
Machine Vision and Applications (2006) 17:163–172
DOI 10.1007/s00138-006-0022-6

ORIGINAL PAPER

Real time machine learning based car detection in images
with fast training

Milos Stojmenovic

Received: 23 November 2005 / Accepted: 28 March 2006 / Published online: 30 May 2006
© Springer-Verlag 2006

Abstract Our primary interest is to build fast and
reliable object recognizers in images based on small
training sets. This is important in cases where the train-
ing set needs to be built mostly manually, as in the case
that we studied, the recognition of the Honda Accord
2004 from rear views. We describe a novel variant of
the AdaBoost based learning algorithm, which builds a
strong classifier by incremental addition of weak clas-
sifiers (WCs) that minimize the combined error of the
already selected WCs. Each WC is trained only once,
and examples do not change their weights. We describe
a set of appropriate feature types for the considered
recognition problem, including a redness measure and
dominant edge orientations. The existing edge orienta-
tion bin division was improved by shifting so that all hor-
izontal (vertical, respectively) edges belong to the same
bin. We propose to pre-eliminate features whose best
threshold value is near the trivial position at the mini-
mum or maximum of all threshold values. This is a novel
method that has reduced the training set WC quantity
to less than 10% of its original number, greatly speed-
ing up training time, and showing no negative impact
on the quality of the final classifier. We also modified
the AdaBoost based learning machine. Our experiments
indicate that the set of features used by Viola and Jones
and others for face recognition was inefficient for our
problem, recognizing cars accurately and in real time
with fast training. Our training method has resulted in
finding a very accurate classifier containing merely 30
WCs after about 1 h of training. Compared to existing

M. Stojmenovic
SITE, University of Ottawa,
Ottawa, ON, Canada
e-mail: Milos22@gmail.com

literature, we have overall achieved the design of a real
time object detection machine with the least number of
examples, the least number of WCs, the fastest training
time, and with competitive detection and false positive
rates.

1 Introduction

The objective of this article is to analyze the capabil-
ity of current machine learning techniques of solving
other similar image retrieval problems. By ‘capability’,
we mean real time performance, a high detection rate,
low false positive rate, fast training and learning with a
small training set. We are particularly interested in cases
where the training set is not easily available, and most
of it needs to be created manually.

We will apply machine learning to the detection of
rears of cars in images. Specifically, the system should be
able to recognize cars of a certain type such as a Honda
Accord, 2004. Therefore, input should be an arbitrary
image, and the result should be that same image with
a rectangle around any occurrence of the car we are
searching for. In addition to precision of detection, the
second major aim is real time performance. The pro-
gram should quickly find all the cars of the given type
and position in an image, in the same way that Viola
and Jones [13] finds all the heads. The definition of ‘real
time’ depends on the application, but generally speaking
we would like to receive an answer for testing an image
within a second or so. The response time depends on the
size of the tested image, thus what appears to be real
time for smaller images may not be so for larger ones.

Finally, our aim is also to design the object detec-
tion system based on a small number of training exam-
ples. We envision applications in cases where training



164 M. Stojmenovic

examples are not easily available. For instance, in the
case that we studied, we had to take photos of back
views of a few hundred Honda Accords and other cars
to create training sets, since virtually no positive images
were found on the Internet. In such cases, it is difficult
to expect that one can have tens of thousands of images
readily available, which was the case for the face detec-
tion problem. The additional benefit of a small training
set is that the training time is reduced. This enabled us
to perform a number of training attempts, adjust the set
of examples, adjust the set of features, test various sets
of weak classifiers (WCs), and otherwise analyze the
process by observing the behavior of the generated clas-
sifiers. Since the success of training with a small number
of examples was unclear, we also had to set a fast train-
ing time as a goal from the very beginning so that we can
perform a number of adjustments and improvements to
the system. Two main contributions of this article, pre-
elimination of features and shifted edge orientation bins,
were made to satisfy all the goals.

We will apply machine learning methods in an
attempt to solve the problem of detecting rears of a
particular car type since they appear to be appropriate
given the setting of the problem. Machine learning in
similar image retrieval has proven to be reliable in sit-
uations where the target object does not change orien-
tation. A classic application has become the detection
of upright forward facing heads as proposed by Viola
and Jones [13]. Cars are typically found in the same
orientation with respect to the road. They can be photo-
graphed from various angles (front, side . . .) but they are
rarely found up-side-down. The situation we are inter-
ested in is the rear view of cars. This situation is typically
used in monitoring traffic since license plates are univer-
sally found at the rears of vehicles. It is also the target
of choice of police traffic monitoring equipment, since
their cameras are usually positioned to film the license
plates for the purposes of vehicle recognition. There-
fore, hardware is already in place for various software
applications in vehicle detection.

The positive images were taken such that all of the
Hondas have the same general orthogonal orientation
with respect to the camera. Some deviation occurred
in the pitch, yaw and roll of these images, which might
be why the resulting detector has such a wide range of
effectiveness. The machine that was built is effective for
the following deviations in angles: pitch −15◦, yaw −30◦
to 30◦, and roll −15◦ to 15◦ . This means that pictures
of Hondas taken from angles that are off by the stated
amounts are still detected by the program.

Section 2 presents the related work. The features used
in our car detection system were described and discussed
in Sect. 3. Section 4 describes the AdaBoost based learn-

ing algorithm used for our object detection problem.
Experimental results are given in Sect. 4. Conclusions
and references complete this article. This paper is the full
version of conference article [10] which only discussed
the feature set used in our car detection system.

