
Realtime Obstacle Detection and Tracking Based on Constrained
Delaunay Triangulation

Zu Kim, Member, IEEE

Abstract— We introduce a realtime vehicle detection and
tracking algorithm for in-vehicle video images. Although var-
ious vehicle detection approaches have been proposed, it is
difficult to find a fast and reliable algorithm for realtime
applications, such as for vehicle collision warning. We introduce
a realtime appearance-based vehicle detection approach. It uses
constrained Delaunay triangulation to make image evidence
collection for multiple overlapping hypotheses computation-
ally efficient. We also propose an integrated detection and
tracking approach where redundant detection and tracking
can compensate each other’s shortcomings. The experiment
was performed on various video clips of highways and local
roads with various traffic and illumination conditions, and the
resulting performance is competitive compared to those of other
active sensors.

I. I NTRODUCTION

In the past decade, there has been a significant improve-
ment in the field of object detection and recognition. How-
ever, most of object detection algorithms use computationally
expensive feature sets and algorithms such as Lowe’s scale
invariant features [1]. Although the computing power has
been improved significantly, such approaches still requiretoo
much computation for realtime applications.

Realtime vehicle detection is an important research area
and has useful applications such as for a vehicle collision
warning system. A collision warning system informs the
driver on obstacles on the road and warns a possible collision.
Vision-based detection and tracking algorithm can be very
helpful to improve the collision warning performance. For
example, many LIDAR sensors have long latencies of as
much as 400ms or even more due to mechanical scanning
and data pre-processing. It limits the system’s ability to
quickly respond on leading vehicle’s sudden movement. On
the other hand, computer vision systems can provide much
less latency when the processing time is small enough. In
addition, computer vision algorithms can have much higher
lateral positioning and tracking accuracy.

Vision-based vehicle detection can also help improve the
collision warning performance when it is combined with a
lane detection algorithm. In collision warning applications,
it is important to know whether the obstacle is in the
same lane with the ego-vehicle or not. While a vision-based
lane detection system can show a good performance, the
calibration of camera and active sensors can be problematic.
For example, most vision algorithms estimate the distance to
a curve by assuming flat ground which is often wrong due
to hills and vehicle’s fluctuation. Such an error can be very
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large when the target is further than 30 meters away [2]. If
we use vision-based obstacle detection (with a sensor fusion),
the vision-based lane detection can be more useful because
it is easier to tell whether an object is in the same lane or
not. In addition, it can help improving the lane detection
performance by eliminating localization errors caused by
vehicle’s texture.

Based on such needs, we introduce a realtime vehicle
detection and tracking approach. The detection is based on
texture analysis and we use constrained Delaunay triangula-
tion for fast image feature gathering. We also introduce an
integrated object detection and tracking framework where
detection and tracking results can compensate each others’
shortcomings. We first review related work in Section II
and present our approach. The detection is presented in
Section III with experimental results. The tracking algorithm
is presented in Section IV, and the conclusion will be in
Section V.

II. RELATED WORK AND PROPOSEDAPPROACH

There have been various efforts to detect vehicles in
realtime or non-realtime [3]. Many of the generic obstacle
detection work also deal with images of vehicles [4]. While
such algorithms can give good detection rate even for images
with complicated backgrounds, most of them are not even
close to realtime.

Most of the previous realtime vehicle detection efforts
are based on motion or stereo analysis. The motion-based
approaches use the fact that the image motion of an obstacle
(roughly on a vertical plane) is different from that of the
ground (on a horizontal plane) [5]. However, such a differ-
ence is usually much smaller than a pixel and it takes at least
a second of tracking to distinguish the differences between
them [5]. Various stereo algorithms have been also proposed.
However, the resolution of stereo depth is significantly lim-
ited. This is problematic especially with the collision warning
applications which require to detect obstacles of usually 30∼
100 meter away. Increasing stereo depth accuracy introduces
another problem of recovering camera parameters which may
change due to vehicle’s vibration.

With an increased computing power, realtime appearance-
based vehicle detection became feasible. In [6], Sun et al.
applied a set of Gabor filters to vehicle hypotheses classi-
fication. While it shows a good classification performance
in realtime (10Hz in an embedded computer), the overall
performance is heavily dependent on its histogram-based hy-
potheses generation algorithm, which may not generate good



hypotheses in an urban environment with many distracting
features.

The computational bottleneck of the generic object detec-
tion approach is on collecting features. While a large number
of features are required to achieve a good classification
performance, the computational cost to gather them is far
beyond the realtime. One popular approach proposed by
Viola and Jones [7] combines a cascade classifier with a large
number of simple (binary) convolution masks for realtime
object detection. It shows a good performance for face
detection where the target objects have a common shape,
but has not been applied for a vehicle detection task.

