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Abstract—As one of the most promising applications of computer vision,
vision-based vehicle detection for driver assistance has received consider-
able attention over the last 15 years. There are at least three reasons for the
blooming research in this field: first, the startling losses both in human lives
and finance caused by vehicle accidents; second, the availability of feasible
technologies accumulated within the last 30 years of computer vision re-
search; and third, the exponential growth of processor speed has paved the
way for running computation-intensive video-processing algorithms even
on a low-end PC in realtime. This paper provides a critical survey of recent
vision-based on-road vehicle detection systems appeared in the literature
(i.e., the cameras are mounted on the vehicle rather than being static such
as in traffic/driveway monitoring systems).

I. I NTRODUCTION

Every minute, on average, at least one person dies in a vehicle
crash. Auto accidents also injure at least 10 million people each
year, and two or three million of them seriously. The hospital
bill, damaged property, and other costs are expected to add up
to 1%-3% of the world’s gross domestic product [1]. With the
aim of reducing injury and accident severity, pre-crash sensing
is becoming an area of active research among automotive man-
ufacturers, suppliers and universities. Vehicle accident statistics
disclose that the main threats a driver is facing are from other
vehicles. Consequently, developing on-board automotive driver
assistance systems aiming to alert a driver about driving environ-
ments, and possible collision with other vehicles has attracted a
lot of attention. In these systems, robust and reliable vehicle
detection is the first step — a successful vehicle detection algo-
rithm will pave the way for vehicle recognition, vehicle track-
ing, and collision avoidance. This paper provides a survey of
on-road vehicle detection systems using optical sensors. More
general overviews on intelligent driver assistance systems can
be found in [2].

II. V ISION-BASED INTELLIGENT VEHICLE RESEARCH

WORLDWIDE

With the ultimate goal of building autonomous vehicles,
many government institutions have lunched various projects
worldwide, involving a large number of research units work-
ing cooperatively. These efforts have produced several proto-
types and solutions, based on rather different approaches [2].
In Europe, thePROMETHEUSprogram (Program for European
Traffic with Highest Efficiency and Unprecedented Safety) pio-
neered this exploration. More than 13 vehicle manufactures and
several research institutes from 19 European countries were in-
volved. Several prototype vehicles and systems (i.e.,VaMoRs,
VITA, VaMP, MOB-LAB, GOLD) were designed as a result of

this project. Although the first research efforts on developing
intelligent vehicles were seen in Japan in the 70’s, significant
research activities were triggered in Europe in the late 80s and
early 90s. MITI, Nissan and Fujitsu pioneered the research
in this area by joining forces in the project “Personal Vehicle
System” [3]. In 1996, theAdvanced Cruise-Assist Highway
System Research Association(AHSRA) was established among
automobile industries and a large number of research centers
[2]. In the US, a great deal of initiatives have been launched
to address this problem. In 1995, the US government estab-
lished theNational Automated Highway System Consortium
(NAHSC) [4], and launched theIntelligent Vehicle Initiative
(IVI) in 1997. Several promising prototype vehicles/systems
have been investigated and demonstrated within the last 15 years
[5]. In March 2004, the whole world was stimulated by the
“grand challenge” organized by DARPA [6]. In this competi-
tion, 15 fully-autonomous vehicles attempted to independently
navigate a 250-mile (400 km) desert course within a fixed time
period, all with no human intervention whatsoever - no driver,
no remote-control, just pure computer-processing and naviga-
tion horsepower, competing for a $1 million cash prize. Al-
though, even the best vehicle (i.e., “Red Team” from Carnegie
Mellon) made only 7 miles, it is a very big step towards building
autonomous vehicles in the future.

III. A CTIVE VS. PASSIVE SENSORS

The most common approach to vehicle detection is using
active sensors such as lasers, lidar, or millimeter-wave radars.
They are called active because they detect the distance of an
object by measuring the travel time of a signal emitted by the
sensors and reflected by the object. Their main advantage is
that they can measure certain quantities (e.g., distance) directly
requiring limited computing resources. Prototype vehicles em-
ploying active sensors have shown promising results. However,
active sensors have several drawbacks, such as low spatial reso-
lution, and slow scanning speed. Moreover, when a large num-
ber of vehicles are moving simultaneously in the same direction,
interference among sensors of the same type poses a big prob-
lem.

