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palavras-chave

resumo

Navegacao autbnoma, localizagéo, integracéo multi-sensorial, dados binarios,
cadeias de Markov, alinhamento de sequéncias.

O principio por detras da proposta desta tese é a navegacgdo de ambientes
utilizando uma sequéncia de instru¢cdes condicionadas nas observacdes feitas
pelo robé. Esta sequéncia € denominada como uma 'missao de navegacao'. A
interacgdo com um robd através de missdes permitird uma interface mais
eficaz com humanos e a navegacédo de ambientes de maior escala e duma
forma mais simplificada. No entanto, esta abordagem abre problemas novos
no que diz respeito a forma como os dados sensoriais devem ser
representados e utilizados. Neste trabalho representacdes binarias foram
introduzidas para facilitar a integracdo dos dados multi-sensoriais, a
dimensionalidade da qual foi reduzida através da utilizagdo de Misturas de
Distribui¢es de tipo Bernoulli. Foi também aplicada a técnica de cadeias de
Markov ocultas (Hidden Markov Models), que contou com o desenvolvimento e
a utilizagdo dum modelo de cadeia de Markov original, esta que consegue
explorar a informacédo contextual da sequéncia da missdo. Uma aplicacdo que
surgiu da aplicagdo do método de localizagdo foi a criagédo de representacfes
topologicas do ambiente sem ter que previamente recorrer & criagdo de mapas
geomeétricos. Outras contribuigBes incluem a aplicacdo de métodos para a
extraccao de propriedades locais em imagens e o desenvolvimento de
propriedades extraidas a partir de varrimentos dum medidor de distancia laser.
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Autonomous navigation, localization, multi-sensorial integration, binary
features, Markov chains, hidden Markov models, sequence matching.

This thesis evaluates the requisites for the specification of mobile robot
'‘Missions' for navigation within environments that are typically used by human
beings. The principal idea behind the proposal of this thesis was to allow
localization and navigation by providing a sequence of instructions, the
execution of each instruction being conditional on the expected sensor data.
This approach to navigation is expected to lead to new applications which will
include the autonomous navigation of environments of very large scale. It is
also expected to lead to a more intuitive interaction between mobile robots and
humans. However, the concept of the navigation Mission opens up new
problems namely in the way in which the sequence of instructions and the
expected observations are to be represented.

To solve this problem, binary features were used to integrate observations from
multiple sensors, the dimensionality of which was reduced by modelling the
binary data as a Finite Mixture Model comprised of Bernoulli distributions.
Another original contribution was the modification of the Markov Chains used in
Hidden Markov Models to enable the use of the sequential context in which the
expected observations are specified in the navigation Mission. The localization
method that was developed enabled the direct creation of a topological
representation of an environment without recourse to an intermediate
geometric map. Other contributions include developments that were made in
the characterisation of images through the application of local features and of
laser range scans through the creation of original features based on the scan
contour and free-area properties.
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Chapter 1

Introduction

Over the last two decades there has been enormous progthsdgield of robot navigation, with
techniques being borrowed from fields as diverse as biokiggal processing and data-mining,
to name a few, to solve the problems of Map-building and rédzlisation. With improvements
in the computational power that is available on modern PCgeghactions in the cost and in the
size of components, the past few years have seen an acwgldarathe attempts to apply the
lessons learned within University research laboratowesotve real world problems involving
autonomous vehicles. Such attempts involve assemblingtaohtechnologies to create complex
albeit reliable systems. This endeavour is expected tdrammbver the foreseeable future with
an ever greater emphasis on the simplification of the madhieeface with humans and with
other machines.

Autonomous Robot Navigation is an ongoing and still a diftigubblem to solve. Although
advances in the science of localization and mapping accoiegdy great improvements in
computing hardware have yielded satisfactory resultsrfallsto medium indoor environments,
substantial challenges remain.

According to [Filliat 03] basic map-based navigation degsean three processes

* Map-learning: the process of memorizing the data acquired by the robabhgaxplo-

ration in a suitable representation.

* Localisation: the process of deriving the current position of the robahimithe map.

1



2 CHAPTER 1. INTRODUCTION

» Path planning: the process of choosing a course of action to reach a guah ge current
position. The definition of ’path planning’ varies with thene horizon and the nature of

the motion or action that must be planned for.

Amongst the authoritative reviews of the process of creatibmaps, Sebastian Thrun’'s
[Thrun 02a] 'Robotic Mapping: A Survey’ counts as a still vaéind relevant introduction. As
Thrun mentions, most of the successful state of the art ndstimolLocalisation and Mapping are
probabilistic in nature, albeit some methods are less ohart others in the representation of the
uncertainties that affect sensing and robot control. Inralar vein Fox et al. [Fox 03], attempt
to classify the well known approaches in mobile robot nawigefocusing on the differences in
the models that are used to represent the environment anubsitéon of the robot. As a result
of the legacy of ultrasound range sensors, many of the maaessaful maps still are actually
probabilistic representations of free-space boundaries.

This thesis applies a selection of techniques that are Wweddrom other disciplines to ad-
dress the problems facing robot localization. These teglas are meant to aid mobile robots in
the navigation of environments that are habitually freqeémy human beings.

Localisation methods place the robot at that place (or aentfzain one place) in the envi-
ronment which best explains its current sensor data. Theelod the Localisation method is
usually a function of the type of map that is used.

We have addressed a particular type of localisation probpersitioning the robot somewhere
along a known path. The information that the robot is giveoulits environment, the map, is
given to it in sequential form, corresponding to the thirtgs it will sense if it moves down the
correct path.

By keeping the planning and the execution of robot motion déuhe purview of the work
described in this thesis, focus has been retained on theared a representation of the envi-
ronment and on the localisation of the robot within this esgntation.

Our idea for robot localisation and the outline of the prambsolution are described in the
next section. This description of the problem will be follavby a section that attempts to

provide another way of looking at maps that have been destiibthe literature. This review



1.1. PROBLEM DESCRIPTION 3

focuses on maps from the perspective of reapnts Section 1.3 will provide a backdrop for a
more detailed description of the problem that this thestheskes. The section 1.4 introduces
the main ideas that will be tackled in the remainder of theudoent and presents a brief layout

of the thesis document.

1.1 Problem Description

Imagine a situation in which our friend Juliana is journeyiby car, to a meeting at a house in
the country. Juliana stops at a petrol station to ask foctdors. The clerk at the petrol station
provides Juliana with a sequence of descriptions of theemment that she will encounter as she
progresses from a known landmark, say, the petrol stationet final goal, as in Fig. 1.1. The
clerk also provides Juliana with a sequence of instructibasJuliana must execute, instructions
that are concomitant on the things that she will see as stessitlly makes her way to her goal,
the house.

The clerk tells Juliana that a little down the road, aftersoas the petrol station, she will
come across a road junction. The road junction, is like mhayduliana might have previously
come across. Our guide does tell her that this intersecsi@pécial because a bridge will be
visible from it and because there will be some conspicuceesstthat will be visible to the her
right-hand side. Juliana is instructed to turn right at phiection and drive a few hundred meters
till she arrives at her destination, at the house.

This sequential way of providing an agent with the expectegbovations against which the
agent can localize itself and perform the required actismasssociated with the execution of a
definite mission or program. It does not require that theasgntation of the complete environ-
ment be provided at once and the actions that must be perfoaitreach step are dependent on
the observations.

Applications for such a way of representing the environmeotild include, for example,
interfaces of social robots that interact with humans, ivéeg and relaying environment maps
in a way that is more intuitive and efficacious to the completf a mission. If Juliana came to

be substituted with a computer that guides and runs the leghipetrol station clerk (or a virtual
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..after passing a petrol station...

...you will reach an intersection, where...
1. You should see a bridge ahead
2. You should see trees on your right

Turn right at the intersection

You will arrive at the house

Figure 1.1: A sequential conveying of expected observatmight be sufficient to successfully
navigate along the Path. This is similar to the way instorngiare given to people to allow them
to complete a task or mission, in this case, arrive at thednous

clerk as the case may be) might still be able to provide a se@lielescription of a path and the
instructions that are required to complete the mission.

Guiding a robot by providing only a sequence of expectedmetiata opens a whole new
set of possible applications that could involve a more tiveinteraction with humans. Such a
concept, however, opens up new problems, namely in theiqonesdthow the sequence is to be
represented and how data association is to take place.

This thesis seeks to contribute to the discussion of howsbodloit the sequential descrip-

tion of a environment to effectively perform localisation.

1.2 Taxonomy of Maps used for Robot Navigation

The map of the London Underground, seen in Fig. 1.2, is onbehiost recognizable maps
around. This map is instantly associated with the Metr¢g@olrail road and it has been adopted
as a template by urban rail transport planners the world. oiee purpose of such a map is to
help travellers plan their journeys. The map is remarkabitdHe ease with which passengers
can identify stations lying on the same line, plan transfersther lines and evaluate the cost of

the complete trip.
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MAYOR OF LONDON

Figure 1.2: The ’official’ map of the London Underground.

In the Fig. 1.2, along each line, the map indicates the narmié®stations and the order of
appearance of the stations. At most, the map maintains tdpogrons of the distances between
stations lying on the same line. It has information aboutlibe and train services that users
can access upon exiting a station. This map does not seekuoadely represent the distances
between stations and the overall layout of the stationseipect to each other. Thigpological
map of the underground does not reveal how far, geographieastation on one line is from
any other station on the same or on a different line. Alsonthg provides information only on
events occurring at certain finite number of places, theostsit Information about places lying

between stations is non-existent.

There are applications for which this map is not the most gmpaite representation of the
tube network. For example, to a first time visitor to Londdrg Fig. 1.2 might not be sufficiently
informative to decide whether it is worth just walking beemea pair of stations, rather than wait
for the next train that is delayed. The same map might, likeeywnot be an appropriate map for

maintenance and emergency services.
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-

Figure 1.4: The actual geographical map of the London Undergl with Surface features
included.
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For these users, a geographical map of the tube, like thermvensin Fig. 1.3, would be far
more helpful. Such anetricmap lays out the stations and the lines according to thegrggd-
ical coordinates. This a map allows comparisons to be matieeadistance between every pair
of stations and of points lying on the lines, in between thé@ts. Additional information, such
as ground-level features can be added to this new geogedphap can also be represented in
the same coordinate system, as depicted in Fig. 1.4.

The geographically accurate maps seen in Figs. 1.3 anddutimlarge regions that are not
covered by the underground network (and hence are not usef@mmuters). The additional
information has also resulted in lines that are difficultatidw, visually, and the accompanying
text is sometimes small or uncomfortably positioned.

The additional information provided by the geometric or meetap improves the usability
of the map by non-passengers. However, it is not the mostuluseip for commuters who
simply want to execute a journey from station 'A’ to statid@i Within the London Underground
system. This example is an demonstration of a situationvivg localisation where sequential,

topological representation of the environment is moreulgbfin precise metric positioning.

1.2.1 ’'Maps represent sensory and motion events...’

From the point of view of the theory of probability, maps regent events that can occur when a
robot interacts with the environment. This interactioni¢gfly includes thanotionof the robot
and thesensingthat can take place at any position. In other words, a map & afdeatures,
from a sample space of sensor eveantsl a set of positions which the robot can occ@sample
space of positionBrief definitions of Sets, Sample Spaces and Events arededlbelow.

Set A set, A, is an aggregate or collection of objects. The members of¢hd are called
the elements off, or € A and, ifz is not an element ofl, z ¢ A...’ [Hines 90]

Experiments and Sample SpacesSensing the environment is the execution of an experi-
ment whose outcome cannot be predicted with certaintygains denoted as a random exper-
iment. Despite the fact that the outcomes cannot be prebiciid certainty, it is still possible

to identify the set of possible outcomes, known as3kasory Sample Spackthe experiment.
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Depending on the type of outcomes, Sample Spaces can b#iethas discrete and continuous.
Robot motion can also be viewed as another experiment whareinutcome of a particular

robot motion cannot be predicted with certainty.

Events: An event is the outcome of an experiment. Static maps coetants that can be
sensed by the complement of sensors that the robot poss8sssery events can be simple, such
as detecting whether a particular region in the environrniseineée or occupied, or complex, e.g.
the detection of a particular 2D pattern from observed deatis acquired at multiple positions.

Motion events are very summarily addressed in the courd@tibcument.

Over the sections 1.2.2 through 1.2.4, three types of emviemt representations are re-
viewed with a view to scrutinize the differences that existhe level of the representation of
sensed events. In this review, relatively little attenti@s been given to methods that are used
to create the maps and to the events that populate the mam discussion along these lines

[Thrun 02a] provides an useful comparison.

An important point of discussion is the idea of Robot-cerderersus World-centered repre-
sentations of the environment. At the time of building mapthe environment most methods
transform what the robot has sensed (which, by definitiothesobot-centered representation)
into a world-centered representations, using the estiofdkes position of the robot in the world-
centered representation. Range sensors, for example) eetample of distances to the nearest
obstacles along some finite number of directions, thus metgrrobot-centered representations

of the robot’s neighbourhood.

Events on a geometric or topological map are usually ters@agetimes interchangeably, as
landmarks, objects or features. These landmarks and é&satwe sensory events the robot can
identify, segment and recognize. The selection of the larlsor features is a very relevant
topic while discussing maps and a wide range of featuresarthiarks have been used within
such maps. In robot platforms equipped with cameras locagerfeatures such as edges, cor-
ners, have been used. Topological maps have also includadchptiic groups of 2D and 3D
point clouds produced by range finders and stereo camerasevEmts might be all inserted into

the same space of events or in different spaces.
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1.2.2 Geometric Maps

World-centered or geo-referenced representations leathfs such as the geometrical map of
the Underground shown in Fig. 1.4 where all the featuresraeried in the same coordinate
system. Geometric maps allow the calculation of the dig@hat separates any two features
that are included in the map. When used by robots equippedraiiille scanning sensors, geo-
metric maps frequently include 'distance’ events: i.e.fdaures that are represented must have
definite coordinates and the robot must posses sensorathateasure the distance to the source
coordinates of these features. In fact, as the first robots wguipped mainly with sonar and

laser range sensors, geometric maps were used early os Hlfe

Since geometric maps are, by their very nature, world-cedtelistributions, the robot-
centered data must be translated and rotated appropriatelger to be incorporated into the
world-centered representation. This incorporation pdace is usually performed by creating
a physical model of the behaviour of the sensor in the enmient and by making convenient

assumptions about how to associate the different measateme

In order to account for sensor noise and to allow an easy apifahe map when new data
becomes available, there occurred a shift towards dispeptesentations, to the so-called occu-
pancy maps or evidence grids. Given the nature of range iemsose, the limited computing
and memory available and the need to map ever larger indemespthe maps started out as a
deterministic 2-D representations of the extents of thesgmpen space. These were quickly
improved to incorporate the uncertainty in sensor readamgsthe resultant inconsistencies that

are bound to occur when the robot passes through the sarehstfenvironment multiple times.

Representing only the free-space boundaries in a geomedipcoma single type of feature
within a map presents both advantages and drawbacks. Tlamtades are the lower level of
complexity required to register and incorporate the dadenfa single sensor. This is an im-
portant advantage since the sensor models may be veryetiiffand since the data from each
sensor-centered representation must later be incorplaratea common map. The drawbacks of
such maps are that the reduced variety of local regions im#qes results in a poor capability to

determine how to register the sensor-centered data gdtheaay instant with the map. This re-
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sults in an increase in situations that suffer from the Wwetbwn problem of aliasing and from the
general difficulty of data-association between the sensatered measurements and the world-
centered representations. Additionally, in an effort tdkenthne localisation of the robot tractable,
non-linear motion equations are frequently linearisedlteg in a gradual accumulation of an
unbounded positioning error.

The Expectation Maximisation (EM) technique and otherenoental mapping techniques
have been applied to reduce the severity of these problemghdf evolution of the method
might improve on the techniques required to perform regigmn. Other methods might also add
to the capability of adding new features to the map and to #pacity to create, maintain and
use larger maps effectively.

Geometric Maps enforce a consistency on the distances eetexery pair of places by
defining a single coordinate system. If a sensory event meisepresented in the geometric
map, it must first be possible to represent it within the comt system of the map. This step
ensures that the joint probability distribution of the eganill be valid and that putting together
sensed events from different sensors will result in coestgirobability distributions. Therefore,
data fusion requires the registration of the various sexisto the same single coordinate system

within which all the features will be represented.

1.2.3 Topological Maps

Topological maps, on the other hamgked nothave a consistent coordinate system in which all
the map sensory events are represented. Topological ntapthods might use information
about free-space boundaries or obstacle locations andria sases local metric maps might be
created and used in order to communicate results or inteséictoperators, e.g. [Silver 04] or
to improve the place-recognition capability of the roboheTatter approach allows the use of
place-recognition capabilities developed within the eghbf geometric maps, to create compact
graph representations of the overall environment, apatepfor the creation of maps for larger
environment [Thrun 98]. While geometric mapping is still ptar, some researchers increas-

ingly feel the need to adopt mapping techniques for what alled Large-scale environments.
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Large-scale environments are defined as environmentsahabtbe observed all at once, using
the sensors that the robot is equipped with [Savelli 05]. thisrthe drawback attributed above
to geometric map-building methods must be addressed.

One such popular approach is to use a metric map createdrasigg sensors and reduce it to
a one-dimensional representation using a Generalisechvoagram. Such a method, while
not having to store the range measurements within the tgmalbmap, results in the storage of
a 'high-level’ feature which can be easily sensed from theyeascan sensor data [Choset 01],
[Silver 04].

Increasingly, alternative methods have been developedetie Topological maps for nav-
igation and Localisation. An important class of such methark termed as appearance-based
or view-based methods. In [Ulrich 00], Ulrich and Nourbakhisistograms are used as features
to mark places in the environment. A distance metric basethedeffrey divergence between
histograms is utilized as a metric and a set of adjacency Mepsitilised to account for robot
motion. A generation of new methods for creating topololgicaps succeeded the seminal work
called Topological SLAM by Choset and Nagatani [Choset 01].

Since topological maps typically contain sparser infororathan metric maps, they must
contain better data-association methods, either in tha fura richer map-feature set or in the
form of better global localisation algorithms.

In the context of a topological map for mobile robots, plaaes distinctive points in the
environment that the robot can occupy or has previouslymed, at least once. The topological
map can also specify whether a transition between a pairagieglis possible and can include

additional information regarding these possible traosgi

1.2.4 Hybrid Maps

Hybrid approaches to map-building are usually employegplieations that require the charac-
teristics and advantages of both geometric and topologiegls.
By definition, hybrid mapping would include a geometric resamatation and a topological

representation, that is usually linked in some way to thexgetac one. One of the earliest and
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Figure 1.5: A Schematic of the Spatial Semantic Hierarchyiprs 00]. Closed-headed ar-
rows represent dependencies, open-headed arrows refppesential information flow without
dependency.

possibly one of the most well known approaches in this cajeigdhe Spatial Semantic Hierar-
chy or the SSH developed by Ben Kuipers [Kuipers 00]. The S8élys in Fig. 1.5, is described
as 'a model of knowledge of large-scale space consistinguitiple interacting representations,
both qualitative and quantitative’. The representatiothef environment is maintained in the
form of a hierarchy of maps each of which allows some abstmnaaif the perception and in-
teraction of the robot with the environment. These hiernaadltevels’ include a Causal layer, a
Control layer, a Topological layer and a possible (if enoudrmation is available) a high-level
Metrical layer. The advantages gained from using SSH orairhierarchical model of repre-
sentations is that incomplete information or uncertaintthe information is handled in different
forms depending on which particular Localisation or natigaproblem is to be solved. Lo-
cal metric maps help to perform place recognition, [mideékel] topological maps help create
consistent maps in the face of challenges such as loopagigsbblems, and the global metric
maps maintain an overall consistency in the global positibthe robot. Savelli and Kuipers

[Savelli 05], utilise a probabilistic modelling of motiobghaviours to move the SSH from a rule
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based method to a graph-based topological map framewoedlmsBayesian networks.

There are also attempts to utilize graph-based approaolssvte particular problems that
appear at the time of creation of metric maps. Methods sudkrakesson 04], use graphical
methods to maintain hypothesis for map expansion and @osar graph-like methods are used
to maintain multiple map hypothesis of the main map whicheisrgetrical.

There are works that enhance the applicability of metric snapd the ability of users to
interact with these such as representing individual objed¢h [Limketkai 05], Limketkai et.
al. store the representation of objects (some of which madgd be used by persons) using a
technique called Random Markov networks.

As in the case described in the section on topological maperitain mobile robot systems,
there is a need to maintain local geometrical maps arouridiceegions. The reason for main-
taining these maps however is not to perform place recagmitut to allow better and faster
planning of trajectories and re utilization of the map byatsbequipped with different sensor

configurations [Konolige 04].

1.3 Representing Places sequentially along a Path

A Mission, from the Latin Missum, refers to persons sent graapted to perform any service; a
delegation; an embassy. In the context of mobile robot radiig, a mission can be defined as
an ordered series of descriptions and instructions givearabot that will take it from one place
in the environment to another

In the context of this work, a Mission consists of a sequénléscription of situations and
motion behaviours that the robot will sense along the way.r&ter to the sequence of descrip-
tions as the Reference Sequence. When a sequence of behaviaati®ns are needed to move
the robot from a point, A, to another, B, are added to the Reber&equence, a robot Mission is
defined.

The Mission is communicated to the robot in the form of a gtraf motion behaviours
that are concomitant on the expected observation. Inigaebpment of the specification of

such mission strings was based on previously developed {&aktos 01] and is described in
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Appendix C. The lack of previous experience with semanticeggntations and has led us to
concentrate on the sequential representation of senswmaftion.

Thus, instead of manually creating a mission string and comioating it to the robot, the
robot is driven along a path during an Environment or Pathilfansation phase. Since the
motion of the robot has not been integrated into the reptaten of the environment, we will
normally deal only with the Reference Sequence in the rengaiottthe thesis. It is our opinion
that motion behaviours could be inserted into this Refer&empience at a later stage to create a
Mission if the capability of the system to recognise plagaslacalise itself is verified.

Two distinct questions must be answered for a Reference Segue be specified in the

form of a sequential description of the environment. These a
1. How are observations represented in the Reference Sezfienc

2. How can the sequential description of observations ingtbe localisation within the

Reference Sequence?

These are questions for which, answers will be sought, tecourse of the next two chap-
ters. The exploitation of information, that is implicit ihé sequential description of sensor
data, that results in better place recognition is the kegnetd that differentiates the approach

described in this work from other map-building approacinete literature.

1.3.1 Some Previous Work

The genesis of our attempt to navigate along a path by lacglibe robot within a Reference
Sequence lies in previous work. A mission programming toas wleveloped for use on the
robot platform at the Mobile Robotics and Automation LaboratLAR) of the Department of

Mechanical Engineering, of the University of Aveiro [Sasfil]. This tool, the Language for
Autonomous Mission Planning (LAMP) [Santos 01] could bedubg an operator to set up a
mission, using a qualitative description of the topologyhaf environment. The kernel feature of
LAMP is that a robot mission may be planned and executed bying the approximate position

and layout of entities to trigger the beginning and the eniddividual phases of the mission.
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Although odometry is utilised to execute individual stagéshe mission, the initialisation
and termination of each stage resets the odometry effgctigenoving any accumulated error.
Individual stages are set up either as closed loop feedbaskapen loops. This method partially
obviates the necessity of the robot knowing where exactlyiit the environment. LAMP still
required a boot-strapping localisation procedure.

LAMP allows the environment to be described in terms of atdetathat the robot will sense
around itself as it executes the various stages of its nmssiie robot motions that can be in-
cluded in a LAMP mission include: wall following, obstackeogdance, in-place turning, execut-
ing a short trajectory in open-loop mode and crossing naopenings. An illustrative mission
comprising of 11 mission stages and the plan view of the tegutach stage is described in
Fig.1.6.

1. MOVP MV 2 0 PS 2 USL 500 SEN
1

MOVE LV 0 AV 10 ANL 90

MOVP MV 20 USL 1000 SEN 1

MOVE LV 0 AV 10 ANL 90
MOVE LV 20 DIL 1500
CROSS

MOVE LV 10 USL 300 SEN 1

MOVE AV 2 0 ANL 90

© © N o 0 & W DN

MOVP MV 2 0 PS 2 USL 500 SEN
1

10. MOVE AV 20 ANL 90

11. MOVP MV 20 PS 1 USL 300 SEN 1

Figure 1.6: A navigation mission with associated LAMP code.

LAMP served to demonstrate the concept that the sequergsdrightion of the expected

perception could be used to trigger the start and end of aeseguof motion behaviours that
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could propel the robot from the beginning to the end of a raissit does suffer, however, from
limited sensory capabilities that, in turn, limit its apgaltion in real-world environments.

LAMP handles its single feature in a trivial manner with tlenar sensors indicating the
presence or absence of an obstacle. Its inability to handle than one type of feature means
that it cannot be applied to more conventional robot platfaavigating robustly within a real-
world environment. An expansion of the method to includetipld sensors would have to
include more sophisticated methods to integrate the éfffifleatures.

The application of LAMP-like methods would be much enhandealistic methods to
create LAMP missions were developed and if vision and racge $eatures were used within

the missions to provide robust robot localisation capidi

1.3.2 Individual Place Recognition and the temporal context of Places

Consider a hypothetical robot equipped with a special setmstrallows it to identify certain
environmental features. With the aid of this sensor our raam identify doors, corners and
walls. To keep this exposition simple, it is assumed thatrdi®t can sense these landmarks
only if they lie close to it.

Supposing our robot is lead on a sightseeing tour of a bujldit regular intervals of time
our robot looks around, identifies the landmarks that areghtsand records the sighting in a
table. The sequential description of what the robot foundhenpath has been represented in
Table 1.1 and a plan-map of a section of the environment wapiekar similar to Fig. 1.7.

If the description of the observations seen from placesdutyin 10 in the environment de-
scribed in Table 1.1, were provided sequentially to a rob®tweuld denote it as the Reference
Sequence. Each place is associated with particular larkdnagid with a motion behaviour. By
correctly identifying the place at which it finds itself, th@ot can recover the actions that are
required to get it to the next way point/place. If the actitimat led the robot from each place
to the next place were added to the Reference Sequence we wlaiaid a robot mission. A
mission that would allow the robot to move from the startitecp 1 to the final place 10 would

have been created.
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|_ Place with Abrupt Corner Landmak

1
|
| 9 Place with Door Landmak
1
|

KO/ 5, Place with Other Intersting Landmark

Figure 1.7: The figure illustrates a sequence of places, orridor, where each place is recog-
nised because of the landmarks perceived at that place.

Table 1.1: Table of Places included in the Reference Sequentiee path depicted in Fig. 1.7.

