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Abstract—As one of the most promising applications of computer vision, this project. Although the first research efforts on developing
vision-based vehicle detection for driver assistance has received CO”Side"'inteIIigent vehicles were seen in Japan in the 70’s, significant
able attention over the last 15 years. There are at least three reasons for the A . . . '
blooming research in this field: first, the startling losses both in human lives research activities Were triggered .I,n Eurppe in the late 80s and
and finance caused by vehicle accidents; second, the availability of feasible€arly 90s. MITI, Nissan and Fujitsu pioneered the research
technologies accumulated within the last 30 years of computer vision re- jin this area by joining forces in the project “Personal Vehicle
search; and t_h|rd,the expo_nen_tlal gr_owth_of processor.speed ha_ls paved the System” [3] In 1996, theAdvanced Cruise-Assist Highway
way for running computation-intensive video-processing algorithms even . .
on a low-end PC in realtime. This paper provides a critical survey of recent SyStem Research Associati@HSRA) was established among
vision-based on-road vehicle detection systems appeared in the literature automobile industries and a large number of research centers
(i.e., the cameras are mounted on the vehicle rather than being static such [2] In the US. a great deal of initiatives have been launched
as in traffic/driveway monitoring systems). ) L

y gsy ) to address this problem. In 1995, the US government estab-
. INTRODUCTION lished theNational Automated Highway System Consortium
Everv minute. on average. at least one person dies in a veh AHSC) [4], and launched théntelligent Vehicle Initiative
y ' 9¢, P ) in 1997. Several promising prototype vehicles/systems

crash. Agt? acmdtehnts aIs_cl)l_mjur(: ?r;[ least 1.0 m||II|or]rEeohple e’t e been investigated and demonstrated within the last 15 years
year, and two or three million of them Seriously. 1he Nospitgs 1, \arch 2004, the whole world was stimulated by the

bill, damaged property, and other costs are expected to add. nd challenge” organized by DARPA [6]. In this competi-

0/ 20, ; ; ,
to 1% 3% of_the_vx_/orlds gross_domesﬂc product [1]. With th_ﬁon, 15 fully-autonomous vehicles attempted to independently
am of reducmg injury and .ac0|dent severity, pre-crash ?ens'ﬂgvigate a 250-mile (400 km) desert course within a fixed time
is becoming an area of active res_garch among automotive m Cfiod, all with no human intervention whatsoever - no driver,
ufacturers, suppliers and universities. Vehicle accident statis &S remote-control just pure computer-processing and naviga-
disclose that the main threats a driver is facing are from otr}%n horsepower (':ompeting for a $1 million cash prize. Al-

veh_icles. Consequen_tly,_ developing or_1-board auto_m_otive d.ri\f%ugh even the best vehicle (i.e., “Red Team” from Carnegie
assistance systems aiming to alert a driver about driving envir allon) made only 7 miles, it is a very big step towards building
ments, and possible collision with other vehicles has attracte &onomous vehicles in th'e future

lot of attention. In these systems, robust and reliable vehicle
detection is the first step — a successful vehicle detection algo-
rithm will pave the way for vehicle recognition, vehicle track-
ing, and collision avoidance. This paper provides a survey ofThe most common approach to vehicle detection is using
on-road vehicle detection systems using optical sensors. Makgive sensors such as lasers, lidar, or millimeter-wave radars.
general overviews on intelligent driver assistance systems cgiey are called active because they detect the distance of an
be found in [2]. object by measuring the travel time of a signal emitted by the
sensors and reflected by the object. Their main advantage is
that they can measure certain quantities (e.g., distance) directly
requiring limited computing resources. Prototype vehicles em-
With the ultimate goal of building autonomous vehiclesploying active sensors have shown promising results. However,
many government institutions have lunched various proje@stive sensors have several drawbacks, such as low spatial reso-
worldwide, involving a large number of research units workution, and slow scanning speed. Moreover, when a large num-
ing cooperatively. These efforts have produced several progr of vehicles are moving simultaneously in the same direction,
types and solutions, based on rather different approaches [2ierference among sensors of the same type poses a big prob-
In Europe, th®ROMETHEUSrogram (Program for Europeanlem.
Traffic with Highest Efficiency and Unprecedented Safety) pio- Optical sensors, such as normal cameras, are usually referred
neered this exploration. More than 13 vehicle manufactures ands passive sensors because they acquire data in a non-intrusive
several research institutes from 19 European countries wereviizy. One advantage of passive sensors over active sensors is
volved. Several prototype vehicles and systems (f@MoRs cost. With the introduction of inexpensive cameras, we can
VITA, VaMP, MOB-LAB GOLD) were designed as a result othave both forward and rearward facing cameras on a vehicle, en-

