies greatly since they depend on the changes that occur in the environment.

The results of place recognition for individual runs of the place-recognition attempts are

shown in Figs. 3.11 and 3.12. The results of place recognition are shown for three different

situations. In the first situation, the place recognition isperformed using the Bernoulli Mixture

Model under an uniform prior distribution assumption. In the second case the same Bernoulli

Mixture model is utilised, but this time an ’informative’ prior is applied. In the final situation,

place recognition is performed using the Bernoulli Mixture model as the observation model of

the Hidden Markov Model. In this last case, a prior probability is also available to improve the

results of the Bernoulli Mixture Model.

The results in Figs. 3.11 are obtained when place recognition was performed under rather
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(a) Place recognition using a Bernoulli Mixture Model
with a Uniform prior probability over all views of the
Reference Sequence for matching each observation. At
least 24 failures were recorded from a total of 117 ob-
servations.
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(b) Place recognition using a Bernoulli Mixture Model
with an informative prior probability for matching each
observation. A total of 12 failures were identified from
a total of 117 observations.
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(c) Place recognition using a 5-observation-long Hidden
Markov model. Each observation is matched using a
Bernoulli Mixture Model with a prior given by the tran-
sition probability of the HMM. 6 failures were correctly
identified from a total of 117 observations.

Figure 3.11: Comparison of place recognition with and without recourse to HMMs. The results
represent two sequences taken in daylight, at times separated by an hour. Only Camera #1 and
Camera #2 were utilized in these sequences.
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similar conditions. The Reference Sequence was created at 16:00 along a hallway with natural

lighting and the Query sequence for place recognition was obtained a couple of hours later. The

environment was, on the whole, well-lit and there were very few changes to the environment

(isolated persons walking down the hallways). It can be seenthe reasonable results obtained

using the simple Bernoulli Mixture are much improved when a HMM is introduced.

The benefits of employing the Hidden Markov Model are much more obvious when the place

recognition is hard to perform as seen in Fig. 3.12. The fact that the Reference and Query

Sequences were obtained under different lighting (light intensity and direction) conditions made

Place recognition very difficult. In the figure at top, the place recognition results using only the

Bernoulli Mixture Model are shown. A non-informative, Uniform probability over all the views

of the Reference Sequence is maintained. The lower number of common features in the two

sequence resulted in a high failure rate of49%. At bottom, in Fig. 3.12c, the results of applying

a 5-observation-long HMM, which resulted in a failure rate of 20% over the entire sequence, are

shown. The figure in the middle shows the results of applying only the Bernoulli Mixture Model

with an informative, non-uniform prior, which, itself was obtained from the procedure in Fig.

3.12c, with a success rate falling in between those obtainedearlier.

3.5 The Reference Sequence as a Compact Representation of

a Path.

Any probabilistic representation of a robot environment must represent the joint probability either

implicitly or explicitly, [Pearl 00]. As seen in chapter 1, while geometric maps aim to maintain

a compound distribution of the events in the environment, topological maps break up the envi-

ronment representation into 2 or more conditional distributions. With the increase in the size of

the environment to be represented and with the addition of sensors and of sensor features, this

joint probability (of being in a place and observing something) tends to become unmanageably

large. The complexity of grid-based maps increases exponentially with the size of the map and

special methods must be utilized to reduce the complexity ofthe Localisation process. The key



3.5. THE REFERENCE SEQUENCE AS A COMPACT REPRESENTATION OF A PATH.83

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Working/Query Sequence 1

R
e
fe

re
n

c
e
 S

e
q

u
e
n

c
e
 5

(a) Place recognition using a Bernoulli Mixture Model
with a Uniform prior probability over all views of the
Reference Sequence for matching each observation. A
total of 57 failures were recorded from a total of 117
observations.
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(b) Place recognition using a Bernoulli Mixture Model
with an informative prior probability for matching each
observation. A total of 46 failures were recorded from
a total of 117 observations.
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(c) Place recognition using a 5-observation-long Hid-
den Markov model. Each observation is matched using
a Bernoulli Mixture Model with a prior given by the
transition probability of the HMM. A total of 24 fail-
ures were recorded from a total of 117 observations.

Figure 3.12: Comparison of place recognition with and without recourse to HMMs. The results
represent two sequences taken at different times of the day (morning and late evening), a fact
that makes View matching rather more difficult. Only Camera #1and Camera #2 were utilized
in these sequences.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.13: Some of the Images Sampled for the Experiments described in this work. The top
row shows images captured from Camera #1 while the bottom row represents images taken by
Camera #2.

Table 3.1: Comparison of Place-recognition successes with and without using HMMs.

Attempt Reference
Se-
quence

% success with
No-HMM

% success with
Pior Prob. and
No-HMM

% success with
HMM.

1 2 56 73 97
2 2 39 51 67
3 5 23 33 49
4 5 71 83 94

ability of the topological map to separate the conditional probabilities of the sensor data that,

when multiplied with the marginal probability that represents the robot position, does not lead to

such a large expansion in the map.

It is not relevant to debate whether the topological map is a high-level representation [Choset 01]

or not. The topological map offers us the chance to break up the joint probabilities that express a

map into two or more sets of conditional probabilities and express it as a graph. Various methods

have been used to build Topological Maps. The nodes of the topological map usually represent

convenient places where this conditional probabilities may be expressed. It matters less, how

and where these nodes are located. Some mapping methods prefer to situate the nodes for ease

of detection [Kuipers 91], others prefer to specify nodes more consistent with an approach that
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explores and segments the environment [Choset 01], [Thrun 98] or any other criteria.

The Reference Sequence exploits the fact that the robot must execute its motion along a path,

in order to complete a mission, and represents the environment using only the conditional view

distribution. The fact that the robot will arrive at the places in a sequential manner obviates the

need to explicitly provide the transition probability matrix. For this reason we believe that a

Reference Sequence and the accompanying sequence of instructions or behaviours, which make

up the Robot Mission, is an efficient form of representing the desired motion along a topological

path.

3.6 Summary

This chapter extended the method for matching a single current view for place recognition to a

sequence of current views that includes the contextual information of each view in the Reference

Sequence. The substitution of the single current view for a sequence of views was achieved

by the adoption of a Hidden Markov model to align the Query sequence with the Reference

Sequence.

The key modifications made to the method presented in the earlier chapter is that the views

are now considered to be observations that are conditional hidden states (the actual position of

the Robot in the Reference Sequence). The transition between these hidden states is modeled

as a simple graph with the transition probabilities parameterised using a robot motion model, a

model that generates transitions that are quite uncertain.

The Markov chain that is used to model the transitions between states in the Query sequence

is a little different however with a set of ’insertion’ states,Lost_Place that serve to accommodate

those Places in the environment that have changes in appearance since the Reference Sequence,

those places that were not sampled and situations in which the robot was plainly lost.



86 CHAPTER 3. SEQUENTIAL CONTEXT OF VIEWS ON A PATH



Chapter 4

Merging Topological Paths to create Maps

4.1 Introduction

The merging of smaller maps to create larger maps is a relevant topic in map building for robot

navigation and there are various reasons we might be required to merge two or more smaller

maps. One recent application of map merging has been in the integration of individual maps

created by cooperating robots [Konolige 04]. We are particularly interested in map merging

applications that use topological information to robustlymerge different types of maps and a

number of such works have been reported in recent literature. These works differ from each

other in the nature of the sensory information that is included in the map and in the choice of the

places at which merging is allowed to take place.

Like many localisation methods that use geometric maps, Dedeoglu et al. [Dedeoglu 99]

track the position of the robot within a geometric map using aKalman filter. As in the case

of [Kortenkamp 94], pre-defined types of landmarks serve to make localisation more robust by

allowing the tracking algorithm to periodically reset and annul the accumulated uncertainty in

the odometry measurements. Often, topological information is obtained by abstracting out infor-

mation from sensor data and the topological connectivity isused to merge the map, [Kuipers 00]

being a well known example. Methods such as [Schmidt 06] selectively strip information from

a geometric map to maintain only adjacency information representing a topological map. In

87
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another approach that uses only topological maps combined with some geometric information

about the environment, [Huang 05] employ a method to merge two topological representations

is presented.

The selection of candidate places at which merging of maps should take place is an important

problem that must be solved before merging can take place. Inthe topological level of the Spatial

Semantic Hierarchy [Kuipers 00] and again, in [Kortenkamp 94], a pre-defined set of indoor

environmental characteristics such as junctions corners and doorways are utilised to create nodes

in the map. The principal reason for using these so-called ’gateways’ is the reliability with

which these type of places can be detected. The increased reliability that is associated with

their detection makes these gateways suitable places at which maps can be merged with greater

confidence.

The previous chapters of this thesis have developed the theoretical framework for localising

the robot within a single path in the environment. Chapter 2 presented a method to perform

place recognition by reducing the dimensionality of views containing a large number of different

features. Later, in chapter 3, the use of the sequential context of the views in the Reference

Sequence was found to have substantially improved the results of place recognition.

Let us suppose that the robot is led down two distinct paths within the environment and, at

the end of Environment Familiarisation stage, it possessestwo sequences of views. The robot

can attempt to localise itself, simultaneously and independently, along each sequence using the

techniques described in the earlier chapter. Besides being able to localize itself within each path,

the robot must also be enabled with the capability to decide along which of the two paths it is

currently travelling along, its ’global position’.

An extension of the concept of localisation along a single Reference Sequence is required to

enable the robot to maintain its global position. Such a method will allow the robot to localise

itself in a global map that is created by joining multiple, smaller topological paths.

We propose a method to create topological maps from multiplesequences of raw sensor

data. In the current chapter, the complete environment within which the robot operates will be

considered to be composed of multiple paths. A procedure that can maintain a global estimate

of the robot position by successively locating the robot along multiple paths is presented. Using
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this method, the robot performs place recognition independently along each path, simultaneously

evaluating the probability of it being along each of those paths.

Further, when the individual Reference Sequences overlap tosome degree, the sequences can

be ’stitched together’ along the overlapping stretch. All put together, these Reference Sequences

make up the general topological map of the environment.

Two issues must be solved in order to arrive at this topological map:

• a procedure to maintain a consistent probability distribution across multiple paths must be

developed and,

• a procedure to merge Reference Sequences, which includes a criteria for identifying over-

lapping segments of the individual paths, must be specified.

In the next section 4.2, a brief review of the procedure used to create the topological represen-

tations of each path is presented. In section 4.3, a procedure to simultaneously localise the robot

within multiple sequences is detailed. This procedure builds on the technique developed earlier

in this work and extends it to allow the robot to maintain the position of a robot along multiple

topological paths. In section 4.4, an algorithm is presented to merge segments of data sequences

into a generalised topological map. This algorithm allows the merging of these paths to create

an unified topological map. In section 4.5, experiments thatdemonstrate the localisation along

multiple paths and the procedure for merging topological paths are described together with the

respective results. Some closing comments, in section 4.6,follow the presentation of results that

were carried out on map-merging.

4.2 Place recognition along a Single Sequence of Views - a re-

view

Before the presentation of the map-merging and localisationmethod, a brief review of the tech-

niques that were detailed in the two previous chapters is presented. Section 4.2 summarizes the
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Figure 4.1: Sensory events in the topological are represented using a conditional distribution, where
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Figure 4.2:The robot is led through the environment on the Environment Familiarisation run, left. The
3D point clouds must be registered in the environment, right.

technique for localisation along a single topological path, as it was developed in chapters 2 and

3.

The algorithm used to integrate a large number of features and which is described in chapter

2 ensures that the place recognition should occur even when views are slightly altered. During

the Environment Familiarisation phase, depicted at left inFig. 4.2, the robot samples the envi-

ronment according to a sampling plan, collecting a sequenceof views from its various sensors

resulting in the Reference Sequence. A repetition of the sequence of motion performed during

the place recognition should propel the robot along the sameReference Sequence.

In chapter 3 it was shown how the sampled views which would normally be modelled as a

left-to-right graph in Fig. 3.3, are augmented by the insertion of ’Lost_Places’ as depicted in

Fig. 3.5.
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Any maneuver other than the ones taken during the Environment Familiarisation phase will

take the robot to a place that was not sampled in the Environment Familiarisation phase. The

Lost_Places, in all a total ofK in number, accommodate these possible views. Thus, each

Lost_Place takes into account the fact that the robot might be seeing views that were not seen

in the Environment Familiarisation phase.

The sequence begins withPLost_Place_0 which indicates that the robot is completely lost or

has never localised. Also, before every original placePi, there is aPLost_Place_i. By moving

forward from oneLost_Place , the robot can transition fromPLost_Place_i to any nodePk where

k > i. Similarly, fromPi the robot can transition toPk : k > i or to PLost_Place_i+1. The graph

does not allow a single-step transition from onePLost_Place_i to anotherPLost_Place_j.

Subsequently, as the robot moves through the environment and need to localize itself, the

current view is compared to the previously collected views and an inference is made of the current

position of the robot. A Hidden Markov Model, HMM, is used to perform place recognition using

the modified Markov Chain in Fig. 3.5 as a model for the transitions between the hidden states

of the HMM. The Viterbi algorithm is commonly used in the context of HMMs to determine the

most probable sequence of hidden states that gave rise to a particular sequence of observations.