1 /2 |3 |4 |5 |6 |7 (8 |9 10
CornerLandmark O (1 |0 (O |O |O |O |O |O |O
Doorlandmark |0 | O 1 1 0 1 0 1 1 0
Wall landmark 1 0 0 0 1 0 1 0O |0 1
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Our hypothetical robot has the ability to distinguish bedwa limited number of landmarks.
As a result it is not always possible to accurately distisgwne place from every other places.
In particular, using a single observation, it is imposstbldistinguish between the various 'door’
places, because the doors are ambiguous landmarks (anantieeapplies to the walls). In the
context of the mobile robotic Localisation problem, thisliénge is commonly referred to as
'perceptual aliasing’.

There is another problem, one that has not been describéisiexample, the problem of
'Scene Variability’, in which the same landmark appearsedéntly at different times, either
because of changing observation conditions, noisy semsalings or as a result of the robot
moving within dynamic environment (moving objects or chiagghature of the objects).

The problems of perceptual aliasing and scene variab#gitytze diminished by using a larger
set of landmarks or by using combinations of landmarks, shaheach combination of land-
marks is unique. Unless a sufficient number of unique lanksnare available, it is going to be
difficult to increase the size of the map whilst simultandpegasuring reliable place recognition.

A logical improvement to using single observatiomf landmarks would be to observe the
order in whichmultiple observationsf landmarks are made by the robot. In practice, the cost of
implementing algorithms to identify different and uniqaadimarks is high, and the twin prob-
lems of scene variability and place aliasing is so commoat, ¥irtually all localisation algo-
rithms make inferences from observing multiple observeid his accumulation of information
is done in two ways.

The most common method is to utilise an estimation filter touawulate the information
gained by observing a sequence of observations. At the tiraah observation, the evidence
gathered over the multiple previous observations are atbdind current observation in the form
of a prior probability.

The other approach is to gather the combinations of feathegsre viewed while travelling
along a path to create larger, and hopefully more unique gmatibns of landmarks. Such an
approach can be utilised all the time as in the topologicar@gch Kuipers [Kuipers 02] or
occasionally, when there is a greater risk of place aliagsogh as when applied to the problem

of loop closure while map building [Newman 06].
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1.3.3 Modelling the Sequence as a Topological Path

Reference Sequence Topological Path

Figure 1.8: Representation of the Topological path as a Goaptlaces arranged sequentially.
The graph itself is created from a sequence of sequentiatbirmed sensor views.

Within the scope of the discussion from the last sectionsaplgof places denotes an ordered
set of places, along a path in the environment, at each ofhwthie robot perception is defined.
Importantly, the places that are represented in these gragghnot identified by their physical
position in a common coordinate system. Some perceptioanainhark is associated with each
place in the Topological path as seen in Fig. 1.8.

Localising the robot in the path and consequently in the ly@Eplaces that represents the

Topological Path entails estimating the place that is eulyeccupied by the robot.

1.3.4 The Place of the 'Lost’ Robot

The Reference Sequence is created by sampling the enviroywieaoh is a discrete procedure.

It is not possible to take observations continuously aneroittis not very feasible to sample the
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environment at very high rates. Doing so would seriouslytliime size of the environment that
can be usefully represented.

In this work, a definition of thélace of the Lost Robdho relationship with Isaac Asimov’s
Little Lost Robot), or theLost_Place was found to be useful. Theost_Place represents the
positions in the environment at which the robot does not kmdwat combination of landmarks
can be seen.

In the graph of places, thieost_Place, has also been added to the previously defined places.
The Place of the Lost Robot is useful in two distinct situagioin the first, the robot has simply
no recollection of a particular combination of featuresrently in view because of the problem
of sampling. In the second situation, an unintended manmgovea substantial change in the
environment results in the robot not recognising a place itheepresented in the Reference
Sequence.

Thus, theLost_Place representall the possible places that the robot might encounter in the
environment that are not represented in the graph of plawtthe locations in the environment
that fall outside this path.

In the literature, recognition at places that are difficalidentify is often done by attempting
some sort of back-tracking. In this thesis, behaviours¢over from a failure to localise are not
implemented and the robot simply declares itself as lostotlher words, when a robot is at a

Lost_Place it is expected to eventually stop and declare itself as bésg.

1.3.5 A hierarchy of representations

The proposal of the Reference Sequence as a representatidopailogical path can be viewed
in the context of map building algorithms that have been desd in the literature. As a repre-
sentation of the environment, the Reference Sequence nertkas least amount of information.

The hybrid geometric and topological maps presented by MimyThrun 02b] have been
used as a comparison to our approach. The different amotimf®onation that are maintained
by different representations can be viewed as giving risa toerarchy as seen in Fig. 1.9.

As seen in the figure, the higher we move up the hierarchyetassthe information that is
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Figure 1.9: Navigating the environment along a topologath can be looked at as a repre-
sentation containing lower information as compared to apieta geometric or even a complete
topological representation of the physical environment.

maintained.

The geometric map attempts to represent all the informathaih can be extracted by the
sensors within a single joint probability distribution. i$oint probability distribution is broken
up resulting in the graph structure of the topological magrelthe perception is stored at the
various nodes of the graph. The Reference Sequence maiimeinmaation pertaining to only a

single path in the global topological map.

1.4 Proposed Organization of this Thesis

This thesis document is chapter-wise organised accorditigée successive objectives of 1) de-
signing an un-biased place recognition method, 2) makiegbithe sequential context in which

place recognition takes place and 3) modification of thedenigues to improve the usability of
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the methods.

When the robot navigates the environment using the Refereameefice, a number of sources
of uncertainty must be dealt with. There is uncertainty i@ pinocess of detection of the land-
marks (due to noise and different perception conditiond)thare is uncertainty in the accuracy
of the motion along the Reference Sequence (due to dynamimaments). As compared to
the term ’landmarks’, 'features’ are a more generalizednfof representing the properties of
current scene, since it avoids certain semantic difficsiliiat are associated with the use of the
term, Landmark. A feature is taken to mean any artifact operty that can be extracted from a
sensor view, be it from a Laser Range Scan or from an image oothey sensor data. This def-
inition opens the way to using multiple features extractedifdata from different sensors. Any
feature that is chosen must be relatively robust to chang#sei conditions of the observation.
This thesis has made use of robust features that are extfacte images and from Laser Range

scans.

Chapter 2 presents an algorithm to perform context-indepemndon-informative prior, place
recognition using a Bernoulli Mixture Model. In chapter 3aqgd recognition results are shown
to improve when the currently observed view is compared gétth view in Reference Sequence
in the context of appearance with respect previous obsengtin chapter 4, the problem of cre-
ating topological maps from individual Reference Sequeffigmlogical paths) is considered.
Chapter 5 begins with the description of the complete sys&eimplemented on two robots and
lays out the architecture of the system and a brief desonpif the applications and libraries
that were developed. Finally, chapter 6 lists the main dautions of this thesis and the resul-
tant articles that were accepted at peer-reviewed corfeseaind journals. The close of this last
chapter also provides an opportunity to present issuesmbig addressed but which could be

solved in useful time and which now indicate the directionfédure work.

In the remainder of this section, the proposal for placegaitmn using sequences of views

from multiple sensors is described.
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1.4.1 Place Recognition using a single View

A key issue of using a method based on features is the choitteedfame of reference. The
fact that features must be extracted from a number of diftesensors and pooled into a single
set of multi-sensorial feature forces us to choose betwhensing a single common frame of
reference or ignoring the ordering and position informatioat the features possess within the
frame of reference. The features extracted from an imageor & Laser range scan, each have
their frame of reference. The ordering of the features inctherdinate system of the frame of

reference of the sensor can provide substantial informati@id the matching of a view.

Because the features to be integrated are very different &ach other, a registration or
sensor calibration procedure would be required to integeath additional type of feature. Ad-
ditionally, it would be impossible to integrate featureattiprovide bearing/distance from the
robot with other features that have no such obvious propétiso, because features from dif-
ferent sensors will not be inserted within a common cooteiggistem, the ordering information
within a single view has been completely ignored while intting the different features. If a
need arises to include the information about the orderirtgydoen two or more features, this

ordering can be explicitly included in the form of additibfeatures.

The term 'Perception’ is used to signify both, the act of panng or sensing the world and
also the result of this sensing. Given some sort of envirarimepresentation, robot Localisation

involves using the 'Current View’ to help determine the lik&Current Position’.

A schematic for such place recognition from a Single Viewhisvegn in Fig. 1.10. This figure
depicts an Environment or Path Familiarisation stage atriefvhich a sequence of views are
collected together. Each view is an index that refers to aqudar place along the path taken by
the robot during the Environment Familiarisation stagacBlrecognition or localisation involves
the recovery of this index by the comparison of the curreseokation with all the views in the
Reference Sequence.

The current view is compared with each of the views in the Refeg Sequence through a
comparison of the features that appear in the views, usingpanopriate algorithm. In order

to be able to use the information from the sequence as effigias possible, it is important
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Figure 1.10: The image illustrates the recovery of the Refs¥&Sequence View index using a Single View. The solutioolies
registering the current sensor data with a previously gathsequence of Views to find the best ‘fit' or 'match’.
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that the algorithm provide an unbiased estimate of the mstdetween the current view and
each of the views in the Reference Sequence. When large nuwibfatures are employed
to represent a view, it becomes increasingly difficult toigieand use a metric that provides
unbiased distances between views. This problem, ofterreeféo as the curse of dimensionality
[Bellman 61], results in the failure of matching. Given a iyoibservation, it is more probable
that any random view will be closer to the current view thamdhtual corresponding view in the
Reference Sequence. For a distance metric to provide urebrasults on the high-dimensional
feature data, some sort of dimensionality reduction is naipes.

The algorithm described by us, in chapter 2, as a solutiohisogproblem is the reduction of
the dimensionality of the 'space of features’ using a Berintikture Model.

An important assumption that is required throughout thekwascribed in this thesis is
that the initial Environment Familiarisation stage mustpeeformed in an environment that is
as reliable as possible. In subsequent travel through thieoement, statistical treatment of

differences in perception allow the robot to handle chamgése environment.

1.4.2 Place Recognition using the context of the View Sequence

As was mentioned in section 1.3.2, despite the use of a largier of features, the twin prob-
lems of scene variability and place aliasing implies thanight not always be possible to cor-
rectly and uniquely identify a place using a single obséovat

A better way would be to make an inference inference of thetipasof the robot in the
Reference Sequence after collecting observations overta finmber of positions, as shown in
Fig. 1.11. This approach would still utilize the distancetmigeused in the case of a single view
and would still require dimensionality reduction methool®é able to make unbiased estimates
using a large number of features. Such a scheme could imgnevgerformance of the method
by using a Prior Probability to favour the chances of matghatter observations based on the
estimation results of previous observations.

Utilizing multiple views implies that the motion of the robmust be taken into account in

some way. In this work, a simple model for robot motion hasnbesaployed to consider the
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Figure 1.11: A schematic of the Place recognition procedising the context of the Reference Sequence. The Single View
matching described earlier is now extended to the case iohahchronological sequence of query views is available.
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possible views as the robot moves along the Reference Sexju@h¢cs model leads the robot
down the Reference Sequence and provides a very imprecisgagsiof the next views that
might be seen.

We propose to use a particular type of Dynamic Bayesian Né&twbe Hidden Markov
Model, HMM to infer the position of the robot in the Referenceg8ence from multiple obser-

vations. The application of HMM to this problem is describedhapter 3.

1.4.3 The Lost View

In an earlier section the concept of the Place of the Losttralas introduced. When referring
to views that are visible from the different Places, it beesrassential to ask the question: what
will be the observed view at theost _Place, or what will theLost Viewbe like?

The Lost View is a paradox, since, not knowing where tlaet_Place is, the robot cannot
know what will appear at such a place were it to be lost. Inwhtigk it has been assumed that the
view that is obtained at suchlavst_Place is theaverage combination of features for the entire
Reference Sequence

This is based on the assumption that, in the absence of anyoaddinformation, the dis-
tribution of features at a view taken at any place in the emrirent that is not included in the
Reference Sequence should be the same as the distributieatofds in the views in the Refer-
ence Sequence.

It is possible that one or more views in the Reference Sequaigiat also have this same,
'average’ distribution of features, though, in the higimdnsional feature-space this probability

is very low.

1.5 Summary

This chapter presented the proposal of this thesis whictestaut with the aim to extend previ-
ously developed work in which the robot executes a sequeno®iton behaviours, conditional

on the sequential description of the expected perception.
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Before describing the approach in detail a review of the tygféddaps used in robot Locali-
sation, with special emphasis on separation of the digtabwf the motion of the robot from the
distribution of the sensory perception was presented. Avomant conclusion that can be made
from the comparison of Metric and Topological approaches¢orepresentation of an environ-
ment is the fact that the Metric map allows a joint probaitit the events that can be sensed by
the robot to be expressed within a single coordinate systeim &s on a piece of paper, whereas
a topological map will use two or more conditional distribuas to represent the same events.

The idea for place recognition by matching the currentlyeobsd sensory data with a se-
guence of views previously gathered during a Environmemtikarization phase is presented in
two parts, the first of which involves the use of a single vieNoived by the application of a

View sequence to perform Place Recognition.



Chapter 2

A Model to Represent Individual Views

2.1 Introduction

The problem of assigning indices to combinations of featared the retrieval of this index upon
presentation of a new observation, is found in many domainies at the heart of applications
involving detection of objects within a scene, image retidrom a database, face recognition
and gesture recognition, among others. These applicatiorisby extracting features or proper-
ties that describe a scene or a face or some gesture primittvéhen identify sufficiently unique
combinations of features that allow the recognition of eabfect view, scene, face, gesture,
etc. The question that we seek to answer is: '"How are obsengtepresented in the Reference
Sequence?’.

In most applications, a trivial comparison of features frarpair of views, is not enough.
Sensor data is usually noisy and because there might be duanges in the views. Some of
the features will be correlated with others and this coti@tawill vary among the features.
Mathematical techniques must be employed to perform usebi@stimations using the reduced

or noisy data.

Robot localisation must, almost obligatorily, be probaiiti in nature in order to account
for the impossibility of modelling an activity as complex psrception. Among the methods

that have been applied, 'Bayesian Inference’ is, for mangaeshers, the preferred way of han-

29



30 CHAPTER 2. A MODEL TO REPRESENT INDIVIDUAL VIEWS

dling uncertainty in the perception process. As presenteghatly in [Reporter 00], Bayesian
Inference is a tool that allows the integration of new evesuch that it may be used imme-
diately (even as it slowly drips in). In mathematical terrtige probabilistic Localisation of a
robot in an environment plugs in new evidence into the walikn Bayes equation (2.1) where
P(Current ViewCurrent Positiop stands for the model of the system that defines the expected
observations given a particular robot position. Locaiwsamethods differ in the way they cal-

culate the numbers to plug into this equation and the reisatithey draw from it.

P(Current ViewCurrent Position x P(Current Position
P(Current View

P(Current PositiofCurrent View =
(2.1)

2.2 Using Features to represent Places

Robot sense the environment using a variety of sensors [Beiarggl]. In our work, we have
been primarily interested in using Laser Range Finders anteias. These sensors are fairly
common on today’s robotic platforms and the science of etitrg scene information using these
sensors has progressed considerably.

In an attempt to obtain more reliable features in the enviremnt, many range-sensor based
methods extract lines and other primitive features fromlalser scan. Cox [Cox 91], attempts
to match points extracted in the laser range scan with tles imthe map. He subjects readings
from a LRF to an iterative procedure of rotation and trangtatintil convergence results. Here,
the objective function to be minimised is the distance ohesanned point from the nearest line,
the environment itself being represented as a line moded. ifBnative procedure translates and
rotates the scan till the sum of squares of these distancemisiised. The inverse transforma-
tion that produces the robot position estimate. Odomettg dasists in reducing the iterations
and provides localisation in the absence of new sensor data.

In Sequeira [Sequeira 93], a range scan is matched with adpresentation of the hall in

which the robot finds itself. Utilising a modified version of xC®algorithm, an attempt is made
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to match the scan obtained with the line representation.péiper reported very good precision

in localisation and a good performance of the navigatiotesgsconsidering the bulky hardware

and small processing power. However, from the scan repiasams presented, the hall seems to
be quite bare and contains few objects that significantbradt the rectangular shape of the hall
boundaries.

Other methods make strong assumptions about the envirdrihatigenerated the scans. For
example in [Jensfelt 99] the assumption of orthogonal wallmade and the values of the dis-
tances to the walls are used to update the position estimhteX and Y Cartesian coordinates
are updated alternatively using different walls. The eimdahe angular orientation, a more seri-
ous problem in odometry-based systems, is corrected at apelate. A reduced representation
of the world model, limited to four walls representing theemextents of the laboratory, reflects
on reduced information content that is typical in 2D rangensc

Ribeiro and Goncalves in [Ribeiro 96] utilise pairs of vertiedges in the environment (cor-
ners in the laser scan) to obtain a localisation estimate. ervironment is scanned selectively
in the direction in which the edges are expected. An enviemtmmodel is utilised in order to
obtain the absolute position of the edges and to choose froomg various possible edges. An
initial position estimate, obtained in case of a moving tdb@m odometry, is utilised to aid the
search procedure and to strengthen robustness of the tstima

Dynamic environments present a problem for Scan Matchiggrahms. In [Bengtsson 98],
Bengtsson and Jonasson present the ’iterative Dual comdepoe’ algorithm, a method for
matching consecutive scans so that the pose change carolenett. This estimated pose change
is then integrated using a Kalman Filter.

In [Arsénio 98], a LRF is mounted atop a Pan and Tilt Unit (PTWl avas utilised to obtain
a depth picture of the robots surroundings. That comprevemnsork includes an algorithm that
has access to a 3-D representation of the hall. In that reptason, objects with vertical edges,
together with the sides that make up the edge, are reprelsehtesen on the basis of contrast and
probability of being observed. Vertical edges are extiftem the laser scans and an attempt is
made to match them with the vertical edges of the objectsamthp. To simplify computation

and improve results, some pre-processing of the data iedavut. In addition, the scanning
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for features based upon an initial estimate of the roboteatposition is performed in order to
identify what objects might appear in the laser scan and whjgicts might be partially or fully

occluded. Occlusion effects and the range of angles thrextgbh each edge is visible from
each cell are taken into account.

Drumbheller, in [Drumheller 87], describes a multistagestgxtraction algorithm in which
data from US sensors from all around the robot are used. Ustagpretation trees, the lines
scanned are then matched with corresponding features inalatde map. In a similar vein,
Dudek and MacKenzie in [Dudek 93], provide another methodhbich the scan data is viewed
as being composed essentially of lines. An iterative matzhcheme is devised that attempts to
fit the scanned lines to actual lines existing in the modek &kiraction of lines from the laser
scan continues to be a popular approach in the extractiarfaination through a segmentation
of objects using the laser scan data, [Nguyen 05], [Nock @d8][&ack 04].

Some methods have tried to improve on the original linetfiesagxtraction algorithms by per-
forming some pre-processing. For example, Tang et al. [Tdfgaim to reduce the roughness
of the range finder data before isolating points by emplogingethod that is supposedly similar
to the scale-space approach used in images. The line fitgogithms is said to work better on
this lower-frequency data.

Still other methods seek to parameterize laser range dataxample, by converting the
scan into an ordered set of polylines, [Lakaemper 05]. Tlgpanents of the system claim
better matching properties between a pair of scans and éatgigration of a new scan within an
existing map.

Representing places only in terms of lines (and corners)igegva limited amount of in-
formation. Many places in the environment are found to havéa representations and these
methods do not scale up easily to larger environments.

In [Tovar 03], Tovar et al. use a combination of places andongiaths to represent a portion
of the environment that has been previously explored. Usitlgrange measurements, the gaps
between obstacles make up the features of interest and iaibars that merge/close gaps or
that create new ones are noted. The path to the goal is theimation of these behaviours.

The environment for which the method has been tested seebes small and the placement
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of obstacles appears to excessively facilitate the dete@nd characterisation of the above-
mentioned gaps.

Other publications have expanded of the set of featuresatleategmented from laser scan
data to include trees, kerbs and other features in seledbouenvironments. Manandhar and
Shibasaki in [Manandhar 01] extract roads, buildings, ésand other outdoor features by mod-
elling 3D range data. In indoor environments too, compdaitdmarks including lines and other
simpler features have been used, [Xiang 04].

There have been attempts to represent places in the enerdnmith unique sets of the
features, sometimes termed as ‘fingerprints’. The fingetpdonsist of a list of features (a string
of symbols to be more precise) that lie around the robot. Eeature is represented in terms
of a symbol and each place is denoted in terms of a string sktegmbols. This approach can
hope to draw from the wealth of string-based matching allgois. A serious point of concern
is that most of the simpler string-matching algorithms workthe principal of independence of
bit errors and this might not be most appropriate approadctnvthere are correlations between
the presence or absence of certain features. Also, althivegmethod aims to be multi-sensor,
the features still need to be integrated into the same simiplying that the features must still
possess certain basic similarities.

In [Lee 00], for example, each feature that is extracted ftbenlaser range scan is given a
symbol and each scan is described in the form of a string, mgmMmMmMmDCm. The
string alphabet, in this case (M)axima, (D)iscontinuitg)ifhima, (c)onnection), depends on the
features extracted from the laser scan. Other methodsexdeiss’ of the laser range scan so as
to minimise the effect that changes in one part of the scarwaile representation of the place.
The idea is also the gist of the so-called 'fingerprint’ agmiodescribed in the section discussing
Map Topology, [Lamon 03, Tapus 04a, Tapus 05, Tapus 04b].

Vision sensors or cameras have been used independentAppeadix A for vision features,
or coupled with Laser Range Finders to aid the segmentaticcaf data. Arras and Tomatis
in [Arras 99] attempt to introduce a vision sensor, a CCD camera robot already having
a localisation system based on a LRF. The stand-alone LRpeedisystem achieves good

performance in rooms in which the environment is made upstirdit features. The performance
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of the system undergoes a drastic reduction in efficacy wihesepted with long corridors and
situations in which the laser beam is subject to speculaatsdin. With the aid of a vertical-edge
extraction procedure the method seeks to include dataghmabre reliable in situations where
the LRF is more prone to provide unpredictable or highly ambig data.

A number of modern mobile robot platforms have employed iplelisensors with a view to
minimising the situations in which a particular type of senean fail or provide less accurate
data. In [Lamon 06] the configuration of the 'Smarter’ platfois described as including mul-
tiple laser range finders, omni directional and monoculanaras, inertial measurement units,
differential GPS and other sensors. Information from thesesors is filtered into an estimate
for the vehicle position, but only those features can be tgedhich a distance (or bearing) is

associated.

2.2.1 Multiple Feature Integration

Perception is usually performed in environments that deast partially 'dynamic’ . Addition-
ally, sensor data is often noisy or incomplete. Gatherirggpdj or unchanging features is one
way of ensuring that there is some chance of localisatiorr$Mad 01]. It is even more impor-
tant to build redundancy into the perception process. Ralwatlisation methods, should make
use of a large number of features so as to be robust agairsbtive problems.

Tebo [Tebo 97] says thaSensor Integration is concerned with the synergistic useuti-m
ple sources of information. Sensor Fusion is divided intedltlasses: complementary sensors,
competitive sensors and cooperative serisdf¢hile such a definition is useful in understand-
ing the need for sensor integration, in practice, integgatheasurements taken by sensors with
different measurement and error models is not a trivial &eke all the above three usually
occur simultaneously, in varying degrees. Multiple sessoe usually employed to address the
weaknesses of individual sensors and increase the seregmapitties of the robot.

Two principal approaches to feature integration are ptsditter-based and wrapper-based.
In filter-based methods, preception models for sensorsititegrate the different sensors are

assumed and these are imposed on the data. Such methody tespate a ‘registration’ step
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to be performed in order to express the features from one@sénterms of the feature space of

the other sensor (usually distance and bearing). Wrapsadbapproaches, on the other hand,
attempt to facilitate the (usually NP-hard) mathematigalcpdures employed to approximate
the integration of all features simultaneously [Kohavi.97]

Given that several thousands of features must be integi@tpdoximate techniques to reduce
the dimensionality of the features seem to be most apptepria reduction in the number of
correlated features also reduces the amount of redundentidd can reduce the time required
for the procedure to run. Wrapper based methods are commanjoged in the literature,
for example Ohba [Ohba 97] suggests the use of a 'Global Gessdriest to select windows
of interest in an image. This criteria has the charactergtitesting the uniqueness of a single
feature rather than of a combination of features (see alsot@rg 02], [Gerstmayr 04]). Other
approaches, including [Fleuret 04], [Peng 05], [Vlassik Bave attempted to use methods based
on Information theory to select a smaller subset of indepenhfiatures.

The integration of features from multiple sensors is a topleen research in the area of mo-
bile robot localisation. A typical combination of sens@sicamera and a LRF where disconti-
nuities in the Laser range scan is associated with featntbgiimage. For example, Castellanos
et al. [Castellanos 01] employ vertical edges extracted farmtensity image and correspond-
ing corners in the Laser Range Scan. The robot is obliged tev khe rigid transformation that
links the features in one sensor with those in the other. fimm of [sensor] coupling requires
a calibration process to obtain the transformation andrdnestformation itself may be of little
use if the sensors have different ranges and accuracy. Vale (5] performs an evaluation of
different sensor data for greater suitability to Localisatafter travelling through the environ-
ment and evaluating how many times the robot localizedfitsatieraction between the features
extracted from different sensors is incidental and the S&tadures to be used must be decided
before-hand.

Other approaches have been proposed to combine data frosertsers used in this work,
and given the variety of features-based methods usingrviaia range scans, the combina-
tions are many (see the bibliography maintained by KeitleePat http://iris.usc.edu/Vision-

Notes/bibliography/match-pl502.html).
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Methods that explicitly reduce the dimension of featurehwbntinuous values are com-
mon in many perception fields including face recognitioreesgh recognition, etc. Principal
Component Analysis (PCA) and more application-specific naghaerived from PCA such as
the Eigen-lmages constitute an important class of dataetexh methods. Mixture models are
a common solution to modelling data that is believed to teltmn-parametric distributions. In
[Sajama 05], Sajama and Orlitsky demonstrate the use oliixthodels composed of Gaussian,
Bernoulli and Exponential distributions as a solution toc¢lassification problem. Clustering or
classification methods based on Mixture models seek toifgidettures that are more corre-
lated with members of their own group than with members fraheogroups. McLachlan and
Peel [McLachlan 00] provide a good reference to the genemt tof Finite Mixture models.
While most of the work in the field is in the area of Gaussian arpoBential distributions,
other distributions have also been discussed.

A central part of this thesis involves a different approazhhe task of feature integration.
After extracting different types features from each viesing diverse techniques, these features

are represented using binary symbdls ] through one of the following:
1. matching extracted features against a feature databdsé=ct their presence (or absence),
2. categorising features, and
3. discretizing continuous-value features, as shown in Eitga.