Our approach is a complementary one to [7] because it
allows to use somewhat complicated texture features. Since
vehicles’ colors and shapes largely vary, texture features,
such as the numbers of lines and corners in the region can be
more effective in classifying vehicles. To apply such features,
image segmentation is a crucial step to avoid computational
redundancy. However, image segmentation is a difficult prob-
lem which requires a significant amount of computation.
In this paper, we propose to apply constrained Delaunay
triangulation (CDT) for realtime image segmentation.

The target image is first segmented by applying CDT
and object hypotheses are generated by grouping them.
We adopt the “hypothesize and verify” paradigm to first
generate many overlapping hypotheses then validating them.
However, the computation to gather the image statistics for
classification is still manageable because the statistics are
not gathered directly from the pixels but from larger image
chunks (triangles).

In addition to the vehicle detection, we present a proba-
bilistic framework to combine vehicle detection and track-
ing. In this approach, both the tracking and the detection
algorithms help improve the performance of each other.
For example, the tracking helps eliminate false detections
while redundant detections over frames compensate tracking
failures such as drifting.

III. R EALTIME VEHICLE DETECTION

We use simple texture features for the vehicle classi-
fication: density of corner features, density of horizontal
line features, density of vertical line features, and intensity
variance of the region. In fact, these four features alone
provide good classification as will be shown later in this
section. Applying more complicated features [1] or a feature
selection technique [6] may improve the final classification
result, which is not the focus of this paper.

Even though we use simple feature sets, collecting statis-
tics for many (as many as a hundred) overlapping hypotheses
is computationally expensive. Therefore, we segment images
into small pieces (also referred assuperpixels) to efficiently
gather such information. In the following subsections, we
present fast image segmentation based on constrained De-
launay triangulation, our hypotheses generation procedure,
and the hypotheses verification (classification) algorithm. We
also present detection results.

Fig. 1. An example line detection and constrained Delaunay triangulation
result.

A. Image Segmentation

Most image segmentation algorithms require too much
computation for realtime processing or fast algorithms suffer
from leaking that makes grouping difficult. Since our interest
is not on finding an accurate segmentation of objects, but on
finding small superpixels to reduce the computation, we do
not need to use such complicated segmentation algorithms.
Instead, we use a constrained Delaunay triangulation (CDT)
which was recently recognized as a useful preprocessing step
for image segmentation [8] [9].

In CDT-based segmentation, image segments are obtained
by finding line segments and applying CDT to find a proper
triangulation. We use a Canny edge detector [10] followed
by line grouping and fitting to obtain line segments. For
CDT it is important to make sure that no resulting line
segments intersect each other, and all the curves should be
properly broken into straight line segments that the fitting
error is small enough. We adopted a line detection approach
proposed by Guru et al. [11] to break curves then performed
another round of line segmentation to ensure all the curves
are properly broken. The resulting line segments (longer than
5 pixels) and the triangulation results are shown in Figure 1.

B. Hypotheses Generation

A vehicle hypothesis is generated from two horizontal line
segments. First, horizontal lines are selected among triangle
edges. Given a horizontal line (a candidate for vehicle’s
baseline), the vehicle hypothesis’ rough 3-D position is
estimated by applying camera calibration parameters. Then,
we can estimate the vehicle’s rough size in the image (given
a fixed vehicle size in the world coordinates). The next step
is to perform a search for possible top lines (based on the
estimated vehicle size in the image). The top line should be
roughly parallel to vehicle’s baseline. The top line candidates
for an example baseline candidate are shown in Figure 2a.

Given two lines, the triangles between them are collected.



(a) (b)

Fig. 2. (a) The top line candidates of an example baseline candidate. (b)
A triangle grouping result given two horizontal line segments.

Fig. 3. Total 25 hypotheses were generated by the triangle grouping
procedure.

Starting from the triangle right above the baseline candidate,
an exhaustive search is performed to find all the triangles
which has at least one vertex inside the bounding box of
the two lines (themember triangles). An example grouping
result is shown in Figure 2b. In Figure 3 the bounding boxes
of all 25 hypotheses generated from the example image are
shown.

C. Hypotheses Verification

Four texture features are used to verify a hypothesis.

• A corner density is obtained by averaging the eigen-
energy [12] over all the pixels in the hypothesis region.

• A horizontal line density is obtained by averaging
max(|∂ I/∂x| −α|∂ I/∂y|,0) over all the pixels in the
region, whereα is a constant and a larger value ofα
will give more emphasize on strictly horizontal lines
and disregard angled lines. In our implementationα = 3.
∂ I/∂x and∂ I/∂y were obtained by applying 3×3 Sobel
masks.

• A vertical line density is obtained by averaging
max(|∂ I/∂y| − β |∂ I/∂x|,0) over all the pixels in the
region, whereβ = 3 in our implementation.

• A standard deviation of the region is also used.