2 Related work

We are not aware of any existing solution that recognizes
back view of any particular type of cars. We therefore
reviewed solutions to more general problems. Exist-
ing vehicle detection systems, such as those that try to
drive cars automatically along a highway do not actually
detect cars on the road. They simply assume that any-
thing that is moving on the highway is a vehicle. In
scientific literature, some car recognition solutions also
exist that are based on shape detectors [12]. An existing
shape matching based approach [12] is reported to have
a 60–85% detection rate, which is below our stated goals.
The approach based on nearest neighbor matching [9]
is too sensitive to viewpoint change, while the approach
based on PCA (principal component analysis) [9] is not
a real time system.

The most popular example of object detection is the
detection of faces. The fundamental application that
gave credibility to Adaboost (proposed originally in [5])
was Viola and Jones’s real time face finding system [13].
Adaboost is the concrete machine learning method that
was used by Viola and Jones to implement their system.
In this approach, positive and negative training sets are
separated by a cascade of classifiers, each constructed
by Adaboost. Real time performance is achieved by
selecting features that can be computed in constant time
(after a pre-processing step). The training time of the
face detector appears to be slow, even taking months
according to some reports [14].

Viola and Jones’s face finding system has been mod-
ified in literature in a number of articles. The modifi-
cations include addition of new features. Of particular
interest to us were features based on gradient histograms
[7], and those based on the color of certain parts of an
image [8]. The Adaboost machine itself was modified in
literature in several ways. We have considered all of the
modifications proposed in literature, and adopted ideas
that were considered helpful for achieving our goals.

We again stress that most of the successful applica-
tions of Adaboost used a large training set. In Viola and
Jones’s original face detector [13], 10,000 images were
used in the training set. The smallest known training
database for face detection was by Levi and Weiss [7].
They started to achieve detection rates in the 90% cat-
egory when the number of positive examples reached



Real time machine learning based car detection in images with fast training 165

250. The number of negative examples was not specified
at this level, but the authors say that they randomly
downloaded 10,000 images from the Internet containing
over 100,000,000 sub-windows. They only moderately
increased their detection rates as the size of the positive
set grew drastically.

We apply a similar general design as in [13]. The object
search is based on a machine that takes in a square region
of size equal to or greater than 24 × 24 pixels (for the
face search) [13] (we had a limit of 100 × 150 for the car
search) as input and declares whether or not this region
contains the searched object. We use such a machine to
analyze the entire image. We pass every sub-window of
every scale through this machine to find all sub-windows
that contain faces. A sliding window technique is there-
fore used. The window in [13] is shifted 1 pixel after
every analysis of a sub-window (we used a 2 pixel shift
to speed things up, without notable negative impact).
Both dimensions of the sub-window grow in both length
and width 10% every time all of the sub-windows of the
previous size were exhaustively searched.

One of the key contributions in [13] was the introduc-
tion of a new image representation called the “Integral
Image”, which allows the features used by their detec-
tor to be computed very quickly. In the pre-processing
step, Viola and Jones [13] find the sums ii(x, y) of pixel
intensities (or other measurements) i(x′, y′) for all pixels
(x′, y′) such that x′ � x, y′ � y. This can be done in one
pass over the original image using the following recur-
rences: s(x, y) = s(x, y − 1) + i (x, y), ii (x − 1, y) + s(x, y)

(where s(x, y) is the cumulative row sum, s(x, −1) = 0,
and ii (−1, y) = 0). The feature value in the rectan-
gle with corners (x1, y1) (bottommost), (x2, y2), (x3, y3)

and (x4, y4) (uppermost) is then ii(x1, y1) + ii(x4, y4) −
ii(x2, y2) − ii(x3, y3) [13].

3 Features used in recognition

A feature is a function that maps an image into a real
number. We will give more details on the features used in
the training procedure here. Two types of basic features
were used. They were redness features and dominant
edge orientation features. The dominant edge orienta-
tion and redness features proved themselves to be much
better than Viola and Jones’s [13] original set, for the
problem we studied, the detection of the Honda Accord
2004 from behind (see details in Sect. 5).

3.1 Redness features

The redness features we refer to are taken from the
work of [8]. They concentrated on finding circular red

Fig. 1 Redness feature

regions in images. Their goal was to find and fix red eyes
in pictures taken of people. Most of their work focused
on the shape of the red regions found, rather than the
techniques involved in finding the color red. We borrow
their idea of finding predominantly red regions. Our
work differs in the fact that we look for red regions that
signify the stop lights of the Honda accord, as opposed
to human eyes. Therefore, our red regions are rectan-
gular, and much larger than theirs. Figure 1 shows an
example of a redness feature determined by the training
process.

A special ‘redness’ color space was formed during
pre-processing to assist in the detection of red areas.
This color space was taken from [8], and is a one dimen-
sional linear combination of the RGB color space. All
of the positive and negative inputs in the training set are
RGB color images which means that each of their pix-
els is represented by three 8-bit numbers that represent
the quantity of red, green and blue in a pixel, respec-
tively. Each pixel in the redness colour space is defined
as follows: Redness = 4R − 3G + B [8]. The integral
image computation (the technique is proposed in [13])
was applied to the redness image to produce one of the
inputs to the training procedure. The areas of the red-
ness training features were determined in constant time
using the integral image of the redness image.