The ultimate goal of this step is to integrate large numbéfeaiures into a common repre-
sentation to perform place recognition and, ultimatelya¢bieve a a robust robot Localisation
estimate. The robot is first led through the environmentrduan Environment Familiarisation
phase. The sensors sample the environment, generatingi@segof views, which we call the
Reference Sequence. This procedure was depicted graghicéilg. 1.10 and the views of the
Reference Sequence are indices for places in the envirorthegrite along the path covered by
this Reference Sequence.

A matrix of binary features that represent the featuresaekd from the views of the Refer-

ence Sequence is denoted as the Feature Incidence Maivix, &4 depicted in Fig. 2.1b, where
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Figure 2.1: The process of categorisation of the featuresst@te binary features is performed in
diverse ways, depending on the sensor and on the type ofdéeatu

each row denotes a particular feature that was extracteaddree or more images or laser range
scans. Each column represents a place at which sensor datbt@ned. The presence ofa’l’,
depicted as a black square in Fig. 2.1b, in any column sigrifiat the feature was observed in

an image or laser scan taken at that place.

2.2.2 Using Features in Binary Form

As seen in the previous sub-section, the features that aaeneld from the sensors reflect log-
ical information (the presence or absence of a feature irctineent observation), or numerical
information (the number of doors or the free space as meadiyré¢he range scan). This idea
of converting numerical (continuous or discrete) valueatdees into binary form is not new and
can be seen in [Wang 05], [Fleuret 04].

Both of the types of features described above are represesiteg|0, 1] symbols and treated
like binary data. We have used different techniques, desdrAppendices A and B, to extract
a large number of features from each view comprising of visind laser scans. When SIFT or
similar local features are captured from images, the nurobératures grows quickly into the
thousands whereas the number of views might measure only lauedreds. This large number

of features makes the estimation of the current view fromrapgarison of feature values an ill-
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posed problem, as referred to earlier as the curse of dimealdlly. A discussion on the nature

of the features used within the views was initiated in sectiet. 1.

We can describe déature spaceas a coordinate system where the value along any coordi-
nate axis is discrete and can take values@f1. Each of the features from the very large number
of binary features that are used to describe each view inidve sequence can be looked as an
additional dimension. Each view is represented as a poititdrfeature space, and because of
the presence of noise that can affect the sensors, thereqaoms and dimensions of the feature
space that are very sparsely populated with views. Thexebmfore comparing a view with all
the views in the sequence, a data dimensionality reductimeegure should be performed on the

feature space.

Data dimensionality-reducing methods such as PCA are nohtreahandle binary data.
Mixture-Models have been utilised essentially with Gaaissilistributions but, more recently
have been applied in the context of binary data in the formigfures of Bernoulli distributions.
Articles such as [Wang 05] and [Kaban 00] go some way to detretieshe usefulness of binary
features. In [Gonzalez 01] the contexts in which the word@sused in a sentence are converted
into binary features. Mixtures of Bernoulli distributionaJe been used to model data containing

binary features in [Gonzalez 01], [Juan 04] and [Garcianidrdez 04].

We have adopted a finite Mixture Model in which the individuaikture components are
Bernoulli distributions to reduce the dimensionality of teature space. Over the next sections,
the technique to match a current view with each view in the BiMIl be described in greater
detail and look at a concrete application where featurdsctrabe extracted from a Laser range
scan and from multiple cameras can be integrated for befieepecognition results. Section
2.3 first introduces the Bernoulli Mixture model beginningttwa description of the method
following which an application to a toy example whose simipfi is meant to demonstrate the
results achievable by the Bernoulli Mixture model. In sattib4 examples are presented of
some of the approaches that have been used to perform tatebeadures in range scan and in

images.
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2.3 Integration of Binary Features

Each view that is gathered by the sensors of the robot is cwa/ato a column vector of binary
symbols. This section describes a solution to the problematthing a binary column vector
with the FIM, V. Each row of the FIM corresponds to a featyrand each column represents a
separate vectadry, identified by an indexk. Each entry in the FIM (2.2) might be represented
as;Vj, where the first subscript indicates the feature and the sesabscript, the vector index.

; Vi takes valud if featurej appears (is visible) in vectdr, and takes the valugotherwise.

1‘/1 1‘/2 1VK
V= 2‘_/1 2_V2 2‘_/’( (2.2)
L N‘/1 NVYQ NVK ]

Suppose we wish to retrieve the index of the vector that is sioslar to an observed vector
Vops- A distance metric could be designed to evaluate the siityilaetweenl/,,, and each vector
V. in the FIM. One such metric could be the number of correspandinary features in each
vector that are unchanged, the 'Hamming distance’.

A direct comparison using a metric such as the Hamming distamakes the assumption
that the individual features in each vector are independetite features were not independent,
inferences that are made, based on this comparison, mighibed toward certain vectors in
the FIM. In such circumstances a Mixture of Bernoulli Distrions is used to model the binary
FIM and reduce the dimensionality of the vectors in the FINbbe retrieving the index of the

vector most similar td/,;,.

2.3.1 Formulation of the Bernoulli Mixture Model, BMM

Mixture models assume that there exist a finite number ofrpatiac distributions which, when
mixed together in a particular proportion, result in a dittion that best describes the data to be
characterized. In this case, the observatligp can be assumed to be vector of binary features

{0, 1}, obtained from a particular mixture of Bernoulli distributis, as in (2.3).
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obs ’@ Z ac obs ’6 (23)

In (2.3), © denotes the parameters of the distribution of the vect@sdbmpose the Mix-
ture. These parameters include theomponent vectors, the.s, and the proportions in which
these are mixed, the.s. Eacha. can also be looked at as a sort of prior probability of the
component within the complete mixture model, subject to the constraij o, = 1. The term
P(Vys|©.) can be determined using (2.4) where e&this a multivariate vector of Bernoulli
probabilities each of whos& rows indicate the probability of success for a particulatdee.
EachP(V,,s|O.) is a measure of the similarity df,,; and the componertd. and since the fea-
tures that make up the components can be assumed to be idéapahcan be calculated as in
(2.4).

P(Vops|Oc) = H] 1708 0bs( — ;O )(1_' Voba) (2.4)

To obtain the parameters of the component vectors and reixitors, it is assumed that
the component vectors are independent and the likelihodkdeomixture satisfying the FIM is

expressed as in (2.5).

K
P(vie) =[] Pvile) = L(©V) (2.5)
k=1

The optimisation task to find the mixture that best explaims ¥ can be expressed as in

(2.6), i.e. to find the value d@ that best satisfies the distribution of feature¥®’in

©* = argmax L(O]V) (2.6)
o
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The preferred method of solving the Mixture Model problerhis Expectation Maximisation
algorithm. McLachlan ([McLachlan 00], page 19) state# will be seen that conceptualization
of the mixture model ...(hidden data + component distridns)... is most useful in that it allows
the Maximum likelihood estimation of the mixture distrilmrt to be computed via a straight-
forward application of the EM algorithm.. The EM method &pd to the Mixture problem
assumes that the data is only partially available. It becofully known through the use of a
matrix of coefficients denoted henceforthZascalled the 'missing data’ or the ’hidden data’ or
still the 'unobserved data’. Two notations f@rare usedz;, is used to refer to the vector it
that corresponds to the vievandz,. to the element ir¥ that corresponds to the viekvand the
component. If this Z is introduced to expression (2.3), the likelihood of theasliations given

the entire data can be expressed as in (2.7) and furtheriBedpb (2.8).

L(O|V,Z) sz log Zac Vobs|©¢)) (2.7)
K C

LOW,Z) = ZZZ’“ log(a.) + log(P(Vops|Oe))) (2.8)
k=1 c=1

The EM algorithm proceeds in two stages: txgpectationstage attempts to reach the best
value for the missing data, by keeping the parameters of the Mixture model consta®),(2.
while the subsequemflaximizationstage attempts to optimise the components and mixing pa-
rameters themselves by using the values of the 'missing datained in the expectation step
just performed (2.10), (2.11). The method then alternatee/den the two steps until some

termination criteria is satisfied.

% = —g PUi[©,) (2.9)
Yot e P(Vi|©c)
K
a, = D=1 Phe (2.10)

K
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0. = M (2.11)
Dkt Pk

As atermination criteria we have adopted a lack of changsamtean error when the Mixture
parameters are applied to the original data. In the casecbfapplications, where the parameters
of the Mixture models are required for the purpose of classtifon, the process is usually stopped
quite early, when the reduction in the Mean Error in 2 sudgesterations is not significant.

Mixture models used for classification make use of both, thetiMe parameters and the
posterior probabilities over the components, there used to evaluate the likelihood in the
space of the vectors in the Reference Sequence as in (2.12¢ WKE,) represent the prior
probabilities on each index

P(H{Vigs) = ozt P10 P(Vos|©0) (2.12)
> b1 2omy P(Vie) 2kt P(Vobs | ©c)
The Maximum Likelihood Estimatioapproach is used to obtain the matching vector, the

indexk*, in V that best describes the vector to be matchégd,

P(k = k"[Vons) = max P(k|Vons) (2.13)

2.3.2 An Application of Bernoulli Mixtures to a Toy Problem.

To obtain a feel for the Bernoulli Mixture model, two toy FIMsegresented in Fig. 2.2. As was
explained earlier, a row in the Feature Incidence Matrixates a single feature. Each column
denotes a particular vector. The presence of a feature icaitedl by a black square and the
absence by a white square.

For simplicity and ease of visualisation, both the toy FIMs areated from two distinct
combination of features. Each of the two combinations isragiement of each other meaning
that the features that are present in one combination angresént in the other.

The FIM at left is easily recognised as being composed fromnabination of two distinct
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vectors, each of which is a complement of the other. The featare perfectly (and consistently)
correlated. These complementary vectors would be the &gbeesult when the FIM is modelled
as a Bernoulli Mixture model.

The FIM at right is identical in layout to the left FIM, but, this case, some features have
flipped in order to simulate the presence of noise. If this FMilso modelled as a mixture
model, one would still expect to see the original vectorshasnhain components given that the
'injected noise’ is quite small.

The two FIMs can be modelled as a Bernoulli Mixture model whzsm@meters are given by
the EM algorithm. The left FIM in Fig. 2.2 was modelled usimgptcomponents since it has
been obviously created from two different column vectorsah attempt to gauge the effect of
the added 'noise’, the right FIM was modelled using a Mixtaredel with four components.
Note that a greater number of components could be used, lnutdonponents should be able to
demonstrate the effect of the small amount of noise.

After running the EM algorithm for Mixture Models, with twond four components respec-
tively, component with values as shown in Table 2.1 and Tald&nd the mixture coefficients as
shown in Table 2.3 and Table 2.4, are obtained respecti®slgan be seen, most of the layout of
the noisy FIM is explained by componertds and©; (the original components in the noiseless
data) and the distribution of these components is quitdairto the corresponding components

for the noiseless FIM.

2.4 Real Features for Place Recognition

If we return to our localisation problem as described inisecR.2, and take each (column)
vector in the FIM to be a vector obtained during the Environtrfeamiliarisation phase, then
the parameters of the BMM allow us to retrieve the index thahast similar to the currently
observed viewy,;,.

This section and the next presents results from experinparfermed using a 'Robuter’
robot platform by Robosoft and a Segway RMP 200. A LRF and two tami~irewire cameras

have been added as in Fig. 2.3. The forward-looking camerag€e#1, looks in the direction of
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(b) FIM for Noisy Samples.

(a) FIM for Noiseless Samples.

Figure 2.2: Sample binary FIMs, where the FIM at left showsteres sampled from two pop-
ulations. The FIM at right shows the same vectors with sonteddoise (the binary features

in some vectors have been flipped). The black squares (véalli®pindicate the presence of

features.

Figure 2.3: Arrangement of sensors on the Robuter mobiletrplasform. The sensors used
in this work include the forward-facing Camera #1, the ldtéaaing Camera #2 and the LRF

mounted on the front of the robot.
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Table 2.1: Components for noise- Table 2.2: Components for noisy FIM shown in Fig.
less FIM shown in Fig. 2.2a 2.2b.
©1 | O

1] O O] O] O3 | 6

1] O 1 1| O 1

1] O 0.90 1, 0 1

1| O 0.90 1, 0 1

1| O 0.90 1, 0 1

1| O 0.90 1, 0 1

0| 1 0.90 1, 0 1

0| 1 0 0[091]| O

0| 1 0 0[091]| O

1| O 0 0[091]| O

1| O 0.90 1, 0 1

1] O 0.90 1, 0 1

1] O 0.90 1, 0 1

0| 1 1.00 0| O 0

o 1 0 0| 1 0

0| 1 0 0[091| O

0| 1 0 0[091| O

1] O 0 0[091| O

1] O 0.90/ 050 0 |0.44

1| O 0.80 1, 0 1

0.90 1, 0 1
Table 2.3: Coefficients for noise- Table 2.4: Coefficients for noisy FIM shown in
less FIM shown in Fig. 2.2a. Fig. 2.2b.
aq 8P
0.52| 0.48 Qp | Qy | Qa3 | Oy

0.44] 0.06| 0.48| 0.02
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K (Index of sampled views)
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(c) Scan 77 (d) Scan 107 (e) The binary Feature Incidence Ma-
trix.

Figure 2.4: Representative laser range scans from a Refe8ecence of 118 scans taken along
a Hallway. The Feature Incidence Matrix created from théuies extracted from the 118 scans

taken is also shown.
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K (ndex of sampled views)
— 5

e g . o

F(Features)

A =

(c) Image 40. (d) Image 63. (e) The binary Fea-
ture Incidence Ma-
trix.

Figure 2.5: Seen here are four representative images freguesace of sixty seven images taken
by Camera #2 as the robot moves inside a large room. The figughats the resultant Feature

Incidence Matrix, FIM.
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robot motion while the lateral camera, Camera #2 is mountadafficient height to view posters
and other texture appearing on the walls of the building. ddmeeras are capable of taking VGA-
sized images and the SICK laser range finder provides a setlofaB@je measurements taken
through a 180 degree interval.

SIFT features were extracted from images captured from Camikrand Camera #2 and
various types of features were extracted from the LRF. Thegoree of a particular SIFT feature
in a particular view is indicated with a binary value of '1’.h& background on SIFT features
and the details of the implementation in a library developethe course of work performed
on this thesis is detailed in Appendix A. In Fig. 2.5 a few iraagecorded by Camera #2,
while travelling within a large room are displayed. The esponding FIM for the SIFT features
extracted from the whole set of sixty seven images is showrign2.5e.

In the case of the Laser Range Finder, a number of differettifeswere developed and
utilised in the same fashion as the SIFT features from casnddatails about the various fea-
tures and how they are represented as binary features dweedcin Appendix B. Previously
developed algorithms that allowed segmentation of dé@dpenings were extended and the ex-
tracted doors were classified according to their distara@ the robot, resulting in the creation
of new features. New feature extraction algorithms wereslbged to extract and classify walls.
In a novel application of image description techniques, Hahmant vectors were created from
the profile of the Laser Range Scans and used as features.

The features that are continuous valued, are discretisgtthardiscrete values converted into
binary representation as discussed in section 2.2. Deseedtied features such as counting the

number of walls and doors, are directly converted into afyin@presentation.

2.4.1 Bernoulli Mixture Model applied to View sequences from a Single
Sensor
The SIFT features from a single sensor (Camera #2 in Fig. 2e33@verted into binary form.

These SIFT features, extracted from a sequence of imageés$dehe creation of the FIM. The

technique described in section 2.3 is employed to modeHRihkas a Bernoulli Mixture model.
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Two modifications that make the calculation of the mixturedeldeasible for the large num-

ber of features are are available. These are

1. The distance or metric between a component and a view ¢slleg¢d using a modified

expression described below, and

2. Only visible features from the FIM are used at any momewttoulate the BMM param-

eters.

When features measure in their thousands, it becomes necégssapose limits on the
probabilities obtained from the Bernoulli distributions this case the value that the elements
of the components can take is restricted tand1. The purpose behind this idea is that, among
thousands of features, it does not matter whether the pildpatb a feature appearing i$0% or
95%. The expression for calculating the likelihood becomes4Rinstead of the earlier (2.4).
The cosfterm is a penalty term for featugewith values between and1. It should take values
close to0 for invisible features and values closerltdor visible features. The expression that
was developed independently during this work was found tguae similar to one of the models

proposed by Nadif and Govaert in [Nadif 98].

P(Vobs|Oc) = Hjil(cosy)‘jvobs—j@c|(1 — costy)(1=lsVors=30¢)) (2.14)

For as short as a 100-meter-long stretch of indoor environrtiee system yielded a few
thousand of features from a sequence of images obtaineddaigingle camera. Instead of using
all the features, visible and invisible, in the FIM it was falto be more advantageous to use
only the visible features whilst calculating the parametrthe BMM. The calculation of the
parameters is much quicker (due to the smaller number obtipes required in the EM) and the
parameters are more stable. In a personal communicatibnAkliins Juan, one of the authors
of [Juan 04], this was put down to the possible difficulty af 8M algorithm to overcome local
minima. The problem of local minima is more serious in higtenensional (more features)

problems. Better results in terms of faster convergence eBiM parameters and a lower
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error of the parameters were obtained by using the redudéd(ébtained by using only the
currently visible features) to calculate the BMM paramet@ve have also reason to believe that
that the visible features contain greater information tennvisible features as depicted in Fig.
2.6.

By ignoring the visible features in (2.14) and by keeping teegity term constant across the
features cost, equation (2.15) is obtained, where coss tedaees betweet8 and0.95. Thus, at
the completion of each maximisation stadegenerat®ernoulli Distributions where the vectors

contain either zeros or ones are obtained.

P(Voy|©;) =TI (cospliVers—5© (2.15)

Is feature;
present?

Is featurei
within
range ?

Is feature i
within
view ?

(invisible

Figure 2.6: An invisible feature is more difficult to explgimore data is needed) as compared
to a visible one. While the features that are currently itkestdo contain useful data, using only
visible features will require comparatively less data.

The entire procedure for comparing a sensor view with theéuredncidence Matrix can be

described as in Algorithm 1. The failure to successfullyanitthe parameters of the BMM,
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results in the setting of the posterior probability of thetchéng as an uniform distribution.

The initialisation of the hidden datd is performed by assigning some percentage of the
components ir® to the views in the FIMV}. As such these components partially reflect the
the composition of the views to which they have been assigiiée remaining portion of the
components i are initialised randomly. In this work, no automatic adent of the number
of components is performed. The number of components isqusly fixed and restricted to a

fraction of the number of views.

Algorithm 1 Evaluation of the posterior probability of the comparisdéa@iew with the Refer-
ence Sequence

Vs = current view (binary column vector).

FIM =Feature Incidence Matrix correspondingioviewsV,, from the Reference Sequence.
©; % C' components of the BMM, initialised with random parameters.

a = % % C' mixture proportions, initialised with an uniform distritoon.

Z; hidden data withC' rows andK columns.

N = 0; number of iterations of the EM method.

cost= {0.8,0.95}; cost penalty term set betwe¢.8,0.95}.

P,..s = oo; residual probability of view match using current BMM parders.

while (Pes < €.¢5) dO
- a; P(V|©:)
ki L1 @i Py (Vel©;)

K ) .. .
o; = Zk:lek %Calculatery, Parameter Maximisation Phase
K . - . -
0, = Zi=2kiVos opCalculated, Parameter Maximisation Phase

ZkK:1 Zki
Pres =1 — P(Vys|O;) = Hle(cosg\j%bﬁ@il %Calculate residual error
if N = N,,.. then
P(K|V,s) = +; for all k % set uniform posterior

%CalculateZ, Expectation Phase

EXIT
end if

end while o

P(k|Viys) = zfzfilg fff;?;};gjjjjggij@d % Calculate posterior probability

EXIT

Mixture models were created for a FIM obtained from the RefeeeSequence of sixty seven
images taken with Camera #2 in the Mobile Robotics LaboratbttyeaDepartment of Mechan-
ical Engineering, see Fig. 2.5. The posterior probabditbtained from images captured while
leading the robot over a similar path are shown in Fig. 2.7esEhposterior distributions are

defined over all the views contained in the FIM shown in Fi§e2 Although the posterior prob-
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ability distribution is not always very narrow, the methodrks remarkably well given that the
images in the Reference Sequence are taken with so muchpaedahave so much in common
with each other.

The SIFT features work very well and allow the successfubvecy of the views in most
cases. For some views, however, e.g. in attempts 5, 7 anc &irigle sensor is simply not
able to match sufficient features for a successful view indervery resulting in imprecise and

sometimes erroneous view index recovery.

2.4.2 Bernoulli Mixture Model applied to View Sequences with Multple

Sensors

The technique described in the previous sub-section has édended to the case where the
features arise from different, even dissimilar sensorsnlexperiment that was performed using
three sensors, two cameras and the Laser range scannenghefbatures from the three sensors
are combined in the same FIM.

While the earlier subsection demonstrated the usefulndssafy features when these origi-
nate from the same sensor, this section demonstrates theadiom to robot platforms equipped
with multiple sensors. Once again, the results are predentthe form of the posterior prob-
ability distribution over the views in the Reference SeqeeniRepresentative images taken by
Camera #1 are shown in Fig. 2.8, those taken by Camera #2 ar@shdwg. 2.9 and corre-
sponding scans taken by the laser range scanner are showgn 4

The results of matching are good, given that no additionaktaint was imposed on the
matching and that the prior probability for matching any geavas assumed to be uniform. As
seen in Figs. 2.11b and 2.11c, while the features from Canfeemd Camera #2 are not very
useful, the features from the laser range sensor help pecagood estimate when combined
with the other sensors. In the case shown in Fig. 2.11a tleepoe of many unique features in
Camera #2 help us to recognize the place correctly.

The effect of using the single camera over the entire Refer&aguence can be seen in Fig.
2.13a.



2.4. REAL FEATURES FOR PLACE RECOGNITION 53

Image 1 I-..,-‘ :
Illlllll'l||lll'|l l'llll llll'llllll
9 10 20 30 4 50 60 7
mage2 i & & F & i
Pty LI | ] 1 L B rt I 1
2 10 20 30 = 30 g0 20
Image3|i N ' ' ] |
IS I R LB L LA B (L ANLE E LA L LR |
IEI J:I'.I E 30 l'll S0 ﬁ.ﬂ ?‘ﬂ
Image4|i PN ! ! ] E
M T T[T rr [ rrrr[rrrryrrrrrrrrr]
! 0 e ta o e % %
Image 5 [ Lo ; P ;
LI L 1 1 ) L I 1
: - == == = te = —
Image6|: i P oA : : ; 5
r|_|_|_|_|_|_|_|_1_|_|_1_|_'_'_'_|_._1_l_1_ﬁ_rl_l_'_l_rl_rl_'_r'
- o - - o - = 2
Image7|§ +; A,
L PR AL LR SN LN LI N LR R |
: 2 2 * * .2 % 2
Image 8 |; i E RPN 5 E
———————— e ——————
ARMATAMMAF WRARE AAF YAASF YAASF VIARY
Image 9 |: ! : AL : E
7 N L R N T —
# n 2 P 4 2 5 2
Image 10 | : N : : : :
r LA L NI B N [ N B B I N B B B LN BN I T 1
9 10 39 0 - - L 70
Image 11 |} i : : A : E
LA N R IR [ L LN [ R e |
0 10 20 30 40 50 60 70

Probability over images of reference sequence

Figure 2.7: The figure shows plots of the posterior probgfdlistribution over each of 67 images
that are included in the FIM depicted in Fig. 2.5. The proligtis plotted on the y-axis and the
x-axis represents the index of the Reference Sequence view.
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(c) Image 77. (d) Image 107.

Figure 2.8: Representative images from a sequence of 118 lgk€amera #1 along a hallway
for the experiment demonstrating the use of multiple semsaction 2.4.2.

s -

(a) Image 19. (b) Image 29.
(c) Image 77. (d) Image 107.

Figure 2.9: Representative images from a sequence of 118 lgk€amera #2 along a hallway
for the experiment demonstrating the use of multiple semsaction 2.4.2.
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Figure 2.10: The Feature Incidence Matrix for features fittn Camera #1, Camera #2 and
LRF.

The effect of using the two additional sensors in the regogéthe view index over the entire
Reference Sequence can be seen in Fig. 2.13b. It can be sé#retieaare now fewer views at

which the place recognition is not achieved, as comparetoX13a.

2.4.3 Bernoulli Mixture Model applied with a Prior View Probability Model

Until this point each view in the FIM has been assumed to bé-galable. This is the case
of the uninformative prior for place recognition. The prbligdy on each viewk is defined as
P(Vy). The termsP(V}) in (2.12) is the prior probability that,,s is actually the same as a
particular viewk in the FIM and up until this point thi$*(V}) has been taken from an uniform
distribution.

If some views were more likely to be observed than others,ddditional information, the
prior probability on each view, th& (1) term in the right hand side of (2.12) might aid place
recognition.

To obtain this prior probability for the next view, a simplaiot motion model that updates

the probability on every view can be used. This model assuhashe probability of being at
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(c) For Image/Scan 52 of working sequence.

Figure 2.11: Results showing the posterior probabilityrdistions over the views of the Ref-
erence Sequence for another sequence with different catntms of sequences. Each figure
shows the result of the application for single camera Cameréo# Camera #1 and the LRF, for
the Camera #2 and the LRF, for two cameras Cameras #1 and #2 atlg, for the Cameras #1

and #2 and the LRF.
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any view after localising at a particular view is a functiontlee estimated amount of elapsed
time or distance since the last place recognition attempt.

This probability comes from two distributions: the firsttdilsution models a smooth transi-
tion to neighbouring views in subsequent observations hadécond distribution tries to regu-
larise the prior probability to account for an erroneous/jaas place recognition result and to
recover from a robot 'kidnap’.

Given the ready availability of odometric data from the rolibe distance rather than the
time was used as the parameter for the first distribution.s @stribution displaces the cur-
rent probability distribution on the views directly progional to the distance covered since the
last observation and with an uncertainty inversely prapodl to the same distance covered, as

described below.

Probability of —
current view, P(V,, )

Prior

Index of views in the FIM,k —

Figure 2.12: Prior probability distribution on the viewstihe Reference Sequence after the robot
after has moved since the last observation.

The second distribution that contributes to the prior isiéoum, non-zero, probability added
to all the views to reduce the effect of erroneous past placegnitions (2.16). This probability
also reflects the prior that must be applied to the place r@tog given that the robot is lost. A

genericLost_Place refers to the robot starting out from an unknown place.

1
P(K'|Lost_Place) = 7 for all k (2.16)

The probability is then defined as a weighted sum of the abwealistributions as in (2.17),

whereq,., is a parameter. The value aof., reflects the reliability of a localisation estimate
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obtained from the motion model and lies betw@eand1. The resultant prior probability distri-
bution for the current view, on all the possible views in th®lFafter the robot has moved since

the last observation can be seen in Fig. 2.12.