It is an inference tool that is associated with the process ofmaking inferences in a HMM and

is utilised to position the robot within the Reference Sequence by using the current sequence of

observations.

The transition between the states is influenced by the transition probabilities between a pair

of places in the graph shown in Fig. 3.5. A robot motion model is developed to evaluate the

transition probability matrix. For each sequence ofM observations, a simple distribution is used

to model the transition probability distribution from eachLost_Place to the remaining original

places in the Reference Sequence favouring places that lie closer in the Reference Sequence.

The transition probability leading away from any of the original places in the Reference Se-

quence is uniformly split between the next original place (to the right) and to the corresponding

Lost_Place. The one-step transition probability from oneLost_Place to anotherLost_Place

is zero.

The first hidden state is always matched to the firstLost_Place, Lost_Place_0. ThisLost_Place_0,
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has a non-zero probability of reaching any place in the original Reference Sequence.

The observation model of the HMM is based on matching the current view with the views in

the Reference Sequence. In the absence of any information regarding the view that will be visible

at the ’Lost_Place’, we arbitrarily define the observation probability as an Uniform distribution

over theK views in the original Reference Sequence. The features from each view in the Ref-

erence Sequence are converted into binary form as describedin chapter 2 and are represented

within a Feature Incidence Matrix (FIM),V. Due to the large dimensionality of the FIM, it is

subsequently modelled as a Bernoulli Mixture Model (BMM). These parameters of the BMM

are obtained by running the Expectation Maximisation(EM) algorithm.

The Mixture parameters and the posterior probabilities over the components, thezi terms

in (4.1), are used to evaluate the likelihood as depicted in (4.1), P (Vk) representing the prior

probabilities over each viewk, in the Reference Sequence. As expressed in (4.2), theMaximum

Likelihood Estimationis used to obtain the indexk∗ in V that best describes the object to be

matched,Vobs.

P (k|Vobs) =

∑C

c=1 P (Vk)zkcαcP (Vobs|Θc)
∑K

k=1

∑C

c=1 P (Vk)zkcαcP (Vobs|Θc)
(4.1)

P (k∗|Vobs) =
K

argmax
k

P (k|Vobs) (4.2)

So far we have dealt with only one Reference Sequence. When we are dealing with multiple

Reference Sequences it is necessary to refer toP (ks|Vobs) asP (ks|Vobs), i.e. the probability of

Vobs being matched against viewk in the Reference Sequences.

4.3 Simultaneously localisation in Multiple Sequences of Views

In the previous section, a consistent way of maintaining thelocalisation probability over a single

path was reviewed. One of the key characteristics of that approach was the use of the Viterbi

algorithm to exploit the information that is available in the sequential context in which the views

are arranged within the Reference Sequence. The Viterbi algorithm allows the evaluation of
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Figure 4.3:A schematic for the comparison with multiple trajectories (sections of different Reference
Sequences or Topological Paths).

the transitions and observations within a single Reference Sequence that most likely led to the

current observation sequence. However, the Viterbi algorithm does not allow a comparison of

the likelihood of sequences for different paths, i.e. for two different HMMs.

We propose a more consistent way of handling localisation along multiple sequences that is

based on the quality of the match of the sequence of observations for each Reference Sequence.

Localisation of a mobile robot using such an approach, depicted graphically in Fig. 4.3, will

reflect the fact that each data sequence is obtained by separately sampling different paths of the

environment.

If more than one Reference Sequence is available for the robotto localise itself against,

this method will maintain the global position of the robot bymodelling its global position as a

combination of two, independent probability distributions. The first distribution is the marginal

distribution, of the robot being along a particular Reference Sequence,s. The second distribution,

independent of the first, maintains the position of the robotwithin that particular Reference

Sequence. The application of this global positioning scheme is depicted in Fig. 4.3 for three
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independent Reference Sequences and is expressed in (4.3). The proposal of this method is

influenced by the corollary proposed by Montemerlo in [Montemerlo 02] which says that, given

that the path is known, the sensor observations are conditionally independent on the robot path.

P (ks, s|Vobs) =
P (s) ∗ P (ks|Vobs, s)

constant
(4.3)

The second term,P (ks|Vobs), in the numerator on the right-hand-side of (4.3), is the proba-

bility with which the current observation matches the viewsin the Reference Sequence. This is

the distribution (4.1), that was first presented in chapter 3and was summarised in section 4.2 in

the current chapter.

The first term,P (s), in the numerator on the right side of (4.3), denotes the probability

of the robot being along each of the Reference Sequences. We have developed a measure that

reflects the marginal probability distribution of the robotbeing within each Reference Sequences.

This measure is based on thequality of the output of the place recognition procedure. The

correct path along which the robot is moving should have the lowest uncertainty given the current

observations.

In the next two sub-sections, the expression for the termP (s) is developed in terms of the

uncertainty of the localisation estimates within each Reference Sequence. In section 4.3.1, the

expression is first developed for the case of a single, isolated, observation. The equivalent ex-

pression is then extended, in section 4.3.2, for the case where a sequence of observations as used

within the Hidden Markov Model, HMM.

4.3.1 CalculatingP (s) when using a Single Observation

We have used the uncertainty of the place recognition results along a particular Reference Se-

quence as a proxy for the probability of the robot travellingalong that same sequence. The binary

entropy of the probability distribution of a discrete random variable is a commonly used measure

of the uncertainty of that distribution. This measure, reproduced for a variableX in (4.4), can be

evaluated for any probability distribution such as for the estimate for a single view localisation,

P (ks|Vobs, s). We have defined the probability of the robot travelling along a particular Reference
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Sequence according to (4.5).

H(X) = −
∑

P (x) log(P (x)) (4.4)

P (s) =
1

constant

[

1−
1

log(Ks)
×

Ks
∑

ks=1

P (ks|Vobs, s) log(P (ks|Vobs, s))
]

(4.5)

constant=
1

∑S

s=1 P (s)
(4.6)

Expression (4.5) is based on the ’normalised entropy’ of thedistributionP (ks|Vobs, s). This

expression is a measure of how uncertain a place recognitionalgorithm is within the particu-

lar Reference Sequence,s. The less uncertaina probabilistic distribution is over a Reference

Sequence, the higher the probability that the robot finds itself within that particular Reference

Sequence. The normalising term1
log(Ks)

allows the comparison of trajectories of different lengths,

whereKs denotes the number of places in the Reference Sequence,s.

With the arrival of new sensor data, the probability of the robot being along thecorrectRefer-

ence Sequence should begin to improve to the detriment of theother Reference Sequences. If the

current observation does not match, sufficiently well, withone of the views in the Reference Se-

quence, the uncertainty of the localisation results will behigh and the corresponding probability

of the robot being along that Reference Sequence will be low.

4.3.2 CalculatingP (s) when using an observation sequence

The expression for the case of a single observation, developed in the previous sub-section is quite

straight-forward. In the case of a sequence of observations, the expression must be developed

more carefully since the uncertainty refers to the results of the Viterbi Algorithm.

When a particular sequence of observations is utilised to obtain the most likely sequence of

places that were occupied by the robot, the uncertainty of the possible sequence of places must

be evaluated.

The sequence of places that the robot occupied within a Reference Sequence is called the
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robot trajectory. The trajectory is defined as the section ofa topological path that the robot has

travelled along, with the section beginning at an initial statei, ending at a final statej and having

no intervening states equal toj. According to the above definition, the trajectory does not include

loops through the environment.

As reviewed in section 4.2, for each Reference Sequence, the motion of the robot is modelled

using the Hidden Markov Model (HMM) and the Viterbi algorithm provides the most likely

sequence or trajectory ,̂trajs, for the Reference Sequences. The algorithm works by calculating

all the possible sequences of places that explain the sequence of observations. The expression

for the uncertainty of the inferred trajectory that is equivalent to (4.5), is less straight forward to

compute since it requires the evaluation of the entropy of the trajectory,H( ˆtrajs|Vobs).

The brute-force evaluation of this quantity would require the calculation of all the possible

trajectories in the Reference Sequence that explain the sequence of observations. The value of

H( ˆtrajs|Vobs) would be obtained by the application of the probability distribution of these se-

quences of states that explain these observations in expression (4.4). An efficient method to

calculate this quantity was presented in [Hernando 05]. This method extends the Viterbi algo-

rithm to calculate the entropy of the sequences of hidden states as each observation arrives. The

procedure described in [Hernando 05] is adopted for the calculation of the uncertainty of the

trajectory. The calculation ofH( ˆtrajs|Vobs) requires some modification of the data structures and

some additional computations within the Viterbi algorithm.

The final expression forP (s), for the case involving a sequence of observations, is shownin

(4.7) whereH( ˆtrajs|Vobs) is calculated using the method outlined in [Hernando 05]. The constant

term in (4.8) is used to create an expression for a regular probability distribution and the normal-

ising term,
(

Ks

#traj
)

, allows theP (s) to be calculated independently of lengths of the individual

paths, as explained below.

P (s) =
1

constant

[

1−
1

log(
(

Ks

#traj
)

)
×H( ˆtrajs|Vobs

]

. (4.7)

constant=
1

∑S

s=1 P (s)
(4.8)
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The normalising term, 1

log((
Ks

#traj))
, adjusts the entropy for the number of combinations of

states that are possible in each Reference Sequence for an observation length of#traj. The

expression
(

Ks

#traj
)

denotes the binomial operator that is used to account for thedifferent combi-

nations of state sequences of length#traj that are possibles in a Reference Sequence with a total

number ofKs original views.

4.4 Merging Topological Paths

The previous section has presented a method to globally localise the robot within a set of paths.

The representation of each of the paths is obtained by leading the robot through a particular

section of the environment. If the robot is successively ledthrough the environment, each time

along a different path, the topological representations along multiple paths that together make up

the topological map of the environment.

The advantages of merging multiple Reference Sequences are two-fold:

• Localisation can be performed on independent Reference Sequences:The localisation

method developed in the previous section assumes independence between the individual

Reference Sequences. This independence is achieved by identifying the overlap between

the Reference Sequences created during the Environment Familiarisation phase. This step

helps guarantee the corollary proposed by Montemerlo in [Montemerlo 02].

• Possibility of localisation boot-strapping: The map merging procedure is also required

to enable the localisation method to move from one Reference Sequence to another. The

merging procedure makes pair-wise comparisons between segments of different Reference

Sequences leading to the discovery of overlapping segments. These overlapping segments

allow the identification of possible transitions from one Reference Sequence to another,

via the overlapping segments.

This problem of maintaining the consistency of the merged global map shares some of the

challenges faced by other map-building methods described in the literature. The Simultaneous
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Localisation and Mapping, SLAM, algorithms and their variants maintain the relation between

features through the use of the position and error correlation matrices [Thrun 05]. SLAM is

well suited to the process of incrementally mapping an environment. An extension of the map

is performed by adding the position of each new feature and byupdating the error matrices that

represent the uncertainty of existing features. In most mapbuilding procedures the merger of two

maps or of two, previously separate, sections is a difficult problem. This problem is often referred

to as the loop-closure problem. In the case of SLAM, loop-closure involves the conciliation of the

position and error matrices for the two separate maps/sections whilst simultaneously associating

features from one of the maps/sections with the other.

The problem is a difficult one to solve since the position is not accurately known and, often,

other means such as image features in the case of [Newman 06],must be used to select those

places where merging will occur and other places where only position updates will be performed.

Once the position at which the maps must be merged is established, methods such as [Carpin 07]

can be used to locally search for and optimise the transformation that best ’fits’ one map into

another.

Where the environment is sufficiently rich in sensorial detail, assumptions are made about the

’slow’ variability of the environment. The similarity between places can be usually established

by comparing changes in the sensor data over a short path. In [Schmidt 06], Schmidt et al. use

the ’width’ or smaller dimension of the environment, as measured using ultrasound sensors as the

robot moves, to verify the similarity of places in the environment. A similarity term is defined

for the width of passable sections in the environment and changes in this width are used to split

regions in the environment.

In [Howard 06], Howard et. al. employ the projection of a higher dimensional structure,

a manifold, onto a plane to help resolve the problem of place aliasing and scene variability.

Importantly, representing the sensor measurements on the manifold rather than on the planar

map allows merging of places that are previously visited by the robot to be put off until more

information is available. The authors re-cast the problem of place-aliasing as a non-symmetric

projection problem where each position in the environment (in the planar projection) can be

represented as a different place on the manifold.
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Hierarchical representations of the environment have beenused in the literature since the

introduction of the Spatial Semantic Hierarchy, SSH, by Kuipers [Kuipers 77]. These typically

seek to identify previously visited or already-mapped places with help of the topological rep-

resentation. For example, in [Kuipers 02], an extension of the SSH architecture, Kuipers and

Beeson seek to merge topological information by testing the various merging hypothesis. The

environment is sensed using very imprecise sensors and is subsequently abstracted in terms of

corners and junctions. The hypothesis for merging are evaluated by moving the robot around the

environment such that loop closure hypothesis can be verified.