Optical sensors, such as normal cameras, are usually referred
to as passive sensors because they acquire data in a non-intrusive
way. One advantage of passive sensors over active sensors is
cost. With the introduction of inexpensive cameras, we can
have both forward and rearward facing cameras on a vehicle, en-



abling a nearly 360o field of view. Optical sensors can be used
to track more effectively cars entering a curve or moving from
one side of the road to another. Also, visual information can be
very important in a number of related applications, such as lane
detection, traffic sign recognition, or object identification (e.g.,
pedestrians, obstacles), without requiring any modifications to
road infrastructures. On the other hand, vehicle detection based
on optical sensors is very challenging due to huge within class
variabilities. For example, vehicles may vary in shape, size, and
color. Vehicle appearance depends on its pose and is affected by
nearby objects. Illumination changes, complex outdoor environ-
ments (e.g. illumination conditions), unpredictable interactions
between traffic participants, and cluttered background are diffi-
cult to control.

To address some of the above issues, more powerful optical
sensors are currently being investigated such as cameras oper-
ating under low light (e.g., Ford proprietary low light camera
[7]) or cameras operating in the non-visible spectrum (e.g., In-
frared (IR) camera [8]). Building cameras with internal process-
ing power (i.e., vision chip) has also attracted great attention.
In conventional vision systems, data processing takes place at a
host computer. Vision chips have many advantages over conven-
tional vision systems, for instance high speed, small size, lower
power consumption, etc. The main idea is integrating photo-
detectors with processors on a very large scale integration [9].

IV. T HE TWO STEPS OF VEHICLE DETECTION

In driver assistance applications, vehicle detection algorithms
need to process the acquired images at real-time or close to real-
time. Searching the whole image to locate potential vehicle
locations is not realistic. The majority of methods reported in
the literature follow two basic steps: (1) Hypothesis Generation
(HG) where the locations of potential vehicles in an image are
hypothesized, and (2) Hypothesis Verification (HV) where tests
are performed to verify the presence of a vehicle in an image
(see Fig. 1).

Fig. 1. Illustration of the two-step vehicle detection strategy

V. HYPOTHESISGENERATION

The objective of the HG step is to find candidate vehicle lo-
cations in an image quickly for further exploration. HG ap-
proaches can be classified into one of the following three cat-
egories: (1) knowledge-based, (2) stereo vision based, and (3)
motion-based.

A. Knowledge-based methods

Knowledge-based methods employa-priori knowledge to hy-
pothesize vehicle locations in an image. We review below some

approaches using information about symmetry, color, shadow,
corners, horizontal/vertical edges, texture, and vehicle lights.

A.1 Symmetry

Vehicle images observed from rear or frontal view are in gen-
eral symmetrical in horizontal and vertical directions. This ob-
servation was used as a cue for vehicle detection in the early 90s
[10]. An important issue that arises when computing symmetry
from intensity, however, is the presence of homogeneous areas.
In these areas, symmetry estimation is sensitive to noise. In [11],
information about edges was included in the symmetry estima-
tion to filter out homogeneous areas. When searching for local
symmetry, two issues must be considered carefully. First, we
need a rough indication of where a vehicle is probably present.
Second, even when using both intensity and edge maps, symme-
try as a cue is still prone to false detections, such as symmetrical
background objects, or partly occluded vehicles.

A.2 Color

Although few existing systems use color information to its
full extent for HG, it is a very useful cue for obstacle detection,
lane/road following, etc. Several prototype systems investigated
the use of color information as a cue to follow lanes/roads, or
segment vehicles from background [12]. Similar methods could
be used for HG, because non-road regions within a road area are
potentially vehicles or obstacles. The lack of deploying color in-
formation in HG is largely due to the difficulties of color-based
object detection or recognition methods in outdoor settings. The
color of an object depends on illumination, reflectance prop-
erties of the object, viewing geometry, and sensor parameters.
Consequently, the apparent color of an object can be quite dif-
ferent during different times of the day, under different weather
conditions, and under different poses.