3.2 Edge orientation features

Several dominant edge orientation features were used
in the training algorithm. A well known greyscale Sobel
gradient mask (three pixels by three pixels) [4] is used
in determining the location of edges in an image. The
mask is applied in both coordinate directions, and the
combined intensities (called Laplacian intensities, based
on Euclidean distance) are taken. One more detail of our
implementation is the threshold that was placed on the
intensities of the Laplacian values. We used a threshold
of 80 to eliminate the faint edges that are not useful.
A similar threshold was employed in [7]. The orien-
tations of each pixel are calculated from its intensity
in both directions. The orientations are divided into six
bins so that similar orientations can be grouped together.
The whole circle is divided into six bins. It is important



166 M. Stojmenovic

Fig. 2 Six orientation bins

Fig. 3 Honda and corresponding horizontal edges

to note that the orientations of the 0◦, 90◦, and 180◦
bins are critical in identifying Hondas. They are impor-
tant since Hondas mainly have horizontal and vertical
edges. The division of the bins which places 0◦ or 90◦ at
the border of two bins poses problems since all vertical
and horizontal edges can fall into two bins. We han-
dle this problem by shifting all of the bins by 15◦. Note
that [7] did not mention any bin shifting, so we believe
that they used non-shifted bins. They did however, vary
the number of bins from 4 to 8. Effectively the num-
ber of bins does not impact the performance much, but
these boundaries are avoided. To fit all of the orienta-
tions into the 0–180◦ range, we add 180◦ if the angle is
smaller than 0◦, and subtract 180 if the angle is greater
than 180◦. The effects of these transformations can be
seen in Fig. 2. In Fig. 3, we see a Honda accord and its
corresponding edge orientation image for the first bin[−15◦, +15◦]∪[+165◦, +195◦]. Bin shifting significantly
contributed to the accuracy of the system. The detection
rate improved from 74.3 to 89.1%, while the number of
false positives decreased from 168 to 26.

Since we use six bins, we create six images where each
image represents an edge orientation bin. Each value
B(i, j) of each orientation bin image is the correspond-
ing Laplacian intensity if the orientation falls into this
bin, and 0 otherwise. As we can see from Figs. 3 and 4, in
a given region in an image, there is typically one orien-
tation that is dominant. We exploited this fact in our use
of dominant edge orientations. This idea was first devel-
oped by [7]. Dominant edge orientations are calculated
as the total edge intensities of a given orientation divided
by the sum of all edge intensities of all orientations in the
same region. Dominant edge orientation features were

used for training. We see some less distinguishing, yet
nonetheless noticeable edges in some of the other bins
in Fig. 4. One of the most successful edge orientations
was the horizontal one depicted in Fig. 3. All of the pos-
sible dominant edge bins were offered to the training
procedure except for bin 2 since it visually had nothing
distinguishing about it.

Integral images (for constant time calculation of fea-
ture values [13]) were created from these orientation bin
images and were used in the training procedure to find
sums of edge intensities. Seven features were used in the
training procedure. They were: dominant edge orienta-
tions (1, 3, 4, 5 and 6) and the redness feature. One of the
problems we anticipated was that edges might not be so
clearly defined in larger examples of Hondas. By larger
we mean Hondas that are larger than 100 × 50 pixels.
In the examples in our training set, edges determined
by the Sobel masks are very distinctive since the images
are very small. We feared that in larger examples of
Hondas, edges would be represented by thicker lines,
and result in different edge orientation maps. This did
not happen since Hondas have crisp, well defined lines.
Even in larger images, edges are very similarly defined
compared to those of smaller images. Furthermore, it is
the dominant edge orientation we are interested in when
measuring feature values. Most of the WCs in the strong
classifier were in the areas of the image in which their
orientation was often the only one present. Therefore,
any quantity of edges in such an area would be enough
to help identify them positively.

The redness features are not normalized in any way,
and the scaling of these features must be handled differ-
ently. Since the redness quantity in a rectangle directly
depends on the area of the rectangle, threshold � of
redness features is multiplied by the square of the scal-
ing factor before the scaled redness feature is compared
against it. This operation normalizes the scaling effect.

3.3 Reducing the training time by selecting a subset
of features

A WC is a function of the form h(x, f , s, θ) where x is
the tested sub-image, f is the feature used, s is the sign
(+ or −) and θ is the threshold. The sign s defines on what
side of the threshold the positive examples are located.
Threshold θ is used to establish whether a given image
passes a classifier test in the following fashion: when
feature f is applied to image x, the resulting number is
compared to threshold θ to determine how this image is
categorized by the given feature. The equation is given
as sf (x) < sθ . If the equation evaluates true, the image
is classified as positive. The function h(x, t, s, θ) is then
defined as follows: h(x, f , s, θ) = 1 if sf (x) < sθ and −1



Real time machine learning based car detection in images with fast training 167

Fig. 4 Edge orientation bins
[2..6] for Honda in Fig. 2

otherwise. This is expected to correspond to positive and
negative examples, respectively.

We proposed to pre-eliminate features whose cor-
responding best threshold value θ is near the trivial
position at the maximum or minimum of feature values.
This is a novel method that has reduced the set of
available WCs to less than one-tenth of its original size
(for the case we studied), greatly speeding up training
time, and showing no negative impact on the quality
of the final classifier. In the initial training of the WCs,
each WC is evaluated based on its cumulative error of
classification (ce). The cumulative error of a classifier is
ce = (false_positives + missed_examples)/q.