In [Stewart 03] a geometric map is broken up into a number of smaller, ’more unique’, envi-

ronment layouts such as junctions and door openings and thenstrung back together in the form

of a Dirichlet process. The novel method dwells on the problem of estimating the likelihood of

previously unseen environment layouts and builds the priorprobabilities of the different possible

environment layouts.

Although not related to mobile robotic applications, in [Scarlatos 93], Scarlatos tackles some

of the issues that are faced by map building algorithms regarding the efficient representation of

large environments. Although the emphasis is on the development of appropriate data structures,

chapter 6 of the same publication, addresses the problem of merging spatial representations in-

cluding, for the case in which the representations are not ofthe same type. Although the use of

line, point and area-based methods for merging the accuratemaps used in that work is of interest,

the maps that are available in mobile robotics are comparatively far from accurate given the noisy

sensory readings and the accumulation of mapping errors.

In the context of our work, at a coarser or ’higher’ level, theenvironment is viewed as being

composed of multiple paths. Each path in turn is made up of a sequence of views. This rep-

resentation is depicted in Fig. 4.4, by using the topological map described in [Thrun 98]. The

proposed method of building a global topological map from a merger of paths can be contrasted

with the method described in the article [Thrun 98], where the ’global’ topological map is con-

structed after building the complete geometric map, by abstracting out certain properties of the

’global’ geometric map.

The merging of Reference Sequences into one global topological map comprising multiple
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Figure 4.4: The global topological map can be viewed as a collection of multiple, non-
overlapping paths through the environment. This process ofcreating a topological map by merg-
ing the topological representation along multiple paths can be contrasted with methods such as
[Thrun 98], where the ’global’ topological map is constructed by abstracting out the ’global’
geometric map.

topological paths is performed using a two-stage procedure.

1. Identification of Merge Candidates - Measuring View Similarity

2. Path Merging - Verifying Reference Sequence Overlap

In the first step,Identification of Merge Candidates, each view in a Reference Sequence

is separately compared with every view in another Reference Sequence to generate hypothesis

where possible merging could be performed. This step results in the creation of a view-similarity

matrix that indicates how similar each view in a Reference Sequence is with every view in the

Reference Sequence it is being compared with.

In step 2,Path Merging, segments of a Reference Sequence around a pair of candidate views

that are identified in the earlier stage are aligned to verifywhether an overlap actually exists.

It is important to point out that the first step is essential since it identifies places in the pair of

Reference Sequences that are really similar. If the step 2 were to be performed on every pair of

sequences, without first testing for similarity, a forced alignment of views that are actually not

similar might occur.
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4.4.1 Identification of Merge Candidates - Measuring View Similarity

A method that merges paths to create a global topological mapof the environment must identify

possible places at which a pair of sequences’cross over’each other. A view-similarity algorithm

can identify possible individual instances of such overlaps. The definition of similarity varies

greatly in the literature and this definition is often a function of the type of environment and the

nature of the sensors being used.

In [Ishiguro 96] the Fourier components that make up Omni-directional images are compared

for an evaluation of similarity. Ho and Newman [Ho 05] and Posner, Schroeter and Newman

[Posner 06] use place similarity measures to improve the robustness of loop-closure and map

merging algorithms that normally employ geometric information. In the latter publication, the

similarity between two sequences of views has been depictedusing a view similarity matrix, as

seen in Fig. 4.5. It is pertinent to note that although Posneret. al [Posner 06] have noted that

algorithms that make use of the [sic] ’temporal ordering of data’, are still not very common, their

own method still does not make explicit use of sequential context of the views.

A recent article by Zivkovic et. al [Zivkovic 07] also attempts to use information obtained

from near-by scenes to define places in the environment. As inthe case of [Posner 06], a cluster-

ing approach is used to group images and represent places in the environment by using a typical

set of images for that place. In [Thomas 00], Thomas and Donikian hypothesize a hierarchical

set of [topological] representations that represent the environment using similarity of places. The

developers of these methods claim that such labeling of (similar-looking) places is in line with

the spatial concepts that humans employ.

In our approach, each view in a Reference Sequence is comparedwith each view in every

other Reference Sequence. The posterior probability distribution that is obtained by comparing

each view in Reference Sequencesi with another Reference Sequencesj, for all the views insi

results in the ’view similarity’ matrix. This similarity matrix indicates how similar a particular

view is to each view inside the other Reference Sequence. The similarity between a pair of views

is calculated using a metric based on the number features that the views have in common after

having reduced the dimensionality of the feature space using the Bernoulli Mixture Model.
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Figure 4.5: The calculation of View similarity to improve geometric map merging has been
utilised in [Posner 06]. The view similarity information isused to add robustness to map-merging
algorithms that normally use geometric or spatial information. Black positions in the matrix
indicate greater similarity while white indicate lower similarity.

An example of such a comparison is seen in Fig. 4.6 for two sequences taken at the De-

partment of Electronics and Computer Engineering, DEEC at the University of Coimbra. The

figure at left in Fig. 4.6a depicts the view similarity matrixwhen a Reference Sequence ’B’

is compared to another Reference Sequence ’A’, and in Fig. 4.6b, Reference Sequence ’A’ is

compared to Reference Sequence ’B’. As is visible in Fig. 4.6, and as it might be expected, the

two matrices are not completely similar given that the features used to evaluate the similarity

are different. In Fig. 4.6a, the features found in the Reference Sequence A are used to calcu-

late the view similarity between the Reference Sequences whereas in Fig. 4.6b its the features

from Reference Sequence B that are used. But the similar views in one Reference Sequence

are consistently evaluated as being similar to views in the other Reference Sequence. These high

similarity places are candidates for possible overlaps between parts of the sequences as described

in section 4.4.2.

4.4.2 Path Merging - Verifying Reference Sequence Overlap

The aim of this step is to verify that overlapping between thesequences does take place and to

split the environment into distinct regions. The overlapping regions, common to both Reference

Sequences, are removed from one of the Reference Sequences and maintained only within a
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Figure 4.6: View similarity matrices are shown for experiments described later in section 4.5.
The similarity (lighter indicates greater similarity) between views is calculated using a metric
based on the number features that the views have in common after having reduced the dimen-
sionality of the feature space using the Bernoulli Mixture Model. In this figure white values in
the matrix indicate greater similarity and black indicate no similarity.

single Reference Sequence. Thus, no two reference Sequencesmaintain the same part of the

environment.

The evaluation of place-similarity must be robust to noise,to some changes in the view-point

and to some changes in the dynamic environments. This procedure can handle for slight differ-

ences in the viewpoints of the robot as it travelled over the overlapping region in the Reference

Sequences.

A simple algorithm that tests the hypothesis for merging segments of the new data sequence

into the topological map is presented in Algorithm 2. The algorithm entails an alignment of

segments of the Reference Sequences in the neighbourhood of the nodes which were deemed to

be similar from the view-similarity matrix calculated in the previous step. If the similar nodes

are relatively close to each other, suggesting that the non-similar intermediate nodes results from

sensor noise, that part of the paths are considered to be overlapping.

As seen in chapter 3, each place in the Reference Sequence is limited by a pair of ’Lost_Places’.

The role of theLost_Places is extended to incorporate possible overlap with other Reference

Sequences. Merging of a new data sequence into a Reference Sequence is achieved by modifying

the Markov chain shown in Fig. 3.5 to expand the role of theLost_Places in the graph. These

Lost_Places are now allowed to ’absorb’ segments of the new sequence thatmust be merged.
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Algorithm 2 Merging Hypothesis For Topological Paths

Hnew = NULL // the new sequence is completely separated
mintnew // the minimum sequence length for declaring overlap

Require: Vnew ≥
min tb // the new sequence has min length

Tnew = Vnew // all new views are potential match
while (Tnew > 0) do

i← V 1
new

j ← V 1+mintnew
new

if TEST(ti,j)) then
// test for no overlap
H ← tbi,j //no overlap, current trajectory in B is added to Hypothesis
removeV 1

new, . . . V 1+mintnew
new from T b //current trajectory removed from further tests

else
// overlap confirmed
removeV 1

new, . . . V 1+mintnew
new from T b //current trajectory removed from further tests

end if
end while
returnH // the non-overlapped sequence is returned

Without loss of generality, Fig. 4.7 shows the effect of matching a segment of a Reference

Sequence1, that partially overlaps with another Reference Sequence2. In this case, two of the

views in Reference Sequence 1 were matched with part of the Reference Sequence 2 and an

intermediate view was matched to an interveningLost_Place.

Those views occurring before the successful match are absorbed within the first or global

Lost_Place and those views occurring after the successful match are absorbed (matched against)

in theLost_Place occurring after the match.

4.5 Experiments

In the above sections a procedure to maintain the global position of the robot in the map that is

made up of multiple paths was presented. A procedure that canbe used to merge overlapping

sections of multiple paths to create a topological map was also described.

The algorithms and procedures are still in a relatively early stage of development and our

localisation application does not use all the information that is available from the merging of the
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topological paths, namely the improved transition probabilities that are obtained from merging.

Ongoing work seeks to include this information within the HMM algorithms that perform place

recognition along each path. Additionally, the calculation of the uncertainty of the HMM tra-

jectory inferred by the Viterbi algorithm was implemented and tested only on small Reference

Sequences. For the experiments reported in this section, itwas not possible to run the modified

Viterbi Algorithm, as a result of which,P (s), was calculated using the algorithm outlined in

section 4.3.1.

A first experiment with two Reference Sequences was carried out to demonstrate the global

localisation procedure. This experiment served to underline the need to identify and subsequently

remove the overlap between Reference Sequences.

Two Reference Sequences were obtained by leading the robot along a corridor environment

as shown in plan view in Fig. 4.8. The two paths having an overlap somewhere in the middle

of the corridors where the robot briefly travelled along the same path. Each sequence consisted

of 640x480 gray-scale images taken by two cameras mounted ona mobile robot. One of the

cameras is facing forward and the other is facing away from one of the sides of the robot.

The two-step merging procedure described in section 4.4 wasrun and the overlap in the two

topological paths was identified according to the algorithmpresented in Algorithm 2. The second

Reference Sequence was merged with the first Reference Sequence over a single overlapping

segment, between views 16 and 32 in sequence#1 and views 22 and 46 in sequence#2, see

Fig. 4.9a.

During a subsequent run, the robot is positioned at a place that lies on the overlapping seg-

ment of the paths and is driven along the path corresponding to thesequence#1. The overlap-

ping segment of the two Reference Sequences was not removed and are maintained within both

Reference Sequences.

The robot localises itself in the global topological map andthe probability of being on each

of the original sequences is plotted and shown in Fig. 4.9b, it is impossible to tell whether the

robot is localised in both Reference Sequences or in no sequence at all. To enable the use of the

HMM models within a generalised topological map, overlapping segments should be removed.

To demonstrate the effect of the removal of overlapping segments, a second experiment was
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Seq 1

Seq 2

(a) Layout of the 2 Reference Sequences that were recorded onthe second floor of the DEEC Building.

Test Sequence

(b) Layout of the test path on the second floor of the DEEC building over which localisation was
performed.

Figure 4.8: Two sequences with overlapping segments were gathered from the environment, as
shown at top. Subsequently, the robot was driven over part ofthe region covered by the two
Reference Sequences, as shown at bottom.
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Figure 4.9: Merged Topological graph and probability distribution. While the robot is on the
overlapping region, either sequence is probable. Upon reaching the place where the paths sepa-
rate, the probability of the robot being on the incorrect path rapidly reduces.
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carried out on a longer stretch of environment consisting of8 Reference Sequences, collected by

driving the robot forwards and backwards along 4 paths in theenvironment. The 4 paths cover

a distance of approximately 300 meters and overlap to various extents. The plan view of the

environment is seen in Fig. 4.10a. Sample images from six of the eight Reference Sequences are

shown in Fig. 4.11 (Camera #1) and Fig. 4.12 (Camera #2). The 8 paths are named thus:

• Reference Sequence A Forward: moving forward along path A.

• Reference Sequence A Reverse: Retracing in reverse along pathA

• Reference Sequence B Forward: moving forward along path B.

• Reference Sequence B Reverse: Retracing in reverse along pathB.

• Reference Sequence C Forward: moving forward along path C.

• Reference Sequence C Reverse: Retracing in reverse along pathC.

• Reference Sequence D Forward: moving forward along path D.

• Reference Sequence D Reverse: Retracing in reverse along pathD.

The merging of the 8 Reference Sequences is performed as outlined in section 4.4. The

view similarity matrices for some of the sequences that overlap with each other are seen in Fig.

4.13. As can be seen in that figure, the view similarity matrices for some pairs of Sequences

indicate an overlap quite clearly. This is true especially in the case of Reference Sequences A

and B, Reference Sequences A Reverse and B Reverse, Reference Sequence C Reverse and D

Reverse, Reference Sequences B and D Reverse. The view similarity matrices for the other pairs

of Reference Sequences do not appear to indicate overlap despite the robot having physically

covered the same path. This result indicates that it might not always be possible to identify

overlapping segments and to merge the respective Reference Sequences.

