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Abstract 

 

        This paper focuses on the development of intelligent multi-agent robot teams that are capable of acting 
autonomously and of collaborating in a dynamic environment to achieve team objectives. A biologically-inspired 

collective behaviour for a team of co-operating robots is proposed. A modification of the subsumption architecture is 

proposed for implementing the control of the individual robots. The paper also proposes a fuzzy logic technique to 

enable the resolution of conflicts between contradictory behaviours within each robot. Furthermore, the paper 

proposes a neuro-fuzzy based adaptive action selection architecture that enables team of robot agents to achieve 

adaptive cooperative control to perform two proof-of-concept co-operative tasks: dynamic target tracking and box-

pushing. Simulated and real experiments have been conducted to validate the proposed techniques. 
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1. Introduction  

 

       Biological agents, for example social insects, have 

been manifestly successful in exploiting the natural 

environment in order to survive and reproduce. 

Scientists are interested in understanding the strategies 

and tactics adopted by such natural agents to improve 

the design and functionality of computer-based 

artificial agents (robots). They observe how these 

social insects locally interact and co-operate to achieve 

common goals. It seems that these creatures are 

programmed in such a way that the required global 

behaviour is likely to emerge even though some 

individuals may fail to carry out their tasks. 

 In this paper, a biologically-inspired group 

behaviour for a team of co-operating of mobile robots 

is proposed. Since co-operation among a group of 

robots working in an unknown environment poses 

complex control problems, it is necessary to obtain 

solutions that achieve a suitable trade-off between the 

objectives of the robots that can potentially conflict [1]. 

This highlights the problem of deciding what action to 

select next as a major issue in the design of systems for 

control and co-ordination of multiple robots. For this 

purpose, a new approach of fuzzy logic technique for 

behaviour coordination in co-operative target tracking 

is proposed. 

       Achieving adaptive co-operative robot behaviour 
is more challenging. Many issues must be addressed in 

order to develop a working co-operative team; these 

include action selection, task allocation, coherence, 

communication, resource conflict resolution, and 

awareness.  Therefore, a neuro-fuzzy based action 

selection architecture is proposed that enables these 



 

robots to achieve adaptive cooperative control despite 

dynamic changes in the environment and variation in 

the capabilities of the team members. 

  The remainder of the paper is organised as follows. 

Section 2 outlines the background related to the theme 

of the paper. Section 3 presents collective behaviour of 

social insects and co-operating mobile robots. Section 

4 describes fuzzy-logic-based dynamic target tracking 

behavioural architecture. Section 5 describes adaptive 

co-operative action selection architecture. Section 6 

shows simulation results. Section 7 describes mobile 

robots hardware and real experiments.  Finally, Section 

8 gives the conclusion. 

 

2. Background 

 

 The research that closely relates to the topics 

presented in this paper includes that of [2], they 

presented a collective robotics application whereby a 

pool of autonomous robots regroup objects that are 

distributed in their environment.  A team of real mobile 

robots that co-operated based on the ant-trail-following 

behaviour and the dance behaviour of bees is presented 

[3]. An interesting example of decentralised problem - 

solving by a group of mobile robots is given [4].  A 

collaboration in a group of simple reactive robots 

through the exploitation of local interactions is 

investigated [5]. New methods for tracking ball and 

players in soccer team and team coordination 

approaches are proposed [6]. Mobile robot navigation 

and co-operative target acquisition examples are given, 

in which the principles of multiple objective decision-

making (MODM) are demonstrated [7].  Desirability 

functions as an effective way to express and implement 

complex behaviour coordination strategies were 

espoused [8]. An action selection method for multiple 

mobile robots performing box pushing in a dynamic 

environment is described [9]. A multi-channel infrared 

communication system to exchange messages among 

mobile robots is developed [10].  A description of L-

ALLIANCE architecture that enables teams of 

heterogeneous robots to dynamically adapt their 

actions over time is given [11].  