A.3 Shadow

Using shadow information as a sign pattern for vehicle de-
tection was initially discussed in [13]. By investigating im-
age intensity, it was found that the area underneath a vehicle
is distinctly darker than any other areas on an asphalt paved
road. A first attempt to deploy this observation can be found
in [14], though there was no systematic way to choose appro-
priate threshold values. The intensity of the shadow depends on
the illumination of the image, which in turn depends on weather
conditions. Therefore the thresholds are not, by no means, fixed.
In [15], a normal distribution was assumed for the intensity of
the free driving space. The mean and variance of the distribution
were estimated using Maximum Likelihood (ML). It should be
noted that the assumption about the distribution of road pixels
might not always hold when true. For example, rainy weather
conditions or bad illumination conditions will make the color of
road pixels dark, causing this method to fail.

A.4 Corners

Exploiting the fact that vehicles in general have a rectangular
shape, Bertozzi et al. proposed a corner-based method to hy-
pothesize vehicle locations [16]. Four templates, each of them
corresponding to one of the four corners, were used to detect all
the corners in an image, followed by a search method to find the
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matching corners. For example, a valid upper-left corner should
have a matched lower-right corner.

A.5 Vertical/horizontal edges

Different views of a vehicle, especially rear views, contain
many horizontal and vertical structures, such as rear-window,
bumper etc. Using constellations of vertical and horizontal
edges has shown to be a strong cue for hypothesizing vehicle
presence. Matthews et al. [17] applied horizontal edge detec-
tor on the image first, then the response in each column was
summed to construct the profiles, and smoothed using a trian-
gular filter. By finding the local maximum and minimum peaks,
they claimed that they could find the horizontal position of a
vehicle on the road. A shadow method, similar to that in [15],
was used to find the bottom of the vehicle. Goerick et al. [18]
proposed a method called Local Orientation Coding (LOC) to
extract edge information. Handmann et al. [19] also used LOC,
together with shadow information, for vehicle detection. Parodi
et al. [20] proposed to extract the general structure of a traf-
fic scene by first segmenting an image into four regions: the
pavement, the sky, and two lateral regions using edge grouping.
Groups of horizontal edges on the detected pavement were then
considered for hypothesizing the presence of vehicles. Betke et
al. [21] utilized edge information to detect distant cars. They
proposed a coarse-to-fine search method looking for rectangu-
lar objects through analyzing vertical and horizontal profiles. In
[22], vertical and horizontal edges were extracted separately us-
ing the Sobel operator. Then, a set of edge-based constraint fil-
ters were applied on those edges to segment vehicles from back-
ground. The edge-based constraint filters were derived from a
prior knowledge about vehicles. Assuming that lanes have been
successfully detected, Bucher et al. [23] hypothesized vehicle
presence by scanning each lane starting from the bottom, trying
to find the lowest strong horizontal edge.

Utilizing horizontal and vertical edges as cues can be very ef-
fective. However, an important issue to be addressed, especially
in the case of on-line vehicle detection, is how the choice of
various parameters affects system robustness. These parameters
include the threshold values for the edge detectors, the thresh-
old values for picking the most important vertical and horizontal
edges, and the threshold values for choosing the best maxima
(i.e., peaks) in the profile images. Although a set of parameter
values might work perfectly well under some conditions, they
might fail in other environments. The problem is even more se-
vere for an on-road vehicle detection system since the dynamic
range of the acquired images is much bigger than that of an in-
door vision system. A multi-scale driven method was investi-
gated in [7] to address this problem. Although it did not root out
the parameter setting problem, it did alleviate it to some extend.

A.6 Texture

The presence of vehicles in an image cause local intensity
changes. Due to general similarities among all vehicles, the in-
tensity changes follow a certain pattern, referred to as texture in
[24]. This texture information can be used as a cue to narrow
down the search area for vehicle detection. Entropy was first
used as a measure for texture detection. Another texture-based
segmentation method suggested in [24] used co-occurrence ma-

trices. The co-occurrence matrix contains estimates of the prob-
abilities of co-occurrences of pixel pairs under predefined ge-
ometrical and intensity constraints. Using texture for HG can
introduce many false detections. For example, when we drive
a car outdoor, especially in some downtown streets, the back-
ground is very likely to contain textures.