The procedures outlined in the previous sections is followed to merge the Reference Se-

quences. The candidates for map-merging in the view similarity are then verified for actual

overlap according to the procedure outlined in section 4.4.2 and the overlapping segments are
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Seq A

Seq B

Seq C

Seq D_Reverse

Seq A_Reverse

Seq B_Reverse

Seq C_Reverse

Seq D

(a) Layout of the 6 Reference Sequences that were recorded onthe fourth floor of the DEEC Building.

Test Sequence

(b) Layout of the test path on the fourth floor of the DEEC building over which localisation was
performed.

Figure 4.10: Eight sequences with overlapping segments were gathered from the environment,
as shown at top. Subsequently, the robot was driven over partof the region covered by the 8
Reference Sequences, as shown at bottom.
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removed from thelongerReference Sequence. This is a simple criteria for the removalof over-

lapping sequences and was adopted on account of its simplicity.

Subsequently, the robot is driven along part of the environment covered by the 8 Reference

Sequences. The path covered by the robot is shown in Fig. 4.10b. Localisation was performed

simultaneously along all 8 Reference Sequences with the overlapping segments removed. The

global position of the robot is obtained by combining the probability P (s), of the Robot being

along a Reference Sequences and the probability distributionP (ks|Vobs, s) over the views in that

Reference Sequence. The probability distributionP (s) is plotted in Fig. 4.14 over the entire test

path. The robot is positioned on the Reference Sequence with the greatest value ofP (s).

It can be seen in Fig. 4.14, that when the robot is travelling along the part of the environ-

ment covered by Reference Sequences A Reverse, B Reverse, C Reverse, the values ofP (s) are

quite stable and a single Reference Sequence is consistentlyselected, leading to correct global

localisation of the robot over the topological map.

At other times, as can be seen in Fig. 4.14, there is a large variation in the probability

distributionP (s). This occurs partly because, even when there was no overlap,some of the

paths are quite similar to each other, for example in Reference Sequence A and B both cameras

were facing regions of the environment that were very similar and partly because at other places,

very few features could be extracted, for example in Reference Sequence C and D the sidewards

facing cameras were looking at a texture-less wall.

Such observations lead us to believe that the merging of Topological maps will be dependable

only at those places where the views in the Reference Sequences are quite distinct, i.e. wherever

localisation isless uncertain. This is a different problem in its own right and has not been

addressed in this document.

We can also see how the removal of the overlapping segments allows the identification of

those places where the localisation is successful and others where it fails. The situations which

result in similar values of the maximumP (s) for multiple Reference Sequences are an indication

that the robot cannot localise itself.
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4.6 Further Discussion

It is important to emphasise what the ’merging’ of maps does do. Since, in the general case,

the view sequences are completely devoid of spatial or geometric information, it is impossible to

build up a global map of the environment where the environment paths intersect quite precisely

and reliably at the junctions in the environment. Therefore, it will not be normally possible to

layout individual sequences on a sheet of paper, based solely on the method to evaluate intersec-

tions or cross-overs that is described in this chapter.

In the previous section 4.5, for the first experiment that is described, we drew the merged

sequence so as to illustrate the resulting graph structure.In the case of the second example, with

the 8 Reference Sequences, the graph was not drawn to avoid thefalse notion that it is always

possible to draw the graph that represents the Topological Map.

Instead, the method that is proposed in this chapter seeks tocreate a consistent means of

keeping the robot localised within one Reference Sequence oranother. When a view sequence

typically leads into another sequence, it is important thatthis be reflected in terms of the prior

probabilities applied to the place recognition along multiple sequences according to the method

described in section 4.3.

The development of algorithms for localisation within geometric maps has progressed from

simple, single-hypothesis tracking algorithms to multi-hypothesis approaches that employ parti-

cle filters and other methods to boot-strap the localisationprocess and to recover from possible

environment changes and from the robot kidnapping problem.In a similar way, the procedure

described in section 4.3 might be modified to maintain multiple hypothesis. Such methods could

employ List Viterbi algorithms [Seshadri 94], so as to provide a finite number of hypothesis for

topological localisation.

A final point of discussion focuses on the type of sensor and the arrangement of sensors on

the robot. In the case of our platforms, since the observations do not cover the entire environment

around the robot, it is not possible to merge Reference Sequences that were taken when the robot

reversed its direction along a path. Thus, in the second experiment described in section 4.5, it

was not possible to merge Reference Sequences A and A Reverse, Band B reverse and so on.
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The possibility to do this depends on the sensory capabilityof the robot.

4.7 Summary

This chapter highlights the representation of the environment using the topological representa-

tion of multiple sequences of views. The results are still preliminary but the method offers a

powerful and, in our opinion, new approach to the creation oftopological maps. A targeted

area of application is in the mapping of large environments in which the robot can be taken on

selective tours through the environment, potentially speeding up the mapping process.

The global position of the robot is obtained by combining twoseparate distributions, i.e. the

probability of the Robot being along a Reference Sequence and the probability distribution over

the views in that Reference Sequence. The specification of theglobal position of the robot in

terms of two separate distributions is consistent with our view of topological maps, as espoused

in chapter 1.

The competing possibilities for merging sections of new view sequences will increase with

an increase in the size of the map. Exact and heuristic optimisation methods will be required

to speed up the procedure. Further work is under way to allow the intervention of a user to

improve/correct the process of creation of the topologicalmap. User intervention could be di-

rected towards correcting tentative adjacency relationships on different sequences and to reduce

the search space for overlapping segments during the creation of the topological map.
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Chapter 5

System Integration and User Interfaces

5.1 Introduction

The methods discussed in the chapters 2, 3 and 4 were developed and tested on Laser and Im-

age sequences captured using two, very different robotic, platforms. These platforms contain

very different sensory and motion capabilities. A common robot architecture within which the

two platforms could be supported was developed. Over the period in which this research was

conducted various modules were developed to allow the acquisition of data and the testing and

validation of the various algorithms.

This chapter discusses issues that are relevant to the overall implementation of the system.

The original architecture that was proposed for the Place Recognition system and later modifica-

tions are presented. This architecture is presented in section 5.2.

Section 5.3 describes the graphical user interfaces that are utilised to create the topological

representation of the path and to monitor the results of localisation.

5.2 The Hierarchical System Architecture

The earlier chapters dealt with the algorithms and procedures that were developed to integrate the

features and improve place recognition capability. A substantial amount of supporting software

119
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Figure 5.1: An overview of the general architecture of the robot system

that enabled the application of these algorithms and the execution of the experiments demon-

strating the Place-recognition capabilities of the algorithms was developed. Function libraries

that enabled the extraction of local features from images and laser range scans were developed.

Communication protocols were also specified to enable the different processes to run on multi-

ple machines. During the last stage of the work, the proprietary communication architecture that

had been developed in the initial stages of this work was substituted for an open-source mobile

robotics ’toolkit’, CARMEN.

Since the start of this work, the system architecture has been modelled on hierarchical sys-

tems [Arkin 89], [Mourioux 04] with some of the layers performing low-level control of the

robot hardware and sensors and other layers performing higher level tasks involving navigation

and interaction with users and with other objects in the environment.

The architecture is composed, from bottom-up, of three principal layers: theControl layer,

the Tactical layer and theStrategylayer as seen in Fig. 5.1. The Control layer is a low-level

machine-dependent collection of modules that implement behaviours. These behaviours are
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functions of the expected data from the robot sensors and thedynamics of the robot platform.

The Tactical layer is the intermediate layer within which the entire navigation scheme is imple-

mented. This layer, as shown in the center of Fig 5.1, is composed of modules that control the

sensors and process the allothetic data and of modules that allow the robot to move in its envi-

ronment in the continuous pursuit of the mission goals. Mostof the work in place recognition

that is presented in this thesis was developed within the extents of the Tactical layer. Finally, the

top-level Strategy layer provides the greatest abstraction from the robot motion. User and agent

interaction, planning and other interaction with the environment is provided by modules situated

within this layer.

The specification of an architecture in modular form requires the exchange of information to

occur smoothly and transparently, independently of the wayindividual modules are hosted. A

number of supporting technologies were developed to build up the robot navigation system and

run it safely.

In order to achieve the stated aim of portability of the navigation approach to different robot

platforms the Robot Mission Control module issues commands from a set of standardized com-

mands that can achieve forward and reverse motion.

Communication is carried out using TCP/IP sockets that ensurethat machines with different

operating systems can still communicate. This simple communication protocol was extended

into a communication library for ease in directing the behavior of the robot from another com-

puter using TCP/IP sockets. ASCII messages are exchanged between the sockets which have

the capability to reconnect if required and to synchronise clocks. File transfer capability via the

reliable ftp protocol was added in order to reliably transfer images and large structures between

different machines. The communication protocol implements a "keep-alive" check for the down-

stream components. Sensor modules such as the Laser Range Scan feature extractor and the

local-image feature extractors are built around these communication modules.

The units of motion utilized by the Robot Motion Control moduleare standardized to the SI

system of units. The required translation to and from the standard of units utilized by each robot

platform is implemented at the level of the Robot Control layer. By standardizing the units of the

motion, displacement and time parameters and decoupling the polling of information and posting



122 CHAPTER 5. SYSTEM INTEGRATION AND USER INTERFACES

TACTICAL LAYER


Robot Control


(Robot OS)


Robot motion control


Trajectory generation


Wheel Controller


Way points

Execution status


Velocity

control


Command

status


CONTROL LAYER


PHYSICAL LAYER


High level

command


Control
 State


Figure 5.2: Transfer of Information Between Robot Motion Control and the Robot

of commands from the robot sensors and to the motors, the creation and control of a robot object

is much simplified.

The Robot Motion Control layer communicates with the Robot Control Module layer asyn-

chronously. A robot-dependent application then acts as an interface between the robot hardware

and the rest of the system in the Robot Motion Control layer. Thecapabilities of this interface

vary greatly since it has to translate a common command protocol developed for holonomic and

non-holonomic robot platforms. The individual Robot Controllayers developed for each type of

robot (and their sensor configuration) possess the ability to transmit the commands to the robot

hardware via other communication devices such as serial ports.

5.2.1 The Control layer and the Robot Motion Control layer

The Control layer has been defined for two, very different robots: the Robuter robot manu-

factured by Robosoft, and the RMP 200 robot that is sold by Segway Inc (http://www.

segway.com). Initial development of the algorithms was performed on the Robuter followed

by intensive testing on the Segway RMP robot.

The Control layer defines the behaviours that a particular robot is capable off. In an au-

tonomous mode, a robot mission will be composed of the behaviours that are defined in this

layer.
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By collecting the platform-specific modules in the Control layer, it was possible to utilize the

other layers unaltered for all the robot platforms. The RobotControl Motion layer is primarily

responsible for allowing the creation of a standardized protocol of commands that the Control

layer can use to communicate with the different platforms. It is responsible for translating the

move commands to the robot and to make available to the other modules the state of the robot

such as the status after the execution of motion, any idiothetic information that might be available

to the robot platform, and other information such as imminent or already occurred contact with

some object in the environment.

To ensure safe operation of the robots, the implementation of the modules in the Robot Con-

trol Motion layer includes certain checks that verify whether the robot is alive and responsive

and that the modules in the rest of the architecture are also functioning and in communication

with the robot.

RobotSoft Robuter

The Robuter robot platform, seen in Fig. 5.3, is the main mobile robotics research platform that

is available at the Robotics and Automation Laboratory of theDepartment of Mechanical Engi-

neering, University of Aveiro. It is based on an embedded Motorola 68040 processor running at

25 MHz. The operating system running on this processor is responsible for running the various

I/O boards and the communication ports. Through the I/O ports, the processor can control the 24

ultrasound sensors and the robot motors.

The current set-up reutilizes previously developed drivers that integrate motion commands

with idiothetic and ultrasound data. These drivers endow the Robuter with collision-avoidance,

wall-following, setting robot orientation with respect toobjects, etc. Crossing of narrow-openings

is achieved by running an application on the robot processorwith the robot motion Control loop

being closed with filtered data from the sonar sensors.

A high degree of safety is also provided as a result of the use of this driver and of other

emergency routines implemented as part of work that is described in [Santos 01]. The same

drivers also provide accessible ways of querying the robot’s state. Communication with the
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Camera 2

Laser Range Scanner

Camera 1

Figure 5.3: Arrangement of sensors on the Robuter mobile robot platform. The sensors used
in this work include the forward-facing Camera #1, the lateral-facing Camera #2 and the LRF
mounted on the front of the robot.

Table 5.1: Translation of high-level commands into robot commands

High-level command Low-Level command Notes
mva x AM a a .

mvb y z AM v a .
mvr -t AM -v -v Blind backing up; dangerous

stp AM 0 0 .
Emergency Stop AM 0 0 and SERV OFF Kill motion and lock motors

robot is maintained through the use of text messages relayedvia two serial lines.

The main messages to the Robuter consist of an adaptation of the command from the Robot

Motion Control module of the Tactical layer. Velocity-limited messages are emitted at a fre-

quency of 5 Hz. The robot replies only with an "ack" that ordinarily indicates syntactical cor-

rectness but is also taken to mean that the robot is alive and receptive to commands. The com-

mand set that is utilized and the translation from the standard communication protocol used by

the Robot Control Motion module to the Robuter specific commandsare stated in the table 5.1.