Ill. ACTIVE VS. PASSIVE SENSORS

II. VISION-BASED INTELLIGENT VEHICLE RESEARCH
WORLDWIDE



abling a nearly 360field of view. Optical sensors can be use@pproaches using information about symmetry, color, shadow,
to track more effectively cars entering a curve or moving fromorners, horizontal/vertical edges, texture, and vehicle lights.
one side of the road to another. Also, visual information can be
very important in a number of related applications, such as langt Symmetry
detection, traffic sign recognition, or object identification (e.g., Vehicle images observed from rear or frontal view are in gen-
pedestrians, obstacles), without requiring any modifications dgal symmetrical in horizontal and vertical directions. This ob-
road infrastructures. On the other hand, vehicle detection basegvation was used as a cue for vehicle detection in the early 90s
on optical sensors is very challenging due to huge within clag®]. An important issue that arises when computing symmetry
variabilities. For example, vehicles may vary in shape, size, aftgm intensity, however, is the presence of homogeneous areas.
color. Vehicle appearance depends on its pose and is affectedrbfhese areas, symmetry estimation is sensitive to noise. In[11],
nearby objects. lllumination changes, complex outdoor envirofformation about edges was included in the symmetry estima-
ments (e.g. illumination conditions), unpredictable interactioni®n to filter out homogeneous areas. When searching for local
between traffic participants, and cluttered background are difiymmetry, two issues must be considered carefully. First, we
cult to control. need a rough indication of where a vehicle is probably present.
To address some of the above issues, more powerful optisalcond, even when using both intensity and edge maps, symme-
sensors are currently being investigated such as cameras opgtas a cue is still prone to false detections, such as symmetrical
ating under low light (e.g., Ford proprietary low light camerdackground objects, or partly occluded vehicles.
[7]) or cameras operating in the non-visible spectrum (e.g., In-
frared (IR) camera [8]). Building cameras with internal procesé+2 Color

ing power (i.e., vision chip) has also attracted great attention.Although few existing systems use color information to its
In conventional vision systems, data processing takes place @f|pextent for HG, it is a very useful cue for obstacle detection,
host computer. Vision chips have many advantages over conveiire/road following, etc. Several prototype systems investigated
tional vision systems, for instance high speed, small size, lowgE use of color information as a cue to follow lanes/roads, or
power consumption, etc. The main idea is integrating photgegment vehicles from background [12]. Similar methods could
detectors with processors on a very large scale integration [9be used for HG, because non-road regions within a road area are
potentially vehicles or obstacles. The lack of deploying color in-
formation in HG is largely due to the difficulties of color-based
In driver assistance applications, vehicle detection algorithrosject detection or recognition methods in outdoor settings. The
need to process the acquired images at real-time or close to realor of an object depends on illumination, reflectance prop-
time. Searching the whole image to locate potential vehicities of the object, viewing geometry, and sensor parameters.
locations is not realistic. The majority of methods reported iBonsequently, the apparent color of an object can be quite dif-
the literature follow two basic steps: (1) Hypothesis Generati®rent during different times of the day, under different weather
(HG) where the locations of potential vehicles in an image agenditions, and under different poses.
hypothesized, and (2) Hypothesis Verification (HV) where tests
are performed to verify the presence of a vehicle in an imade3 Shadow

(see Fig. 1). Using shadow information as a sign pattern for vehicle de-
tection was initially discussed in [13]. By investigating im-
age intensity, it was found that the area underneath a vehicle

vﬁ'#ﬁ‘%'l Wﬁ&)ﬂ; luﬁigﬂa’l is distinctly darker than any other areas on an asphalt paved