P(K") = ey X P(k'|dpdo) + (1 — qreg) X P(k'|Lost_Place) (2.17)

The improvement in the recovery of the view index over thererReference Sequence can
be seen in Fig. 2.13c. The probability is concentrated digtely around the correct views as

compared to the earlier case in which no model for the robdianaevas utilised.

2.5 AnlInsightinto the Information Provided by Multi-feature

Views

The Localisation within the Reference Sequence might beedefrom an Information Theory
approach (see [Cover 91] for an excellent introduction tordmiation Theory). There is a un-
certainty associated with position occupied by the robdh@Reference Sequence. Each View
provides some information in the form of multiple featuresattcould potentially reduce some of
the uncertainty of the location within the Reference Segeenc

LetV denote a generic view in the Reference Sequence and it cathtakalued/;, V5, ...V
denoting one ofx” distinct and detectable Views in the Reference SequencepiEsence and
the absence of individual features within eacls correlated with the positioh of the robot in
the Reference Sequence. This correlation may not be pedeeMer (the function that expresses
the values of the features in terms of the view number is rjetiive), indicating that the same
combination of features might be obtained at more than oae Vj, in the Reference Sequence.
The 'mutual information’ ternd (Vj; k) denotes the overlap of information betwdémandk, i.e.
it specifies how much the appearance of Vigweduces the uncertainty of the robot position
k. The way in which individual views can contribute to the retion in the uncertainty of the
position within the Reference Sequence is shown graphicafyg. 2.14.

From the image in Fig. 2.14 it can be seen that the best resiilte obtained when the
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Figure 2.13: These figures present an overview of the residésned in sections 2.4.2 and 2.4.3.
The figures show the posterior probability distribution otlee Reference Sequence when the
robot is driven along the same path over which the Referengae®ee was obtained, a second
time.
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H(K)

HVIK) | 1v1;K)

1(V2;K) H(V2| K)

H(V2)

H(V3| K) 1(V3;K)

H(V3)
H(V4| K) 1(V4;K)
H(v4)
1(V5;K) H(V5| K)

1(V6; K) H(V5)

wo | |

Figure 2.14: Multiple features potentially allow a redoctin the uncertainty in the Localisation
within the Reference Sequence. This figure describes howidhdil features's might aid in the
reduction ofk by being correlated with different parts of the distribuatiaf £ (different views of
the Reference Sequence)

information provided by each of the views overlaps the least

2.6 Summary

Robust place recognition has been obtained by resortingigps@iews containing a large num-
ber of features. It is important to highlight that the roletioé Bernoulli Mixture model in this
work is to reduce the dimensionality of the views and to descthe environment in some re-
duced 'space of features’. It should be easy to view thigzatibn of a mixture model as part of
a solution to the generalised 'Data association problem’.

The addition of multiple sensors improves the place redcagncapability of the robot im-
mensely. In the example described in the earlier sectidifg, features seen by forward-facing
Camera #1 and located deep in the hallway persistently appdae views and crowd out less
salient, but possibly more useful, features appearingegpéniphery of the images. In situations
where localisation using this sensor fails, features froom&a #2 and from the LRF still allow
for successful place recognition.

The place recognition method described in this chaptetstadithe features in the same way.
The Bernoulli Mixture model works by apportioning the indival components between blocks

of features so that the variation can be accommodated. lprése=nce of features from multiple



2.6. SUMMARY 61

sensors, the components of the Bernoulli Mixture Model apeeislly sensitive to the much
larger number of vision features (numbering in the hundpeatsmage) as compared to the LRF
features (each scan results in a few tens of features).

While the results seem to be promising and sufficiently rofmrstpplication to localisation,
improvements to the method are still required. In particuteethods to reduce the number of
features, before application of the EM algorithm will reésalthe reduction of the time required

to calculate the parameters of the BMM.
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Chapter 3

Sequential Context of Views on a Path

3.1 Introduction

In chapter 2 the approach utilised to represent a view usimayyp features was presented. This
approach utilised the information associated with magaisingleview against the Reference
Sequence to infer the location of the robot. But the Refereecggi&ce can yield additional in-
formation, information that is implicit in the "order’ in wth the views occur. This chapter aims
to extend the method in chapter 2 by modelling this sequienttier of the Reference Sequence
and then simultaneously matching multiple views. The ughisfcontextual’ information of the
Reference Sequence is depicted in Fig. 1.11. This chaptes aea@answer to the second question
posed in section 1.3.1; How can the information that is ishein the order of the sequence of

observations aid the inference of the position of the robtthé Reference Sequence?

The information contained in the sequential context of théeR@ce Sequence is useful
because, by using a single view, it might not be enough tamhisguate between similar places
lying on a Reference Sequence. If a sequence of current viens de used for localisation,
the problem in chapter 2 modifies into a problem of aligning gequence, called the query
or localisation sequence, with sections of the Referencee&eg. The method that is used to
model this additional information, a Hidden Markov Modeljlwexploit the sequential context

information in two ways:

63
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1. 1t will provide a consistent framework to use the priormability of matching each view

in the Query Sequence, and

2. Consequently, it will prevent inconsistent or unfeassi@etions of the Reference Sequence

from explaining the sequence of views in the Query Sequence.

Over the next few sections of this chapter, the problem obvecng the current position
of the robot in the Reference Sequence is modelled in termsvafilsknown and often utilised
version of a Bayesian Network, the Hidden Markov Model (HMMh original layout for the
Markov Chain that is used to represent the hidden states iHMé was developed.

Most autonomous robot localisation systems assume thaiuimder of possible changes in
the position of the robot, between observations, are fimtethat future positions that could be
occupied by the robot are predictable (probabilisticgtigaking). These systems assume that the
robot motion is governed by a motion model and this model @uoded to provide an estimate
of the prior probability of the robot being at different péscin the environment, just prior to
making the next observation.

Usually, the distance covered by the robot since the lasivkngosition, as measured by
the odometry or inertial sensors, is used as an unbiasedatsti of the distance between the
states. In the section 2.4.3, the distance covered by th& sibce the last observation was
utilised to generate amformativeprior distribution that improved the place recognitionuies
of each fresh observation (view). The motion model that waised in that section set the prior
probability of the robot being at a particular place accogdo the distance covered by the robot
since the last observation, Fig. 2.12.

This approach is actually using the sequential contextrimé&tion that exists between pairs

of views when these are matched against the Reference Sequdns happens thus:
1. The robot is assumed to be lost before the first observation

2. The posterior probability after the first observation Idained by applying the uniform
prior in (2.12).
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3. After the robot has moved and just before the next obsenathe robot motion model
is used to alter the posterior probability at the time of & lobservation to provide an

informative prior probability for the new observation.

4. The posterior probability is obtained by applying theoimfiative prior once more using
(2.12).

5. Repeat from 3.

An extension of this procedure is desired so that a queryesemguthat is longer than 2
observations.

In the next section a review of the application of HMMs to aotheeas, not related to robot
Localisation is presented. In section 3.3, details regardihe calculation of the parameters
required to model the Reference Sequence as an HMM, nametyathstion between hidden
states and the probabilities of observation will be presenin section 3.4, results are presented
with emphasis on the comparison with the results of placegeition without resort to HMMs.
Finally, a discussion about why the HMM is an appropriate eiddr use with the Reference

Sequence is initiated.

3.2 Sequence Matching using Hidden Markov Models

A Hidden Markov model (HMM) is a stochastic model of a procitsd can take a fixed number
of mutually exclusive states. These states are taken t@smond to the hidden nodes of a
Markov chain. The system is measured at a finite number cdmacsts, where the time variable
takes some discrete values.

As depicted in Fig. 3.1, the initial state is the state of thecpss at = 1 and the final state is
the state of the processiat= T'. At every subsequent time, betweeand’, the system jumps
to another state or remains at the current state. Transidomrepresented as arcs between the
nodes and there is a probability associated with each saokition, called the state-transition

probability. Impossible transitions between nodes havebability of zero.
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Figure 3.1: A classic representation of a HMM for Localisatin a Reference Sequence showing
the [same] action that will propel the robot from one statariother until it comes to staté,
the current state.

While the system occupies one of the mutually-exclusiveestat any one of the intervals
from 1 to 7', this fact is not visible and the states are said to be hidd¢mwvever, an output
measurement is produced for each time T and this output eredisle. The sequence of output
vectors, O =(4, ..., O7), is referred to as the observation sequence. This arraggerhhidden
states and observations, seen in Fig. 3.1, is referred toeablbore model as opposed to the

Mealy model in which observations are visible during th@sraons between the hidden states.

A= <N7 M, {WZ},{CLU},{Z)Z(TL)}> (3.1)

The notation used in Rabiner’s [Rabiner 89] tutorial on HMMs $peech recognition has
been utilised. The parameteksof the HMM are specified as in (3.1), wheié corresponds
to the number of possible state§,the number of observation symboisyepresents the initial
probability on the states, the;s correspond to the transition probabilities between agiatates
i andj andb;(n) represents the probability of viewing symhoét statei. Rabiner [Rabiner 89],
also specifies three basic problems to be solved with HMMsepoduced in Fig. 3.2. This
chapter deals with the second type of problem: what is thiegirie path (defined in terms of the
sequence of views in the Reference Sequence) that the radotigiwen what the robot has seen

so far?
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Problem 1:  Given the observation sequence O = 0, O,
~ == Of, and a model h = (A, B, n), how do
we efficiently compute P(O|)), the proba-
bility of the ohservation sequence, given the
model?

Problem 2: Given the observation sequence O = O, O,
+++ Oy, and the model A, how do we choose
a corresponding state sequence Q = g, g
-+ = grwhich is optimal in some meaningful
sense (i.e., best “explains” the observa-
tions)?

Prablem 3: How do we adjust the model parameters
= (A, B, w) to maximize P(O|A)?

Figure 3.2: Rabiner’s [Rabiner 89], description of probleorsHMMs.

3.2.1 Application of HMMs to Robot Localisation problems

In the field of Robot Localisation, probabilistic methods é@&ecome the de-facto standard given
their flexibility and the development of Bayesian Inferenagimods that have popularized the use
of Bayesian Networks. Although it is quite impossible to ax$tavely mention even the most
important contributions in the field, the following workseamentioned because of similarities
to the work presented in this thesis [Kosecka 04] [Theoalzl] [Rachlin 05] [Nikovski 02]
[Fox 99].

3.2.2 Application of HMMs to problems unrelated to Robot Localisation

One of the earliest application of Bayesian Networks in theenfof HMMs was to solve the
problem of speech recognition. Rabiner’s tutorial [Rabirfréntinues to provide a good in-
troduction to the problem of speech recognition (and to gmieation of HMMs in general). The
area has also seen the application of a number of modificatmthe vanilla HMM to account
for the complexity of the problem and the robustness thagsiired of any successful applica-
tion. Modifications include the use of continuous variableation HMM [Levinson 86]. The
recognition of passages of music or the retrieval of the detapmusic using a shorter passage
is another extension of this problem [Pikrakis 06].

Recognising what is written by one person or by multiple pesdwand is a difficult problem
because of the ambiguity that is introduced in the actuaimgiprocedure. Besides errors in

the spelling and the variations that are due to the persaingdoal style of writing, there is the
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difficult problem of identifying where a character ends arigtve another one begins. Besides the
methods developed originally for speech recognition, gpe bf technique that has resulted in
considerable success in the recognition of handwritingassb called Variable Duration HMMs.
In the handwriting recognition applications this techmcpllows for increases in the distance
between hand written characters [Chen 95]. Other extensibtise variable duration HMMs
can also be viewed as more complex Bayesian Networks [VIeri2h These techniques are
built upon variations of the vanilla HMM model to perform axpécit modelling of the duration
for which the system remains at the same state and allow éousk of larger dictionaries and
impose fewer restrictions on the handwriting styles thatlmarecognised [Kundu 98]

The importance and sheer scale of the Human Genome Mappopecpprovides another
example of the importance of the application of HMMs in Biojog he problem of matching
described earlier is known in this field, of Bio-informati@s theprotein sequence alignment
problem. While there have existed alternatives to the HMMijg-dbased methods such as pair-
wise matching and Neural-Network based methods, HMMs ‘nowide a coherent theory for
profile[matching] methods’ [Eddy 98]. With the human genceoenpletely sequenced, profile-
based (HMM) methods have often been used to compare a DNAesegs! of as yet unknown
function with others having known function [Conant 04].

The problem of sequence alignment of protein sequencealgchears much resemblance
to the problem of robot Localisation within a sequence ofeoiations. These are enumerated

below:

* A protein sequence, as in the case of the Reference Sequerseen as a first-order
Markov Chain where only the symbol sequence (correspondirtiget view sequence) is
visible. The chains are modeled as directed (left-to-)iginaphs, where the transition

between 'consensus nodes’ are represented using a toangitbability Matrix.

* Profile HMMs allow the incorporation of information regard the predisposition of pro-
tein sequences to contain spurious sub-sections (cakedtions) as well as missing pro-
teins (called deletions). Given that the Reference Sequemmemposed of sampled views

of the environment, insertions are expected in between igesvin the Reference Se-
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guence. Additionally, limitations in the perception presgincorrect executions of the
required behaviours, and possible changes in dynamicamignts might result in an

unmatched (reference-sequence) view.

* Profile HMMs are suited to short-term correlations in thens [Eddy 98] rather than long-
term correlations. This would be analogous to applying tMM$ to detect Localisation

using short-term correlations but not to the problem of lotgsures.

* As in the case of the localisation with the Reference Sequpnablem, the profile HMM
method forces us to assume what would be the emission piiiesbior the insertion
states. The insertions are assumed to result in any of theswiethe Reference Sequence

with a uniform probability.

3.3 HMMs applied to Place Recognition in the Reference Se-
quence

At this point, we formalise a concept of the Reference Sequeasca connected graph. Each

place in the environment that produced a view in the Refer&erpience is represented as a

node in this graph.

CO= - =) = ()

Figure 3.3: This figure depicts Reference Sequence in thedbenteft-to-right graph composed
of * K’ views in the order in which they were sampled during the Emwnent Familiarisation
phase.

Transitions between the places are indicated by edgesdhatct pairs of nodes. The Ref-
erence Sequence was created by leading the robot along i plaghenvironment. As a result of

this procedure, the graph is connected in a special way. E@id¢yplace in the graph is connected
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to two other nodes/places. When we consider the sequendiet of the Reference Sequence,
there is one edge that could bring the robot to a particuldefpdace and another that takes the
robot to the next node/place.Such a graph is called a straiglected graph or a left-to-right
graph as depicted in Fig. 3.3.

(...to...k)

OO

0
0
0

(From ...k)

0 00 .. 1

Figure 3.4: The single-step transitional probability mator the Environment Familiarisation
phase indicates a single known transition between viewdamepk along the Reference Se-
quence.

In this left-to-right graph (with no loops and overlappindges), a transition probability
matrix can be created to account for all the possible trmmsitbetween places/nodes in the
graph. During the Environment Familiarisation phase, wttenrobot moves along the path
which generates the Reference Sequence, the transitioalpligh matrix might appear as in
Fig. 3.4 since the only information that is known is the s@agtep transitions that are possible.

During localisation, the robot attempts to repeat thegssstti@ans as it moves along the path.
This might not always be possible since the robot might skytaae and find itself situated at
a node/place that lies later in the Reference Sequence. $hefrthis chapter addresses these
problems by proposing modifications in the left-to-righagin and detailing the application of the
Hidden Markov Model, to find the most likely place in the Refeze Sequence that is currently
occupied by the robot.

The sequence of observations that is currently availabwaich must be matched against
the Reference Sequence is called the Query sequence or thkshtion sequence. These terms

have been used interchangeably in this chapter and in thefréss document.
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The HMM has been applied to mobile robot localisation by gdanumber of researchers.
Its popularity has been due to two convenient propertietsdtia be incorporated in the HMM.
The first property is that the position occupied by the rolaot lse modelled as a hidden variable
(not directly observable state) which must be inferred ftbmoutcome of another, observable
variable, the sensor data. The second property is thatithdeh variable is assumed to have the
Markov property, where future states that the system oesugnie dependent on the current state
and independent of past states. The first property is usdfahwe assume that sensor data at
each point is not unique as a result of which a prior probgagirequired to make the inference
of the robot position. The second property applies quité iwehe problem of robot localisation
since a robot will usually move smoothly in an environmetis klso desirable because it makes
the whole inference problem tractable by not requiring pasttions to be considered.

A problem with the application of HMMs that is often not adsked by robot localisation
systems is that the HMM might not make unbiased estimates Wiesensor data at different
places is highly correlated. The fact that a first-order Marklodel cannot, in general, capture
the relationship between two observations [Dietterich@#} pose a problem in Mobile robot
Localisation. In our method, the dimensionality reductioethod that has been previously em-
ployed to capture the correlations between the views in tHerBece Sequence in chapter 2
is re-utilised as the observation model of the HMM. Thisisaition of the Bernoulli Mixture
model, BMM, as a dimensionality reduction method is expetetkal with the above problem
and reduce its severity.

In subsection 3.3.1, the way to create the Reference Sequiesbewn. The application
of a Hidden Markov Model (HMM) to model this sequence so th&@ymamic Programming
algorithm, the Viterbi algorithm, can be used to match theeotation in the context of the

Reference Sequence is shown.

3.3.1 Modifying the Graph of States for Place Recognition

The creation of the Reference Sequence during the Envirariraemliarisation phase was previ-

ously defined as a sampling procedure. Itis important tothatigthe place recognition procedure
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is also a sampling procedure. The 'sampling rate’at the tfh@calisation may be different from
that during the Environment Familiarisation phase. Theugitipn of views might be controlled
by the distance travelled by the robot- a noisy quantity thabt always controllable in certain
environments. Additionally, the Reference Sequence asstimaéa behaviour executed at each
view propels the robot to the next view in the Reference SerpieActions other than the one
executed in the Reference Sequence will result in the roleigehings differently as compared
to the Reference Sequence. A view-based localisation métin@drobot must recognise when
the robot is lost.

Keeping this in mind, the Markov chain that represents thegs in the Reference Sequence
in the Environment Familiarisation phase has been modiéaddiude additional nodes/places
and some additional edges or transitions. This Markov clsaiearmed the Original Reference
Sequence. The modified Markov chain for application to ligasion, with some additional
states, a fragment of which is shown in Fig. 3.5, is calleddbeplete Reference Sequence.

Any action other than the one performed in the Reference $egueill take the robot to
a some previously unvisited Place. To the original seikofodes, anotheK ' Lost_Places’
are added so that the possible values that the state canreakeva described in the discrete by
M = 2 x K, which includes the¥ originally sampled Places and ttié Lost_Places (there
is a Lost_Place before the first state too). As a result the HMM depicted in Bg3 will be
modified to Fig. 3.5. It is important to note that, if inferenis to be made across multiple
actions or behaviours, it will be reflected in terms of an@ased complexity of the graph in Fig.

3.5. The Lost_Places’ perform the following function:

1. They take into account the fact that the robot might sees/that are not included in the

Reference Sequence.

2. They indicate the last position at which robot was lo@iadirectly indicating the proba-

bility of the robot being lost.

The Complete Reference Sequence withlitst_Places is actually quite similar to some of

the models used for profiling gene sequences [Durbin 98].xamgple of a 'profile HMM’ used
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in such application is shown in Fig. 3.6. Theost_Places’ correspond to the 'insertion’ nodes

in the profile HMM.

3.3.2 Applying the HMM on the Reference sequence

The Hidden Markov model is completely defined in terms of tive¢ probability distributions:
the transition probability matrix, the observation or esios probability matrix and the initial

probability matrix.

Insertion or
Lost nodes

Views in the Original
Reference Segiemce

Figure 3.5: The figure depicts a modified Markov chain, witlvst_Places’ inserted within
the original Reference Sequence, to perform place-redognitThe dotted lines indicate the
transitions to each of the Places in the original Reference&ece which have not been drawn

to avoid cluttering the figure.

Begin - | | - Ecl

Figure 3.6: The figure describes a profile HMM [Durbin 98]. Tbeer-most layer of states
correspond to the 'main’ states, the diamond-shaped stapessent the ’insertion’ states and,
the circles represent the 'deletion’ states. The profile HdBbmewhat analogous to the Markov
chain used to represent subsequent travel along the Reéebegeience where previously unseen
views are observed.
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The transition probabilities on the places, thea;; s

The transition probabilities reflect the feasibility of niog from one place to any another place
in the Reference Sequence. The transition probability isydveonditioned on the possible be-
haviour that will take the robot to the next state or to on @& flvst _Places. The transitions
that are allowed from state are to the next state in the Refer8aquence and to tihest_Place
lying after the current state. If the robot is allowed to siéion from each place to the neighbour-
ing places and to the respectiest_Place, a transition probability matrix is drawn up, which
can be represented in terms of Fig. 3.8b, where white rept®adransition probability of 0 and
black a transition probability of 1.

A robot motion model is used to apply a probability on evergwias a function of the
estimated amount of travel that the robot has completedevpeiiforming a particular behaviour.
The probability on each view as P(V},) and the value of the probability on the view at any time
t is defined ag”(k"). The probability for each view, P(k') is then used as a prior probability
before actually matching the view.

A model that modifies the probability distribution of theemal state Fig. 3.7. The vertical
line through the bars indicate the value of the odometry aaioéd by the sensor. The wider
bar indicates the region in which the robot might be with leighuiniform, probability, while the
thinner bar indicates the region that the robot has crossedtarrived at with lower probability
though non-zero probability.

The first distribution displaces the current probabilitgtdbution on the views as in (3.2),
whered,,, is the distance covered since the last observationiénd ;) is the distance between

placei and;.

0 PG x i = 3)) (2% doss
P(i'|dogo) = = OZ;XP(;M%( e

if |d(i — 5)| < dogo
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Expected Distance covered =d1

| Il 1 |
Si éj ‘ Sk Sl sm  Sn %o

Expected Distance covered = d2

Si §j Sk S sm  Sn %o

Expected Distance covered = d3
Si 5 sk sl sm Sn So

States

Figure 3.7: A model that for the probability distributiontbie internal state.

P(i"|d,q,) = 0 otherwise (3.2)
P(K'|Lost_Place) = % for all k (3.3)
P(Lost_Place™|Lost_Place™) = 0 ...for all m## n (3.4)
P(Lost_Place'|Place'™) = 0.5 (3.5)
P(Place|Place'™") = 0.5 (3.6)

With regards to thelost_Places, the sequence begins With; s piace o Which indicates
that the robot is completely lost or has never localised.oAlsefore every original place,,
there is aPr,s: piace - By moving forward from ond.ost_Place , the robot can transition from
Prost_place_; t0 @any nodeP, wherek > 4. Similarly, from 7, the robot can transition tb;, : k > ¢
Or 10 Prost_piace i+1- 1he graph does not allow a single-step transition from Bng; piqc. i to

anothe rPLost_Place_j .
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The observation model, theh;(n) s

The Bernoulli Mixture model from chapter 2 is used as an olzemw model for the HMM.
The components of the mixture model are estimated and thierdwiew is compared to these
components. The Bernoulli Mixture Model when used as theroaien model, has two partic-

ularities:

1. The observations);(n)’ at each and every state of the HMM are defined in the same space
as the sampled views (3.7)from the Reference Sequence.sTimit & property of HMMs
but rather a result of the adoption of the Bernoulli Mixturedabfor matching pairs of
views. Since the posterior probability for the Bernoulli Mire Model is calculated in the
'space’ of the views of the Reference Sequence and not in theespf the components,

the observations have the corresponding number of eveimsias

2. Since the environment is sampled, not every observatigmtnibe assigned to a place
in the Reference Sequence. Thus, when the robot is betweeespiaat were sampled
earlier, it sees an un-defined view. This undefined view ieddhe 'Lost View’ and any
place that generates this view is defined adast_Place’ Fig. 3.5. In the absence of
any information, the observation probability is arbithaidefined over the sek™ at any
Lost_Place as an uniform distribution (3.8). This statement is madehenassumption

that the distribution of the features is maintained thraughhe environment.

Oi(n) € K (3.7)

1
bLost_Place_i (n) - ? (38)

In the speech analysis field, given a set of training sequercgtandard way of obtaining the
Observation Probability Matrix is to assume that they cgpond to a normal distribution, each
observation being centered around the symbol that is ploatigtmost similar to the underlying

states, see Fig. 3.8a. This approach is acceptable betmusekists previous information that
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the phonemes are reasonably distinct since they are dtilideuman language and do not come
from sound clips with an arbitrary sequence of frequenamesaamplitudes.

In the case of Place Recognition, it is not possible to endwakedifferent places in the en-
vironment will be sufficiently different. In this case thesgovation probability will be obtained
by comparing the sequence of views with itself. Additiopadiiven that each View can be com-
posed of hundreds of features, and given that the resultsatfimmg depend on which features
are absent, it is not feasible to take into account all thessiom probabilities for all combinations
of features.

The emission probability matrix has been created using talision that is based on the
similarity between views. Thus, if a view is different frort aethers, the emission probability
for a robot at a position giving that view is very certain. e bther had if a particular view
is similar to a number of other views, then the emission podita for the robot occupying that
place will be spread among the various similar views.

This distribution is regularized to ensure that matchinth @acur despite the fact that some

noise might exist in the observation vector.

The initial Probabilities State

At the start of the matching procedure or when the robot isptetaly lost, the robot always

departs from the first place.

P(Lost_Places)) = 1 (3.9)

It is natural that the probability at the beginning of the &ligation be concentrated in the
first Lost_Place, before the first state. Thus, the first hidden state is alwagiched to the
Lost_Place Pros piace o- This first Lost_Place has a non-zero probability associated with the
robot reaching each place in the original Reference Sequeecg,, P, ..., Px_1.

In the context of this work, where a mixture model is used toegate the observations,
the above arrangement has some useful properties sincecartation of the probability in

the first Lost_Place, PLosi_piace 0, f€SUItS in an uniform probability distribution over theapés
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1) Initialization:
&) =7b(Oy), 1sisN
Wili) = 0.
2) Recursion:
5(j) = max [5,_y(ab(O), 2=t=T
15iSN
1=j=N

WU’ - a{gm?\'x |5|-|(f)3.,]. 2 =t= T

1=jsN.
3) Termination:

P* = max [5:(i)]
1sisN
qr = argmax [8;()).
1=/=N
4) Path (state sequence) backtracking:
qr = Ve+1(Qrer) t=T=1T=-2-",1.

Figure 3.9: The 4 steps of the Viterbi Algorithm

Py, Py, ..., Pg_q for the Bernoulli Mixture model.

3.3.3 Estimating the likely sequence of Places

The Viterbi algorithm is commonly used in the context of HMMsletermine the most probable
sequence of hidden states that gave rise to a particulaesegwf observations. In the context of
the profile HMMS, where the HMMs are used to solve the problémdentifying substrings, the
Viterbi algorithm is employed to find the 'best alignment' tbe one with the highest probability,
between two fragments of a string.