A second type of message corresponds to a request for the state of the robot. These commu-
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(a) The Segway RMP 200.

Camera 2
Laser Range Scanner

Camera 1

(b) Sensor Platform consisting of Camera
#1 and Camera #2 and Laser range Finders
mounted atop the Segway RMP200.

Figure 5.4: The Segway Robotic Mobile Platform (RMP) and the sensor platform.

nications are maintained at twice the rate at which commandsare emitted by the Robot Motion

Control module, i.e. at 10 Hz.

Bumper control and the front sonar readings are utilized to stop the robot in case of actual

collisions or upon the detection of obstacles. Informationabout the emergency provisions that

are activated is passed up from the robot with the rest of the status information.

Segway Robotic Mobility Platform 200

The Mobile Robot Lab at the Institute of Systems and Robotics, Coimbra is equipped with inde-

pendent sensor and Robot platforms that are supported by modules developed by this lab and by

other mobile robotics laboratories within CARMEN.

The modules required to run the Segway RMP have been developedwithin the CARMEN

software platform, with IPC providing the communication support. Improved sensor logging

formats, allowing faster parsing and support for additional sensors was carried out.

Through the use of a library developed at the Mobile Robotics Laboratory at the Institute of

Systems and Robotics - Coimbra, the robot processor is able to directly access the motors and

the inertial sensors that provide the odometry information. The system under CARMEN is well

integrated although lacking a comprehensive low-level safety and basic motion routines such as

those available on the Robuter. The RMP is run with a collision avoidance system that uses data
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Figure 5.5: The Tactical layer in the Robot Architecture

from the front-facing LRF.

5.2.2 The Tactical layer

The modules in the middle layer, the Tactical layer, are accorded the responsibility of monitoring

and controlling the navigation tasks. The Tactical layer has three modules that control the robot

motion. These are the Robot Mission Control module, the Trajectory Management module and

the Robot Motion Control module. These modules, denoted in Fig. 5.5 serve to:

• Collect features processed from the sensor data: The Tactical layer provides the structures

to handle combinations of features that define the individual places in the environment.

• Recognize previously trained locations: The Tactical layer provides methods to match

the current views with the previously collected views contained within the topological

representation of the environment.

• Move the robot in a way that allows the completion of the robot mission: Associated with

each place in the environment representation is a motion or behaviour that will take the

robot to the next represented place in the environment.
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The Trajectory Management module is associated with keeping track of the appearance (dis-

appearance) of objects around the robot in order to allow therobot to trace a viable and con-

sistently similar path through the environment. Finally the Robot Motion Control executes the

motion required by the Trajectory Management module. Currently, a reduced capability is pro-

vided in the form of a collision avoidance.

The Robot Mission Controlmodule is responsible for keeping the robot on the topological

map. The Robot Mission Control module, provides theMatchingmodule with prior probabilities

and probability of transitions between the places, information that will be used at the time of

matching fresh data.

By continuously matching fresh sensor information with the previously collected parts of

the environment, theMatchingmodule provides am estimate of the position of the robot in the

environment. As described in chapter 3, the consistency of the matching algorithm is improved

by using the BMM within a Hidden Markov Model, HMM.

The actual features that are visible all through the environment are stored in the Land-

mark/Feature database. In the context of work developed in this thesis, the topological repre-

sentation and the features (environment signatures) that are associated with the environment are

gathered during the course of an initial environment-familiarisation phase in which the robot is

moved around the environment.

The perception process consists of self-contained ’sensorclasses’ that are entrusted with the

task of extracting features from the current sensor data. These features are matched against

a previously created database of features and provide the Localisation modules with a list of

feature IDs that correspond to the current features being observed. The database of features can

be explicitly specified as in the case of the LRF that detects doors, walls and corners, or it might

be built automatically as in the case of vision, where the database of conspicuous local image

features are collected during a previous Environment-Familiarization phase.
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5.2.3 Strategic or Interactive layer

The Strategy layer provides the highest level of abstraction to the motion of a robot along a

topological path. Path planning, interaction with other agents in the environment and communi-

cation/monitoring are tasks that fall within the scope of the Strategy layer.

In the course of work that is reported in this thesis, the high-level abstraction role that is con-

templated for the Strategy layer was not developed much. In areal-world scenario, the Strategy

layer provides the framework for interfacing the Place-Recognition and Autonomous Naviga-

tion capabilities of the Robot with a more complete Global Mapof the environment with a user

interface that is used for communication and cooperation capabilities with other robots.

At the time of initiating a mission, the topological structure of the environment and the re-

quired features are transfered to the Robot Mission Control module in the Tactical layer, which

subsequently assumes control of the robot.

In the section 5.3, the provision of some user-interaction capability is demonstrated using

which the user can specify the execution of certain tasks at specific places in the environment.

5.2.4 Integration with CARMEN

Recently, a major modification was made to the whole concept ofcommunication between

the various modules in the above architecture. The open source project, CARMEN (http:

//carmen.sourceforge.net), and its IPC application was adopted as the basis for inter-

process communication. All the sensor and processing modules register with the IPC central

process as soon as they come alive. At the time of registering, the module subscribe to a par-

ticular message (processing modules) or offer to publish it(sensor modules). Such a proven

communication architecture greatly simplifies the development and deployment of modules on

different machines connected via a TCP/IP network, Fig. 5.6.

As can be seen from the Fig. 5.6, the architecture supports a number of additional sensors

besides the LRF and cameras used in this work.
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Figure 5.6: Inter-process communication is now performed using CARMEN programming style
and the IPC-central application. Shown above is the Laser range Finders, camera and pose sensor
mounted upon the Segway RMP robot. All communication is performed using CARMEN.

5.3 Program Interface and User Interaction

User interaction capability has been provided to monitor the Environment Familiarisation and

the place localisation phases. The design and implementation of different forms was undertaken.

These forms and dialogs allow the control of the data acquisition procedures and the visualisation

of the localisation results.

5.3.1 Environment Familiarisation Interface

The Environment Familiarisation phase involves leading the robot once through the environment.

The order of the places in the environment is recorded. In thecase of those features that are

matched against a ’bag of features’ such as SIFT and the HU moment vectors, the Environment

Familiarsation phase also serves to collect these featuresthat will be subsequently used during

localisation.
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Figure 5.7: Program Interface for Environment Familiarisation

The dialog for the Environment Familiarisation phase, shown in Fig. 5.7, allows some degree

of control of the sampling procedure. The forms in the dialogallow the set up of the Environment

Familiarisation phase and of events that control the sampling during the Environment Familiari-

sation phase. We briefly describe below some of the fields thatappear in the form pictured in

Fig. 5.7.

a) The Capture form sets up the name of the Mission and the sensors that will be used.

b) The sequence status dialog allows the user to monitor the Environment Familiariation

phase and start and stop the phase.

c) The Log Parameters form provides additional informationon the sensor data sequence that

is being collected. The information is maintained in the CARMEN log files and in the

XML files.

d) The Timer control form allows the sampling of the environment using a timer event.
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e) The Motion control form allows the sampling of the environment using events triggered

by the motion of the robot.

f) The Manual control form allows the triggering of custom events.

The interface also allows the user to visualise the robot scans and the images that are currently

being captured by the robot.

5.3.2 Localisation Interface

The interface of the localisation algorithm needs a dialog to introduce the place that the robot is

expected to reach and any task that the root is supposed to perform. To test the improvements that

were put forth in this thesis to improve the place recognition along the path, the user is allowed

to monitor the procedures and view the results via the interfaces shown in Fig 5.8. These are

provided in the form of a tabbed interfaces, each of which address one following phases a)

loading of the Reference Sequence, b) Monitoring and Visualisation of localisation statistics, c)

compacting the Sequences and d) Localisation along the Topological Sequence.

The first tab, seen in Fig. 5.8a allows the user to load a particular Reference Sequence.

The Mission Monitoring interface, Fig. 5.8b, interface allows the user to monitor the successful

execution of the mission by verifying various plots and position probability distribution plots.

The Mission Execution interface, Fig. 5.8b, allows the userto visualise the arrival of the robot at

the final goal and at intermediate places. At each place that is specified in the Robot Mission, the

robot executes the tasks specified in Robot Mission. The motion behaviours that take the robot

along its path are included in the Reference Sequence.

The tab shown in Fig. 5.8c, allows the user to run an algorithmthat seeks to create a more

compact Reference Sequence. The algorithms that perform this procedure constitute work in

progress and have not been described in this thesis.

The Robot Mission interface, Fig. 5.8d, allows the user to specify the goal of the mission

in terms of the intermediate and final position to be occupiedby the robot. The interface also

includes the tasks that must be performed at different places as the robot proceeds toward its

goal.
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5.4 Summary

The techniques developed in the previous chapters and the algorithms described were initially

tested on simulated data followed by an implementation in C++to achieve the performance

required for localisation on a real world system.

During a later stage of the work, the Carnegie Mellon robotic toolkit, CARMEN, was incor-

porated leading to enhanced sensor support and an access to areliable communication protocol

between the software modules.

Working applications were required to demonstrate the usability of the place recognition

method in the real world. Graphical user interfaces were written so that the end user can control

and monitor every step, starting from the creation of the topological path to the identification of

the current position of the robot within the original path.
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Chapter 6

Conclusions and Perspectives for Future

Work

6.1 Introduction

This chapter lists some of the contributions of this thesis and points to a few topics as directions

for future research. Most of these contributions lie in the application of algorithms and methods

that have been borrowed from other areas and applied to the problem of mobile robot localisation.

In section 6.2, the principal contributions of this thesis to the state of the art in place recogni-

tion have been listed.

Section 6.3 lists some of the publications that involved work that was developed within the

scope of the doctoral program.

In section 6.4 a few incremental modifications that could simplify the models that were ap-

plied and improve the results of the Place recognition are presented.

Finally, in section 6.5, a few closing comments have been presented.

135
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6.2 Contributions of this Thesis

In the search for an appropriate representation for the sequence of views gathered whilst leading

the robot along a path, an interesting insight was obtained into the nature of geometric and topo-

logical maps. A comparison of the Metric and Topological approaches to the representation of an

environment highlights the fact that the Metric map allows asingle joint probability to represent

the entire environment whereas a topological map uses two ormore conditional distributions to

represent the same. This perspective, from a point of view ofprobabilistic events, appears to be

a very consistent way of looking at these two commonly used representations, each of which has

a set of associated advantages.

This insight, led us to develop a topological representation of the view sequence in which the

transitions between views lying on the same path are constrained using a novel graph network.

This resulting representation forms the basis for our method of localisation along a topological

path. The views that are obtained at places that lie on the topological path are stored in terms of

features that are extracted from the images and from the laser range scans.

The resultant data structures and the algorithms that are required to represent the topological

path and to perform localisation have been found to work effectively for paths of around 200

meters in length.

The localisation procedure was tested with success in indoor environments, as seen in the

earlier chapters and with a lower degree of success in outdoor environment, see Fig. 6.1 for a

FIM from an localisation experiment that was performed outdoors.

In order to move from single paths to real environments with multiple intersecting paths, new

procedures and data structures were developed. To enable the use of the procedure for larger

environments more compact data structures must be employed.

6.2.1 Conversion into Binary Features

The need to utilize views that are composed of data from multiple sensors led to the conversion of

information into binary form. This conversion and the subsequent integration of multiple Binary

Features allows the inference of the position of the robot along the sequence of views.
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Each place in the environment is represented in the form of a vertical column of binary

features, all of which, when put together, result in the Feature Incidence Matrix, FIM. Each line

in the FIM represents a particular and distinct feature. TheFIM is created by first leading the

robot along the desired path during an Environment Familiarisation phase.

The problem of inference is characterised by high dimensionality because of the large number

of features from the multiple sensors. Since the views are represented in discrete form, as bi-

nary vectors, more conventional dimensionality reductionmethods such as Principal Component

analysis or Gaussian Mixture models could not be employed.

The reduction in the dimensionality reduction was achievedby modelling the data as a mix-

ture of Bernoulli distributions, a method first used in Data Mining applications [Nadif 98],

[Gonzalez 01]. The Bernoulli Mixture method was shown to be effective in the integration of

many hundred binary features. This work is detailed in chapter 2.

6.2.2 Use of Contextual Information of the Topological Path

The current position of the robot within the graph network that represents the topological map

must be inferred in the face of noisy sensor data and uncertainty in the distance covered by

the robot. The adoption of Hidden Markov Models to enable theuse ofcontextual information

present in the topological path proved to be relatively straight forward. An original contribution

was the addition of theLost_Places of the Robot that allowed the incorporation of the concept

of a sampled Reference Sequence. This work is detailed in chapter 3.

6.2.3 Scalability and Usability Improvements

The line-graph model of the topological path was shown to be effective while performing place

recognition. Real-time localisation using a conventional personal computer was obtained with a

position estimate obtained up to five times per second for paths around 200 meters in length.

In order to have an effective place recognition system for large environments and for envi-

ronments within which a robot can take many distinct paths, modifications were introduced to

the above method.
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it has not localized in the Reference Sequence. The robot is now assumed to start out at the
Place ’PLost_Place_0’, The dotted lines indicate the transitions to each of the Places in the original
Reference Sequence which have not been drawn to avoid cluttering the figure.