An alternative definition (available also in OpenCV)
that we tested is nce = (false_positives/n +
missed_examples/p)/2, where n and p denote the num-
bers of negative and positive examples, and q = n + p.
We refer to this as the normalized cumulative error
(nce). This error function tries to more equally treat
both types of training examples. It is theoretically better
to have such a normalized error function when there is a
large discrepancy in the sizes of the positive and negative
training sets. In our case, the set of positives numbered
154 examples, and the set of negatives contained 760
examples.

Weak classifiers that had a ce that was greater than
a pre-determined threshold were automatically (in our
program) eliminated from further consideration. In our
implementation, no WC could have a worse cumulative
error than min(n, p)/q. This is due to the fact that the
threshold � is initially inserted before the beginning or
after the end of the sorted list of training records in each
WC. This means that it initially classifies all records to be
either all negative, or all positive, respectively. If there is
no better place for � within the list of training records,
it remains where it was first placed, with the ce that
it was originally awarded. The pre-determined thresh-
old mentioned above was set as min(n, p)/q − 0.01 ×
min(n, p)/q. This means a minimum of 1% improve-
ment over the trivial initial error was needed for a WC
to be accepted into the next round of selection. Luckily,
the distribution of the WCs is heavily biased passed the
min(n, p)/q boundary. This means that most WCs are
very poor, and have the maximum ce (which is equal
to min(n, p)/q) which means that they were eliminated
early from the training procedure. This distribution of
WC efficiency is illustrated by the training results of the
best strong classifier generated by our program. We deal
with roughly 530,000 WCs. For example, let us assume

that there are 150 positive and 750 negative examples in
a training set. Therefore, the greatest cumulative error
any one of the WCs could be assigned is approximately
16.67%. We adjust our threshold to accept all weak clas-
sifiers that have a cumulative error equal or better than
16.67 − 0.01 × 16.67 = 16.5%. According to our
experiments, it turns out that there are only ≈15,000
WCs that satisfy this requirement out of a total of
≈530,000. That means that over 97% of all initial WCs
are eliminated from further training. This drastically re-
duces training time while having little impact on the
quality of the pool of available WCs to choose from.
The final results of the strong classifier do not suffer
from this reduction of unnecessary WCs as is evident
from their high detection rates and low false positive
rates.

Since the cumulative error function was altered when
considering nce, the triviality threshold also had to be
adjusted. The new triviality threshold was determined
to be 2 × min(n, p)/q − 0.01 × min(n, p))/q. This thresh-
old leaves roughly the same number of WCs after the
first round of training. It reduces training time in the
same way as the original triviality threshold. Signifi-
cant changes in n or p may require adjustments to the
threshold.

4 AdaBoost based learning algorithm used for training

We described a novel variant of the AdaBoost based
learning algorithm, which builds a strong classifier by
incremental addition of WCs that minimize the com-
bined error of the already selected WCs. Each WC is
trained only once, and examples do not change their
weights. While all the individual components of this
approach exist in literature, it was not yet used as a
combined whole algorithm the way we propose here.

Our variant of the AdaBoost learning algorithm is
similar in flavor to the alternative voting AdaBoost var-
iant described by Wu, Rehg and Mullin [15]. Both algo-
rithms train WCs only once, at the beginning. There are
several important differences in the two methods. In
[15], each feature is trained so that it has minimal false
positive rate. In our variant, each feature is trained to
minimize a single combined error, which includes both
false positives and missed positives. In [15], a new fea-
ture is added to either minimize the false positive or
maximize the detection rates, depending on the current
detection rate. In our variant, a new feature is always



168 M. Stojmenovic

one that minimizes the combined error of the classi-
fier. Next, the decision of a classifier in [15] is made by
majority voting (where each WC has equal weight). In
our approach, the weights of each WC are decided at
the beginning of the training process, and the decision
of each classifier is made by weighted voting. Next,
[15] considered different weights for positive and nega-
tive examples. We considered equal weights 1/q for the
case where ce = (false_positives + missed_examples)/q,
and weights 1/n and 1/p for the case where nce =
false_positives/n + missed_examples/p. Finally, our var-
iant is a single strong classifier while [15] described a
cascaded design.

A strong classifier is obtained by running the Ada-
boost machine. It is a linear combination of WCs. A
WC is constructed from a feature and a threshold. We
assume that there are T WCs in a strong classifier,
labelled h1, h2, . . . , hT , and each of these comes with its
own weight labelled α1, α2, . . . , αT . The tested image x is
passed through the succession of WCs h1(x), h2(x), . . . ,
hT(x), and each (WC) assesses if the image passed its
test. The recommendations are either −1 or 1, multi-
plied by their corresponding weight. Note that hi(x) =
hi(x, fi, si, θi) is abbreviated here for convenience. The
decision that classifies an image as being positive or neg-
ative is made by the following test: α1h1(x) + α2h2(x) +
· · · + αThT(x) > 0.

4.1 Training optimal WCs

In the original approach [5,13], examples are weighted,
and weights change in the process. WCs are re-trained
after selecting any of them for the strong classifier. In our
algorithm, all WCs are trained only once, at the begin-
ning of the training process. They do not change in the
process afterwards, therefore the needed values can be
memorized. The input consists of feature f and all posi-
tive and negative examples. The algorithm scans through
the sorted list of feature values, looking for threshold θ

and direction s that minimizes the classification error,
which is the total number of misclassified examples. The
output is specified below.