" - s road. A first attempt to deploy this observation can be found
i :g _ l“g = :g in [14], though there was no systematic way to choose appro-
s — SRS priate threshold values. The intensity of the shadow depends on
\ / \ / the illumination of the image, which in turn depends on weather
- — conditions. Therefore the thresholds are not, by no means, fixed.
In [15], a normal distribution was assumed for the intensity of
the free driving space. The mean and variance of the distribution
were estimated using Maximum Likelihood (ML). It should be
noted that the assumption about the distribution of road pixels
might not always hold when true. For example, rainy weather
The objective of the HG step is to find candidate vehicle I@onditions or bad illumination conditions will make the color of
cations in an image quickly for further exploration. HG aproad pixels dark, causing this method to fail.
proaches can be classified into one of the following three cat-
egories: (1) knowledge-based, (2) stereo vision based, and’%:’ﬂ Comners
motion-based. Exploiting the fact that vehicles in general have a rectangular
shape, Bertozzi et al. proposed a corner-based method to hy-
pothesize vehicle locations [16]. Four templates, each of them
Knowledge-based methods emphkyriori knowledge to hy- corresponding to one of the four corners, were used to detect all
pothesize vehicle locations in an image. We review below sortiee corners in an image, followed by a search method to find the

IV. THE TWO STEPS OF VEHICLE DETECTION

Fig. 1. lllustration of the two-step vehicle detection strategy
V. HYPOTHESISGENERATION

A. Knowledge-based methods



matching corners. For example, a valid upper-left corner shoufites. The co-occurrence matrix contains estimates of the prob-
have a matched lower-right corner. abilities of co-occurrences of pixel pairs under predefined ge-
ometrical and intensity constraints. Using texture for HG can

introduce many false detections. For example, when we drive

Different views of a vehicle, especially rear views, contaig car outdoor, especially in some downtown streets, the back-
many horizontal and vertical structures, such as rear-windgyfound is very likely to contain textures.

bumper etc. Using constellations of vertical and horizontal o
edges has shown to be a strong cue for hypothesizing vehitid Vehicle lights

presence. Matthews et al. [17] applied horizontal edge detecyost of the cues discussed above are not helpful for night
tor on the image first, then the response in each column Wage vehicle detection — it would be difficult or impossible to
summed to construct the profiles, and smoothed using a trigltect shadows, horizontal/vertical edges, or corners in images
gular filter. By finding the local maximum and minimum peaksptained at night conditions. Vehicle lights represent a salient
they claimed that they could find the horizontal position of gl feature at night. Cucchiara et al. [25] used morphological

vehicle on the road. A shadow method, similar to that in [15}n41ysis for detecting vehicle light pairs in a narrow inspection
was used to find the bottom of the vehicle. Goerick et al. [18}ea4.

proposed a method called Local Orientation Coding (LOC) to
extract edge information. Handmann et al. [19] also used LOE, Stereo-vision based methods

together with shadow information, for vehicle detection. Parodi ] ) )
et al. [20] proposed to extract the general structure of a traf-1N€re are two types of methods using stereo information for

fic scene by first segmenting an image into four regions: tMghicle detection. One uses disparity map, while the other

pavement, the sky, and two lateral regions using edge groupiHges an anti-perspective transformation (i.e., Inverse Perspective

Groups of horizontal edges on the detected pavement were th&PPINg (IPM)).

considered for hypothesizing the presence of vehicles. Betke et _ .

al. [21] utilized edge information to detect distant cars. Thet§f1 Disparity map

proposed a coarse-to-fine search method looking for rectanguthe difference in the left and right images between corre-

lar objects through analyzing vertical and horizontal profiles. Bponding pixels is called disparity. The disparities of all the im-

[22], vertical and horizontal edges were extracted separately Hge points form the so-called disparity-map. If the parameters

ing the Sobel operator. Then, a set of edge-based constraintdilthe stereo rig are known, the disparity map can be converted

ters were applied on those edges to segment vehicles from bagte a 3-D map of the viewed scene. Computing the disparity

ground. The edge-based constraint filters were derived fronnap, however, is very time consuming. Hancock [26] proposed

prior knowledge about vehicles. Assuming that lanes have begemethod employing the power of the disparity while avoiding

successfully detected, Bucher et al. [23] hypothesized vehigiéme heavy computations. In [27], Franke et al. argued that, to

presence by scanning each lane starting from the bottom, tryigve the correspondence problem, area-based approaches were

to find the lowest strong horizontal edge. too computationally expensive, and disparity maps from feature-
Utilizing horizontal and vertical edges as cues can be very @fased methods were not dense enough. A local feature extractor

fective. However, an important issue to be addressed, especiadyucture classification” was proposed to solve the correspon-

in the case of on-line vehicle detection, is how the choice @énce problem easier.