The Feature Incidence Matrix, FIM created after the Environment Familiarisation phase de-

scribes the environment along a single path. In order to map any general environment, multiple

runs of the robot, along different routes, are proposed. By ensuring a minimum amount of overlap

between the different routes taken by the robot, the individual topological paths can be stitched

together to create the global topological map over the regions covered by the robot.

The method, depicted in Fig. 6.3, compares sections of each topological path pairwise with

each other path. By making an assumption that the same region is not covered twice within the

same path during the Environment Familiarisation phase, weavoid having to compare sections of

a topological path with itself. An Information theory approach was utilised to test the similarity

of a path segment with some previously captured path. This work is detailed in chapter 4.

START_1

END_1

START_2

END_2

START_3

END_3

START_4

END_4

Figure 6.3: A depiction of the merging of
multiple paths to create a topological map
of the environment.

START

END

Figure 6.4: A depiction of the removal of
views that are non-distinctive resulting in
more compact view sequences.

As the size of the environment to be mapped increases, the views that are maintained also

increase, typically resulting in an increase in the number of features. This large number of
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features worsens the dimensionality problem and results inthe need for increased computation.

Some of the views, the distinctive views, in the sequence must be maintained since it is

important that the robot recognise the corresponding placein order to be able to navigate the

map. In certain cases it might be possible to eliminatesome of the viewswithout worsening the

results of place recognition. The procedure is depicted in Fig. 6.4. An exact solution could not

be found for the problem of selecting the non-distinctive views, i.e. the views that can be safely

dis-regarded.

The above improvements were implemented and the viability of using this method for larger

environment was tested with partial success. Additional development and testing is required in

order to create a complete topological map-building methodfor large environments.

6.2.4 Improvements in Feature Detection

Contributions were made to the application of SIFT features to image sequence by allowing the

addition of SIFT keys to the KDTree as new images are added to asequence.

An assortment of features extracted from the laser range scanner were utilised, some of

which, to the best of our knowledge are original. The Hu moments that are used to match laser

range scans are easy to construct, have been well studied in the context of intensity images and

have been shown to be robust and repeatable features when applied to laser range scans.

6.3 Publications

The list of publications that were prepared and presented/published over the course of the last 4

years include:

• In [Ferreira 04a], it was shown how various researchers were converging to the use of

multiple scale methods together with histogram representation methods to store and pro-

cess features used to characterize image data. Using software developed by us albeit still

in early stages of development, good image matching resultsdemonstrated the possible

inclusion of such a scheme in robot navigation.
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• In a presentation in the same year [Ferreira 04b], preliminary results from the inclusion of

depth data in the process of extraction of interesting points in the image was also presented.

This work was not developed further in the course of this thesis and has not been presented

in this thesis.

• At some point at the end of 2004 the requisites for representing the environment in the form

of a topological graph were identified. In [Ferreira 05] a mathematical basis to allow the

integration of features obtained for perception for topological navigation using the concept

of entropy was developed. This article described the state of the work in a very preliminary

stage and represents the first first steps in arranging a common representation for all types

of features (from all sensors), which eventually culminated in the usage of a set of binary

features.

• The common framework that was found to represent features from all sensors was pub-

lished in [Ferreira 06]. This article reported on the development of a Bernoulli Mixture

model to integrate features extracted independently from two or more distinct sensors. Lo-

cal image features (SIFT) and multiple types of features from a 2D laser range scan were

all converted into Binary form and integrated into a single binary Feature Incidence Matrix

(FIM). This is the method that is described in detail in the next chapter.

• The process of application of Hidden Markov Models to the Localisation task and the

results showing the resultant improvement and increased robustness of the results have

been published in [Ferreira 07a] and in [Ferreira 07b].

6.4 Perspectives for Future Work

This work has described techniques that improve the place recognition capabilities of the system

using a method for un-biased View matching and parameters for the HMM that are appropriate

for the problem. Some modifications have been planned and arein varying stages of executions.

While these modifications are expected to improve the place recognition in certain environ-
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ments and to better adapt the HMM models to the problem of Place Recognition, they do not

significantly alter the approach that has been presented in the course of the thesis. They repre-

sent an evolution of the work presented in the earlier sections and have been ear-marked as future

work since they could not be completed within the time frame allocated for the completion of

this thesis.

6.4.1 The promise of Improved Feature detection

The Topological map, when modelled in the form of the Reference Sequence is defined in terms

of two conditional distributions. The transition probability matrix addresses the change of the

hidden state and acts as a sort of consistency check for the underlying sequence of states that

explain the sequence of observations. The emission probability matrix serves to handle the un-

certainty of the observations so that the underlying state can be identified with greater or lesser

certainty. The Viterbi algorithm uses these two distinct distributions to find the most plausible

underlying sequence of states/places.

Thus, there are two ways to improve the results of localisation. Improvements in the results

of sequence matching /alignment procedure using the Viterbi algorithm depend on the appropri-

ateness of the state transition probability matrix and a better observation probability matrix.

Among the two approaches it is known that the cost of discrepancies in the ’log-likelihood

score of a match is usually dominated by the output probability’ [Mitchell 95b]. This observation

implies that improvements in single view matching techniques would make important contribu-

tions to the sequence matching procedure.

In the case of Place recognition in outdoor environments, improved results are conditional

on the design and implementation of better features. While the currently used camera and laser

features for appearance-based place recognition provide convincing results for the indoor envi-

ronments, the same features were found to offer relatively weaker results in the case of outdoor

environments.

Future work must include the development of better featuresfor outdoor environments. These

features will exploit the relief and 3D structure of the environment through the use of robust



6.4. PERSPECTIVES FOR FUTURE WORK 143

features from 3D point clouds.

6.4.2 Further Development for the Integration of Binary Features

In future work, Communication Theory can provide some insight into the problem of the simul-

taneous handling of multiple binary features. The acquisition of a sequence of raw views can

be modelled as the communication of a sequence of bits over a noisy channel. The state of the

environmentS is coded within a ’word’,Vmap, and is communicated, via the sensors, to the lo-

calisation system. This word might get corrupted and is actually received asVobs from which the

original state must be estimated in the form ofŜ. The process has been depicted in (6.1).

S → Vmap → Vobs → Ŝ (6.1)

A solution to this problem must include the creation of a model for the individual feature

uncertainty and the use of techniques from the error code correction literature to recover the

original word.

The detection (or lack of) can be modelled in various ways depending on the characteristics

of the sensing procedure. Fig. 6.5, at left, shows a feature modelled as a ’Z’ - binary stochastic

variable (a probable model when the features are quite unique from each other as in the case

of SIFT features), while Fig. 6.5 at right, depicts the modelof the feature as a non-symmetric

binary stochastic variable (which could be used to model features that are similar or impossible

to tell apart).
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Figure 6.5: Viewing perception as a transmission of a singlebit across a noisy, non-symmetric
binary channel.

Communication theory might also help us evaluate the choice of feature combinations that

are used to represent the individual places. As described inthe earlier sections, each of the views
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is composed of multiple features. Feature combinations that are used to represent different states

of the environment should be as unique as possible. The more similar the composition of two

views is, the more difficult it is to tell these two views apart.

The theory of noisy channel coding helps us find answers to some questions such as :

a) What is the maximumM number of codewords that can be transmitted givenn bits can be

transmitted (or how many bits are necessary to transmit a setof M codewords)? This is

actually the rateR of the channel. R is defined as being equal tolog2 M

n
.

b) If errors in the transmission (and subsequent decoding) up to a maximum number of bits

are allowed, which codewords can be recovered given a particular Block code (FIM)?

Claude Elwood Shannon provided the answer to the first two questions in his seminal paper

[Shannon 48]. He showed that the maximum information that can be transmitted across a noisy

channel, its channel capacity, is equal to the mutual information rate between the input and output

of the channel. This mutual information is a property of boththe expected noise and the initial

or marginal entropy of the input to the channel.

A value that is analogous to the ’Channel Capacity’ might be developed for the sensor sys-

tem. This ’Perceptual Capacity’ will specify the maximum rate of the perception channel in the

presence of an optimal distribution of the features in the environment. In case the errors that

affect each feature are correlated, the capacity of the channel automatically reduces since the

entropy of the source itself is reduced.

The corollary of Shannon’s work would be not to use the noisy channel to communicate

beyond the channel capacity. In the analogy with our localization system, this signifies that

when sensor data is noisy, the quality of localisation and ofplace recognition might be improved

by increasing the ’Perceptual Capacity’, i.e. employing more uncorrelated features or by using

better filters to guess and correct the errors that appear in the features.
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6.4.3 The specification of Robot Motion behaviours.

There are many works in current and past robotic research that deal with discovering new strate-

gies to be applied to robot motion or alternatively the procedures that could be adopted so that

robot motion can be specified using only a topological representation. This work has not ad-

dressed this problem although the title of the thesis indicates that it was an original intention.

as it did not pretend to advance the state of art in these areas. The primary focus of this work

remained the representation of the environment using data from multiple sensors.

During the execution of this work it has become clear that a complete separation of the

mapping representation and the motion specification is not possible in the case of a complete

navigation system.

Importantly, the organisation of the map and the kind of representations that are utilised might

actually exclude certain types of motion behaviour. The motion that was possible with such a

representation was taken as a consequence of this environmental modelling scheme.

6.4.4 Using Simpler Models for Path representation

The introduction of the Lost-Robot Place in between the original places from the Reference

Sequence, allows for the enhancement of the applicability of the HMMs in many ways. One

such usefulness of the insertedLost_Places was introduced in chapter 3, where theLost_Place

is used to account for the observations that cannot be predicted and which lie between known

observations.

There are other ways of modelling the above requirement, such as using another variant of the

Markov chain that defines the transition between states in the HMM, such as the Meally Model.

In such a model the observation is made during transitions between hidden states. Such HMMs

are commonly used in speech recognition and a segment of an HMM using such a model with

Explicit duration modelling is shown in Fig. 6.6. Given the large body of experience that there

exists in using these models, their adoptions should resultin greater adaptability of the HMM

models applied to Localisation.
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Figure 6.6: HMM model that follows the Mealy Model with Explicit state duration, from
[Mitchell 95a]

6.4.5 Creating Compact and Efficient Representations

Up to this point in this document, the Reference Sequence thatwas used for localisation is the

one created by sampling the environment according to some sampling plan. It is conceivable

that in some cases improved results might be obtained by altering the Reference Sequence and

removing certain views that do not provide enough information. Better localisation could result

from the improved prior and place-transition probabilities over the fewer and more informative

places. Additionally, by identifying these distinct places a more compact Reference Sequence

could be created. Shorter, more compact Reference Sequencesare desirable in applications

involving communication between robots/persons having different capabilities and limited com-

puting power or communication bandwidth. Compact representations of the Reference Sequence

are also desired when long paths through the environment must be traversed, resulting in faster

localisation.

The problem of Localisation within a Reference Sequence is akin, to the problem of super-

vised sequential learning [Dietterich 02], albeit, in our case, for a single presentation of the train-

ing data set. In [Dietterich 02], Dietrich identifies three important issues that must be addressed

in the case of sequential machine learning namely, specification of a loss function, feature selec-

tion and computational efficiency. A schematic for a definition of Sequential Machine Learning

is shown in Fig. 6.7. Localisation within the Reference Sequence as defined in chapter 1 can

be viewed as a sequential learning problem, albeit with special characteristics where thedata

samplesare actually the views that were first introduced in chapter 2.
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Figure 6.7: [Comparative] definition of the Sequential Machine Learning Problem [Schuster 99].

Thefeaturesin the terminology applied by Dietterich [Dietterich 02] are analogous to a sub-

set ofdistinctive placesin the Reference Sequence. In order to improve the results of the localisa-

tion algorithm, distinctive places must be maintained in the topological map so that they improve

the results of localisation and represent the environment in the form of a compact Reference

Sequence.

The compact Reference Sequences no longer can be used in conventional HMM since the

frequency interval of the observations is not regular. To continue to utilize HMM-like models,

the ’duration’ or the elapsed time between observations must be utilised.

Using Second order HMMS might be a good idea where a number of ’classes’ of HMMs are

applied [Aycard 04].

At the cost of greater computational cost and model complexity, the explicit modelling of

the duration for which the system remains at a state can be included in the Viterbi algorithm. In

order to create a robust system that is not tailored to any oneparticular environment, the choice of

what is implied by distinctive place or view should be definedbased on the views in that specific

environment.

The transition probabilities of an HMM can also be expressedin terms of the ’duration’

or the average value of a measure (say time or distance) for which the system remains at a

state before changing. This approach is much more intuitivein the case of certain left-right

HMM that are used to model speech, handwriting or music. The variable of interest in these
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problems is time and often the pace at which the system changes its states is a key aspect of the

model. Various distributions have been employed to model these durations including some of the

more well-known parametric distributions such as Exponential, Gaussian and Beta distributions

[Levinson 86], [Pikrakis 06], [Kundu 98], [Chen 95].