A.7 Vehicle lights

Most of the cues discussed above are not helpful for night
time vehicle detection — it would be difficult or impossible to
detect shadows, horizontal/vertical edges, or corners in images
obtained at night conditions. Vehicle lights represent a salient
visual feature at night. Cucchiara et al. [25] used morphological
analysis for detecting vehicle light pairs in a narrow inspection
area.

B. Stereo-vision based methods

There are two types of methods using stereo information for
vehicle detection. One uses disparity map, while the other
uses an anti-perspective transformation (i.e., Inverse Perspective
Mapping (IPM)).

B.1 Disparity map

The difference in the left and right images between corre-
sponding pixels is called disparity. The disparities of all the im-
age points form the so-called disparity-map. If the parameters
of the stereo rig are known, the disparity map can be converted
into a 3-D map of the viewed scene. Computing the disparity
map, however, is very time consuming. Hancock [26] proposed
a method employing the power of the disparity while avoiding
some heavy computations. In [27], Franke et al. argued that, to
solve the correspondence problem, area-based approaches were
too computationally expensive, and disparity maps from feature-
based methods were not dense enough. A local feature extractor
“structure classification” was proposed to solve the correspon-
dence problem easier.

B.2 Inverse perspective mapping

The term “Inverse Perspective Mapping” does not correspond
to an actual inversion of perspective mapping [28], which is
mathematically impossible. Rather, it denotes an inversion un-
der the additional constraint that inversely mapped points should
lie on the horizontal plane. Assuming a flat road, Zhao et al. [29]
used stereo vision to predict the image seen by the right camera,
given the left image, using IPM. Specifically, they used the IPM
to transform every point in the left image to world coordinates,
and re-projected them back onto the right image, which were
then compared against the actual right image. In this way, they
were able to find contours of objects above the ground plane.
Instead of warping the right image onto the left image, Bertozzi
et al. [30] computed the inverse perspective map of both the
right and left images. Although only two cameras are required
to find the range and elevated pixels in an image, there are sev-
eral advantages to use more than two cameras [31]. Williamson
et al. investigated a triocular system [32]. Due to the additional
computational costs, binocular system is more preferred in the
driver assistance system.
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In general, stereo-vision based methods are accurate and ro-
bust only if the stereo parameters have been estimated accu-
rately, which is really hard to guarantee in the on-road scenario.
Since the stereo rig is on a moving vehicle, vibrations from car
motion can shift the cameras while the height of the cameras can
keep changing due to the suspension. Suwa et al. [33] proposed
a method to adjust the stereo parameters to compensate for the
error caused by camera shifting. Broggi et al. [34] analyzed
the parameter drifts and argued that vibrations affect mostly the
extrinsic camera parameters and not the intrinsic ones. A fast
self-calibration method was investigated in that study.

C. Motion-based methods

All the cues discussed so far use spatial features to distinguish
between vehicles and background. Another important cue that
can be used is the relative motion obtained via the calculation
of optical flow. Optical flow information can provide strong
information for HG. Approaching vehicles at an opposite di-
rection produce a diverging flow, which can be quantitatively
distinguished from the flow caused by the car ego-motion [35].
On the other hand, departing or overtaking vehicles produce a
converging flow. Giachetti et al. [35] developed first-order and
second-order differential methods and applied them to a typi-
cal image sequence taken from a moving vehicle along a flat
and straight road. The results were discouraging. Three factors
causing poor performance were summarized in [35]: (a) dis-
placement between consecutive frames, (b) lack of textures, and
(c) shocks and vibrations. Given the difficulties faced by mov-
ing camera scenario, getting a reliable dense optical flow is not
an easy task. Giachetti et al. [35] managed to re-map the corre-
sponding points between two consecutive frames, by minimiz-
ing a distance measure. Kruger et al. [36] estimated the optical
flow from spatio-temporal derivatives of the grey value image
using a local approach. They further clustered the estimated op-
tical flow to eliminate outliers. In contrast to dense optical flow,
“sparse optical flow” utilizes image features, such as corners
[37], local minima and maxima [38], or “Color Blob” [39]. Al-
though it can only produce a sparse flow, feature based method
can provide sufficient information for HG. In contrast to pixel-
based optical flow estimation methods where pixels are pro-
cessed independently, feature based methods utilize high level
information. Consequently, they are less sensitive to noise.