various parameters affects system robustness. These parameters

include the threshold values for the edge detectors, the threBt2 Inverse perspective mapping

old values for picking the most important vertical and horizontal

edges, and the threshold values for choosing the best max'km-la-he term *inverse Perspective Mapping” does not correspond

. : - an actual inversion of perspective mapping [28], which is
(i-e., peaks) in the profile images. Although a set of paramen((;’"?n[athematicalIy impossible. Rather, it denotes an inversion un-

values might work perfectly well under some conditions, the er the additional constraint that inversely mapped points should
might fail in other environments. The problem is even more sg- y mappeap

vere for an on-road vehicle detection system since the dyna o the horizontal plane. Assuming aflatroad, Zhao etal. [29]

L ; ; sed stereo vision to predict the image seen by the right camera,
range of the acquired images is much bigger than that of an Lrj|ven the leftimage, using IPM. Specifically, they used the IPM

door vision system. A multi-scale driven method was invest- S : .
gated in [7] to address this problem. Although it did not root olf transform every point in the left 'mage to yvorld cooerates,
the parameter setting problem, it did alleviate it to some exte .d re-projected th_em back onto t_he ”.ght 'mage, \.Nh'Ch were
en compared against the actual right image. In this way, they
were able to find contours of objects above the ground plane.
A.6 Texture Instead of warping the right image onto the left image, Bertozzi
The presence of vehicles in an image cause local intensgtyal. [30] computed the inverse perspective map of both the
changes. Due to general similarities among all vehicles, the night and left images. Although only two cameras are required
tensity changes follow a certain pattern, referred to as textureianfind the range and elevated pixels in an image, there are sev-
[24]. This texture information can be used as a cue to narr@sal advantages to use more than two cameras [31]. Williamson
down the search area for vehicle detection. Entropy was fiettal. investigated a triocular system [32]. Due to the additional
used as a measure for texture detection. Another texture-basechputational costs, binocular system is more preferred in the
segmentation method suggested in [24] used co-occurrence draver assistance system.

A.5 Vertical/horizontal edges
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In general, stereo-vision based methods are accurate and‘lasse”, while others very strict. Parodi et al. [20] proposed
bust only if the stereo parameters have been estimated aabypothesis verification scheme based on license plate and rear
rately, which is really hard to guarantee in the on-road scenanandows detection using constraints based on vehicle geometry.
Since the stereo rig is on a moving vehicle, vibrations from celandmann et al. [19] proposed a template based on the obser-
motion can shift the cameras while the height of the cameras aation that the rear/frontal view of a vehicle has\ad’ “‘shape.
keep changing due to the suspension. Suwa et al. [33] propoBeding verification, they considered a vehicle to be present in
a method to adjust the stereo parameters to compensate forttieeimage if they could find thelJ” shape (i.e., one horizontal
error caused by camera shifting. Broggi et al. [34] analyzestige, two vertical edges, and two corners connecting the hor-
the parameter drifts and argued that vibrations affect mostly tizental and vertical edges). Ito et al. [40] used a very loose
extrinsic camera parameters and not the intrinsic ones. A fasmplate to recognize vehicles. They hypothesized vehicle loca-
self-calibration method was investigated in that study. tion using active sensors and verified those locations by check-
ing whether pronounced vertical/horizontal edges and symmetry
existed. Regensburger et al. [41] utilized a template similar to

All the cues discussed so far use spatial features to distinguigb]. They argued that the visual appearance of an object de-
between vehicles and background. Another important cue tipahds on its distance from the camera. Consequently, they used
can be used is the relative motion obtained via the calculatitwo slightly different generic object (vehicle) models, one for
of optical flow. Optical flow information can provide strongnearby objects and the other for distant objects. A rather loose
information for HG. Approaching vehicles at an opposite diemplate was also used in [42], where the hypothesis was gen-
rection produce a diverging flow, which can be quantitativelyrated on the basis of road position and perspective constraints.
distinguished from the flow caused by the car ego-motion [35fhe template contained a priori knowledge about vehicles: “a
On the other hand, departing or overtaking vehicles produceehicle is generally symmetric, characterized by a rectangular
converging flow. Giachetti et al. [35] developed first-order arsbunding box which satisfies specific aspect ratio constraints”.
second-order differential methods and applied them to a typi-
cal image sequence taken from a moving vehicle along a fxt Appearance-based methods
and s_,traight road. The results were discograging. Three faCt_Ori\ppearance-based methods learn the characteristics of the ve-
causing poor performance were summarized in [35]: (a) dﬁ

| t bet tive f b) lack of text icle class from a set of training images which capture the vari-
placement between consecutive frames, (b) lack of textures, Ay ity in vehicle appearance. Usually, the variability of the non-