The algorithm itself is a type of Dynamic Programming altfon [Forney 73], [Rabiner 89].
By focusing on only one hidden state at a time, the Viterbialgm calculates all the outcomes
that could be possible for that state - and then keeps onintse likely one. After traversing the
length of the HMM, the ’surviving’ sequence is the sequeheg s most likely to have generated

the observation.

The algorithm is described in terms of 4 steps in the tutdnaRabiner [Rabiner 89] and
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| Dimentionality | _ [Vocabulary of |
| reduction, BMM Places !
Multiple B R e e R )
Sensor Data — Jt i Recognised
——> [Bin Feature Match features Viterbi Decision rule, Place

—> > > -
Extraction in current View Decoding max liklihood rule

Figure 3.10: A schematic of the Algorithms used to perforacplrecognition

shown here in Fig. 3.9.

3.4 Experiments and results

The complete Place recognition algorithm is now built acbtiee HMM. The HMM used the
BMM as part of the observation model to perform dimensiopakduction. The schematic of
the process is depicted in Fig. 3.10.

The results of applying the Viterbi algorithm for a set of 4q# recognition experiments are
compared in Table 3.1. The Hidden Markov model that was 5r@htiens long. Only a single
sensor, Camera #1 has been utilised in the place recognipmrienents in this section so as to
illustrate the improvement in results obtained by using aNHNh the results presented in the
table, two Reference Sequences, taken at very differenstohihe day (consequently in differ-
ent lighting conditions) are used. As can be seen the pergerdf successful place-recognition
attempts varies greatly since they depend on the changesdta in the environment.

The results of place recognition for individual runs of tHage-recognition attempts are
shown in Figs. 3.11 and 3.12. The results of place recognai@ shown for three different
situations. In the first situation, the place recognitiopesformed using the Bernoulli Mixture
Model under an uniform prior distribution assumption. le tecond case the same Bernoulli
Mixture model is utilised, but this time an ’informative’ipr is applied. In the final situation,
place recognition is performed using the Bernoulli Mixturedal as the observation model of
the Hidden Markov Model. In this last case, a prior prob&pik also available to improve the
results of the Bernoulli Mixture Model.

The results in Figs. 3.11 are obtained when place recogmiims performed under rather
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(c) Place recognition using a 5-observation-long Hidden
Markov model. Each observation is matched using a
Bernoulli Mixture Model with a prior given by the tran-
sition probability of the HMM. 6 failures were correctly
identified from a total of 117 observations.

Figure 3.11: Comparison of place recognition with and witlregourse to HMMs. The results
represent two sequences taken in daylight, at times segidbgtan hour. Only Camera #1 and
Camera #2 were utilized in these sequences.
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similar conditions. The Reference Sequence was created@ atbng a hallway with natural
lighting and the Query sequence for place recognition waaiodd a couple of hours later. The
environment was, on the whole, well-lit and there were vesy thanges to the environment
(isolated persons walking down the hallways). It can be dkerreasonable results obtained
using the simple Bernoulli Mixture are much improved when aMiM introduced.

The benefits of employing the Hidden Markov Model are muchenodovious when the place
recognition is hard to perform as seen in Fig. 3.12. The faat the Reference and Query
Sequences were obtained under different lighting (ligteneity and direction) conditions made
Place recognition very difficult. In the figure at top, theqaaecognition results using only the
Bernoulli Mixture Model are shown. A non-informative, Unifo probability over all the views
of the Reference Sequence is maintained. The lower numbesmmon features in the two
sequence resulted in a high failure ratel®%. At bottom, in Fig. 3.12c, the results of applying
a 5-observation-long HMM, which resulted in a failure rate@’ over the entire sequence, are
shown. The figure in the middle shows the results of applyimlg the Bernoulli Mixture Model
with an informative, non-uniform prior, which, itself wadtained from the procedure in Fig.

3.12c, with a success rate falling in between those obtasaeder.

3.5 The Reference Sequence as a Compact Representation of

a Path.

Any probabilistic representation of a robot environmenshrapresent the joint probability either
implicitly or explicitly, [Pearl 00]. As seen in chapter 1hiie geometric maps aim to maintain
a compound distribution of the events in the environmemokagical maps break up the envi-
ronment representation into 2 or more conditional distidms. With the increase in the size of
the environment to be represented and with the additionrdae and of sensor features, this
joint probability (of being in a place and observing somegflitends to become unmanageably
large. The complexity of grid-based maps increases exp@atigrwith the size of the map and

special methods must be utilized to reduce the complexith@Localisation process. The key
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(c) Place recognition using a 5-observation-long Hid-
den Markov model. Each observation is matched using
a Bernoulli Mixture Model with a prior given by the
transition probability of the HMM. A total of 24 fail-
ures were recorded from a total of 117 observations.

Figure 3.12: Comparison of place recognition with and withregourse to HMMs. The results
represent two sequences taken at different times of therdayn{ng and late evening), a fact
that makes View matching rather more difficult. Only Camera#d Camera #2 were utilized
in these sequences.
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CHAPTER 3.

SEQUENTIAL CONTEXT OF VIEWS ON A PATH

Figure 3.13: Some of the Images Sampled for the Experimasgsribed in this work. The top
row shows images captured from Camera #1 while the bottom epresents images taken by

Camera #2.

Table 3.1: Comparison of Place-recognition successes wittwéthout using HMMs.

Attempt Referenc % success with % success with % success with
Se- No-HMM Pior Prob. and HMM.
qguence No-HMM

1 2 56 73 97

2 2 39 51 67

8 5 23 33 49

4 5 71 83 94

ability of the topological map to separate the conditionalabilities of the sensor data that,

when multiplied with the marginal probability that repratsethe robot position, does not lead to

such a large expansion in the map.

Itis not relevant to debate whether the topological map igla-tevel representation [Choset 01]

or not. The topological map offers us the chance to break epiht probabilities that express a

map into two or more sets of conditional probabilities angress it as a graph. Various methods

have been used to build Topological Maps. The nodes of tr@dgpral map usually represent

convenient places where this conditional probabilitiey e expressed. It matters less, how

and where these nodes are located. Some mapping methodstprsituate the nodes for ease

of detection [Kuipers 91], others prefer to specify nodesermnsistent with an approach that
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explores and segments the environment [Choset 01], [Thrpar3hy other criteria.

The Reference Sequence exploits the fact that the robot xerstie its motion along a path,
in order to complete a mission, and represents the envirohusing only the conditional view
distribution. The fact that the robot will arrive at the pdadn a sequential manner obviates the
need to explicitly provide the transition probability matr For this reason we believe that a
Reference Sequence and the accompanying sequence oftiosiswar behaviours, which make
up the Robot Mission, is an efficient form of representing thgittd motion along a topological

path.

3.6 Summary

This chapter extended the method for matching a single wuwiew for place recognition to a
sequence of current views that includes the contextuatnmdtion of each view in the Reference
Sequence. The substitution of the single current view foequsnce of views was achieved
by the adoption of a Hidden Markov model to align the Queryusege with the Reference
Sequence.

The key modifications made to the method presented in theeeahapter is that the views
are now considered to be observations that are conditioddéh states (the actual position of
the Robot in the Reference Sequence). The transition betwese hidden states is modeled
as a simple graph with the transition probabilities paramstd using a robot motion model, a
model that generates transitions that are quite uncertain.

The Markov chain that is used to model the transitions betvetgtes in the Query sequence
is a little different however with a set of 'insertion’ staté.ost_Place that serve to accommodate
those Places in the environment that have changes in apgeasince the Reference Sequence,

those places that were not sampled and situations in whechotiot was plainly lost.
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Chapter 4

Merging Topological Paths to create Maps

4.1 Introduction

The merging of smaller maps to create larger maps is a relévpic in map building for robot
navigation and there are various reasons we might be reftorenerge two or more smaller
maps. One recent application of map merging has been in tegration of individual maps
created by cooperating robots [Konolige 04]. We are pddity interested in map merging
applications that use topological information to robustigrge different types of maps and a
number of such works have been reported in recent literatireese works differ from each
other in the nature of the sensory information that is inetlich the map and in the choice of the

places at which merging is allowed to take place.

Like many localisation methods that use geometric mapsebgld et al. [Dedeoglu 99]
track the position of the robot within a geometric map usini§aéman filter. As in the case
of [Kortenkamp 94], pre-defined types of landmarks serve aieriocalisation more robust by
allowing the tracking algorithm to periodically reset anthal the accumulated uncertainty in
the odometry measurements. Often, topological informasmbtained by abstracting out infor-
mation from sensor data and the topological connectivitysed to merge the map, [Kuipers 00]
being a well known example. Methods such as [Schmidt O6kteddy strip information from

a geometric map to maintain only adjacency information eésenting a topological map. In

87
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another approach that uses only topological maps combirigdseme geometric information
about the environment, [Huang 05] employ a method to mergetdwological representations
is presented.

The selection of candidate places at which merging of mapsldhiake place is an important
problem that must be solved before merging can take pladbeltopological level of the Spatial
Semantic Hierarchy [Kuipers 00] and again, in [Kortenkamp @ pre-defined set of indoor
environmental characteristics such as junctions cormetslaorways are utilised to create nodes
in the map. The principal reason for using these so-calletkigays’ is the reliability with
which these type of places can be detected. The increasedilig} that is associated with
their detection makes these gateways suitable places ehwiaps can be merged with greater
confidence.

The previous chapters of this thesis have developed thedtieal framework for localising
the robot within a single path in the environment. Chapter&s@nted a method to perform
place recognition by reducing the dimensionality of viewataining a large number of different
features. Later, in chapter 3, the use of the sequentiakgbof the views in the Reference
Sequence was found to have substantially improved thetsasiyblace recognition.

Let us suppose that the robot is led down two distinct pathisinvihe environment and, at
the end of Environment Familiarisation stage, it possesgesequences of views. The robot
can attempt to localise itself, simultaneously and indepetly, along each sequence using the
techniques described in the earlier chapter. Besides bbledalocalize itself within each path,
the robot must also be enabled with the capability to decioliegawhich of the two paths it is
currently travelling along, its 'global position’.

An extension of the concept of localisation along a singleesRafce Sequence is required to
enable the robot to maintain its global position. Such a woekthill allow the robot to localise
itself in a global map that is created by joining multiple,adl@r topological paths.

We propose a method to create topological maps from mulsptgiences of raw sensor
data. In the current chapter, the complete environmentinvitiich the robot operates will be
considered to be composed of multiple paths. A procedutectramaintain a global estimate

of the robot position by successively locating the robohglmultiple paths is presented. Using
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this method, the robot performs place recognition indepatig along each path, simultaneously
evaluating the probability of it being along each of thosthpa

Further, when the individual Reference Sequences overlsgne degree, the sequences can
be 'stitched together’ along the overlapping stretch. All fpgether, these Reference Sequences
make up the general topological map of the environment.

Two issues must be solved in order to arrive at this topokdgiap:

» a procedure to maintain a consistent probability distrdsuacross multiple paths must be

developed and,

» a procedure to merge Reference Sequences, which includisraador identifying over-

lapping segments of the individual paths, must be specified.

In the next section 4.2, a brief review of the procedure useddate the topological represen-
tations of each path is presented. In section 4.3, a proeg¢dwimultaneously localise the robot
within multiple sequences is detailed. This proceduredsuin the technique developed earlier
in this work and extends it to allow the robot to maintain tlesipon of a robot along multiple
topological paths. In section 4.4, an algorithm is presttdenerge segments of data sequences
into a generalised topological map. This algorithm allole tnerging of these paths to create
an unified topological map. In section 4.5, experiments desonstrate the localisation along
multiple paths and the procedure for merging topologic#thpare described together with the
respective results. Some closing comments, in sectioriadlléw the presentation of results that

were carried out on map-merging.

4.2 Place recognition along a Single Sequence of Views - a re-
view

Before the presentation of the map-merging and localisatiethod, a brief review of the tech-

niques that were detailed in the two previous chapters sgoted. Section 4.2 summarizes the
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Figure 4.1: Sensory events in the topological are represented using a conditiotéudien, where

the experiment of viewing a particular sensory event is conditional on #récplar state of the
environmentQ+, . .., Os are sensory events).

Figure 4.2:The robot is led through the environment on the Environment Familiarisatiorieft. The
3D point clouds must be registered in the environment, right.

technique for localisation along a single topological pathit was developed in chapters 2 and
3.

The algorithm used to integrate a large number of featurdsdaich is described in chapter
2 ensures that the place recognition should occur even wiegrs\are slightly altered. During
the Environment Familiarisation phase, depicted at lefig 4.2, the robot samples the envi-
ronment according to a sampling plan, collecting a sequeheews from its various sensors
resulting in the Reference Sequence. A repetition of theessmpiof motion performed during

the place recognition should propel the robot along the fReference Sequence.

In chapter 3 it was shown how the sampled views which wouldanadly be modelled as a
left-to-right graph in Fig. 3.3, are augmented by the inearbf ' Lost_Places’ as depicted in
Fig. 3.5.
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Any maneuver other than the ones taken during the EnvirohfFemiliarisation phase will
take the robot to a place that was not sampled in the Envirahf@miliarisation phase. The
Lost_Places, in all a total of K in number, accommodate these possible views. Thus, each
Lost_Place takes into account the fact that the robot might be seeingsvtbat were not seen
in the Environment Familiarisation phase.

The sequence begins with,,s; pi.c. o Which indicates that the robot is completely lost or
has never localised. Also, before every original pl&tethere is aPr,s piace i- By moving
forward from oneLost_Place , the robot can transition fromf,s;_piace ; t0 any nodel, where
k > 4. Similarly, from P; the robot can transition t&), : k > i Or t0 Prost_piace_i+1. The graph
does not allow a single-step transition from dA€.; piece ;i 10 anotherPr,s; prace ;-

Subsequently, as the robot moves through the environmehheed to localize itself, the
current view is compared to the previously collected viemg an inference is made of the current
position of the robot. A Hidden Markov Model, HMM, is used terform place recognition using
the modified Markov Chain in Fig. 3.5 as a model for the traosgibetween the hidden states
of the HMM. The Viterbi algorithm is commonly used in the cexitof HMMSs to determine the
most probable sequence of hidden states that gave rise i@ sequence of observations.
It is an inference tool that is associated with the procesmaiing inferences in a HMM and
is utilised to position the robot within the Reference Seqgedny using the current sequence of
observations.

The transition between the states is influenced by the trangirobabilities between a pair
of places in the graph shown in Fig. 3.5. A robot motion modedeveloped to evaluate the
transition probability matrix. For each sequencébbbservations, a simple distribution is used
to model the transition probability distribution from eakEhst_Place to the remaining original
places in the Reference Sequence favouring places thatobercin the Reference Sequence.
The transition probability leading away from any of the arg places in the Reference Se-
qguence is uniformly split between the next original placetie right) and to the corresponding
Lost_Place. The one-step transition probability from ohest_Place to anotherLost_Place
is zero.

The first hidden state is always matched to the fiestt_ Place, Lost_Place_0. This Lost_Place_0,
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has a non-zero probability of reaching any place in the oalgReference Sequence.

The observation model of the HMM is based on matching thesotiview with the views in
the Reference Sequence. In the absence of any informatiardiag the view that will be visible
at the 'Lost_Place’, we arbitrarily define the observation probability as anfomm distribution
over theK views in the original Reference Sequence. The features fewrh @iew in the Ref-
erence Sequence are converted into binary form as desdnlsthpter 2 and are represented
within a Feature Incidence Matrix (FIM),. Due to the large dimensionality of the FIM, it is
subsequently modelled as a Bernoulli Mixture Model (BMM). Sagarameters of the BMM
are obtained by running the Expectation Maximisation(EMpathm.

The Mixture parameters and the posterior probabilities ¢lve components, the terms
in (4.1), are used to evaluate the likelihood as depictedtih)( P(V}) representing the prior
probabilities over each view, in the Reference Sequence. As expressed in (4.2M#eémum
Likelihood Estimatioris used to obtain the indek* in V that best describes the object to be

matched), ..

25:1 P<Vk)zkcacp(vob8|@t2>
S S P(Vi) 2kere P(Vi | ©.)

P(k[Vobs) = (4.1)

P(k* Vo) = argimax P ([ Vo) (4.2)
k

So far we have dealt with only one Reference Sequence. Whenewtealing with multiple
Reference Sequences it is necessary to refét(fQ|V,,) asP(ks|Vas), i-e. the probability of

V.ps eing matched against viewin the Reference Sequenge

4.3 Simultaneously localisation in Multiple Sequences of Viesv

In the previous section, a consistent way of maintaininddbalisation probability over a single
path was reviewed. One of the key characteristics of thatcagi was the use of the Viterbi
algorithm to exploit the information that is available iretbequential context in which the views

are arranged within the Reference Sequence. The Viterbritdgoallows the evaluation of
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Multiple Reference Sequences

Figure 4.3: A schematic for the comparison with multiple trajectories (sections of differefer@nce
Sequences or Topological Paths).

the transitions and observations within a single Referemtpiénce that most likely led to the
current observation sequence. However, the Viterbi algoridoes not allow a comparison of

the likelihood of sequences for different paths, i.e. foo thfferent HMMs.

We propose a more consistent way of handling localisationgamultiple sequences that is
based on the quality of the match of the sequence of obsengdfior each Reference Sequence.
Localisation of a mobile robot using such an approach, degigraphically in Fig. 4.3, will
reflect the fact that each data sequence is obtained by selyasampling different paths of the

environment.

If more than one Reference Sequence is available for the tobloicalise itself against,
this method will maintain the global position of the robot tmpdelling its global position as a
combination of two, independent probability distribusoThe first distribution is the marginal
distribution, of the robot being along a particular Refee8equences, The second distribution,
independent of the first, maintains the position of the robibhin that particular Reference

Sequence. The application of this global positioning sah&rdepicted in Fig. 4.3 for three
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independent Reference Sequences and is expressed in (h8)prdposal of this method is
influenced by the corollary proposed by Montemerlo in [Moméglo 02] which says that, given

that the path is known, the sensor observations are condiljoindependent on the robot path.

P(s) x P(kg|Vops, 5)

P (Fs 5[ Vobs) = constant

(4.3)

The second termP (k| V,s), in the numerator on the right-hand-side of (4.3), is thébpro
bility with which the current observation matches the viewthe Reference Sequence. This is
the distribution (4.1), that was first presented in chaptan®was summarised in section 4.2 in
the current chapter.

The first term,P(s), in the numerator on the right side of (4.3), denotes the giviity
of the robot being along each of the Reference Sequences. WedBaeloped a measure that
reflects the marginal probability distribution of the robeing within each Reference Sequences.
This measure is based on thyeality of the output of the place recognition procedure. The
correct path along which the robot is moving should havediest uncertainty given the current
observations.

In the next two sub-sections, the expression for the t&®) is developed in terms of the
uncertainty of the localisation estimates within each Refee Sequence. In section 4.3.1, the
expression is first developed for the case of a single, sojaibservation. The equivalent ex-
pression is then extended, in section 4.3.2, for the caseanhsequence of observations as used
within the Hidden Markov Model, HMM.

4.3.1 CalculatingP(s) when using a Single Observation

We have used the uncertainty of the place recognition ealding a particular Reference Se-
guence as a proxy for the probability of the robot travellhgng that same sequence. The binary
entropy of the probability distribution of a discrete randweariable is a commonly used measure
of the uncertainty of that distribution. This measure, ogjpiced for a variabl& in (4.4), can be
evaluated for any probability distribution such as for te&reate for a single view localisation,

P(ks| Vs, s). We have defined the probability of the robot travelling glarparticular Reference
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Sequence according to (4.5).

H(X)=- g P(z)log(P(z)) (4.4)

P = ! 1 ! KES Pk |V log(P(k,|V. 4.5

(s) = constan{  log(K,) X = (ks [Vors, 5) log (P (ks| Obs’s))] (4.5)
1

tane —— 4.6

constan " b (4.6)

Expression (4.5) is based on the 'normalised entropy’ ofdis&ibution P (k| Vs, s). This
expression is a measure of how uncertain a place recogratgorithm is within the particu-
lar Reference Sequence, Theless uncertaira probabilistic distribution is over a Reference
Sequence, the higher the probability that the robot finadfitgithin that particular Reference
Sequence. The normalising teﬁ% allows the comparison of trajectories of different lengths
where K, denotes the number of places in the Reference Sequence,

With the arrival of new sensor data, the probability of thieatdbeing along theorrectRefer-
ence Sequence should begin to improve to the detriment ofttiez Reference Sequences. If the
current observation does not match, sufficiently well, waitie of the views in the Reference Se-
guence, the uncertainty of the localisation results wilhigh and the corresponding probability

of the robot being along that Reference Sequence will be low.

4.3.2 Calculating P(s) when using an observation sequence

The expression for the case of a single observation, degdliopthe previous sub-section is quite
straight-forward. In the case of a sequence of observattbesexpression must be developed
more carefully since the uncertainty refers to the resulte® Viterbi Algorithm.

When a particular sequence of observations is utilised taiobhe most likely sequence of
places that were occupied by the robot, the uncertaintyeptissible sequence of places must
be evaluated.

The sequence of places that the robot occupied within a Refer8equence is called the
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robot trajectory. The trajectory is defined as the sectioa wipological path that the robot has
travelled along, with the section beginning at an initiaksi, ending at a final stateand having
no intervening states equal toAccording to the above definition, the trajectory does nolude
loops through the environment.

As reviewed in section 4.2, for each Reference Sequence,dtiemof the robot is modelled
using the Hidden Markov Model (HMM) and the Viterbi algonthprovides the most likely
sequence or trajectoryréljs, for the Reference SequeneeThe algorithm works by calculating
all the possible sequences of places that explain the segudrobservations. The expression
for the uncertainty of the inferred trajectory that is e@lint to (4.5), is less straight forward to
compute since it requires the evaluation of the entropy ettajectory,” (tréjsmbs).

The brute-force evaluation of this quantity would requime talculation of all the possible
trajectories in the Reference Sequence that explain theesequof observations. The value of
H(tr%\jsﬂ/obs) would be obtained by the application of the probability klsttion of these se-
guences of states that explain these observations in expnegl.4). An efficient method to
calculate this quantity was presented in [Hernando 05]s Tinethod extends the Viterbi algo-
rithm to calculate the entropy of the sequences of hidddaests each observation arrives. The
procedure described in [Hernando 05] is adopted for theutation of the uncertainty of the
trajectory. The calculation off (tréjsyvobs) requires some modification of the data structures and
some additional computations within the Viterbi algorithm

The final expression faoP(s), for the case involving a sequence of observations, is shiown
(4.7) whereH (traj,|V,,,) is calculated using the method outlined in [Hernando 05k @dnstant

termin (4.8) is used to create an expression for a reguldogiibty distribution and the normal-

K
#1ra|

paths, as explained below.

ising term,( ) allows theP(s) to be calculated independently of lengths of the individual

1 1 .
P = b H : 4.7
(S) constan[ log( (#{{rsaj)) X (trajs"/obs] ( )
1
constant= - (4.8)

 P(s)

S=
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The normalising termﬁ, adjusts the entropy for the number of combinations of
o8 4traj
states that are possible in each Reference Sequence for arvatin length of#traj. The

expressior( denotes the binomial operator that is used to account fadifferent combi-

K )
#traj
nations of state sequences of lengttnaj that are possibles in a Reference Sequence with a total

number of K, original views.

4.4 Merging Topological Paths

The previous section has presented a method to globallyidedae robot within a set of paths.
The representation of each of the paths is obtained by lgatia robot through a particular
section of the environment. If the robot is successivelyttedugh the environment, each time
along a different path, the topological representatioas@multiple paths that together make up
the topological map of the environment.

The advantages of merging multiple Reference Sequencesaifeld:

 Localisation can be performed on independent Reference Sequces:The localisation
method developed in the previous section assumes independetween the individual
Reference Sequences. This independence is achieved bifyitignthe overlap between
the Reference Sequences created during the Environmenli&&sation phase. This step

helps guarantee the corollary proposed by Montemerlo imjtelmerlo 02].

 Possibility of localisation boot-strapping: The map merging procedure is also required
to enable the localisation method to move from one Refererge&hce to another. The
merging procedure makes pair-wise comparisons betweeneseg of different Reference
Sequences leading to the discovery of overlapping segménése overlapping segments
allow the identification of possible transitions from one &ehce Sequence to another,

via the overlapping segments.

This problem of maintaining the consistency of the mergedbagl map shares some of the

challenges faced by other map-building methods descriéide literature. The Simultaneous
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Localisation and Mapping, SLAM, algorithms and their vateamaintain the relation between
features through the use of the position and error coroglamatrices [Thrun 05]. SLAM is
well suited to the process of incrementally mapping an emvirent. An extension of the map
is performed by adding the position of each new feature anapokating the error matrices that
represent the uncertainty of existing features. In mostbugding procedures the merger of two
maps or of two, previously separate, sections is a diffiaqalbjem. This problem is often referred
to as the loop-closure problem. In the case of SLAM, loosate involves the conciliation of the
position and error matrices for the two separate mapsésecthilst simultaneously associating
features from one of the maps/sections with the other.

The problem is a difficult one to solve since the position isaazurately known and, often,
other means such as image features in the case of [NewmamQ6i,be used to select those
places where merging will occur and other places where asitipn updates will be performed.
Once the position at which the maps must be merged is edtablisnethods such as [Carpin 07]
can be used to locally search for and optimise the transfitmmé#hat best 'fits’ one map into
another.

Where the environment is sufficiently rich in sensorial degssumptions are made about the
'slow’ variability of the environment. The similarity begen places can be usually established
by comparing changes in the sensor data over a short patSchm{idt 06], Schmidt et al. use
the 'width’ or smaller dimension of the environment, as nugad using ultrasound sensors as the
robot moves, to verify the similarity of places in the enwvinoent. A similarity term is defined
for the width of passable sections in the environment and@ésiin this width are used to split
regions in the environment.

In [Howard 06], Howard et. al. employ the projection of a hegldimensional structure,
a manifold, onto a plane to help resolve the problem of pldizsiag and scene variability.
Importantly, representing the sensor measurements on #méfotd rather than on the planar
map allows merging of places that are previously visitedh®y/robot to be put off until more
information is available. The authors re-cast the problémlace-aliasing as a non-symmetric
projection problem where each position in the environmantl{e planar projection) can be

represented as a different place on the manifold.
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Hierarchical representations of the environment have hesed in the literature since the
introduction of the Spatial Semantic Hierarchy, SSH, byg¢€us [Kuipers 77]. These typically
seek to identify previously visited or already-mapped etawith help of the topological rep-
resentation. For example, in [Kuipers 02], an extensiorhef $SH architecture, Kuipers and
Beeson seek to merge topological information by testing Hr@us merging hypothesis. The
environment is sensed using very imprecise sensors andseguently abstracted in terms of
corners and junctions. The hypothesis for merging are at@dlby moving the robot around the
environment such that loop closure hypothesis can be \etrifie

In [Stewart 03] a geometric map is broken up into a number @lEm 'more unique’, envi-
ronment layouts such as junctions and door openings andsthnamg back together in the form
of a Dirichlet process. The novel method dwells on the probdé estimating the likelihood of
previously unseen environment layouts and builds the prigibabilities of the different possible
environment layouts.