Algorithm: Training optimal weak classifiers
Input: Feature f , n negative examples, p positive

examples,
Output: Threshold �, sign s, false_pos, missed,

weight α.
Calculate records (f (xi), yi), where yi = 1 for a pos-

itive example, and =−1 for a negative example (using
integral images where appropriate). Sort these records
by the f (xi) field by any sorting algorithm, e.g. merge-
sort, in increasing order. Let the obtained array of the

f (xi) field be: g1, g2, . . . , gq. The corresponding records
are (gj, status(j)) = (f (xi), yi), where gj = f (xi). That is,
if the j-th element gj is equal to i-th element from the
original array f (xi) then status(j) = yi.

s = 1; sp = 0; sn = 0; (*number of positives/negatives below a
considered threshold *)
If n < p then {misclassified = n; θ = gq+1} (*all declared positive*)
else {misclassified = p; θ = g1 − 1}; (*all declared negative *)
For j=1 to q−1 do {

If status(j)=+1 then sp= sp + 1 else sn = sn + 1;
If sp + n − sn < misclassified

then {misclassified = sp + n − sn; s = −1; θ = (gj + gj+1)/2
false_ pos = n − sn; missed = sp};

If sn + p−sp < misclassified
then {misclassified = sn + p − sp; s = 1; θ = (gj + gj+1)/2;

false_ pos = sn; missed = p − sp}
};

The output is a WC h(x) = hI(x, f , s, θ). The detec-
tion rates and false positive rates of WCs can also be
considered output at this stage, as (p − missed)/p and
false_pos/n, respectively. Variables missed and false_pos
denote the number of misclassified positive and negative
examples, respectively.

The relative error of the constructed WC is e =
misclassified/q = (false_pos + missed)/(p + n), and is
used to decide the weight of the constructed WC as
follows:

β = e/(1 − e), and α = − log(β). The assigned weight
is α.

End of Algorithm.
Adaboost therefore assigns large weights with each

good WC and small weights with each poor WC. Note
that the algorithm corresponds to the variant with com-
bined error ce = (false_positives + missed_examples)/q.
If the alternate formula nce = (false_positives/n +
missed_examples/p)/2 is used, some minor changes to
the algorithm are needed to reflect the weights of the
positive and negative misclassifications being different
(proportional to 1/p and 1/n, respectively).

Optionally, the value of α could be limited. In the best
performing variant of the protocol for the case we stud-
ied, if α > 1 then α = 1 is executed. This was directly
applied only to the choice of the first WC in our sce-
nario, but (indirectly) impacted the selection of the oth-
ers, including their number and overall performance.

4.2 Training the best classifier

First, all WCs are trained, as described, and the training
process returns classification errors missed and false_pos.
It also returns the weight α for each WC h(x). The
combined error can be defined in one of several ways,



Real time machine learning based car detection in images with fast training 169

such as ce = (missed + false_pos)/q, ce = missed/p +
false_pos/n, ce = λ ∗ missed/p + (1 − λ)false_pos/n,
where λ is a weighting parameter. In our implementa-
tion, we use the trivial ce = (missed + false_pos)/q. For
each feature, find the optimal WC as described above.
Then the construction of a classifier proceeds as follows.

Algorithm: Training the best classifier
Input: set of weak classifiers hi(x), weights αi, n nega-

tive examples, p positive examples
Output: series of selected weak classifiers h1, h2 . . . hT ,

and their weights α1, α2 . . . αT .
Select the first WC h1(x) (and its weight α1) as the

one that has minimal combined error ce;
Set T = 1; (* the number of WCs in the

classifier *)

Repeat
For each WC h(x) calculate the combined error of the classifier

α1h1(x) + α2h2(x) + . . . + αThT(x) + αh(x)

and select h(x) that minimizes the error; find its weight α;

T = T + 1, αT = α, hT(x) = h(x);

Until (detection rate (p − missed)/p ≥ d and false positive rate
false_pos/n ≤ fp) or T ≥ Tmax.

End of Algorithm.
Note that values α1h1(x)+α2h2(x)+· · ·+αThT(x) can

be memorized so that testing candidates is faster. In the
test, false_pos and missed are the numbers of incorrectly
classified negative and positive examples, respectively,
by the tested classifier. This section of code is executed
for every feature, and for every example in the training
sets, up to Tmax times. The method takes O(Fq log q) time
to train all of the classifiers in the initial stage, where F
is the number of WCs, and q is the number of examples.
We are left with f WCs, where f << F, after the elimi-
nation of poor WCs that do not improve the cumulative
error more than 1% from the trivial position. Testing
each new WC while assuming that the summary votes
of all classifiers are previously stored would take O(q)

time. It would then take O(fq) time to select the best
WC. Therefore, it takes O(Tqf ) time to chose T WCs.
We deduce that it would take O(Fq log q)+O(Tqf ) time
to complete the training using our method (the same
time complexity applies to the variant described by [15]).
Since f << F, the dominant term in the time complex-
ity is O(Fq log q). Had F and f been roughly equal, the
dominant term would have been O(Tqf ).