In general, motion-based methods can detect objects based on
relative motion information. Obviously, this is a major limita-
tion, for example, this method can not be used to detect static
obstacles, which can represent a big threat.

VI. H YPOTHESISVERIFICATION

The input to the HV step is the set of hypothesized locations
from the HG step. During HV, tests are performed to verify the
correctness of a hypothesis. HV approaches can be classified
into two main categories: (1) template-based methods and (2)
appearance-based methods.

A. Template-based methods

Template-based methods use predefined patterns of the ve-
hicle class and perform correlation between the image and the
template. Some of the templates in the literature are very

“loose”, while others very strict. Parodi et al. [20] proposed
a hypothesis verification scheme based on license plate and rear
windows detection using constraints based on vehicle geometry.
Handmann et al. [19] proposed a template based on the obser-
vation that the rear/frontal view of a vehicle has a “U” shape.
During verification, they considered a vehicle to be present in
the image if they could find the “U” shape (i.e., one horizontal
edge, two vertical edges, and two corners connecting the hor-
izontal and vertical edges). Ito et al. [40] used a very loose
template to recognize vehicles. They hypothesized vehicle loca-
tion using active sensors and verified those locations by check-
ing whether pronounced vertical/horizontal edges and symmetry
existed. Regensburger et al. [41] utilized a template similar to
[40]. They argued that the visual appearance of an object de-
pends on its distance from the camera. Consequently, they used
two slightly different generic object (vehicle) models, one for
nearby objects and the other for distant objects. A rather loose
template was also used in [42], where the hypothesis was gen-
erated on the basis of road position and perspective constraints.
The template contained a priori knowledge about vehicles: “a
vehicle is generally symmetric, characterized by a rectangular
bounding box which satisfies specific aspect ratio constraints”.

B. Appearance-based methods

Appearance-based methods learn the characteristics of the ve-
hicle class from a set of training images which capture the vari-
ability in vehicle appearance. Usually, the variability of the non-
vehicle class is also modelled to improve performance. First,
each training image is represented by a set of local or global
features. Then, the decision boundary between the vehicle and
non-vehicle classes is learned either by training a classifier (e.g.,
Neural Network (NN)) or by modelling the probability distri-
bution of the features in each class (e.g., using the Bayes rule
assuming Gaussian distributions).

In [17], Principal Component Analysis (PCA) was used for
feature extraction and Neural Networks (NNs) for classification.
All the vehicle candidates were scaled to 20x20, then this 20x20
scaled image was divided into 25 4x4 small windows. PCA was
applied on every sub window and the output of the “local PCA”
was provided to a NN to verify the hypothesis. Different from
[17], Wu et al. [43] used standard PCA for feature extraction
method for vehicle detection, together with a nearest-neighbor
classifier. Goerick et al. [18] used a method called Local Orien-
tation Coding (LOC) to extract edge information. The histogram
of LOCwithin the area of interest was then provided to aNN for
classification. Kalinke et al. [24] designed two models for vehi-
cle detection: one for sedans, and the other for trucks. Hausdorrf
distances between the hypothesized vehicles and the models in
terms of LOC were the input to a NN. The outputs were sedans,
trucks or background. Similar to [18], Handmann et al. [19]
utilized the histogram of LOC, together with a NN, for vehicle
detection. Moreover, the Hausdorrf distance was used for the
classification of trucks and cars such as in [24]. A statistical
model for vehicle detection was investigated by Schneiderman
et al. [44]. A view-based approach using multiple detectors was
employed to cope with viewpoint variations. The statistics of
both object and “non-object” appearance were represented using
the product of two histograms with each histogram represent-

4



ing the joint statistics of a subset Haar wavelet features in [44]
and their position on the object. A different statistical model
was investigated by Weber et al. [45]. They represented each
vehicle image as a constellation of local features and used the
Expectation-Maximization (EM) algorithm to learn the parame-
ters of the probability distribution of the constellations. An over-
completed dictionary of Haar wavelet features was utilized in
[46] for vehicle detection. They argued that the over-completed
representation provided a richer model and spatial resolution
and was more suitable for capturing complex patterns. Sun et
al. [47][7] went one step further by arguing that the actual val-
ues of the wavelet coefficients are not very important for vehicle
detection. In fact, coefficient magnitudes indicate local oriented
intensity differences, information that could be very different
even for the same vehicle under different lighting conditions.
Following this observation, they proposed using quantized co-
efficients to improve detection performance. Feature extraction
using Gabor filters was investigated in [48]. Gabor filters pro-
vide a mechanism for obtaining orientation and scale tunable
edge and line detectors. Vehicles contain strong edges and lines
at different orientation and scales, thus, this type of features are
very effective for vehicle detection.