(c) shocks and vibrations. Given the difficulties faced by MOYahicle class is also modelled to improve performance. First,

ing camera scenario, getting a reliable dense optical flow is ol training image is represented by a set of local or global

an easy task_. Giachetti etal. [35] managed to re-map th? COlSStures. Then, the decision boundary between the vehicle and
sponding points between two consecutive frames, by minimiz-

. ; . -fnon-vehicle classes is learned either by training a classifier (e.g.,
ing a distance measure. Krug_er e.t al. [36] estimated the.Opt'Rf’éTJral Network NN)) or by modelling the probability distri-
flow from spatio-temporal derivatives of the grey value IMag& tion of the features in each class (e.g., using the Bayes rule
using a local approach. They further clustered the estimated Q '

tical flow to elimimate outliors. In contrast to dense optical flo>UMiNg Gaussian distributions)
. calfiowto € aeﬂou_ iers. In contrast to dense optical low, |, [17], Principal Component Analysi®®CA) was used for
sparse optical flow” utilizes image features, such as comners

S i " ; €ature extraction and Neural Networks (NNs) for classification.
[37], local minima and maxima [38], or “Color Blob” [39]. Al- 5 1he yenicle candidates were scaled to 20x20, then this 20x20

though it can only produce a sparse flow, feature based metg% led image was divided into 25 4x4 small windows. PCA was

can provide sufficient information for HG. In contrast to p|xelé1 plied on every sub window and the output of the “local PCA”

based optical flow estimation methods where pixels are pro- . . : :
cessed independently, feature based methods utilize high | ap provided to a NN to verify the hypothesis. Different from

) X . . Pﬁ , Wu et al. [43] used standard PCA for feature extraction
information. Consequently, they are less sensitive to noise.

In general. motion-based method n detect obiects b g]ethod for vehicle detection, together with a nearest-neighbor
general, motion-based methods can detect objects based QR qiqer Goerick et al. [18] used a method called Local Orien-
relative motion information. Obviously, this is a major limita-

. . tation Coding LOC) to extract edge information. The histogram
gggi;c?lregx\?vrigf,c;rrl:sremfézggtc;agi ni)rt]rtéztused o detect st H_O.(; Witlhin the area of interest was then provided tdMdfor .

’ P 9 ' classification. Kalinke et al. [24] designed two models for vehi-
cle detection: one for sedans, and the other for trucks. Hausdorrf
distances between the hypothesized vehicles and the models in

The input to the HV step is the set of hypothesized locatiofsyms of LOC were the input to a NN. The outputs were sedans,
from the HG step. During HV, tests are performed to verify theycks or background. Similar to [18], Handmann et al. [19]
correctness of a hypothesis. HV approaches can be classifigfized the histogram of LOC, together with a NN, for vehicle
into two main categories: (1) template-based methods and {&kection. Moreover, the Hausdorrf distance was used for the
appearance-based methods. classification of trucks and cars such as in [24]. A statistical
model for vehicle detection was investigated by Schneiderman
et al. [44]. A view-based approach using multiple detectors was

Template-based methods use predefined patterns of the employed to cope with viewpoint variations. The statistics of
hicle class and perform correlation between the image and theh object and “non-object” appearance were represented using
template. Some of the templates in the literature are vethe product of two histograms with each histogram represent-

C. Motion-based methods

VI. HYPOTHESISVERIFICATION

A. Template-based methods
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ing the joint statistics of a subset Haar wavelet features in [4ddndle different cases. We discuss below several research direc-
and their position on the object. A different statistical modgions for moving this area forward.

was investigated by Weber et al. [45]. They represented each

vehicle image as a constellation of local features and used fheVehicle classification