5 Experimental results

Our experimental setup generally follows the ones used
in relevant references for face detection. We started
by implementing and training with the original set of

features [13]. Pre-elimination was added early in the
design. Because of the experienced inefficiencies with
respect to the set goal, new features were added to the
initial set. In parallel, after providing some initial nega-
tive examples, false positives were added to the negative
example pool from an unrelated image set. This method
is known as bootstrapping [11]. We confirmed that this
method has its limits, since the continued application of
it (overfitting) starts to ‘attack’ the best WCs and con-
sequently starts to reduce the accuracy of the classifier.
Our experiments indicated that the set of features used
by Viola and Jones [13] was inefficient for our goals. Not
only were their cumulative errors in the training pro-
cess inferior to other features, but their very presence in
the feature set greatly, yet fruitlessly, increased training
time. Haar wavelets [13] were eliminated from the train-
ing procedure completely early in the implementation
and testing phase, at the point where none of them were
selected for the strong classifier. At the end, we have
built a fast and reliable object recognizer based on small
training set, consisting of 155 positive and 760 negative
images, with the feature set described here. It detects
back views of Honda Accords with a 98.7% detection
rate and 0.4% false positive rate on the training set. We
designed a strong classifier with a record low number
of WCs (30). Compared to existing literature, we have
achieved the overall design of a real time object detec-
tion machine with the least number of examples, the
least number of WCs, and with competitive detection
and false positive rates.

It was a common occurrence in the testing phase that
sub-windows around an actual positive example would
also be considered positive. This problem was solved
by storing the positive examples in a vector during the
detection phase, and comparing new positives to the
ones stored in the vector. If an already stored exam-
ple was found that had a weaker decision than the new
positive and was too close to the positive, it was replaced.
Two positive rectangles are judged to be too close if their
top left corners are within 60 pixels of each other.

In order to verify the impact of the feature set on
the quality of the final classifier, we ran, at the end, the
original feature set [13] on the same training set, with
30 and 80 WCs, respectively. The one with 30 WCs was
slightly faster while the one with 80 WCs was 2.5 times
slower than our selected classifier. The detection rates
on the training set were 94 and 95%, respectively.

Since there exist no standardized test sets for the
detection of any cars, let alone one specific car, our
machine was tested on a set that was created the same
way the training set was created. Pictures were taken
of cars around town. Our test set boasts 106 images
that contain 101 positive examples of the Honda accord



170 M. Stojmenovic

2004. The positives in the set are in various scales and
positions within the images. They are also taken from
a variety of angles that are detectable by our program.
The test set images themselves also come in a variety of
sizes. The smallest images are basically the same size as
those used by Viola and Jones [13] (320 × 240 pixels).
The largest image size in the test set is 640 × 480 pixels.

Our object recognizer performed with 89.1% detec-
tion rate and 26 false detections on a test set containing
106 images of different sizes. These numbers are very
good when compared to other systems such as those put
forward by Viola and Jones [13] and Levi & Weiss [7].
Viola and Jones’s face detection system was tested on a
set that contained 130 images with 507 positives. Keep in
mind that gathering such a test set is much easier when
positives are faces. Our test has a similar number of
images, yet a much smaller number of positives. Never-
theless, it is a sufficient comparison base to use as a basis
for discussion. Viola and Jones [13] gave statistics for the
number of false positives their system produced at vari-
ous detection rates. At a detection rate of roughly 89%
(such as our system), their system produced roughly 35
false positives. They, however, used a much greater num-
ber of classifiers to achieve this result. Levi and Weiss
[7] used the same test set as Viola and Jones to evaluate
their system and they achieve an 89% detection rate at
the cost of roughly 45 false positives. They used a 2,500
item training database to achieve these results.

We also studied the impact of various decisions we
made in the process. The detection rates for Honda’s
using only WCs from [13] with 30 and 80 classifiers were
57.4 and 56.4% (surprisingly lower for a higher number
of WCs), and with 253 and 194 false positives, respec-
tively. This might provide a basis for a cascaded design
but is clearly inferior to our selected set which solved
the problem satisfactorily well without resorting to this
step (even though it was originally anticipated).

One of the major contributions in this work is the
shifting of the edge bins. It might seem like a trivial
matter which would not impact the results of the algo-
rithm much, but in fact it greatly contributes to the per-
formance of the system. Two variants of the algorithm
were trained and tested to illustrate this point: one with
the bin shifting approach, and one without. Both sys-
tems were trained and subsequently tested on the same
training and testing sets, each composed of 30 WCs. The
detection rates were 89.1 and 74.3%, while the number
of false positives were 26 and 168, respectively. From
this data, we see that a simple shift of the bin orien-
tations significantly impacts the results of the system.
Nearly seven times as many false positive detections are
reported by the non-bin shifting method. The detection
rates also noticeably differ.

Fig. 5 WC1

Fig. 6 WC2

The described AdaBoost learning machine, without
limiting α, had a perfect performance on our training set
(described below): 100% detection rate and zero false
positives. However, it had 88% detection rate and 38
false positives on the testing set. We then made a minor
change in the AdaBoost machine. If the weight α of a
selected WC was α > 1 then we reduced it to α = 1.
This was effectively applied only on the first classifier
(in our experiments) but had an impact on selecting the
others (including a small increase in the number of WCs
needed to reach satisfactory results on the training set).
However, the results on the testing set were improved
in both detection rate and false positives.

The results of the normalized error function (nce)
are somewhat ambiguous. The detection rate of the
obtained machine is 92.1%, yet the false positive count is
117! The false positive rate is roughly four times higher
when using the normalized error function. It is interest-
ing to note that the detection rate during the training
phase is 100%, with a 0.008% false positive rate. These
results carried over to the testing phase as is evident by
the relatively high detection rate.