VII. C HALLENGES AHEAD

Although many efforts have been put into the vehicle detec-
tion research area, many algorithms/systems have already been
reported, many prototype vehicles have already been demon-
strated, a highly robust and reliable system is yet to be built. In
general, surrounding vehicles can be classified into three cate-
gories according to their relative positions to the host vehicle:
(a) overtaking vehicles, (b) mid-range/distant vehicles, and (c)
close-by vehicles (see Fig. 2).

Fig. 2. Detecting vehicles in different regions requires different methods. A1:
Close by regions; A2: Overtaking regions; A3: Mid-range/distant regions.

In the close-by regions, we may only see part of the vehi-
cle. In this case, there is no free space in the captured images,
which makes the shadow/edge based methods inappropriate. In
the overtaking regions, only the side view of the vehicle is visi-
ble while appearance changes fast. Methods detecting vehicles
in these regions might be better to employ motion information
or dramatic intensity changes [21]. Detecting vehicles in the
mid-range/distant region is relatively easier since the full view
of a vehicle is available and appearance is more stable.

Real-time on-road vehicle detection is so challenging, that
none of the HG methods discussed in Section V can solve it
alone completely. Different cues/methods would be required to

handle different cases. We discuss below several research direc-
tions for moving this area forward.

A. Vehicle classification

The majority of reported works aim only at detecting/tracking
vehicles without differentiating among vehicle types. Given
many different participants on the road (sedan, trail truck, mo-
torbikes, etc.), knowing exactly what kind of participants are
around the host vehicle will benefit driver assistance systems.

B. Feature selection

Building accurate and robust vehicle detection algorithms, es-
pecially in the framework of supervised learning, requires em-
ploying a good set of features. In most cases, a large number
of features are extracted to compensate for the fact that rele-
vant features are unknowna − priori. It would be ideal if
we could use only those features which have great separability
power while ignoring or paying less attention to the rest. For ex-
ample, to allow a vehicle detector to generalize nicely, it would
be nice to exclude features encoding fine details which might
be present in particular vehicles only. Finding out what features
to use for classification/recognition is referred to as feature se-
lection. Sun et al. [49][50] have investigated various feature
selection schemes in the context of vehicle detection, showing
significant performance improvements. However, selecting an
optimum feature subset (i.e., leading to high generalization per-
formance) is still an open problem.

C. Sensor fusion

Information from a single sensor is not enough for a driver
assistance system to manage high level driving tasks in dense
traffic environments. Substantial research efforts are required to
develop systems employing information from multiple sensors,
both active and passive, effectively.

D. Failure detection

An on-board vision sensor will face adverse operating con-
ditions, and it may reach a point where it might not be able to
provide good quality data to meet minimum system performance
requirements. In these cases, the driver assistance system may
not be able to fulfil its desired responsibilities correctly (e.g.,
issuing severe false alerts). A reliable driver assistance system
should be able to evaluate its performance and disable its op-
eration when it can not provide reliable traffic information any
more.

E. Hardware implementation

Vehicle detection systems should be able to process informa-
tion very fast to allow enough time for the drivers to react in
case of an emergency. Among many options, real-time perfor-
mance based on hardware implementations stand out for their
simplicity and efficiency.

VIII. C ONCLUSIONS

We presented a critical survey of vision-based on-road vehicle
detection systems — one of the most important components of
a driver assistance system. Judging from the research activities
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underway worldwide, it is certain that this area will continue to
be among the hottest research areas in the future. Major motor
companies, government agencies, and universities, are all ex-
pected to work together to make significant progress in this area
over the next few years.
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