Expectation-Maximization (EM) algorithm to learn the parame- The majority of reported works aim only at detecting/tracking
ters of the probability distribution of the constellations. An ovekzehicles without differentiating among vehicle types. Given
completed Qictionary _of Haar wavelet features was utilized fﬂany different participants on the road (sedan, trail truck, mo-
[46] for vehicle detection. They argued that the over-completegipikes, etc.), knowing exactly what kind of participants are

representation provided a richer model and spatial resolutigibund the host vehicle will benefit driver assistance systems.
and was more suitable for capturing complex patterns. Sun et

al. [47][7] went one step further by arguing that the actual vaB. Feature selection
ues of the wavelet coefficients are not very important for vehicle
detection. In fact, coefficient magnitudes indicate local orientrﬁ%
intensity differences, information that could be very differe

even for the same vehicle under different lighting condition

Following this observation, they proposed using quantized Cant features are unknow — priori. It would be ideal if

efficients to improve detection performance. Feature extractl\%% could use only those features which have great separability
using Gabor filters was investigated in [48]. Gabor filters prgi

vide a mechanism for obtaining orientation and scale tunal gwer while ignoring or paying less attention to the rest, For ex-
9 ﬁ]£le, to allow a vehicle detector to generalize nicely, it would

edge and line detectors. Vehicles contain strong edges and “BS hice to exclude features encoding fine details which might

3;?'1?52;\?;%?3225: Iaenc;jefgstli?) Sn thus, this type of features %reeWesent in particular vehicles only. Finding out what features
y ' to use for classification/recognition is referred to as feature se-

lection. Sun et al. [49][50] have investigated various feature
selection schemes in the context of vehicle detection, showing
Although many efforts have been put into the vehicle detegignificant performance improvements. However, selecting an
tion research area, many algorithms/systems have already beifmum feature subset (i.e., leading to high generalization per-
reported, many prototype vehicles have already been demtsimance) is still an open problem.
strated, a highly robust and reliable system is yet to be built. In
general, surrounding vehicles can be classified into three céte-
gories according to their relative positions to the host vehicle: Information from a single sensor is not enough for a driver
(a) overtaking vehicles, (b) mid-range/distant vehicles, and @gsistance system to manage high level driving tasks in dense
close-by vehicles (see Fig. 2). traffic environments. Substantial research efforts are required to
develop systems employing information from multiple sensors,
both active and passive, effectively.

Building accurate and robust vehicle detection algorithms, es-
cially in the framework of supervised learning, requires em-

loying a good set of features. In most cases, a large number
f features are extracted to compensate for the fact that rele-

VIl. CHALLENGES AHEAD

Sensor fusion

D. Failure detection

An on-board vision sensor will face adverse operating con-
ditions, and it may reach a point where it might not be able to
provide good quality data to meet minimum system performance
requirements. In these cases, the driver assistance system may
not be able to fulfil its desired responsibilities correctly (e.g.,
issuing severe false alerts). A reliable driver assistance system
Fig. 2. Detecting vehicles in different regions requires different methods. Aghould be able to evaluate its performance and disable its op-

Close by regions; A2: Overtaking regions; A3: Mid-range/distant regionseratiOn when it can not provide reliable traffic information any
more.

In the plose-by regions, we may onIy. see part of the_ verﬁ-. Hardware implementation
cle. In this case, there is no free space in the captured images,
which makes the shadow/edge based methods inappropriate. IMehicle detection systems should be able to process informa-
the overtaking regions, only the side view of the vehicle is visiion very fast to allow enough time for the drivers to react in
ble while appearance changes fast. Methods detecting vehi¢lage of an emergency. Among many options, real-time perfor-
in these regions might be better to employ motion informationance based on hardware implementations stand out for their
or dramatic intensity changes [21]. Detecting vehicles in tisémplicity and efficiency.
mid-range/distant region is relatively easier since the full view
of a vehicle is available and appearance is more stable.

Real-time on-road vehicle detection is so challenging, thatWe presented a critical survey of vision-based on-road vehicle
none of the HG methods discussed in Section V can solvedétection systems — one of the most important components of
alone completely. Different cues/methods would be requireddariver assistance system. Judging from the research activities

VIII. CONCLUSIONS



underway worldwide, it is certain that this area will continue tf24] T. Kalinke, C. Tzomakas und W. v. Seelen, “A texture-based object de-

be among the hottest research areas in the future. Major motor
companies, government agencies, and universities, are all gx;

pected to work together to make significant progress in this area

over the next few years.
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