Although not related to mobile robotic applications, in§8atos 93], Scarlatos tackles some
of the issues that are faced by map building algorithms deggrthe efficient representation of
large environments. Although the emphasis is on the dewsdop of appropriate data structures,
chapter 6 of the same publication, addresses the problenewfing spatial representations in-
cluding, for the case in which the representations are nttetame type. Although the use of
line, point and area-based methods for merging the acconaps used in that work is of interest,
the maps that are available in mobile robotics are compafgtiar from accurate given the noisy
sensory readings and the accumulation of mapping errors.

In the context of our work, at a coarser or ’higher’ level, émvironment is viewed as being
composed of multiple paths. Each path in turn is made up ofjaesee of views. This rep-
resentation is depicted in Fig. 4.4, by using the topoldgwap described in [Thrun 98]. The
proposed method of building a global topological map fromeagar of paths can be contrasted
with the method described in the article [Thrun 98], wher tilobal’ topological map is con-
structed after building the complete geometric map, byrabshg out certain properties of the
'global’ geometric map.

The merging of Reference Sequences into one global topalogiap comprising multiple
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Figure 4.4: The global topological map can be viewed as aecitdin of multiple, non-
overlapping paths through the environment. This processeating a topological map by merg-
ing the topological representation along multiple paths loa contrasted with methods such as
[Thrun 98], where the 'global’ topological map is consteattby abstracting out the 'global’
geometric map.

topological paths is performed using a two-stage procedure

1. Identification of Merge Candidates - Measuring View Simiiya

2. Path Merging - Verifying Reference Sequence Overlap

In the first step,ldentification of Merge Candidategach view in a Reference Sequence
is separately compared with every view in another Refererecgiéhce to generate hypothesis
where possible merging could be performed. This step esulhe creation of a view-similarity
matrix that indicates how similar each view in a Referenceu8eqge is with every view in the
Reference Sequence it is being compared with.

In step 2,Path Merging segments of a Reference Sequence around a pair of candielate v
that are identified in the earlier stage are aligned to vewifiether an overlap actually exists.
It is important to point out that the first step is essentiatsiit identifies places in the pair of
Reference Sequences that are really similar. If the step @ todve performed on every pair of
sequences, without first testing for similarity, a forceigmnent of views that are actually not

similar might occur.
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4.4.1 Identification of Merge Candidates - Measuring View Similarity

A method that merges paths to create a global topologicalohtpe environment must identify
possible places at which a pair of sequericesss over'’each other. A view-similarity algorithm
can identify possible individual instances of such oveslapphe definition of similarity varies
greatly in the literature and this definition is often a fuastof the type of environment and the

nature of the sensors being used.

In [Ishiguro 96] the Fourier components that make up Omredational images are compared
for an evaluation of similarity. Ho and Newman [Ho 05] and iRers Schroeter and Newman
[Posner 06] use place similarity measures to improve thestoless of loop-closure and map
merging algorithms that normally employ geometric infotima. In the latter publication, the
similarity between two sequences of views has been depusieg) a view similarity matrix, as
seen in Fig. 4.5. It is pertinent to note that although Posherl [Posner 06] have noted that
algorithms that make use of the [sic] 'temporal orderingatixd are still not very common, their

own method still does not make explicit use of sequentiatedrof the views.

A recent article by Zivkovic et. al [Zivkovic 07] also attemspto use information obtained
from near-by scenes to define places in the environment. &inase of [Posner 06], a cluster-
ing approach is used to group images and represent plades @amvironment by using a typical
set of images for that place. In [Thomas 00], Thomas and Damikypothesize a hierarchical
set of [topological] representations that represent the@mment using similarity of places. The
developers of these methods claim that such labeling ofilésiiooking) places is in line with

the spatial concepts that humans employ.

In our approach, each view in a Reference Sequence is compétedach view in every
other Reference Sequence. The posterior probability bligton that is obtained by comparing
each view in Reference Sequengavith another Reference Sequengefor all the views ins;
results in the 'view similarity’ matrix. This similarity ntex indicates how similar a particular
view is to each view inside the other Reference Sequence.iifilarsty between a pair of views
is calculated using a metric based on the number featureghghaiews have in common after

having reduced the dimensionality of the feature spacegubm Bernoulli Mixture Model.
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Figure 4.5: The calculation of View similarity to improve gaetric map merging has been
utilised in [Posner 06]. The view similarity informationused to add robustness to map-merging
algorithms that normally use geometric or spatial infoiorat Black positions in the matrix
indicate greater similarity while white indicate lower slianity.

An example of such a comparison is seen in Fig. 4.6 for two eecgs taken at the De-
partment of Electronics and Computer Engineering, DEEC elthiversity of Coimbra. The
figure at left in Fig. 4.6a depicts the view similarity matiwhen a Reference Sequence 'B’
is compared to another Reference Sequence 'A, and in Fid, Réference Sequence 'A' is
compared to Reference Sequence 'B’. As is visible in Fig. 4f,as it might be expected, the
two matrices are not completely similar given that the feegwsed to evaluate the similarity
are different. In Fig. 4.6a, the features found in the Refege®equence A are used to calcu-
late the view similarity between the Reference Sequenceseabken Fig. 4.6b its the features
from Reference Sequence B that are used. But the similar viewse Reference Sequence
are consistently evaluated as being similar to views in therdReference Sequence. These high
similarity places are candidates for possible overlapséen parts of the sequences as described

in section 4.4.2.

4.4.2 Path Merging - Verifying Reference Sequence Overlap

The aim of this step is to verify that overlapping betweendbguences does take place and to
split the environment into distinct regions. The overlaygpiegions, common to both Reference

Sequences, are removed from one of the Reference Sequerntesaariained only within a
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SeqB
Seq A

10 20 30 40 50 60 70

——>» SeqA ——P» SeqB

(a) Reference Sequence B compared to A. (b) Reference Sequence A compared to B.

Figure 4.6: View similarity matrices are shown for expenmsedescribed later in section 4.5.
The similarity (lighter indicates greater similarity) lbeten views is calculated using a metric
based on the number features that the views have in commenhadting reduced the dimen-
sionality of the feature space using the Bernoulli Mixtureddb In this figure white values in
the matrix indicate greater similarity and black indicatesimilarity.

single Reference Sequence. Thus, no two reference Sequaadasin the same part of the
environment.

The evaluation of place-similarity must be robust to ndisesome changes in the view-point
and to some changes in the dynamic environments. This puoe@adn handle for slight differ-
ences in the viewpoints of the robot as it travelled over Werlapping region in the Reference
Sequences.

A simple algorithm that tests the hypothesis for mergingrssgs of the new data sequence
into the topological map is presented in Algorithm 2. Theoallhm entails an alignment of
segments of the Reference Sequences in the neighbourhdos mbdes which were deemed to
be similar from the view-similarity matrix calculated inetlprevious step. If the similar nodes
are relatively close to each other, suggesting that thesirailar intermediate nodes results from
sensor noise, that part of the paths are considered to biapperg.

As seenin chapter 3, each place in the Reference Sequenuéesliby a pair of Lost_Places’.
The role of theLost_Places is extended to incorporate possible overlap with other Refs
Sequences. Merging of a new data sequence into a Referengerseds achieved by modifying
the Markov chain shown in Fig. 3.5 to expand the role of tlagt_Places in the graph. These

Lost_Places are now allowed to "absorb’ segments of the new sequencerihsttbe merged.
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(b) The final topological map.

(c) The places in the final topological map.

Figure 4.7:Merging of Segments of a data Sequence with the topological represembéioather Path.
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Algorithm 2 Merging Hypothesis For Topological Paths

H,.., = NULL I/l the new sequence is completely separated
ming . Il the minimum sequence length for declaring overlap
Require: V,., >™" t, I/ the new sequence has min length

Thew = View I @ll new views are potential match
while (7},.., > 0) do

7: — anew

j o Ve

Il test for no overlap

H — tﬁ?,j /Ino overlap, current trajectory in B is added to Hypothesis

removeV,L ... VL™ tew from TP //current trajectory removed from further tests
else
/I overlap confirmed
removeV: ... VLE""ew from TP //current trajectory removed from further tests
end if
end while

return H // the non-overlapped sequence is returned

Without loss of generality, Fig. 4.7 shows the effect of rhatg a segment of a Reference
Sequencaé, that partially overlaps with another Reference Sequénde this case, two of the
views in Reference Sequence 1 were matched with part of thad®ee Sequence 2 and an
intermediate view was matched to an interveningt_Place.

Those views occurring before the successful match are labdawithin the first or global
Lost_Place and those views occurring after the successful match aceladxs$ (matched against)

in the Lost_Place occurring after the match.

4.5 Experiments

In the above sections a procedure to maintain the globatiposf the robot in the map that is
made up of multiple paths was presented. A procedure thabearsed to merge overlapping
sections of multiple paths to create a topological map wes @bscribed.

The algorithms and procedures are still in a relativelyyeathge of development and our

localisation application does not use all the informatioat is available from the merging of the
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topological paths, namely the improved transition prolizds that are obtained from merging.
Ongoing work seeks to include this information within the NMilgorithms that perform place
recognition along each path. Additionally, the calculataf the uncertainty of the HMM tra-
jectory inferred by the Viterbi algorithm was implementadldested only on small Reference
Sequences. For the experiments reported in this sectiaasinot possible to run the modified
Viterbi Algorithm, as a result of whichP(s), was calculated using the algorithm outlined in
section 4.3.1.

A first experiment with two Reference Sequences was carrietbalemonstrate the global
localisation procedure. This experiment served to unaethe need to identify and subsequently
remove the overlap between Reference Sequences.

Two Reference Sequences were obtained by leading the radygg alcorridor environment
as shown in plan view in Fig. 4.8. The two paths having an epesomewhere in the middle
of the corridors where the robot briefly travelled along tame path. Each sequence consisted
of 640x480 gray-scale images taken by two cameras mountedmabile robot. One of the
cameras is facing forward and the other is facing away fromadrihe sides of the robot.

The two-step merging procedure described in section 4.4waand the overlap in the two
topological paths was identified according to the algorigresented in Algorithm 2. The second
Reference Sequence was merged with the first Reference Seqosgica single overlapping
segment, between views 16 and 32 in sequeatend views 22 and 46 in sequenge, see
Fig. 4.9a.

During a subsequent run, the robot is positioned at a pladigs on the overlapping seg-
ment of the paths and is driven along the path corresponditigetsequence#1. The overlap-
ping segment of the two Reference Sequences was not remodedexmaintained within both
Reference Sequences.

The robot localises itself in the global topological map émel probability of being on each
of the original sequences is plotted and shown in Fig. 419,impossible to tell whether the
robot is localised in both Reference Sequences or in no sequrall. To enable the use of the
HMM models within a generalised topological map, overlagpsegments should be removed.

To demonstrate the effect of the removal of overlapping s#gs a second experiment was
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(b) Layout of the test path on the second floor of the DEEC mglabver which localisation was
performed.

Figure 4.8: Two sequences with overlapping segments weheigal from the environment, as
shown at top. Subsequently, the robot was driven over pattteofegion covered by the two
Reference Sequences, as shown at bottom.
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(a) Sequenceét2 consisting of 98 views is merged to Sequegekeconsisting of 55 views. The views
or places in the common segment have been numbered acctoddeguencet1.
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(b) The figure plots the probability of the robot being on eatthe original Reference Sequences.

Figure 4.9: Merged Topological graph and probability disttion. While the robot is on the
overlapping region, either sequence is probable. Uporhmnegdhe place where the paths sepa-
rate, the probability of the robot being on the incorrechpapidly reduces.
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carried out on a longer stretch of environment consistingReference Sequences, collected by
driving the robot forwards and backwards along 4 paths iretheronment. The 4 paths cover
a distance of approximately 300 meters and overlap to vargotents. The plan view of the
environment is seen in Fig. 4.10a. Sample images from sixeoéight Reference Sequences are
shown in Fig. 4.11 (Camera #1) and Fig. 4.12 (Camera #2). Théh8 pae named thus:

* Reference Sequence A Forward: moving forward along path A.

Reference Sequence A Reverse:
Reference Sequence B Forward:
Reference Sequence B Reverse:
Reference Sequence C Forward:
Reference Sequence C Reverse:

Reference Sequence D Forward:

Reference Sequence D Reverse

Retracing in reverse aloné path
moving forward along path B.
Retracing in reverse alonB.path
moving forward along path C.
Retracing in reverse alon@ path
moving forward along path D.

. Retracing in reverse alon® path

The merging of the 8 Reference Sequences is performed asealih section 4.4. The
view similarity matrices for some of the sequences thatlapewith each other are seen in Fig.
4.13. As can be seen in that figure, the view similarity magitor some pairs of Sequences
indicate an overlap quite clearly. This is true especiallyhie case of Reference Sequences A
and B, Reference Sequences A Reverse and B Reverse, RefereneacgeGuReverse and D
Reverse, Reference Sequences B and D Reverse. The view gimmiatrices for the other pairs
of Reference Sequences do not appear to indicate overlapgeddsp robot having physically
covered the same path. This result indicates that it mightaiveays be possible to identify
overlapping segments and to merge the respective Refereqcesces.

The procedures outlined in the previous sections is foltbiwee merge the Reference Se-
guences. The candidates for map-merging in the view siityilare then verified for actual

overlap according to the procedure outlined in section?4afhd the overlapping segments are
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Seq A
Seq A_Reverse
Seq B
Seq B_Reverse
Seq C
Seq C_Reverse
SeqD
Seq D_Reverse

(a) Layout of the 6 Reference Sequences that were recordie dourth floor of the DEEC Building.
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(b) Layout of the test path on the fourth floor of the DEEC huigdover which localisation was
performed.
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Figure 4.10: Eight sequences with overlapping segments gathered from the environment,
as shown at top. Subsequently, the robot was driven overopaine region covered by the 8
Reference Sequences, as shown at bottom.
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removed from théonger Reference Sequence. This is a simple criteria for the renavaler-

lapping sequences and was adopted on account of its sitgplici

Subsequently, the robot is driven along part of the enviremncovered by the 8 Reference
Sequences. The path covered by the robot is shown in Figb4ldxalisation was performed
simultaneously along all 8 Reference Sequences with thdappeng segments removed. The
global position of the robot is obtained by combining thehaoility P(s), of the Robot being
along a Reference Sequencand the probability distributio® (k4|V.ss, s) over the views in that
Reference Sequence. The probability distributitf’) is plotted in Fig. 4.14 over the entire test

path. The robot is positioned on the Reference Sequencehethreatest value d?(s).

It can be seen in Fig. 4.14, that when the robot is travelliog@gthe part of the environ-
ment covered by Reference Sequences A Reverse, B Reverse, G&Réhervalues of(s) are
quite stable and a single Reference Sequence is consissefisted, leading to correct global

localisation of the robot over the topological map.

At other times, as can be seen in Fig. 4.14, there is a largatiaar in the probability
distribution P(s). This occurs partly because, even when there was no ovestape of the
paths are quite similar to each other, for example in Refer&@srjuence A and B both cameras
were facing regions of the environment that were very sinaitad partly because at other places,
very few features could be extracted, for example in Refer&erjuence C and D the sidewards

facing cameras were looking at a texture-less wall.

Such observations lead us to believe that the merging ofldgpal maps will be dependable
only at those places where the views in the Reference Sequareequite distinct, i.e. wherever
localisation isless uncertain This is a different problem in its own right and has not been

addressed in this document.

We can also see how the removal of the overlapping segmdatgsathe identification of
those places where the localisation is successful andsotiegre it fails. The situations which
result in similar values of the maximu#(s) for multiple Reference Sequences are an indication

that the robot cannot localise itself.
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(a) Reference Sequence A Forward

(b) Reference Sequence A Reverse

(c) Reference Sequence B Forward

B

(d) Reference Sequence B Reverse

(f) Reference Sequence C Reverse

Figure 4.11: Some of the Images from Camera #1 that are inglind@ of the 8 Reference Sequences captured prior to merging.
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Figure 4.13: The Reference Sequences are compared paitenabéain hypothesis for merging. Similarity between viewthe
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4.6 Further Discussion

It is important to emphasise what the 'merging’ of maps does 8ince, in the general case,
the view sequences are completely devoid of spatial or geanreformation, it is impossible to
build up a global map of the environment where the envirortrpaths intersect quite precisely
and reliably at the junctions in the environment. Therefdrevill not be normally possible to
layout individual sequences on a sheet of paper, based sviehe method to evaluate intersec-
tions or cross-overs that is described in this chapter.

In the previous section 4.5, for the first experiment thatasadibed, we drew the merged
sequence so as to illustrate the resulting graph strudiutbe case of the second example, with
the 8 Reference Sequences, the graph was not drawn to avdaldbenotion that it is always
possible to draw the graph that represents the Topologieal. M

Instead, the method that is proposed in this chapter seetieétde a consistent means of
keeping the robot localised within one Reference Sequeneeather. When a view sequence
typically leads into another sequence, it is important thet be reflected in terms of the prior
probabilities applied to the place recognition along npldtisequences according to the method
described in section 4.3.

The development of algorithms for localisation within geirit maps has progressed from
simple, single-hypothesis tracking algorithms to muitpbthesis approaches that employ parti-
cle filters and other methods to boot-strap the localisgtimtess and to recover from possible
environment changes and from the robot kidnapping problena similar way, the procedure
described in section 4.3 might be modified to maintain midtifypothesis. Such methods could
employ List Viterbi algorithms [Seshadri 94], so as to pdweva finite number of hypothesis for
topological localisation.

A final point of discussion focuses on the type of sensor aacitrangement of sensors on
the robot. In the case of our platforms, since the obsemstio not cover the entire environment
around the robot, it is not possible to merge Reference Segsd¢hat were taken when the robot
reversed its direction along a path. Thus, in the secondrempet described in section 4.5, it

was not possible to merge Reference Sequences A and A Reveasel, B reverse and so on.
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The possibility to do this depends on the sensory capaloiitiie robot.

4.7 Summary

This chapter highlights the representation of the envireminusing the topological representa-
tion of multiple sequences of views. The results are stélliprinary but the method offers a

powerful and, in our opinion, new approach to the creatiotopblogical maps. A targeted

area of application is in the mapping of large environmemtahich the robot can be taken on
selective tours through the environment, potentially dpegup the mapping process.

The global position of the robot is obtained by combining separate distributions, i.e. the
probability of the Robot being along a Reference Sequencehaenprobability distribution over
the views in that Reference Sequence. The specification ajltiel position of the robot in
terms of two separate distributions is consistent with aemnof topological maps, as espoused
in chapter 1.

The competing possibilities for merging sections of newwsequences will increase with
an increase in the size of the map. Exact and heuristic ogdion methods will be required
to speed up the procedure. Further work is under way to all@niritervention of a user to
improve/correct the process of creation of the topologmap. User intervention could be di-
rected towards correcting tentative adjacency relatigsstn different sequences and to reduce

the search space for overlapping segments during the @neaftithe topological map.
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Chapter 5

System Integration and User Interfaces

5.1 Introduction

The methods discussed in the chapters 2, 3 and 4 were detiedopetested on Laser and Im-
age sequences captured using two, very different robdttfopms. These platforms contain
very different sensory and motion capabilities. A commaotaarchitecture within which the
two platforms could be supported was developed. Over thiegér which this research was
conducted various modules were developed to allow the aitigu of data and the testing and
validation of the various algorithms.

This chapter discusses issues that are relevant to thellomgpéementation of the system.
The original architecture that was proposed for the Place@ation system and later modifica-
tions are presented. This architecture is presented iroseel.

Section 5.3 describes the graphical user interfaces thaittdised to create the topological

representation of the path and to monitor the results ofikatson.

5.2 The Hierarchical System Architecture

The earlier chapters dealt with the algorithms and proasiiinat were developed to integrate the

features and improve place recognition capability. A satishl amount of supporting software

119
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Figure 5.1: An overview of the general architecture of tHsotasystem

that enabled the application of these algorithms and theutiam of the experiments demon-
strating the Place-recognition capabilities of the aldpons was developed. Function libraries
that enabled the extraction of local features from imageslaser range scans were developed.
Communication protocols were also specified to enable tHierdiit processes to run on multi-
ple machines. During the last stage of the work, the progmyatommunication architecture that
had been developed in the initial stages of this work wastgutesd for an open-source mobile
robotics 'toolkit’, CARMEN.

Since the start of this work, the system architecture has bemlelled on hierarchical sys-
tems [Arkin 89], [Mourioux 04] with some of the layers penfioing low-level control of the
robot hardware and sensors and other layers performinghlighel tasks involving navigation

and interaction with users and with other objects in theremmnent.

The architecture is composed, from bottom-up, of threecjpal layers: theControl layer,
the Tactical layer and theStrategylayer as seen in Fig. 5.1. The Control layer is a low-level

machine-dependent collection of modules that implemehtWeurs. These behaviours are
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functions of the expected data from the robot sensors andythamics of the robot platform.
The Tactical layer is the intermediate layer within whick #ntire navigation scheme is imple-
mented. This layer, as shown in the center of Fig 5.1, is caap@f modules that control the
sensors and process the allothetic data and of moduleslihatthe robot to move in its envi-
ronment in the continuous pursuit of the mission goals. Mdshe work in place recognition
that is presented in this thesis was developed within thengxiof the Tactical layer. Finally, the
top-level Strategy layer provides the greatest abstnaétmm the robot motion. User and agent
interaction, planning and other interaction with the eswiment is provided by modules situated
within this layer.

The specification of an architecture in modular form recuithee exchange of information to
occur smoothly and transparently, independently of the iweividual modules are hosted. A
number of supporting technologies were developed to byalthe robot navigation system and
run it safely.

In order to achieve the stated aim of portability of the natimn approach to different robot
platforms the Robot Mission Control module issues commaruais & set of standardized com-
mands that can achieve forward and reverse motion.

Communication is carried out using TCP/IP sockets that erthatenachines with different
operating systems can still communicate. This simple comaation protocol was extended
into a communication library for ease in directing the bebawof the robot from another com-
puter using TCP/IP sockets. ASCIl messages are exchangeedretive sockets which have
the capability to reconnect if required and to synchronieels. File transfer capability via the
reliable ftp protocol was added in order to reliably transfeages and large structures between
different machines. The communication protocol impleraeritkeep-alive” check for the down-
stream components. Sensor modules such as the Laser Rang&&tae extractor and the
local-image feature extractors are built around these canication modules.

The units of motion utilized by the Robot Motion Control modate standardized to the Sl
system of units. The required translation to and from thedsed of units utilized by each robot
platform is implemented at the level of the Robot Control lagsr standardizing the units of the

motion, displacement and time parameters and decoupléegaling of information and posting
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Figure 5.2: Transfer of Information Between Robot Motion Cohéind the Robot

of commands from the robot sensors and to the motors, theamesand control of a robot object
is much simplified.

The Robot Motion Control layer communicates with the Robot Goitodule layer asyn-
chronously. A robot-dependent application then acts astanface between the robot hardware
and the rest of the system in the Robot Motion Control layer. Gdgabilities of this interface
vary greatly since it has to translate a common command @obtteveloped for holonomic and
non-holonomic robot platforms. The individual Robot Conteglers developed for each type of
robot (and their sensor configuration) possess the abilityginsmit the commands to the robot

hardware via other communication devices such as seritd.por

5.2.1 The Control layer and the Robot Motion Control layer

The Control layer has been defined for two, very different tebahe Robuter robot manu-
factured by Robosoft, and the RMP 200 robot that is sold by Sedna (htt p: / / vww.
segway. com. Initial development of the algorithms was performed om Robuter followed
by intensive testing on the Segway RMP robot.

The Control layer defines the behaviours that a particulaotrigocapable off. In an au-
tonomous mode, a robot mission will be composed of the behavithat are defined in this

layer.
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By collecting the platform-specific modules in the Controldgyt was possible to utilize the
other layers unaltered for all the robot platforms. The Rdbontrol Motion layer is primarily
responsible for allowing the creation of a standardizedqma of commands that the Control
layer can use to communicate with the different platfornigs responsible for translating the
move commands to the robot and to make available to the otbdul®s the state of the robot
such as the status after the execution of motion, any idiethndormation that might be available
to the robot platform, and other information such as immireralready occurred contact with
some object in the environment.

To ensure safe operation of the robots, the implementafitmeanodules in the Robot Con-
trol Motion layer includes certain checks that verify waatlthe robot is alive and responsive

and that the modules in the rest of the architecture are alsctibning and in communication
with the robot.

RobotSoft Robuter

The Robuter robot platform, seen in Fig. 5.3, is the main neofmibotics research platform that
is available at the Robotics and Automation Laboratory oflepartment of Mechanical Engi-
neering, University of Aveiro. It is based on an embeddeddvta 68040 processor running at
25 MHz. The operating system running on this processor oresble for running the various
I/O boards and the communication ports. Through the I/Osptine processor can control the 24

ultrasound sensors and the robot motors.

The current set-up reutilizes previously developed dsivbat integrate motion commands
with idiothetic and ultrasound data. These drivers end@Rbbuter with collision-avoidance,
wall-following, setting robot orientation with respectdbjects, etc. Crossing of narrow-openings
is achieved by running an application on the robot procesgarthe robot motion Control loop

being closed with filtered data from the sonar sensors.
A high degree of safety is also provided as a result of the figki® driver and of other

emergency routines implemented as part of work that is destin [Santos 01]. The same

drivers also provide accessible ways of querying the rebstate. Communication with the
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Figure 5.3: Arrangement of sensors on the Robuter mobiletrplatform. The sensors used
in this work include the forward-facing Camera #1, the |dtéaaing Camera #2 and the LRF
mounted on the front of the robot.

Table 5.1: Translation of high-level commands into robohomands

High-level command Low-Level command Notes
mva X AMaa
mvby z AMvV a .
mvr -t AM -v -v Blind backing up; dangerous
stp AMOO .
Emergency Stop | AM 0 0 and SERV OFHR Kill motion and lock motors

robot is maintained through the use of text messages relagado serial lines.

The main messages to the Robuter consist of an adaptatioe obthmand from the Robot
Motion Control module of the Tactical layer. Velocity-lired messages are emitted at a fre-
guency of 5 Hz. The robot replies only with an "ack" that ordilyandicates syntactical cor-
rectness but is also taken to mean that the robot is alive ereptive to commands. The com-
mand set that is utilized and the translation from the stahdammunication protocol used by

the Robot Control Motion module to the Robuter specific commanestated in the table 5.1.