The training procedure produced interesting results
when it came to the selection of WCs. Figures 5 and 6
show the best and second best WCs as chosen by the
training algorithm.

The best WC as determined by the system was an
edge detector applied to the upper-left hand corner of
the Honda. The small green box in Fig. 4 defines this WC.
It detects the 45◦ edge that is dominant in this region.
After reflecting back on our test set, it became evident
that most of the positive examples share this attribute.
It is not a WC that we would have chosen by hand had
we tried static selection of features. The second best WC
was a redness feature that detected the rear stop lights
of the Honda (Fig. 5). The selection of this feature val-
idated our assumption that a redness feature used for



Real time machine learning based car detection in images with fast training 171

detecting the rear stop lights would be very important.
This just further emphasizes our belief that the basic fea-
tures selected for a given detection problem should be
custom selected before training starts to produce better
results down the road. The other WCs that were chosen
identify many areas of horizontal edges that are com-
mon, redness features that define each stop light sepa-
rately, and areas that do not have a specific orientation
of edge. An example of such an occurrence is the area
just below the license plates. This area is mostly void of
any vertical edges.

The speed at which images were processed while
testing is shown here. The computer configuration is
an AMD athlon 2800 processor. Images as small as
150 × 120 pixels are processed in 0.05 seconds. Images
of size 170 × 227 pixels are processed in 0.18 s. Standard
size images similar to those used in Viola and Jones
[13] and other papers of size 320 × 240 are processed
in 0.49 s. We consider this to be real time. It takes more
and more time to process larger pictures. For example,
it takes 1.93 s to process a picture of size 500 × 253.
The size of the picture directly impacts the time it takes
to process it. This is logical since larger images contain
more sub-windows that must be searched. In fact, the
running time is proportional to the number of features
contained in a window of a given size. In our implemen-
tation, widths and heights of sub-windows grow by 10%.
The time complexity is therefore O(AT log(b/c)), where
b is the image width, c is the minimal example width, T
is the number of WCs in the strong classifier and A is the
area of the searched window, since there are O(A) fea-
tures of a given size, and O(log(b/c)) incremental steps.
When T is fixed, the complexity may also be expressed
as O(b2 log(b)), where b2 ≈ A. We see that the com-
plexity grows faster than quadratic time with respect to
image width.

6 Conclusions

We began our research with the following question. Is
there any ‘magic’ software package that can find any
type of object in an image, reasonable accurately, and in
real time, merely by replacing the positive and negative
sets? If the answer was yes, there would not be so much
research in this area. However, the AdaBoost software
framework appears to be widely adopted for real time
object detection. For example, Le and Satoh [6] recently
claimed that cascaded AdaBoost is about 1000 times
faster than a support vector machine approach.

The training program can be considered as being com-
posed of three components: an AdaBoost classifier, a
Feature set, and a Training set. The AdaBoost classifier

is a general framework, which can be safely claimed to
be applicable to the recognition of any type of object
efficiently, provided the object roughly appears with the
same orientation and angle (e.g. straight upfront faces,
or backs of horizontal cars such as our positive).

The feature sets are not as general. Viola and Jones’s
set of features [13] was successfully used for recognizing
similar types of objects such as lion faces [2]. However,
we show that the feature set for recognizing faces is com-
pletely different (practically disjoint) from the feature
set for finding cars. Some existing articles added new fea-
tures to help in recognizing objects which are different
from faces, but we did not see anyone actually making
the two sets disjoint. On the other hand, the same set
of features could be used to recognize different objects,
by simply replacing one training set with the other. For
instance, we believe that one could equally well recog-
nize the back of another car such as the Toyota Camry
2004 by collecting the corresponding pictures for the
training set and using the version of AdaBoost described
here. We also believe that our system can be extended
to recognize, in real time, any one of a number of car
types; following the approach of sharing visual features
for multiclass and multiview object. Common general
features for several car types would be selected first, fol-
lowed by a selection of individual features to differenti-
ate between the cars. Further extensions may consider
the presence of partial occlusions and shadows (studied
by Barczak [1] for the case of face detection).

In addition to defining a good feature set for Honda’s,
we have proposed a general elimination step in the
program, by introducing a threshold for the quality of
a feature, to reduce training time. Pre-elimination is
applicable to all object detection problems for speed-
ing up the training process by experimentally finding
the proper threshold value, but no level of improve-
ment is guaranteed in advance for other problems. It is
an open area to further elaborate on the applicability
of common feature sets, fully or partially, in recognition
of some objects. One can always merge two sets into
one, threshold them for triviality on a given training
set, and then claim that the same feature set is appli-
cable to recognition of two totally distinct objects. For
instance, one can add the set of dominant edge orienta-
tions to Viola and Jones’s set for face detectors, and use
them to train either faces or cars. When recognizing faces
from appropriate training sets, redness features are elim-
inated, while many dominant edge orientation features
may remain. When the same set is applied to recognize
Honda’s, all of Viola and Jones’s features are basically
removed first before real training, with the idea that we
proposed (to the best of our knowledge, our system is
the first real time AdaBoost based system that recog-



172 M. Stojmenovic

nizes an object without Viola and Jones’s features). But
one cannot claim that this process can be continued to
eventually include any type of objects, given the desired
performance metrics. A new type of object may always
exist that has its specific feature that works ideally for it,
and needs to be added. An example is a circular object
where a hypothetical roundness measure may be used
to help identify it. For instance, Blaschko et al. [3] con-
sidered a variety of features separated into five groups:
simple shape, moments, contour representations, along
with both differential and texture features, for automatic
in situ identification of plankton. We believe that one can
further develop the idea presented here of introducing
an automatic feature triviality test and link it to this dis-
cussion. Simply speaking, features from a large set are
put through this test, and only some of them pass. Given
two objects to recognize, one can define a measure of
their similarity by looking at the number of common
and different remaining features.