After a comparison on literature on the various duration modelling methods, the post-processor

duration model by [Juang 85] was implemented and tested. Although the results of localisation

using this approach on the compact Reference Sequence have not improved terribly as compared

to the results reported in chapter 3, this method representsthe first steps in the localisation of

non-uniform Reference Sequences. Further research into theuse of duration-based HMMs is

required.

6.5 Closing Comments

This thesis presented a technique to index a sequence or stream of sensory data to some variable

of interest (position of the robot in this thesis). By converting all the sensory information into

binary features and then reducing the dimensionality of the’space’ occupied by these binary

features using a Bernoulli Mixture Model, a powerful index retrieval mechanism was developed

which has shown good applicability to the problem of recovering a robot’s position in indoor

environments. The ’ordering’ information that is implicitin the sequence or stream came to be

utilised by integrating multiple and sequential observations using a Hidden Markov model.

While improvements in the Localisation capability of this algorithm are expected as environment-

appropriate and reliable features are developed, a strong advantage of the combination of the

underlying techniques is that they could be applied to otherscenarios and problems.

Another original contribution was the modification of the Markov Chains used in Hidden

Markov Models to enable the use of the sequential context in which the expected observations

are specified in the navigation Mission.

Other contributions include developments that were made inthe characterisation of images

through the application of local features and of laser rangescans through the creation of original

features based on the scan contour and free-area properties.
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Fast Extraction of Local Image Features

The use of cameras on mobile robots has become widespread over the last few years. Cameras

can be viewed as high band-width sensors and images can have large redundancy. However, it

becomes ’expensive’, in terms of memory and computational costs, to store every raw image that

is associated with a place or with an object.

The sensitivity of the cameras and the effect of changes in light, changes in viewpoint and

multiple reflectance means that individual pixel values arenot easily reproduced. A pixel-wise

comparison between pair of images will work only if there areno major changes in the illumina-

tion and the viewpoint. This problem implies that images taken of the same scene, but at different

times will appear different.

For this reason, images are often compared and matched through the intermediary of ’fea-

tures’ that are extracted from the images. Feature extraction for vision-based robots varies from

local image descriptors to global image properties derivedfrom the intensity distribution over

the entire image. Local image descriptor methods seek to store a few pixels or measures derived

from these pixels whereas the latter methods calculate certain interesting properties of the image

as a whole. As implied from above, both methods seek to avoid having to store the entire image

itself.

The main goal of the thesis proposal was to develop methodologies to localize a robot within

a previously constructed Reference Sequence of Views.
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In the study of image description and image correspondence,global image features, by their

nature convey information about the entire scene in a singledescriptor. Such approaches attempt

to calculate properties (e.g. moments of some value) of interest within the image or a substantial

portion of the image. A commonly used approach is to attempt to capture the distribution of in-

tensities in the colour space using a histogram [Andreasson04]. Along with area-based methods

there are other contour based methods which seek to code the properties of contour of a regions

and use novel ways to match these properties [Iivarinen 97],[de Trazegnies Otero 04].

As such, global features represent a compact way of presenting information from scenes if

these are not expected to change significantly. Local-imagefeatures on the other hand work on

image patches and, when taken together, provide information about the scene as a whole. In the

case of images of scenes taken by a mobile robot, illumination changes, occlusion as a result of

dynamic object, scale and view point changes all suggest theuse of local image features. Only

local image features have been utilised in this work.

A.1 Local Image Features

Certain regions in an image are known to be [more] stable with viewpoint and lighting changes.

The use of local image descriptors based on these stable regions is characterized by two steps

1)the selection of points of interest and 2)their characterisation. The selection must be repeatable

(even with changes in the conditions in which the images are taken) and the characterisation must

employ properties that must, again, be tolerant to changes in the viewpoints, lighting and other

conditions.

Using combinations of heuristics and parametric methods, features that correspond to the

architectural properties of certain environments can be extracted. Such methods have used planes

[Corso 03], kerbs [Se 97], the ground plane [Se 97] and roads. Other works such as [Torralba 03]

have used the output of the application of wavelet image decomposition.

A competing and more popular approach is to create descriptors for regions of the image

which are then matched against a bag-of-feature. While this method might be blunt in the case

where there is strong prior knowledge of the nature of features that the robot will encounter, the
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features are generic and can be appropriate for applicationto the general scene correspondence

problem. In seminal work, Murase and Nayar [Murase 97] attempted to represent objects in

terms of a ’parametric Eigen-space representation’. Theirwork has influenced the use of Eigen-

spaces in topological mapping to represent places in the environment. Local-image features

based on local image gradients are an important class of vision features. Baker, in [Baker 98], at-

tempts to create a generalised descriptor for local image features and the introduction to his thesis

provides a perspective on the development of gradient basedmethods. The stability and repeata-

bility of points extracted at local Maxima (or Minima) in gradient images that have been repeat-

edly smoothed using operators, has been known for some time [Koenderink 84] [A.P.Witkin 83],

and research in the field finally culminated in the Scale-Space theory proposed by Lindeberg

[Lindeberg 94].

In certain cases and the fact that they need not convey the same amount of information,

special methods might be designed to integrate local features with global ones to increase their

distinctiveness [Lisin 05].

The uniqueness of the extracted features is ensured by building vector descriptors to rep-

resent each such feature. In work that combined the lessons of Scale-Space with the reliable

characterisation of features, Lowe [Lowe 99] describes theuse of gradient histograms taken at

various points close to some point of interest. These features were called Scale Invariant Feature

Transforms, SIFT. The work described in this thesis is basedon local image features that are

based on the SIFT features. The procedure for creation of thefeature database has been modified

to simplify the creation of features for image sequences.

A.2 Scale Invariant Feature Transforms, SIFT

Since their introduction, SIFT features have been widely applied, among others, to object recog-

nition [Pope 00] [Lowe 01], in the panoramic assembly of images [Brown 03] and in image re-

trieval [Ke 04]. Various researchers have used this descriptor in new applications and modifica-

tions on the original procedure have appeared (see WeightedGradient Orientation Histograms

[Bradley 05], Modified SIFT [Andreasson 04], PCA SIFT and Global SIFT).
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Two factors affect the efficacy of the SIFT descriptors (for that matter, of any other descrip-

tor). These are 1)the repeatability of the point extractor and 2)the robustness of the descriptor

itself to changes in the viewpoint, orientation and changesin lighting, scale, etc. Once the points

are extracted from the images using a good corner extractor (see [Schmid 98] for an evaluation of

different extractors), SIFT keys are employed to create a long and robust descriptor of the local

point.

While the strength of the SIFT features stems from the long descriptors, this same prop-

erty presents new challenges since each image easily throwsup hundreds of good features and

calculating the distance between the vectors of each of these features with the vectors of the fea-

tures obtained from any other image is computationally verydemanding. For this reason Lowe

[Lowe 04], suggested the utilisation of a data structure, the KDTree, whose principal advantage

lies in its ability to quickly retrieve points represented in very large dimensions. KDTrees can

be constructed quickly (see [Kennel 04] for an fast open-source implementation) and make the

matching of SIFT features a feasible task.

Figure A.1: A KD-Tree created from a set of 3-Dimensional point. Image appears at
http://en.wikipedia.org/wiki/Kd-tree
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A.3 Modifications to improve SIFT in Image Sequences

SIFT features have been used to characterize images in this work. In experiments presented

in this thesis, typically between fifty and two hundred features are extracted per image from

sequences containing up to three hundred and fifty VGA-size images.

The bag-of-features against which an image is compared is extracted by presenting a se-

quence of images sequentially to the feature extractor. If the sequence of images is presented

without previous selection it results in the creation of many features with similar SIFT keys

which, in certain situations can prevent us from correctly building a KDTree. Since the KDTree

must be built all at once (no accepted method exists for incrementally adding data to a KDTree)

the following simple procedure was adopted to aid the construction of the KDTree. This proce-

dure requires no major modification of the original procedure for the creation of a KDTree and

is described in the next subsection.

A sequence of sixty seven images of a laboratory wall was taken while the camera was dis-

placed along a trajectory parallel to the wall, see Figs 2.5athrough 2.5d. As expected, there are

features that simultaneously appear over a large number of views. The resulting Feature Inci-

dence matrix in Fig. 2.5e contains approximately three thousand points of which around one

thousand five hundred are unique and are represented in the KDTree. Note that the arrangement

of the feature across the diagonals of this and other FIMs is simply an artifact that appears be-

cause of the way the features are ordered (the features are added all at once followed by the

elimination of repeated features).

KDTrees are extremely effective structures that aid the recovery of features that are char-

acterized as vectors [Bentley 75]. In the context of their usein place recognition they have a

serious limitation in that they must be constructed all at once. Separate KDTrees to recover (and

match) HU features extracted from the laser range scan and SIFT features from the images were

employed. To enable the creation of the KDTree for sequencesof laser ranges scans and for

sequence of images the original procedure has been modified by adding a ’noise-addition’ step

before creating the tree and a ’Querying’ step which removessearches for similar vectors after

the creation of the tree and marks copies of vectors them for deletion.
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The novel procedure outlined in Algorithm 3 allows the trouble free construction of the tree

and does not alter the way in which the SIFT features are retrieved and used. The added noise

was small (less than0.5%) and no significant degradation in the performance of the tree at the

time of retrieval of the points was verified.

Algorithm 3 Create KDTree

N = total number of points to insert
n = number of points already inserted
F = number of points to insert at a time (per image possibly)

Require: N ≥ 2
while (N − n > 0) do

Add tiny amount (less than0.5%) of random noise toF points
Query tree forF points to be inserted (without noise)
Mark matched points in total ofn + F points for removal
Add marked points as aliases of points still in tree.
Destroy KDTree
Create new KDTree only with unique points

end while
Destroy KDTree
Create new KDTree only with unique points and without noise

A.4 Other Properties of the SIFT implementation

To account for the loss in the resolution as larger filters areapplied to the images during the

corner extraction, the original image is usually decimatedrepeatedly to reduce the computational

requirements as the pixel-redundancy increases. When imagecorrespondence has been applied

to object recognition, the decimations, which result in theimage pyramids, have been known to

still yield useful results when performed many times (deep pyramids). SIFT keys are extracted

for the whole image and for an image with a resolution reducedby half. This reduced number of

decimations results in a capability to process images at a higher frequency without a discernible

reduction in performance.

One of the most costliest steps in the creation of the SIFT descriptors is the identification of

maxima/minima in the scale-space. Points that satisfy sucha maxima/minima criteria, must be
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local maxima-minima and also be [scale-adjusted] maxima-minima along the dimension of scale

dimension. In order to optimise the selection of local maxima-minima at the same scale, opti-

mized functions to detect corners that available in the computer vision library OpenCV [Intel 7],

were employed.
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Appendix B

Extraction of 2D Laser Features

The reduction in the price of 2-D laser ranging devices, their superior accuracy, longer range

and high measurement rates vis a vis other range finding devices, has resulted in their ubiquitous

presence on mobile robots. In their contribution to varioustasks ranging from mapping to path

planning, they have all but replaced ultrasound sensors. Ultrasound range sensors have retained

their place on robot platforms for the purpose of obstacle detection.

Range based methods have been frequently used to index place in indoor environments, first

with ultra-sound sensors and later with laser range scanners. Methods that depend on range

sensors have used maps with landmark and free-space boundary depictions to represent places.

Range data is matched with one or more places in the map to perform place recognition.

In many applications, range finders are used either as the principal sensor or in conjunction

either with vision, ultrasound, odometry or a combination thereof. From an application point of

view, Laser range sensor data might be employed for characterisation the open-area at a particular

place, for detection of the presence of absence of some (any)object at a particular position, for an

estimation of motion by calculation of the 2D transformation that explains the difference between

two consecutive scans. In this chapter the laser scan features used in this work are compared with

use of laser range sensors in related literature.

Feature extraction from scan data attempts to segment points that reflect properties, of a

portion of the scan or the scan as a whole, that are [relatively] invariant to changes in the point

157
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at which the scan is taken, the presence of view-obstructingobjects and changes that occur in

dynamic, real-world environments. Segmentation of the data into primitives or clusters based on

their proximity or some parameters is, by far, the most commonly used approach to launch this

process.

Multiple types of features from the laser range scan have been employed, namely 1)wall-like

(line) features, 2)scan region properties and 3)scan contour properties in the form of a vector that

characterises 2D discontinuities in the plane of the scan using Hu moments [Gonzalez 02].

B.1 Extraction of Wall-like features

Long lines from the points in the laser scan have been extracted using a two-stage method. The

extraction of short line segments (containing between 2-6 points) was performed using the incre-

mental method [Nguyen 05] followed by fusion into longer lines (segments of at least 2 meters).

Binary features are created by classifying the number of extracted lines and their distance from

the Laser range scanner.

In a first stage the complete laser range scan is modelled in terms of small line segments

(of not more than say5 points). These segments are constructed using the iterative-end-point-fit

algorithm, see [Nguyen 05] for a comparison of results with other methods, that seeks to ’grow’

a line by adding the next point (its theta neighbour in radialcoordinates) and checking whether

this addition is appropriate. If the new point satisfies the equation of the exiting line the line

segment is extended, else a new line is initiated. To allow the lines to better describe the scan

contour, the growth of the lines has been arrested at this stage.