A second type of message corresponds to a request for teeo$the robot. These commu-
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(a) The Segway RMP 200. (b) Sensor Platform consisting of Camera
#1 and Camera #2 and Laser range Finders
mounted atop the Segway RMP200.

Figure 5.4: The Segway Robotic Mobile Platform (RMP) and thesee platform.

nications are maintained at twice the rate at which commanglemitted by the Robot Motion
Control module, i.e. at 10 Hz.

Bumper control and the front sonar readings are utilizeddp #te robot in case of actual
collisions or upon the detection of obstacles. Informaabout the emergency provisions that

are activated is passed up from the robot with the rest oftdtasinformation.

Segway Robotic Mobility Platform 200

The Mobile Robot Lab at the Institute of Systems and RoboticenBia is equipped with inde-
pendent sensor and Robot platforms that are supported bylesodieveloped by this lab and by
other mobile robotics laboratories within CARMEN.

The modules required to run the Segway RMP have been develigad the CARMEN
software platform, with IPC providing the communicatiorppart. Improved sensor logging
formats, allowing faster parsing and support for additiee@sors was carried out.

Through the use of a library developed at the Mobile Roboteisdratory at the Institute of
Systems and Robotics - Coimbra, the robot processor is ablieetctly access the motors and
the inertial sensors that provide the odometry informatibime system under CARMEN is well
integrated although lacking a comprehensive low-levedtyadnd basic motion routines such as

those available on the Robuter. The RMP is run with a collisimidance system that uses data
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Figure 5.5: The Tactical layer in the Robot Architecture

from the front-facing LRF.

5.2.2 The Tactical layer

The modules in the middle layer, the Tactical layer, are etsxbthe responsibility of monitoring
and controlling the navigation tasks. The Tactical layes thmee modules that control the robot
motion. These are the Robot Mission Control module, the Trajgdlanagement module and

the Robot Motion Control module. These modules, denoted inF=fgserve to:

» Collect features processed from the sensor data: The @bletyer provides the structures

to handle combinations of features that define the indivigleeces in the environment.

* Recognize previously trained locations: The Tactical tgy@vides methods to match
the current views with the previously collected views camd within the topological

representation of the environment.

* Move the robot in a way that allows the completion of the talgssion: Associated with
each place in the environment representation is a motiorebawour that will take the

robot to the next represented place in the environment.
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The Trajectory Management module is associated with kegdpaick of the appearance (dis-
appearance) of objects around the robot in order to allowdbet to trace a viable and con-
sistently similar path through the environment. Finallg fRobot Motion Control executes the
motion required by the Trajectory Management module. Ctigresreduced capability is pro-

vided in the form of a collision avoidance.

The Robot Mission Contromodule is responsible for keeping the robot on the topokldgic
map. The Robot Mission Control module, providestetchingmodule with prior probabilities
and probability of transitions between the places, infaromathat will be used at the time of

matching fresh data.

By continuously matching fresh sensor information with tmevpusly collected parts of
the environment, th#atchingmodule provides am estimate of the position of the robot é& th
environment. As described in chapter 3, the consistencijefrtatching algorithm is improved

by using the BMM within a Hidden Markov Model, HMM.

The actual features that are visible all through the enwvivent are stored in the Land-
mark/Feature database. In the context of work developedisnthesis, the topological repre-
sentation and the features (environment signatures) teassociated with the environment are
gathered during the course of an initial environment-farigation phase in which the robot is

moved around the environment.

The perception process consists of self-contained 'serlasses’ that are entrusted with the
task of extracting features from the current sensor dataes@&lieatures are matched against
a previously created database of features and provide thalisation modules with a list of
feature IDs that correspond to the current features beisgrobd. The database of features can
be explicitly specified as in the case of the LRF that deteabssgjavalls and corners, or it might
be built automatically as in the case of vision, where thala$e of conspicuous local image

features are collected during a previous Environment-Fkariziation phase.
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5.2.3 Strategic or Interactive layer

The Strategy layer provides the highest level of abstradiiothe motion of a robot along a
topological path. Path planning, interaction with othegratg in the environment and communi-

cation/monitoring are tasks that fall within the scope @ 8trategy layer.

In the course of work that is reported in this thesis, the Heytel abstraction role that is con-
templated for the Strategy layer was not developed much.réalaworld scenario, the Strategy
layer provides the framework for interfacing the Place-R@@tion and Autonomous Naviga-
tion capabilities of the Robot with a more complete Global M&the environment with a user

interface that is used for communication and cooperatipalsgities with other robots.

At the time of initiating a mission, the topological struetwf the environment and the re-
quired features are transfered to the Robot Mission Contraluteoin the Tactical layer, which

subsequently assumes control of the robot.

In the section 5.3, the provision of some user-interactiapability is demonstrated using

which the user can specify the execution of certain taskgetiic places in the environment.

5.2.4 Integration with CARMEN

Recently, a major modification was made to the whole concemoaimunication between
the various modules in the above architecture. The opercequioject, CARMEN it t p:

/' carmen. sour cef or ge. net ), and its IPC application was adopted as the basis for inter-
process communication. All the sensor and processing raedelister with the IPC central
process as soon as they come alive. At the time of registeitiegmodule subscribe to a par-
ticular message (processing modules) or offer to publigeehsor modules). Such a proven
communication architecture greatly simplifies the develept and deployment of modules on

different machines connected via a TCP/IP network, Fig. 5.6.

As can be seen from the Fig. 5.6, the architecture supporntsrdaer of additional sensors

besides the LRF and cameras used in this work.
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Figure 5.6: Inter-process communication is now performgdgiICARMEN programming style
and the IPC-central application. Shown above is the Lasger&inders, camera and pose sensor
mounted upon the Segway RMP robot. All communication is peréal using CARMEN.

5.3 Program Interface and User Interaction

User interaction capability has been provided to moniter Emvironment Familiarisation and
the place localisation phases. The design and implementatidifferent forms was undertaken.
These forms and dialogs allow the control of the data adipmgprocedures and the visualisation

of the localisation results.

5.3.1 Environment Familiarisation Interface

The Environment Familiarisation phase involves leadimgtbot once through the environment.
The order of the places in the environment is recorded. IrcH#se of those features that are
matched against a 'bag of features’ such as SIFT and the HUambwectors, the Environment

Familiarsation phase also serves to collect these featia¢svill be subsequently used during

localisation.
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Figure 5.7: Program Interface for Environment Familiarsa

The dialog for the Environment Familiarisation phase, showFig. 5.7, allows some degree
of control of the sampling procedure. The forms in the diabow the set up of the Environment
Familiarisation phase and of events that control the sarguluring the Environment Familiari-
sation phase. We briefly describe below some of the fieldsajyaear in the form pictured in

Fig. 5.7.

a) The Capture form sets up the name of the Mission and the rsethso will be used.

b) The sequence status dialog allows the user to monitor tverdiment Familiariation

phase and start and stop the phase.

c) The Log Parameters form provides additional informationthe sensor data sequence that
is being collected. The information is maintained in the CARWMIBg files and in the

XML files.

d) The Timer control form allows the sampling of the envir@mhusing a timer event.
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e) The Motion control form allows the sampling of the enviment using events triggered

by the motion of the robot.

f) The Manual control form allows the triggering of custonests.

The interface also allows the user to visualise the robatsaad the images that are currently

being captured by the robot.

5.3.2 Localisation Interface

The interface of the localisation algorithm needs a diatogptroduce the place that the robot is
expected to reach and any task that the root is supposedtomeilo test the improvements that
were put forth in this thesis to improve the place recogniadong the path, the user is allowed
to monitor the procedures and view the results via the iate$ shown in Fig 5.8. These are
provided in the form of a tabbed interfaces, each of whichreskl one following phases a)
loading of the Reference Sequence, b) Monitoring and Visatdin of localisation statistics, c)

compacting the Sequences and d) Localisation along theldgipal Sequence.

The first tab, seen in Fig. 5.8a allows the user to load a p#atidReference Sequence.
The Mission Monitoring interface, Fig. 5.8b, interfaceoals the user to monitor the successful
execution of the mission by verifying various plots and poasi probability distribution plots.
The Mission Execution interface, Fig. 5.8b, allows the usefisualise the arrival of the robot at
the final goal and at intermediate places. At each placedtsdcified in the Robot Mission, the
robot executes the tasks specified in Robot Mission. The mdghaviours that take the robot
along its path are included in the Reference Sequence.

The tab shown in Fig. 5.8c, allows the user to run an algorittah seeks to create a more
compact Reference Sequence. The algorithms that perfoeyptbcedure constitute work in
progress and have not been described in this thesis.

The Robot Mission interface, Fig. 5.8d, allows the user tagpé¢he goal of the mission
in terms of the intermediate and final position to be occujmgdhe robot. The interface also
includes the tasks that must be performed at different plasethe robot proceeds toward its

goal.
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5.4 Summary

The techniques developed in the previous chapters and goethims described were initially
tested on simulated data followed by an implementation in @+#&chieve the performance
required for localisation on a real world system.

During a later stage of the work, the Carnegie Mellon robatatkit, CARMEN, was incor-
porated leading to enhanced sensor support and an accesslitlhle communication protocol
between the software modules.

Working applications were required to demonstrate the ilisabf the place recognition
method in the real world. Graphical user interfaces weréevriso that the end user can control
and monitor every step, starting from the creation of th@logical path to the identification of

the current position of the robot within the original path.
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Chapter 6

Conclusions and Perspectives for Future

Work

6.1 Introduction

This chapter lists some of the contributions of this thesi$ jgoints to a few topics as directions
for future research. Most of these contributions lie in thpleation of algorithms and methods

that have been borrowed from other areas and applied todiéspn of mobile robot localisation.

In section 6.2, the principal contributions of this thesisite state of the art in place recogni-

tion have been listed.

Section 6.3 lists some of the publications that involvedkabiat was developed within the

scope of the doctoral program.

In section 6.4 a few incremental modifications that couldpdify the models that were ap-

plied and improve the results of the Place recognition aesqted.

Finally, in section 6.5, a few closing comments have beesgmted.
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6.2 Contributions of this Thesis

In the search for an appropriate representation for theesexpuof views gathered whilst leading
the robot along a path, an interesting insight was obtaintxthe nature of geometric and topo-
logical maps. A comparison of the Metric and Topologicalragghes to the representation of an
environment highlights the fact that the Metric map allovwssrale joint probability to represent
the entire environment whereas a topological map uses twwooe conditional distributions to
represent the same. This perspective, from a point of viepralbabilistic events, appears to be
a very consistent way of looking at these two commonly usptesentations, each of which has
a set of associated advantages.

This insight, led us to develop a topological represemntaticthe view sequence in which the
transitions between views lying on the same path are consttaising a novel graph network.
This resulting representation forms the basis for our nethfdocalisation along a topological
path. The views that are obtained at places that lie on th@dgjral path are stored in terms of
features that are extracted from the images and from therdasge scans.

The resultant data structures and the algorithms that greresl to represent the topological
path and to perform localisation have been found to workcéffely for paths of around 200
meters in length.

The localisation procedure was tested with success in indoadronments, as seen in the
earlier chapters and with a lower degree of success in outlneronment, see Fig. 6.1 for a
FIM from an localisation experiment that was performed oots.

In order to move from single paths to real environments withtiple intersecting paths, new
procedures and data structures were developed. To enables¢hof the procedure for larger

environments more compact data structures must be employed

6.2.1 Conversion into Binary Features

The need to utilize views that are composed of data from plal§ensors led to the conversion of
information into binary form. This conversion and the suhsnt integration of multiple Binary

Features allows the inference of the position of the robmi@gthe sequence of views.
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Each place in the environment is represented in the form ofrtical column of binary
features, all of which, when put together, result in the &eaincidence Matrix, FIM. Each line
in the FIM represents a particular and distinct feature. FiM is created by first leading the
robot along the desired path during an Environment Farghéion phase.

The problem of inference is characterised by high dimeradigrbecause of the large number
of features from the multiple sensors. Since the views goeesented in discrete form, as bi-
nary vectors, more conventional dimensionality reducti@thods such as Principal Component
analysis or Gaussian Mixture models could not be employed.

The reduction in the dimensionality reduction was achidwedodelling the data as a mix-
ture of Bernoulli distributions, a method first used in DatanMg applications [Nadif 98],
[Gonzalez 01]. The Bernoulli Mixture method was shown to Heative in the integration of

many hundred binary features. This work is detailed in okapt

6.2.2 Use of Contextual Information of the Topological Path

The current position of the robot within the graph networattrepresents the topological map
must be inferred in the face of noisy sensor data and unogrtai the distance covered by
the robot. The adoption of Hidden Markov Models to enableube ofcontextual information
present in the topological path proved to be relativelyightaforward. An original contribution
was the addition of thé.ost_Places of the Robot that allowed the incorporation of the concept

of a sampled Reference Sequence. This work is detailed inehap

6.2.3 Scalability and Usability Improvements

The line-graph model of the topological path was shown toffez&ve while performing place
recognition. Real-time localisation using a conventioreakpnal computer was obtained with a
position estimate obtained up to five times per second fdrspatound 200 meters in length.

In order to have an effective place recognition system fagdanvironments and for envi-
ronments within which a robot can take many distinct pathsdlifications were introduced to

the above method.



CHAPTER 6. CONCLUSIONS AND PERSPECTIVES FOR FUTURE WORK

138

Figure 6.1: The path taken by the robot is represented irotime 6f a sequence of views. Each of the 153 views taken oveite
meter-long path within an open-air car park is represenseal\aertical vector of binary features in the Feature Incéevatrix,
FIM. The FIM, depicted graphically at right, counts arour®8 different features.
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Insertion or
Lost nodes

Views in the Original
Reference Segiemce

Figure 6.2: During localisation, the inserteblo'st_Places’ accommodates the robot wherever
it has not localized in the Reference Sequence. The robotwsassumed to start out at the
Place Pr.st_piace o, The dotted lines indicate the transitions to each of ttee®$ in the original
Reference Sequence which have not been drawn to avoid olgttée figure.

The Feature Incidence Matrix, FIM created after the Enviment Familiarisation phase de-
scribes the environment along a single path. In order to mgmeaneral environment, multiple
runs of the robot, along different routes, are proposed. Byrmg a minimum amount of overlap
between the different routes taken by the robot, the indafdopological paths can be stitched
together to create the global topological map over the regamvered by the robot.

The method, depicted in Fig. 6.3, compares sections of eguidgical path pairwise with
each other path. By making an assumption that the same regimt covered twice within the
same path during the Environment Familiarisation phasews&l having to compare sections of
a topological path with itself. An Information theory appot was utilised to test the similarity

of a path segment with some previously captured path. Thik waletailed in chapter 4.

LA S S W SR S S S

Figure 6.3: A depiction of the merging of Figure 6.4: A depiction of the removal of
multiple paths to create a topological map views that are non-distinctive resulting in
of the environment. more compact view sequences.

As the size of the environment to be mapped increases, thes tleat are maintained also

increase, typically resulting in an increase in the numidefleatures. This large number of
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features worsens the dimensionality problem and resuttseimeed for increased computation.

Some of the views, the distinctive views, in the sequencet ihesmaintained since it is
important that the robot recognise the corresponding placgder to be able to navigate the
map. In certain cases it might be possible to elimirsatime of the viewsithout worsening the
results of place recognition. The procedure is depicteddn &.4. An exact solution could not
be found for the problem of selecting the non-distinctivews, i.e. the views that can be safely
dis-regarded.

The above improvements were implemented and the viabiliasimg this method for larger
environment was tested with partial success. Additionakbigpment and testing is required in

order to create a complete topological map-building metobothrge environments.

6.2.4 Improvements in Feature Detection

Contributions were made to the application of SIFT featunasage sequence by allowing the
addition of SIFT keys to the KDTree as new images are addedégaence.

An assortment of features extracted from the laser rangenscavere utilised, some of
which, to the best of our knowledge are original. The Hu maisiémat are used to match laser
range scans are easy to construct, have been well studied gontext of intensity images and

have been shown to be robust and repeatable features whiggdapgdaser range scans.

6.3 Publications

The list of publications that were prepared and presenttighed over the course of the last 4

years include:

* In [Ferreira 04a], it was shown how various researcherseweenverging to the use of
multiple scale methods together with histogram representanethods to store and pro-
cess features used to characterize image data. Using sefti@aeloped by us albeit still
in early stages of development, good image matching redeltsonstrated the possible

inclusion of such a scheme in robot navigation.
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* In a presentation in the same year [Ferreira 04b], prelnyimesults from the inclusion of
depth data in the process of extraction of interesting gamthe image was also presented.
This work was not developed further in the course of thisithasd has not been presented

in this thesis.

» At some point at the end of 2004 the requisites for repr@sgitite environment in the form
of a topological graph were identified. In [Ferreira 05] a nesthatical basis to allow the
integration of features obtained for perception for togatal navigation using the concept
of entropy was developed. This article described the stdateeavork in a very preliminary
stage and represents the first first steps in arranging a camgpoesentation for all types
of features (from all sensors), which eventually culmidatethe usage of a set of binary

features.

* The common framework that was found to represent featuoes &ll sensors was pub-
lished in [Ferreira 06]. This article reported on the depetent of a Bernoulli Mixture
model to integrate features extracted independently fwonor more distinct sensors. Lo-
cal image features (SIFT) and multiple types of featuresmfeo2D laser range scan were
all converted into Binary form and integrated into a singledoy Feature Incidence Matrix

(FIM). This is the method that is described in detail in thetrelapter.

» The process of application of Hidden Markov Models to theadlsation task and the
results showing the resultant improvement and increaskdstoess of the results have

been published in [Ferreira 07a] and in [Ferreira 07D].

6.4 Perspectives for Future Work

This work has described techniques that improve the plam®gretion capabilities of the system
using a method for un-biased View matching and parametethéoHMM that are appropriate
for the problem. Some modifications have been planned and &egying stages of executions.

While these modifications are expected to improve the plamagrétion in certain environ-
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ments and to better adapt the HMM models to the problem ofePRexognition, they do not
significantly alter the approach that has been presentdteindurse of the thesis. They repre-
sent an evolution of the work presented in the earlier sestamd have been ear-marked as future
work since they could not be completed within the time frarntecated for the completion of

this thesis.

6.4.1 The promise of Improved Feature detection

The Topological map, when modelled in the form of the Refeee®equence is defined in terms
of two conditional distributions. The transition probatyilmatrix addresses the change of the
hidden state and acts as a sort of consistency check for therlyimg sequence of states that
explain the sequence of observations. The emission pridigahatrix serves to handle the un-
certainty of the observations so that the underlying statebe identified with greater or lesser
certainty. The Viterbi algorithm uses these two distinstoutions to find the most plausible
underlying sequence of states/places.

Thus, there are two ways to improve the results of locabsatimprovements in the results
of sequence matching /alignment procedure using the Vigédgrithm depend on the appropri-
ateness of the state transition probability matrix and sebebservation probability matrix.

Among the two approaches it is known that the cost of disarejpa in the ’log-likelihood
score of a match is usually dominated by the output proliglfiMitchell 95b]. This observation
implies that improvements in single view matching techegwould make important contribu-
tions to the sequence matching procedure.

In the case of Place recognition in outdoor environmentgraved results are conditional
on the design and implementation of better features. Whdecthrently used camera and laser
features for appearance-based place recognition prowicdncing results for the indoor envi-
ronments, the same features were found to offer relativelgker results in the case of outdoor
environments.

Future work must include the development of better featiamesutdoor environments. These

features will exploit the relief and 3D structure of the eomiment through the use of robust
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features from 3D point clouds.

6.4.2 Further Development for the Integration of Binary Features

In future work, Communication Theory can provide some insigto the problem of the simul-
taneous handling of multiple binary features. The acdursiof a sequence of raw views can
be modelled as the communication of a sequence of bits oveisg ohannel. The state of the
environmentS is coded within a 'word’\V,,,,,,, and is communicated, via the sensors, to the lo-
calisation system. This word might get corrupted and isaltueceived asd/,,, from which the

original state must be estimated in the form%fThe process has been depicted in (6.1).

S = Vinap = Vops — S (6.1)

A solution to this problem must include the creation of a middethe individual feature
uncertainty and the use of techniques from the error codeectoon literature to recover the
original word.

The detection (or lack of) can be modelled in various waysdédmg on the characteristics
of the sensing procedure. Fig. 6.5, at left, shows a featwdefted as a 'Z’ - binary stochastic
variable (a probable model when the features are quite erfiqum each other as in the case
of SIFT features), while Fig. 6.5 at right, depicts the moofethe feature as a non-symmetric
binary stochastic variable (which could be used to modeUfea that are similar or impossible

to tell apart).

Feature (Input) Perception (Output) Feature (Input) Perception (Output)
Absent = Invisible Absent lb Invisible
4 Y
p
Present —1: Visible Present —1_p> Visible

Figure 6.5: Viewing perception as a transmission of a sibglacross a noisy, non-symmetric
binary channel.

Communication theory might also help us evaluate the chdideadure combinations that

are used to represent the individual places. As describéiearlier sections, each of the views
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is composed of multiple features. Feature combinatiortsaiteaused to represent different states
of the environment should be as unique as possible. The nmarkusthe composition of two

views is, the more difficult it is to tell these two views apart

The theory of noisy channel coding helps us find answers tesprastions such as :

a) What is the maximum/ number of codewords that can be transmitted givéiits can be
transmitted (or how many bits are necessary to transmit afset codewords)? This is

actually the rate? of the channel. R is defined as being equa{&%g)%.

b) If errors in the transmission (and subsequent decodipdd & maximum number of bits

are allowed, which codewords can be recovered given a pktiBlock code (FIM)?

Claude Elwood Shannon provided the answer to the first twotiqussin his seminal paper
[Shannon 48]. He showed that the maximum information thatbEtransmitted across a noisy
channel, its channel capacity, is equal to the mutual inébion rate between the input and output
of the channel. This mutual information is a property of bibth expected noise and the initial

or marginal entropy of the input to the channel.

A value that is analogous to the 'Channel Capacity’ might beetitged for the sensor sys-
tem. This 'Perceptual Capacity’ will specify the maximumeraf the perception channel in the
presence of an optimal distribution of the features in tharenment. In case the errors that
affect each feature are correlated, the capacity of thereHautomatically reduces since the

entropy of the source itself is reduced.

The corollary of Shannon’s work would be not to use the noisgnnel to communicate
beyond the channel capacity. In the analogy with our loa#ibn system, this signifies that
when sensor data is noisy, the quality of localisation arglade recognition might be improved
by increasing the 'Perceptual Capacity’, i.e. employing enancorrelated features or by using

better filters to guess and correct the errors that appebeifeatures.
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6.4.3 The specification of Robot Motion behaviours.

There are many works in current and past robotic researthlé&ahwith discovering new strate-
gies to be applied to robot motion or alternatively the pdaces that could be adopted so that
robot motion can be specified using only a topological regwegtion. This work has not ad-
dressed this problem although the title of the thesis indg#hat it was an original intention.
as it did not pretend to advance the state of art in these .afidas primary focus of this work
remained the representation of the environment using datainultiple sensors.

During the execution of this work it has become clear that mpmete separation of the
mapping representation and the motion specification is ossiple in the case of a complete
navigation system.

Importantly, the organisation of the map and the kind ofespntations that are utilised might
actually exclude certain types of motion behaviour. Theiomothat was possible with such a

representation was taken as a consequence of this envinbelmeodelling scheme.

6.4.4 Using Simpler Models for Path representation

The introduction of the Lost-Robot Place in between the pabgplaces from the Reference
Sequence, allows for the enhancement of the applicabitith® HMMs in many ways. One

such usefulness of the insertédst_Places was introduced in chapter 3, where thest_Place

is used to account for the observations that cannot be peeldand which lie between known
observations.

There are other ways of modelling the above requiremenit, g@sicising another variant of the
Markov chain that defines the transition between statesaiiditiM, such as the Meally Model.
In such a model the observation is made during transitiohsdsn hidden states. Such HMMs
are commonly used in speech recognition and a segment of avl Haihg such a model with
Explicit duration modelling is shown in Fig. 6.6. Given tlede body of experience that there
exists in using these models, their adoptions should rasgjteater adaptability of the HMM

models applied to Localisation.
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i b (0)
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Figure 6.6: HMM model that follows the Mealy Model with Exgli state duration, from
[Mitchell 95a]

6.4.5 Creating Compact and Efficient Representations

Up to this point in this document, the Reference Sequencenthatused for localisation is the
one created by sampling the environment according to somelsay plan. It is conceivable
that in some cases improved results might be obtained byrajtthe Reference Sequence and
removing certain views that do not provide enough infororatiBetter localisation could result
from the improved prior and place-transition probabititm/er the fewer and more informative
places. Additionally, by identifying these distinct placg@ more compact Reference Sequence
could be created. Shorter, more compact Reference Sequareeesirable in applications
involving communication between robots/persons havifffgint capabilities and limited com-
puting power or communication bandwidth. Compact reprediemis of the Reference Sequence
are also desired when long paths through the environment meusaversed, resulting in faster

localisation.

The problem of Localisation within a Reference Sequenceirs, &i the problem of super-
vised sequential learning [Dietterich 02], albeit, in oase, for a single presentation of the train-
ing data set. In [Dietterich 02], Dietrich identifies threeportant issues that must be addressed
in the case of sequential machine learning namely, spetotfircaf a loss function, feature selec-
tion and computational efficiency. A schematic for a defamtof Sequential Machine Learning
is shown in Fig. 6.7. Localisation within the Reference Segeeas defined in chapter 1 can
be viewed as a sequential learning problem, albeit withiapebaracteristics where trgata

samplesare actually the views that were first introduced in chapter 2
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Figure 6.7: [Comparative] definition of the Sequential MaehiLearning Problem [Schuster 99].

Thefeaturesin the terminology applied by Dietterich [Dietterich 02ksanalogous to a sub-
set ofdistinctive place# the Reference Sequence. In order to improve the resulteddtalisa-
tion algorithm, distinctive places must be maintained mtthpological map so that they improve
the results of localisation and represent the environmeileé form of a compact Reference

Sequence.

The compact Reference Sequences no longer can be used imtonaeHMM since the
frequency interval of the observations is not regular. Toticwe to utilize HMM-like models,

the 'duration’ or the elapsed time between observationd imistilised.

Using Second order HMMS might be a good idea where a numbetaxfses’ of HMMs are
applied [Aycard 04].

At the cost of greater computational cost and model comiylettie explicit modelling of
the duration for which the system remains at a state can leded in the Viterbi algorithm. In
order to create a robust system that is not tailored to anyparteular environment, the choice of
what is implied by distinctive place or view should be defihaded on the views in that specific

environment.