 

3.  Collective Behaviour of Social Insects and 

Cooperating Mobile Robots 

The collective dynamic target tracking task 

investigated here is based on the emergence of 

collective strategy in prey-predator behaviour, where 

the predators co-operate to catch the prey or the prey 

co-operate to defend themselves. The term collective is 

used in the sense of the collective motion of defence or 

attack. The dynamics of predator-prey interactions 

where the predators surround the prey to catch it using 

local sensor-based interactions among them have been 

implemented in the task of dynamic target tracking.  

In this paper, the subsumption architecture is 

modified to comprise more than one behaviour module 

within one layer run in parallel and have the same 

priority and to allow information exchange between the 

layers as shown in figure 1. The design of the target-

tracking controller begins by specifying the sensing 

requirements for the task. Collision free movement will 

require an obstacle sensor; to follow other robots needs 

a robot sensor; tracking the target will require a target 

or goal sensor. The lowest priority default behaviours 

are the “search” and “listen for messages” behaviours. 

“Search” directs the robot to advance along its current 

path. Simultaneously, “listen for messages” makes the 

robot receptive to messages sent by other mobiles. The 

above default behaviours can be suppressed by the 

“follow message sender” behaviour if a message has 

been received from another robot (by means of the 

robot sensor on the current robot). “Follow message 

sender” causes the robot to move to its nearest sensed 

neighbour. The “send message” and “approach goal” 

behaviours are activated by the goal sensor. “Send a 

message” makes the robot issue a “target intercepted” 

message to the other mobiles and “approach goal” 

directs them towards the target. “Approach goal” 

causes the robots to turn a number of degrees towards 

the target while the goal sensor is active. The task is 

accomplished once several robots collectively have 

captured the target. The highest priority avoid 

behaviour becomes active and remains active as long 

as the obstacle sensor has detected an obstacle. Avoid 

behaviour turns the robot a fixed number of degrees 

away from the sensed obstacles at each simulation time 

step prevents collisions.  

4. Fuzzy-Logic-Based Dynamic Target Tracking 

Behavioural Architecture 

 

 Even though the modified subsumption 

architecture allows more than one behaviour to run 

simultaneously, however only a behaviour requires to 

activate the robot actuators modules will get the control 

of robot actuators at a time. The question arises here is 

how to control robot actuators when several main 

behaviours are activated simultaneously. To address 

this issue, an approach based on fuzzy sets operations 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is proposed here that takes into account the 

recommendations of all applicable behaviour modules. 

Behaviour coordination is achieved by weighted 

decision-making and rule-based (behaviour) selection. 

The weights used for weighted decision-making are the 

degrees of confidence placed on the different 

behaviours. They are empirical measures of 

applicability of particular behaviours.  The fuzzy-logic-

based architecture for mobile robots, in the context of a 

dynamic target tracking system, consists of several 

behaviours, such as target following and obstacle 

avoidance. Multiple behaviours could share a common 

fuzzy inference module. Fuzzy control 

recommendations generated by all behaviours are fused 

and defuzzified to generate a final crisp control 

command.  

 The basic algorithm executed in every control 

cycle by the architecture consists of the following four 

steps: (1) the target following behaviour determines the 

desired turning direction; (2) the obstacle avoidance 

behaviour determines the disallowed turning directions; 

(3) the command fusion module combines the desired 

and disallowed directions and (4) the combined fuzzy 

command is converted into a crisp command through a 

defuzzification process.  

 

5.  Adaptive Action Selection Architecture 

To maintain a purely distributed co-operative 

control scheme which affords an increased degree of 

robustness, individual agents must always be fully 

autonomous, with the ability to perform useful actions 

even amidst the failure of the other robots. An adaptive 

action selection architecture based on neuo-fuzzy 

technique (figure 2) is developed to be fully 

distributed, and giving all robots the capability to 

determine their own actions based upon their current  

 

 

 

 

 

 

 

 

 

situation, the activities of other robots and the current 

environmental conditions. The monitor function, 

implemented within each robot, is responsible for 

observing and evaluating the performance of any robot 

team member (including itself) whenever it performs a 

behaviour.  