In the second stage, the short line segments previously extracted are fused together into longer

line segments. Fusion takes place as long as the line’s innerpoints are not separated by more

than a certain threshold distance and as long as the slopes ofthe lines are similar. As iterative

procedure compares every pair of lines and checks for the possibility of fusing them. Once more,

to create long line segments that best reflect the original laser scan, each line is allowed to fuse

with at most one other in each iteration and the smaller linesare given preference over the bigger

ones for fusion.
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Algorithm 4 Create Small Segments using the Incremental End Point Algorithm

N = total number of un segmented points in laser scan
d = maximum separation distance between points (defined by distance between inner points)
D = maximum allowable angle between lines.
#P = maximum number of points satisfying equation of a line segment

Require: N ≥ 1
while (N > 0) do

check if next point Add tiny amount (less than0.5%) of random noise toF points
if next point lies at distance greater thand then

create new line
Current point is first point in new line

end if
if difference between angle between next point and last point in line and the line is greater
thanD then

create new line
Current point is first point in new line

end if
if number of points in line greater than#P then

create new line
Current point plus one is first point in new line

end if
Include point in existing line, re-calculate line parameters

end while
Destroy KDTree
Create new KDTree only with unique points and without noise

Figure B.1: Two failed attempts at fusing pair of lines are shown. The middle segment cannot
be paired with the segment at right because the slopes are quite different (lines within the grey
region are eligible for fusion). The middle segment cannot be paired with the segment at left
because the two are separated by a large distance.
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Table B.1: Categorisation of long lines into binary features

Feature Number Description
0 >= 1 lines at 4+ meters
1 >= 2 lines at 4+ meters
2 >= 3 lines at 4+ meters
3 >= 1 lines at 2+ & 4- meters
4 >= 2 lines at 2+ & 4- meters
5 >= 3 lines at 2+ & 4- meters
6 >= 1 lines at 2- meters
7 >= 2 lines at 2- meters
8 >= 3 lines at 2- meters

Walls have been characterized in the image using long (of length greater that 2m) line seg-

ments. Various schemes exist to segment laser range scan data into line segments. Laser range

scans already have some structure in the points within the scan - They are best described using

radial coordinates. This structure has resulted in certainschemes that are more applicable to

such data than schemes that seek to detect lines in say noisy images. These schemes vary on the

criteria of what makes one line better than another line thatcompetes for a point on the first line.

Such criteria include but are not necessarily limited by

a) Average Point-to-Line distance

b) Distance between segments

c) Minimum number of Segments

d) Set of segments with a Minimum/maximum total length of Segment

Wall-like segments are important because of their robustness to changes in the point of view.

They are also instrumental in building up other types of features as will be shown in a later

section.

The (long)line segments themselves are then converted intobinary features utilising a classi-

fication scheme describes in Table B.1.
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Figure B.2: Two types of doors that are detected in data from a LRF using the method developed
in [Xiang 04].

(a) Simulated environment with one ’navigable’
passage on the left and another ’blocked’ pas-
sage straight ahead.

(b) Plan view of extracted segments represent-
ing walls (dark, continuous lines) and doors
(lighter, broken lines).

Figure B.3: An example of detection of passable and non-passable doors in a typical laboratory
scene.

B.2 Extraction of Doors or Door-like Features

These features were chosen primarily because of the availability of previously developed work

that detected doors in laser range scans [Xiang 04]. Although (permanently open) doors are not

very common in the environments in which the experiments were conducted in, the algorithm

has a low probability of false detection and the presence of detected doors becomes important to

characterise certain places.

In that work the authors apply empirical rules to extract open doors based on the position of

adjacent walls and the geometric layout of these walls and the opening, Fig. B.2.

To obtain binary features the detected features have been converted by classifying them based



162 APPENDIX B. EXTRACTION OF 2D LASER FEATURES

Table B.2: Classification of Open doors into binary features

Feature Number Description
0 >= 1 doors at 4+ meters
1 >= 2 doors at 4+ meters
2 >= 1 doors at 2+ & 4- meters
3 >= 2 doors at 2+ & 4- meters
4 >= 2 doors at 2- meters
5 >= 2 doors at 2- meters

Table B.3: Classification Scan Boundary Features into binary features.

Feature Num Description
1 area >= 2 m2

2 area >= 4 m2

3 area >= 8 m2

4 MaxDim >= 4 m
5 MaxDim >= 8 m
6 MaxDim >= 16 m
7 MaxDim/MinDim >= 1
8 MaxDim/MinDim >= 4
9 MaxDim/MinDim >= 8

on the distance of the sensor to the center of the door or passage according to the Table B.2. A

door is said to be detected if the probability of its existence is superior to75%.

The results of the application of the door detection are shown in Fig. B.3.

B.3 Scan Boundary Features

Features describing the regional properties of the laser scan have been applied. The values of

the area covered by the scan and the lengths of the principal dimensions are then classified as in

Table B.3.

One type of feature is created with the aim of characterizingthe free or open space covered

by the laser range scan. The free area is classified using the thresholds in Table B.3 and the

appropriate binary features are created.

Another type of feature provides a basic measure of the distribution of the free-space mea-
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sured by the range scan. The layout of this free space is measured in terms of the longest and

shortest dimension,MaxDim andMinDim respectively. These are then classified using the

thresholds shown in rows Table B.3.

B.4 Hu Moment Features

Hu moments [Hu 62] are commonly employed in the matching of images and their use is based

on the observation that combinations of the centralised moments of an image are (quite) invariant

to rotation, scale and reflection [Gonzalez 02]. In this work, Hu image moments are used in a

similar way to SIFT features, by collecting the 7-element features into a KDTree and matching

the features extracted from new images (see next subsection).

The laser range scan for four scans from a sequence of 118 scans is shown in Fig. 2.4. The

Feature Incidence Matrix for the sequence is also shown.
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Appendix C

Description of a Robot Mission

The robot is endowed with capabilities of moving in the environment according to certain laws

that depend of the immediate environment as sensed by its complement of sensors.

The type of behaviours that can be implemented depend on the configuration of the robot,

the type of sensors that the robot possesses and the algorithms that are available. Thus, a robot

with steering capability and a range finder should be able to perform wall following or corridor

following as suggested in Fig. C.1a.. The simplest behaviourthat the robot can perform is way

point following without closing the loop Fig. C.1b.

Upon reaching a ’Place’ the current motion behavior is stopped and a new behavior must be

initiated. The Places in the environment are defined as locations at which the behavior of the

robot must change or be modified so that the robot can take a newpath or due to restrictions

imposed by the sensory system of the robot.

(a) Illustration of Wall-Following behaviour. (b) Way-point-Following behaviour.

Figure C.1: The two behaviours that have been used in the course of this work.
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C.1 The Set of Robot Motion behaviors

The Way-Point-Generation module of the Tactical layer, described in section 5.2.2, provides a

set of motion behaviors that propel the robot along. These consist of algorithms that are closely

coupled with raw sensor data and properties of the local geometric map to discover trajectories

with desirable properties through hill-climbing behaviorand maintenance of these trajectories.

The topological map that is generated during the Environment-Familiarization phase provides

the topological and local metric information together withmotion information that allow the

robot to move from one node to another using a hill-climbing behavior on the function of sensor

information.

From the set of possible behaviors stated above, the type of Place and the layout of the

environment do not allow the execution of certain behaviors. The aim of the Robot Mission

Control module is to recover the same behaviours used to get tothe next place in the Reference

Sequence during the final Navigation stage. To generate thisReference Sequence, the Views are

created as the robot is led around the environment.

The motion behaviors that the robot is equipped to implementare

a) To move to some way point according to some control law (with or without feedback):

The Move-Ahead behavior utilizes this trajectory generating method to negotiate a path in

the environment.

b) To turn about itself90°, 180° or 270°: The Turn-About behavior makes the robot turn

about itself while keeping it at the same position. Such a behavior is possible wherever the

local metric map allows it.

c) To move parallel to a wall.

d) To cross an open door or narrow opening: This behaviour is as abstraction of other be-

haviours in which the robot identifies the neared doorway, positions itself so as to be able

to safely cross the doorway and finally negotiates the narrowcrossing.

In certain situations specifying a particular type of abstracted motion behavior might be more
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intuitive and useful. For example while sending the robot through an unexplored part of the

environment such as getting it to cross a door that was not previously crossed. Therefore a

second type of symbol might be included in the string, attached to the symbol of the Key point,

specifying the motion behavior of the robot. These Motion behaviors are always associated with

the Key-points that they are attached to. The complete set ofof motion behaviours is shown

below.

{M ∈MA,MT,MC}







































MA specifies a trajectory set-point following behavior

MT specifies a rotation of the robot about itself

MW specifies wall-following behaviour

MC specifies crossing of a door

(C.1)

C.2 Mission Specification using Strings

Mission string: is a sequence of ImportantViewstaken along a path, each of which is associ-

ated with an action. The Mission string is created as a ’string’ of observations that the robot is

expected to encounter as the Mission progresses.

In general, a human operator who guides a robot could be influenced by 1)the presence of

sensory cues and 2)from clues about the affordability at theparticular place.

Examples of the former include navigation in a corridor-like environment indoor, following

a street or highway to a particular destination. Examples ofthe latter might include behaviours

at Dead-ends, exiting open spaces and halls, crossing a doorinto another space etc. The key

difference between the two types is that it would be difficultto describe such locations using

a single image and hence some semantic property is attached to the Key-point. In this work

the influence of environment affordability to control the execution of a Mission has not been

attempted.

The labels that a human operator can assign to a place in an environment that are offered for

use in Mission specification by the robot will belong to the set specified below.
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{L ∈ LD,LI0 . . . LIN , LO0 . . . LOM}







































LD represents a door in the environment

LIj represents an Imagej in the environment

LOk represents an Objectk in the environment

LAt represents a locationt with an abstract property

(C.2)

From the definition, visual cues can be both ambiguous as in the case of doors and robots

might not necessarily possess the capability to identify these same cues and the affordability that

the environment presents at any place. The robot will , therefore, maintain its own representation

of these places.

A simple mission could be specified that could set the robot off from a starting point in a

corridor toward the end of the corridor. The map of the environment is shown in the image and

the possible mission that gets the robot to the end of the corridor could be written as in Fig. C.2.

Figure C.2: A plan view of a simple environment. The Mission string could be written thus
Mission1 = [LD_LA3]

Thus, if the robot must cross the second door in the corridor,a door it has not crossed before,

a mission could be written asMission2 = [LD_LDMC], see Fig. C.3. The robot is expected

to go past the first door and, when it reaches the second door, to go through the door.

Each of the Features that the robot can utilize in the construction of the Mission string can be

identified using one or more of the robot sensors.

Two types of Landmarks are utilized, regular architecturalfeatures that represent landmarks

such as doors that are plentiful but impossible to discriminate between, and unambiguous or

unique Landmarks such an interesting scene or object that are (sufficiently) unique over the en-



C.2. MISSION SPECIFICATION USING STRINGS 169

Figure C.3: A plan view of a simple environment. The to robot tocontinue past the first door
and enter the second door.

vironment of operation of the robot. From a point of view of constructing a mission, choosing

certain types of key-points over others should not be performed by the human operator, but the

choice of key-points chosen might greatly affect the capability of the robot to localize itself in

the topological map and deal with modified environments, occlusion of landmarks and varying

light conditions. In the case of ambiguous landmarks the robot might not always represent envi-

ronment correctly, resulting in an ’aliasing’ error. Thus some landmarks might be missed while

other might be detected. The consistency of a mission stringmust be maintained inspite of these

difficulties. A solution to this problem has been attempted through the establishment of a one-

to-one correspondence between the features in the mission string and the topological map at the

time of mission generation. Also, ordering of the features that are presented for construction of

the Mission string reduces the aliasing error.

MA

MC

MT

Figure C.4: Motions that can be performed at a Place defined by adoor.

During the Environment-Familiarization phase, doors along the environment have been iso-

lated using one or more sensors. The definition of doors includes open, closed and partially open

doors. Thus an open door can be matched to a closed or a partially open door. The robot, however

can obviously cross only open doors and the Way-Point Generation module arrests any attempt to
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cross closed or partially closed doors. Typically, during the Environment-Familiarization phase,

the robot will approach the door and either go past or cross it. Unless the robot somehow returns

to the same door during the Environment-Familiarization phase the motion behavior adopted the

first time will the one used during the execution of the mission. If a Motion behavior is included

in the Mission string for the door then it will be performed instead. The Motion behaviors that

can be associated with Key-points of this type are{MN,MA,MT,MC}.

One of the capabilities of the robot is to extract local features from images and store this

information for subsequent retrieval. Through the extraction and matching of local points of

interest in an image, images are retrieved from a previouslycreated database of images. The

intensity image is also stored so as to allow the use of the position from which that scene was

observed in the construction of the Mission string. Interesting scenes can be recognized using a

camera or a set of stereo cameras. The Motion behaviors that can be associated with Key-points

of this type are{MN,MA,MT}.

MA

MT

3D Object

Distinctive

Scene

Figure C.5: Motions that can be performed upon “seeing” a distinctive scene or upon identifying
a 3D object.
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