The transition probabilities of an HMM can also be expresseterms of the 'duration’
or the average value of a measure (say time or distance) fahvwhe system remains at a
state before changing. This approach is much more intuitivihe case of certain left-right

HMM that are used to model speech, handwriting or music. Tdr@able of interest in these
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problems is time and often the pace at which the system clsatggstates is a key aspect of the
model. Various distributions have been employed to modasdidurations including some of the
more well-known parametric distributions such as Expoagréaussian and Beta distributions
[Levinson 86], [Pikrakis 06], [Kundu 98], [Chen 95].

After a comparison on literature on the various duration eflat methods, the post-processor
duration model by [Juang 85] was implemented and testedhoAlh the results of localisation
using this approach on the compact Reference Sequence hawgnoved terribly as compared
to the results reported in chapter 3, this method repregsbatfirst steps in the localisation of
non-uniform Reference Sequences. Further research intosthef duration-based HMMs is

required.

6.5 Closing Comments

This thesis presented a technique to index a sequence amstifesensory data to some variable
of interest (position of the robot in this thesis). By conirggtall the sensory information into
binary features and then reducing the dimensionality of'space’ occupied by these binary
features using a Bernoulli Mixture Model, a powerful indetieval mechanism was developed
which has shown good applicability to the problem of recogia robot’s position in indoor
environments. The 'ordering’ information that is impligit the sequence or stream came to be
utilised by integrating multiple and sequential obseadiusing a Hidden Markov model.

While improvements in the Localisation capability of thig@iithm are expected as environment-
appropriate and reliable features are developed, a strovantage of the combination of the
underlying techniques is that they could be applied to otkhkenarios and problems.

Another original contribution was the modification of the fidav Chains used in Hidden
Markov Models to enable the use of the sequential contexthiclwvthe expected observations
are specified in the navigation Mission.

Other contributions include developments that were madbdrcharacterisation of images
through the application of local features and of laser raugms through the creation of original

features based on the scan contour and free-area properties



Appendix A

Fast Extraction of Local Image Features

The use of cameras on mobile robots has become widespreatheveast few years. Cameras
can be viewed as high band-width sensors and images candrgeerédundancy. However, it
becomes 'expensive’, in terms of memory and computationstis; to store every raw image that

is associated with a place or with an object.

The sensitivity of the cameras and the effect of changegin,lichanges in viewpoint and
multiple reflectance means that individual pixel valuesrareeasily reproduced. A pixel-wise
comparison between pair of images will work only if there mpemajor changes in the illumina-
tion and the viewpoint. This problem implies that image®ta&f the same scene, but at different

times will appear different.

For this reason, images are often compared and matchedythtba intermediary of 'fea-
tures’ that are extracted from the images. Feature extrafdr vision-based robots varies from
local image descriptors to global image properties derivenh the intensity distribution over
the entire image. Local image descriptor methods seek te attew pixels or measures derived
from these pixels whereas the latter methods calculateinenteresting properties of the image
as a whole. As implied from above, both methods seek to awarth to store the entire image

itself.

The main goal of the thesis proposal was to develop methgaksdo localize a robot within

a previously constructed Reference Sequence of Views.
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In the study of image description and image correspondeiabkal image features, by their
nature convey information about the entire scene in a suggeriptor. Such approaches attempt
to calculate properties (e.g. moments of some value) oféstavithin the image or a substantial
portion of the image. A commonly used approach is to attempapture the distribution of in-
tensities in the colour space using a histogram [Andrea@4brAlong with area-based methods
there are other contour based methods which seek to codedperfies of contour of a regions
and use novel ways to match these properties [livarinen[@&[Trazegnies Otero 04].

As such, global features represent a compact way of presemtiiormation from scenes if
these are not expected to change significantly. Local-infre@geires on the other hand work on
image patches and, when taken together, provide informatiout the scene as a whole. In the
case of images of scenes taken by a mobile robot, illuminati@mnges, occlusion as a result of
dynamic object, scale and view point changes all suggesigbef local image features. Only

local image features have been utilised in this work.

A.1 Local Image Features

Certain regions in an image are known to be [more] stable waWwpoint and lighting changes.
The use of local image descriptors based on these stablenee characterized by two steps
1)the selection of points of interest and 2)their charaaéon. The selection must be repeatable
(even with changes in the conditions in which the imagesaker) and the characterisation must
employ properties that must, again, be tolerant to chang#sei viewpoints, lighting and other
conditions.

Using combinations of heuristics and parametric methoeistufes that correspond to the
architectural properties of certain environments can lraeted. Such methods have used planes
[Corso 03], kerbs [Se 97], the ground plane [Se 97] and roatler@orks such as [Torralba 03]
have used the output of the application of wavelet image meosition.

A competing and more popular approach is to create descsifwo regions of the image
which are then matched against a bag-of-feature. While tethod might be blunt in the case

where there is strong prior knowledge of the nature of festtinat the robot will encounter, the
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features are generic and can be appropriate for applictditme general scene correspondence
problem. In seminal work, Murase and Nayar [Murase 97] gbtech to represent objects in
terms of a 'parametric Eigen-space representation’. Tweik has influenced the use of Eigen-
spaces in topological mapping to represent places in theosmaent. Local-image features
based on local image gradients are an important class ofvisatures. Baker, in [Baker 98], at-
tempts to create a generalised descriptor for local imaaefes and the introduction to his thesis
provides a perspective on the development of gradient bas#iibds. The stability and repeata-
bility of points extracted at local Maxima (or Minima) in gli@nt images that have been repeat-
edly smoothed using operators, has been known for some Kioenplerink 84] [A.P.Witkin 83],
and research in the field finally culminated in the Scale-8gheory proposed by Lindeberg
[Lindeberg 94].

In certain cases and the fact that they need not convey the samount of information,
special methods might be designed to integrate local featwith global ones to increase their
distinctiveness [Lisin 05].

The uniqueness of the extracted features is ensured byirmNector descriptors to rep-
resent each such feature. In work that combined the lesdo8sabe-Space with the reliable
characterisation of features, Lowe [Lowe 99] describesut® of gradient histograms taken at
various points close to some point of interest. These featwere called Scale Invariant Feature
Transforms, SIFT. The work described in this thesis is basetbcal image features that are
based on the SIFT features. The procedure for creation dé#ttere database has been modified

to simplify the creation of features for image sequences.

A.2 Scale Invariant Feature Transforms, SIFT

Since their introduction, SIFT features have been wideplied, among others, to object recog-
nition [Pope 00] [Lowe 01], in the panoramic assembly of ieafBrown 03] and in image re-
trieval [Ke 04]. Various researchers have used this detserip new applications and modifica-
tions on the original procedure have appeared (see Weightadient Orientation Histograms

[Bradley 05], Modified SIFT [Andreasson 04], PCA SIFT and GIoBE:T).
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Two factors affect the efficacy of the SIFT descriptors (faattmatter, of any other descrip-
tor). These are 1)the repeatability of the point extractat a)the robustness of the descriptor
itself to changes in the viewpoint, orientation and changédighting, scale, etc. Once the points
are extracted from the images using a good corner extrasger{Schmid 98] for an evaluation of
different extractors), SIFT keys are employed to createng End robust descriptor of the local

point.

While the strength of the SIFT features stems from the longrg#srs, this same prop-
erty presents new challenges since each image easily thmpwsindreds of good features and
calculating the distance between the vectors of each ot tleadures with the vectors of the fea-
tures obtained from any other image is computationally wEyanding. For this reason Lowe
[Lowe 04], suggested the utilisation of a data structure KD Tree, whose principal advantage
lies in its ability to quickly retrieve points representedvery large dimensions. KDTrees can
be constructed quickly (see [Kennel 04] for an fast operremimplementation) and make the

matching of SIFT features a feasible task.

Figure A.1: A KD-Tree created from a set of 3-Dimensionalrnpoi Image appears at
http://en.wikipedia.org/wiki/Kd-tree
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A.3 Modifications to improve SIFT in Image Sequences

SIFT features have been used to characterize images in tnls Wn experiments presented
in this thesis, typically between fifty and two hundred featuare extracted per image from
sequences containing up to three hundred and fifty VGA-sizges.

The bag-of-features against which an image is comparedtiac&d by presenting a se-
guence of images sequentially to the feature extractohefsequence of images is presented
without previous selection it results in the creation of mé@atures with similar SIFT keys
which, in certain situations can prevent us from correctlyding a KDTree. Since the KDTree
must be built all at once (no accepted method exists for mergally adding data to a KDTree)
the following simple procedure was adopted to aid the canson of the KDTree. This proce-
dure requires no major modification of the original procediar the creation of a KDTree and

is described in the next subsection.

A sequence of sixty seven images of a laboratory wall wasitakele the camera was dis-
placed along a trajectory parallel to the wall, see Figs thEaugh 2.5d. As expected, there are
features that simultaneously appear over a large numbeiewafy The resulting Feature Inci-
dence matrix in Fig. 2.5e contains approximately three $had points of which around one
thousand five hundred are unique and are represented in tfiecéDNote that the arrangement
of the feature across the diagonals of this and other FIMsriplg an artifact that appears be-
cause of the way the features are ordered (the features deel @l at once followed by the

elimination of repeated features).

KDTrees are extremely effective structures that aid thevexy of features that are char-
acterized as vectors [Bentley 75]. In the context of their insplace recognition they have a
serious limitation in that they must be constructed all ateorSeparate KDTrees to recover (and
match) HU features extracted from the laser range scan &ndf8atures from the images were
employed. To enable the creation of the KDTree for sequeatésser ranges scans and for
sequence of images the original procedure has been modifiadding a 'noise-addition’ step
before creating the tree and a 'Querying’ step which remaeasches for similar vectors after

the creation of the tree and marks copies of vectors themdietidn.



154 APPENDIX A. FAST EXTRACTION OF LOCAL IMAGE FEATURES

The novel procedure outlined in Algorithm 3 allows the trleufvee construction of the tree
and does not alter the way in which the SIFT features areexetti and used. The added noise
was small (less thaf.5%) and no significant degradation in the performance of the atethe

time of retrieval of the points was verified.

Algorithm 3 Create KDTree

N = total number of points to insert

n = number of points already inserted

F = number of points to insert at a time (per image possibly)

Require: N > 2

while (N —n > 0) do
Add tiny amount (less that5%) of random noise td" points
Query tree forF" points to be inserted (without noise)
Mark matched points in total of + F points for removal
Add marked points as aliases of points still in tree.
Destroy KDTree
Create new KDTree only with unique points

end while

Destroy KDTree

Create new KDTree only with unique points and without noise

A.4 Other Properties of the SIFT implementation

To account for the loss in the resolution as larger filtersagmelied to the images during the
corner extraction, the original image is usually decimaigmbatedly to reduce the computational
requirements as the pixel-redundancy increases. When inmgespondence has been applied
to object recognition, the decimations, which result inithage pyramids, have been known to
still yield useful results when performed many times (deg@mids). SIFT keys are extracted
for the whole image and for an image with a resolution redusyeldalf. This reduced number of
decimations results in a capability to process images ajlzehifrequency without a discernible
reduction in performance.
One of the most costliest steps in the creation of the SIF€rg®srs is the identification of

maxima/minima in the scale-space. Points that satisfy autiaxima/minima criteria, must be
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local maxima-minima and also be [scale-adjusted] maxinr@ma along the dimension of scale
dimension. In order to optimise the selection of local maadminima at the same scale, opti-
mized functions to detect corners that available in the agemvision library OpenCV [Intel 7],

were employed.
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Appendix B

Extraction of 2D Laser Features

The reduction in the price of 2-D laser ranging devices,rteaperior accuracy, longer range
and high measurement rates vis a vis other range findingeke\has resulted in their ubiquitous
presence on mobile robots. In their contribution to varitasks ranging from mapping to path
planning, they have all but replaced ultrasound sensotsasdlund range sensors have retained

their place on robot platforms for the purpose of obstacteat®n.

Range based methods have been frequently used to index pleckor environments, first
with ultra-sound sensors and later with laser range scanndethods that depend on range
sensors have used maps with landmark and free-space bgutegactions to represent places.

Range data is matched with one or more places in the map torpeplace recognition.

In many applications, range finders are used either as theipal sensor or in conjunction
either with vision, ultrasound, odometry or a combinatibareof. From an application point of
view, Laser range sensor data might be employed for chaiseatien the open-area at a particular
place, for detection of the presence of absence of some ¢aigot at a particular position, for an
estimation of motion by calculation of the 2D transformatibat explains the difference between
two consecutive scans. In this chapter the laser scan é&satised in this work are compared with

use of laser range sensors in related literature.

Feature extraction from scan data attempts to segmentspthiat reflect properties, of a

portion of the scan or the scan as a whole, that are [relg}iilariant to changes in the point

157
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at which the scan is taken, the presence of view-obstrucijects and changes that occur in
dynamic, real-world environments. Segmentation of tha ddb primitives or clusters based on
their proximity or some parameters is, by far, the most comlgnased approach to launch this
process.

Multiple types of features from the laser range scan hava bewloyed, namely 1)wall-like
(line) features, 2)scan region properties and 3)scan coptoperties in the form of a vector that

characterises 2D discontinuities in the plane of the scargi$u moments [Gonzalez 02].

B.1 Extraction of Wall-like features

Long lines from the points in the laser scan have been ertlacding a two-stage method. The
extraction of short line segments (containing between 2#6tp) was performed using the incre-
mental method [Nguyen 05] followed by fusion into longeelnsegments of at least 2 meters).
Binary features are created by classifying the number ofeted lines and their distance from
the Laser range scanner.

In a first stage the complete laser range scan is modellednmstef small line segments
(of not more than say points). These segments are constructed using the itemtig-point-fit
algorithm, see [Nguyen 05] for a comparison of results wttieo methods, that seeks to 'grow’
a line by adding the next point (its theta neighbour in rad@drdinates) and checking whether
this addition is appropriate. If the new point satisfies thaation of the exiting line the line
segment is extended, else a new line is initiated. To all@wities to better describe the scan
contour, the growth of the lines has been arrested at thge sta

In the second stage, the short line segments previouslya&tt are fused together into longer
line segments. Fusion takes place as long as the line’s pwiats are not separated by more
than a certain threshold distance and as long as the sloghe bhes are similar. As iterative
procedure compares every pair of lines and checks for th&lplity of fusing them. Once more,
to create long line segments that best reflect the origisaklacan, each line is allowed to fuse
with at most one other in each iteration and the smaller lemegiven preference over the bigger

ones for fusion.
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Algorithm 4 Create Small Segments using the Incremental End Point Altgori

N = total number of un segmented points in laser scan
d = maximum separation distance between points (defined bgrdistbetween inner points)
D = maximum allowable angle between lines.
# P = maximum number of points satisfying equation of a line segime
Require: N >1
while (V > 0) do
check if next point Add tiny amount (less thars%) of random noise td’ points
if next point lies at distance greater thathen
create new line
Current point is first point in new line
end if
if difference between angle between next point and last poilmié and the line is greater
thanD then
create new line
Current point is first point in new line
end if
if number of points in line greater thaaP then
create new line
Current point plus one is first point in new line
end if
Include point in existing line, re-calculate line paramste
end while
Destroy KDTree
Create new KDTree only with unique points and without noise

—

7~

Figure B.1: Two failed attempts at fusing pair of lines areveahoThe middle segment cannot
be paired with the segment at right because the slopes aeedifierent (lines within the grey
region are eligible for fusion). The middle segment canr@phired with the segment at left
because the two are separated by a large distance.
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Table B.1: Categorisation of long lines into binary features

>=1 lines at 4+ meters
>= 2 lines at 4+ meters
>= 3 lines at 4+ meters
>=1 lines at 2+ & 4- meters
>= 2 lines at 2+ & 4- meters
>= 3 lines at 2+ & 4- meters
>=1 lines at 2- meters
>= 2 lines at 2- meters
>= 3 lines at 2- meters

0O ~NOoOol s wWNEO

Walls have been characterized in the image using long (gfttegreater that 2m) line seg-
ments. Various schemes exist to segment laser range saimttatine segments. Laser range
scans already have some structure in the points within twe sd¢hey are best described using
radial coordinates. This structure has resulted in cegailvemes that are more applicable to
such data than schemes that seek to detect lines in say n@ggs. These schemes vary on the
criteria of what makes one line better than another line¢batpetes for a point on the first line.

Such criteria include but are not necessarily limited by

a) Average Point-to-Line distance

b) Distance between segments

¢) Minimum number of Segments

d) Set of segments with a Minimum/maximum total length ofi8egt

Wall-like segments are important because of their robgstt@changes in the point of view.
They are also instrumental in building up other types ofudesg as will be shown in a later
section.

The (long)line segments themselves are then convertediméoy features utilising a classi-

fication scheme describes in Table B.1.
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Figure B.2: Two types of doors that are detected in data frorRR& lising the method developed
in [Xiang 04].

| -

(a) Simulated environment with one 'navigable’ (b) Plan view of extracted segments represent-
passage on the left and another 'blocked’ pas- ing walls (dark, continuous lines) and doors
sage straight ahead. (lighter, broken lines).

Figure B.3: An example of detection of passable and non-péssaors in a typical laboratory
scene.

B.2 Extraction of Doors or Door-like Features

These features were chosen primarily because of the aNiyladd previously developed work
that detected doors in laser range scans [Xiang 04]. Althgpgrmanently open) doors are not
very common in the environments in which the experimentseveenducted in, the algorithm
has a low probability of false detection and the presencet#aed doors becomes important to
characterise certain places.

In that work the authors apply empirical rules to extractrogeors based on the position of
adjacent walls and the geometric layout of these walls aa@pening, Fig. B.2.

To obtain binary features the detected features have beweited by classifying them based
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Table B.2: Classification of Open doors into binary features

>=1 doors at 4+ meters
>= 2 doors at 4+ meters
>= 1 doors at 2+ & 4- meter
>= 2 doors at 2+ & 4- meters
>= 2 doors at 2- meters
>= 2 doors at 2- meters

14
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Table B.3: Classification Scan Boundary Features into binatyfes.

area >=2nt
area >= 4 nt
area >= 8 n?
MaxDim >=4 m
MaxDim >=8 m
MaxDim >= 16 m
MaxDim/MinDim >= 1
MaxDim/MinDim >= 4
MaxDim/MinDim >= 8

© 00N UL WDN PR

on the distance of the sensor to the center of the door or gassaording to the Table B.2. A
door is said to be detected if the probability of its exiseerscsuperior ta’5%.

The results of the application of the door detection are shiovig. B.3.

B.3 Scan Boundary Features

Features describing the regional properties of the lasar bave been applied. The values of
the area covered by the scan and the lengths of the prindipahgdions are then classified as in
Table B.3.

One type of feature is created with the aim of characterigtvegfree or open space covered
by the laser range scan. The free area is classified usinghteéghblds in Table B.3 and the
appropriate binary features are created.

Another type of feature provides a basic measure of theildision of the free-space mea-
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sured by the range scan. The layout of this free space is meghsuterms of the longest and
shortest dimension}/ax Dim and MinDim respectively. These are then classified using the

thresholds shown in rows Table B.3.

B.4 Hu Moment Features

Hu moments [Hu 62] are commonly employed in the matching @fges and their use is based
on the observation that combinations of the centralised emsof an image are (quite) invariant
to rotation, scale and reflection [Gonzalez 02]. In this wadtla image moments are used in a
similar way to SIFT features, by collecting the 7-elemeiattdees into a KDTree and matching
the features extracted from new images (see next subsgction

The laser range scan for four scans from a sequence of 118 scaimown in Fig. 2.4. The

Feature Incidence Matrix for the sequence is also shown.
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Appendix C

Description of a Robot Mission

The robot is endowed with capabilities of moving in the eamment according to certain laws

that depend of the immediate environment as sensed by itpleomant of sensors.

The type of behaviours that can be implemented depend onotiifeggaration of the robot,
the type of sensors that the robot possesses and the afgstitiat are available. Thus, a robot
with steering capability and a range finder should be ableetéopm wall following or corridor
following as suggested in Fig. C.1la.. The simplest behawtwatrthe robot can perform is way

point following without closing the loop Fig. C.1b.

Upon reaching a 'Place’ the current motion behavior is stojpgnd a new behavior must be
initiated. The Places in the environment are defined asitotaat which the behavior of the
robot must change or be modified so that the robot can take gpadwor due to restrictions

imposed by the sensory system of the robot.

- ]

é/-¢

(@) lllustration of Wall-Following behaviour. (b) Way-point-Following behaviour.

Figure C.1: The two behaviours that have been used in theeotithis work.
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C.1 The Set of Robot Motion behaviors

The Way-Point-Generation module of the Tactical layercdbsd in section 5.2.2, provides a
set of motion behaviors that propel the robot along. Thessisbof algorithms that are closely
coupled with raw sensor data and properties of the local g&termap to discover trajectories
with desirable properties through hill-climbing behavard maintenance of these trajectories.
The topological map that is generated during the EnvirorirRamiliarization phase provides
the topological and local metric information together wittotion information that allow the
robot to move from one node to another using a hill-climbiegdwior on the function of sensor
information.

From the set of possible behaviors stated above, the typdactRnd the layout of the
environment do not allow the execution of certain behaviofree aim of the Robot Mission
Control module is to recover the same behaviours used to gleetoext place in the Reference
Sequence during the final Navigation stage. To generat®#ference Sequence, the Views are
created as the robot is led around the environment.

The motion behaviors that the robot is equipped to implerasat

a) To move to some way point according to some control lawh(wit without feedback):
The Move-Ahead behavior utilizes this trajectory geneatnethod to negotiate a path in

the environment.

b) To turn about itsel®0°, 180° or 270°: The Turn-About behavior makes the robot turn
about itself while keeping it at the same position. Such abieh is possible wherever the

local metric map allows it.
c) To move parallel to a wall.

d) To cross an open door or narrow opening: This behavious @bstraction of other be-
haviours in which the robot identifies the neared doorwagijtjms itself so as to be able

to safely cross the doorway and finally negotiates the nacrossing.

In certain situations specifying a particular type of absted motion behavior might be more



C.2. MISSION SPECIFICATION USING STRINGS 167

intuitive and useful. For example while sending the robobdigh an unexplored part of the
environment such as getting it to cross a door that was neiqusly crossed. Therefore a
second type of symbol might be included in the string, agddo the symbol of the Key point,
specifying the motion behavior of the robot. These Motiohdaors are always associated with
the Key-points that they are attached to. The complete sef ofotion behaviours is shown

below.

M A specifies a trajectory set-point following behavior

MT specifies a rotation of the robot about itself
{M e MA, MT,MC} { (C.1)

MW specifies wall-following behaviour

\MC specifies crossing of a door

C.2 Mission Specification using Strings

Mission string: is a sequence of ImportaMewstaken along a path, each of which is associ-
ated with an action. The Mission string is created as a gtih observations that the robot is
expected to encounter as the Mission progresses.

In general, a human operator who guides a robot could be nmdagby 1)the presence of
sensory cues and 2)from clues about the affordability ap#rgcular place.

Examples of the former include navigation in a corridoelgnvironment indoor, following
a street or highway to a particular destination. Examplaeb@fatter might include behaviours
at Dead-ends, exiting open spaces and halls, crossing airtocanother space etc. The key
difference between the two types is that it would be diffi¢aldescribe such locations using
a single image and hence some semantic property is attaohtée Key-point. In this work
the influence of environment affordability to control theeention of a Mission has not been
attempted.

The labels that a human operator can assign to a place in aomment that are offered for

use in Mission specification by the robot will belong to thesgeecified below.
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(

LD represents a door in the environment

L1I; represents an Imagen the environment

LOy represents an Objektin the environment

\LAt represents a locatidrwith an abstract property

From the definition, visual cues can be both ambiguous aseirtdise of doors and robots
might not necessarily possess the capability to identiégésame cues and the affordability that
the environment presents at any place. The robot will , ftbegemaintain its own representation
of these places.

A simple mission could be specified that could set the robbfrom a starting point in a
corridor toward the end of the corridor. The map of the envinent is shown in the image and

the possible mission that gets the robot to the end of thedoorecould be written as in Fig. C.2.

-, —

Figure C.2: A plan view of a simple environment. The Missiorngt could be written thus
Missionl = [LD_LA3]

Thus, if the robot must cross the second door in the corradgor it has not crossed before,
a mission could be written a¥/ission2 = [LD_LDMC], see Fig. C.3. The robot is expected
to go past the first door and, when it reaches the second dogw, through the door.

Each of the Features that the robot can utilize in the coctstiuof the Mission string can be
identified using one or more of the robot sensors.

Two types of Landmarks are utilized, regular architectéeatures that represent landmarks
such as doors that are plentiful but impossible to discrat@rbetween, and unambiguous or

unique Landmarks such an interesting scene or object tegsafficiently) unique over the en-
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Figure C.3: A plan view of a simple environment. The to robottémtinue past the first door
and enter the second door.

vironment of operation of the robot. From a point of view ohstructing a mission, choosing
certain types of key-points over others should not be peréar by the human operator, but the
choice of key-points chosen might greatly affect the cdpglmf the robot to localize itself in
the topological map and deal with modified environments|usten of landmarks and varying
light conditions. In the case of ambiguous landmarks thetratight not always represent envi-
ronment correctly, resulting in an "aliasing’ error. Thusre landmarks might be missed while
other might be detected. The consistency of a mission stningt be maintained inspite of these
difficulties. A solution to this problem has been attemptadagh the establishment of a one-
to-one correspondence between the features in the midsiog and the topological map at the
time of mission generation. Also, ordering of the features fire presented for construction of

the Mission string reduces the aliasing error.

| =Y I_.MA
4 \/

MC

Figure C.4: Motions that can be performed at a Place defineddopa

During the Environment-Familiarization phase, doors glire environment have been iso-
lated using one or more sensors. The definition of doorsdedwpen, closed and partially open
doors. Thus an open door can be matched to a closed or algasiah door. The robot, however

can obviously cross only open doors and the Way-Point Geoanmaodule arrests any attempt to
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cross closed or partially closed doors. Typically, during Environment-Familiarization phase,
the robot will approach the door and either go past or crotsntess the robot somehow returns
to the same door during the Environment-Familiarizatioagghthe motion behavior adopted the
first time will the one used during the execution of the missiba Motion behavior is included
in the Mission string for the door then it will be performediead. The Motion behaviors that
can be associated with Key-points of this type gké N, M A, MT, MC'}.

One of the capabilities of the robot is to extract local feasufrom images and store this
information for subsequent retrieval. Through the extoaicind matching of local points of
interest in an image, images are retrieved from a previoasgted database of images. The
intensity image is also stored so as to allow the use of thagipogrom which that scene was
observed in the construction of the Mission string. Intengsscenes can be recognized using a
camera or a set of stereo cameras. The Motion behaviorsahdieeassociated with Key-points
of this type are{ M N, M A, MT'}.

g 3D Object
lIIIIl - I
M7 ) Distinctive
I

Scene

e =

Figure C.5: Motions that can be performed upon “seeing” ardisve scene or upon identifying
a 3D object.
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