There exists no ‘magic’ answer that can easily explain
the effort required to apply the techniques discussed
here to the recognition of other objects such as faces.
More research needs to be done to be able to quan-
titatively answer this point. The simple answer is that
other types of cars can be recognized just by replac-
ing the training sets in this work. Our program is not
restricted to only recognizing cars. We believe that dom-
inant edge orientation features are powerful ones, and
are applicable in many scenarios. For instance, fire extin-
guishers mainly have horizontal and vertical edges. Also,
the redness feature is applicable in searching for fire
extinguishers, given that fire extinguishers are mostly
red. Therefore, we are confident that fire extinguishers
(which are vertical in position and visually of the same
shape in robotic vision applications) can be recognized
with our software, because they appear quite simple to
recognize, much simpler than the backs of cars. Our
system might also recognize fire extinguishers even if
dominant edge orientation features are removed (that
is, based solely on the redness feature), because of their
clear rectangular shape, and typical red color.

The training and testing programs, the positive and
negative examples used in the training, along with the
testing sets are all available at http://www.site.uotta-
wa.ca/∼mstoj075/.

Acknowledgements We thank the anonymous referees for their
constructive comments that have greatly improved the clarity of
the article. This work is supported by OGS.

References

1. Barczak, A.L.C.: Evaluation of a boosted cascade of Haar-like
features in the presence of partial occlusions and shadows for
real time face detection, LNAI 3157. In: Proceedings of the
PRICAI 2004, 969–970 (2004)

2. Burghardt, T., Calic, J.: Analysing Animal Behaviour in Wild-
life Videos Using Face Detection and Tracking, submitted to
IEE Proceedings Vision, Image & Signal Processing, Special
issue on the Integration of Knowledge, Semantics and Digital
Media Technology, March (2005)

3. Blaschko, M., Holness, G., Mattar, M., Lisin, D., Utgoff, P.,
Hanson, A., Schultz, H., Riseman, E., Sieracki, M., Balch, W.,
Tupper, B.: Automatic In Situ Identification of Plankton. In:
Proceedings of IEEE Workshop on Applications of Computer
Vision, Breckenridge, Colorado, Jan. 5–7 (2005)

4. Efford, N.: Digital Image Processing: a Practical Introduction
Using Java. Addison Wesley, Reading (2000)

5. Freund, Y., Schapire, R.E.: A decision-theoretic generalization
on on-line learning and an application to boosting. J. Comput.
Syst. Sci. 55(1), 119–139 (1997)

6. Le, D., Satoh, S.: Fusion of Local and Global Features for Effi-
cient Object Detection, IS & T/SPIE Symposium on Electronic
Imaging (2005)

7. Levi, K., Weiss, Y.: Learning Object Detection from a Small
Number of Examples: the Importance of Good Features, Inter-
national Conference on Computer Vision and Patern Recog-
nition (CVPR), (2004)

8. Luo, H., Yen, J., Tretter, D.: An Efficient Automatic Red-
eye Detection and Correction Algorithm, 17th IEEE Inter-
national Conference on Pattern Recognition, (ICPR’04) V. 2,
Aug. 23–26, 2004, Cambridge

9. Petrovic, V.S., Cootes, T.F.: Analysis of Features for Rigid Struc-
ture Vehicle Type Recognition, Proceedings of British Machine
Vision Conf. 2004, vol. 2, pp. 587–596

10. Stojmenovic, M.: Real time car detection in images based on
an Adaboost machine learning approach and a small training
set. In: Proceedings of IEEE International Workshop on Sys-
tems, Signals & Image Processing IWSSIP, Chalkida, Greece,
Sept 22–24 (2005)

11. Sung, K., Poggio, T.: Example based learning for view-based
human face detection, IEEE Trans. Pattern Anal. Mach. Intell.
20, 39–51 (1998)

12. Thureson, J., Carlsson, S.: Finding Object Categories in Clut-
tered Images Using Minimal Shape Prototypes. In: Proceedings
of 13th Scandinavian Conference on Image Analysis SCIA,
Goteborg, Sweden (2003)

13. Viola, P., Jones, M.: Robust real-time face detection, Int. J.
Comput. Visi. 57(2), 137–154 (2004)

14. Verschae, R., Ruiz-del-Solar, J.: A Hybrid Face Detector
based on an Asymmetrical Adaboost Cascade Detector and a
Wavelet-Bayesian-Detector, Lecture Notes in Computer Sci-
ence 2686, Springer, Berlin Heidelberg NewYork, 742–749
(2003)

15. Wu, J., Regh, J., Mullin, M.: Learning a Rare Event Detection
Cascade by Direct Feature Selection. Proceedings Advances in
Neural Information Processing Systems 16 (NIPS*2003), MIT
Press, Cambridge (2004)