       A neuro-fuzzy technique has been used to fine-
tune the fuzzy rules and minimise the total error 

between the desired output and the fuzzy controller 

output. The structure of the neuro-fuzzy system is 

shown in Fig.3. The network structure contains six 

layers. Nodes in layer one are input nodes that 

represent input linguistic variables. Nodes in layer two 

are input term nodes that act as membership functions 

to represent the terms of the respective N input 

linguistic variables. The nodes in layer three are rule 

nodes, where each node associates one term node from 

each term set to form a condition part of one fuzzy 

rule. The nodes in layer four are output term nodes that 

act as membership functions to represent the output 

terms of the respective L linguistic output variables. 

The number of nodes in layer five is 2L, where L is the 

number of output variables, i.e. there are two nodes for 

each output variable. The function of these two nodes 

is to calculate the denominator and the numerator of a 

quasi Centre of Area (COA) defuzzification function. 

The nodes in layer six are defuzzification nodes. The 

number of nodes in layer six equals the number of 

output linguistic variables. The structure of the neuro-

fuzzy system is created in three steps. The first step is 

to specify the input and the output variables of the 

network. The second step is to divide the input-output 

universes into a suitable number of partitions (fuzzy 

sets) and to specify a membership function for each 

partition. The third step is to generate fuzzy rules to 

perform the input-output mapping of the fuzzy logic 

system. 

Fig. 1: target - tracking robot architecture 
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Fig.2: Adaptive action selection architecture 
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perform the input-output mapping of the fuzzy logic 

system. Following this construction phase, the system 

then enters the parameter learning phase to adjust its 

free parameters. The adjustable free parameters are the 

centre (mijs) and width (σijs) of the term nodes in layer 

four as well as the link weights in layers two and six. A 

supervised learning technique is employed in 

conjunction with the back propagation (BP) learning 

algorithm to tune these parameters.  

 

6.  Simulation 

The objective of the developed simulation tool is 

to test the proposed architecture based on the context 

of the co-operative tasks of dynamic target tracking 

and box pushing. 

6.1. Dynamic target tracking task 

 For this task, a simulated environment has been 

designed to model a large population of robots (a few 

thousand), different obstacles and one target. Two 

kinds of sensors were simulated: obstacle detection 

sensors and target detection sensors. Three ultrasonic 

sensors were modelled to provide information on 

obstacles to the left and the right, and in front of the 

robot. The same models were used for the ultrasonic 

sensors fitted to the moving target. Target detection 

was simplified by using an infrared source at the centre 

of the target and infrared target sensors mounted on the 

robots. Two actuators were modelled, one for each 

motor (left and right). Experiments were run with 

different numbers of robots and different obstacle 

densities. Each experiment on a collection of robots 

was performed thirty times and the results were 

averaged. The first experiment analysed how varying 

the number of robots affected the time required to track 

(capture) the target. This experiment took place in a 

limited arena containing one small target and no 

obstacles. The second experiment differed from the 

first only by the addition of obstacles in the arena. 

Figure 4 shows that increasing the number of robots 

reduced the time required to track the target. However, 

robot collision and interference tended to degrade the 

performance. Adding more robots did therefore 

produce a proportional increase in performance.  The 

first and second experiments were repeated to 

investigate the application of fuzzy logic technique for 

behaviour coordination. Fuzzy logic enables to solve 

conflicts between the contradictory behaviours by 

selecting an action that represents the consensus among 

the behaviours as shown in figure 5.  

 

6.2. Box-pushing task 

 

 The objective in this task is to find a box, 

randomly placed in the environment, and push it across 

a room. The box is so heavy and long that one robot 

cannot achieve this alone. The Webots simulation tool 

[12] was used to implement this task. This software 

operates in three dimensions and enabled the modelling 

of robots, sensors, actuators, and obstacles, as well as a 

set of behaviour modules in order to map sensor inputs 

to actuator outputs. Experiments in [11] are repeated 

for comparison. In the first experiment, two robots co-

operate to find a box and push it across the room, with 

no obstacles in the environment. In the second 

experiment, obstacles are added that obstruct one of the 

two robots to investigate how the other one 

dynamically reselects its actions in response to changes 

in the mission situation. The robots are initially situated 

randomly in the environment and they then start to 

locate the box (figure 6a). After both of them have 

reached the, it is assumed that the robot at the left end 

of the box starts to push first (figure 6b). 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4: Target tracking without coordination 
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Fig.3: Neuro-fuzzy structure 

 

Layer 3 

rule nodes  

(softmin function) 

Layer 4 

output term nodes 

(softmax function) 

x1 

Layer 2 

input term 

nodes 

Layer 5 

pre-defuzzification 

nodes 

Layer 6 

defuzzification 

nodes 

Layer 1 

input nodes x2 XN 

 



 

 

 

 

 

 

 

 

 

   

 

 

 

 

 
 

 

  
 

 

 
 

 

 

 

 

 

 

 

 

 

From sensory feedback and acquired knowledge 

(learned off line [13]), the box has then to be pushed 

from the right end. The robot at the right end starts to 

push and broadcasts that action to the robot at the left 

end. During the expected time for that action, the robot 

at the left end monitors the performance of its team 

mate. In the first experiment, the robots completed the 

task. In the second experiment, one of them is stuck 

because of obstacles in the environment while the other 

has reached the box. Because there is no progress from 

the other robot, the robot that reached the box starts to 

push the box from one end. Then it moves to the other 

end to push (figure 6c). It continues its back and forth 

pushing executing both pushing tasks as long as it fails 

to hear that another robot is performing the push at the 

opposite end of the box.  

 

7.  Mobile Robots Hardware and Real 

experiments 

 Small radio-controlled toy cars and a small radio-

controlled toy tank were adapted to provide the 

mechanical structures for the mobile robots and 

moving target, respectively (see figure 7). 

 The control system for the robots and target was 

purpose designed for this application as the existing 

radio-operated controllers in the toy cars and toy tank 

were not suitable. A robot can detect another robot 

approaching it from either side of it because one of the 

side sensors of the first robot will be activated by the 

signal emitted by the approaching robot. A robot can 

also distinguish between a target and another robot 

located on either side of it because of the different 

signals they emit.  

       Experiments were run with two or three robots, 

different obstacles and one target. The first set of 

experiments analysed how varying the number of 

robots affected the time required for tracking the target. 

This experiment took place in a limited arena 

containing one target and no obstacle. The second set 

of experiments differed from the first set only by the 

addition of obstacles in the arena. Figure 8(a) depicts 

an intermediate stage of three robots are tracking the 

target. Figure 8(b) shows the final stage when the 

robots have cooperated and captured the target.  It was 

found that the time required to track and capture the 

target using three robots was approximately 2 minutes. 

With only two robots, the required time was about 4 

minutes. In the case where three robots and obstacles 

were included, the time was 7 minutes.  

 

     Fig. 5: Target tracking with coordination 
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Fig. 6b: The left robot started to push the box 

Fig. 6c: The robot moved to the other end to push 

  

Fig. 6.a: Initial environment  

Fig. 7: The robots and target 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.  Conclusion 

 The use of fuzzy logic enabled the resolution of 

conflicts between contradictory behaviours by 

selecting an action that represents the consensus among 

the behaviours and that best satisfies the decision 

objectives encoded in them. Furthermore, the proposed 

co-operative robot architecture has been shown to 

allow robot teams to perform real-world missions over 

long periods, even while the environment or the robotic 

team itself changes.  
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         Fig. 8(a): Intermediate stage  

 

       Fig. 8(b): the robots captured the target 

 