Although all of the above features are computationally
cheap to obtain, repeatedly gathering such information fora
large number of overlapping hypotheses is computationally
expensive for realtime processing. Therefore, we first pre-
calculate required statistics for each triangle, then obtain the
feature values of a hypothesis by summing up the statistics
of its member triangles.

Since the first three are the average values, the overall
average of the region is obtained by weighted summing
the triangles’ averages with respect to their areas. For the
standard deviation, the sum of the intensity values and the
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Fig. 4. The classification performance of a neural network, a nave Bayesian
classifier, and a support vector machine (SVM). We chose the SVM for the
classification.

Fig. 5. Theselected hypothesesobtained by applying the support vector
machine classifier. Among the overlapping hypotheses the largest one is
finally chosen.

square sum of them are kept for each triangle. Then, the
standard deviation of a hypothesis is given by

√

∑t S2(t)
A

− (
∑t S(t)

A
)2, (1)

wheret is a member triangle,S(t) is the sum of the intensity
values of the trianglet, S2(t) is the square sum, andA is the
area of the hypotheses (the sum of the areas of the member
triangles).

For classification, we gathered 708 learning data where
103 of them were positive. We tested a neural network (with
two hidden nodes), a nave Bayesian classifier (with 7 level
discretization), and a support vector machine (SVM) with a
polynomial kernel. We followed the evaluation scheme pre-
sented in [13]. We repeated stratified 5 fold cross-validation
for 10 times to obtain the ROC curves with the confidence
intervals shown in Figure 4. For all the classifiers, we
obtained the ROC curves by changing only the threshold
values (no re-learning with different parameters). We see
that the SVM shows slightly better performance than other
classifiers.

Each and every hypothesis is evaluated based on the
SVM’s output (thehypothesis score) and hypotheses with
high scores are selected (theselected hypotheses). The
selected hypotheses of the example image are shown in
Figure 5. We see that there are many overlapping hypotheses.
Among them we choose the largest one because our feature



sets cannot distinguish a large hypothesis covering a whole
vehicle from a small hypothesis which is a part of it.
However, it can effectively filter out over-sized hypotheses
because the background (road) does not usually have enough
texture, which decreases the overall texture density.

D. Detection Results

It is difficult to show an objective detection performance
in numbers because the results will be very much dependent
on how to choose the examples. However, we can get a rough
idea by examining the classification performance shown in
Figure 4. The result is surprisingly good considering that
we only used simple features. In addition, the learning
data contains more “challenging” cases (high scoring false
hypotheses) than what usual images give because we added
such hypotheses on purpose to induce sharper classification
performance.

In fact, the classification result of Figure 4 does not count
the mis-detections in the hypotheses generation procedure.
When the bottom or top lines are not detected (and are
not generated by CDT either), the vehicle hypothesis is
not generated. However, our approach generates many more
hypotheses than most of other approaches and the loss in the
hypotheses generation procedure is small.

Example detection results are shown in Figure 6. Both
good and bad detection examples are shown in the figure. The
detection was performed on various video clips with different
traffic and illumination conditions and image resolutions,
but the same parameters were applied to all. We see that
our simple feature sets work very well even in a very
complex scenes. However, it still has limitations as a realtime
algorithm, and mis-detections and false detections occur as
shown in the last row of the figure. In the next section, we
present a tracking framework that can effectively compensate
such limitations.

IV. I NTEGRATION OFDETECTION AND TRACKING

Detected targets are tracked based on a template matching
algorithm. The target image is resized to the template image
size (15 pixels/meter in our implementation), and a cross-
correlation matching is applied on a search window (11×
7 pixels in our implementation). However, the correlation
matching alone cannot effectively deal with tracking failures
such as drifting and tracking failures caused by vehicle’s
orientation changes or calibration errors from camera’s pitch
angle changes due to vehicle’s movement.

To deal with such problems and to compensate detection
errors, we introduce a probabilistic approach to integrate
detection and tracking. We use the temporal redundancy of
the video to suppress the false detections and use redundant
detection (in every frames) to compensate the tracking errors.

A. Probabilistic Reasoning

The probability of a target hypothesisx being valid given
a set of evidenceEc, (evidence from the current frame)
Et (transitional evidence), andEp (evidence from the past

frames) is given by the following equation (applying Bayes’
rule followed by marginalization):

P(x|Ec,Et ,Ep) = αP(Ec|x)P(x|Et ,Ep)

= αP(Ec|x)[P(x|h,Et)P(h|Ep)+P(x|h̄,Et)P(h̄|Ep)],
(2)

where α is the normalizing constant andh is the target
hypothesis in the previous frame. Two assumptions are used
here. First,Ec, Et and Ep are independent to each other.
Second, current frame’s hypothesis is independent to the
history given the previous frame’s hypothesis (the Markov
assumption).

We also get from the Bayes’ rule,

P(x|h,Ep) = βP(Ep|x,h)P(x|h), (3)

whereβ = 1/[P(Ep|x,h)P(x|h)+P(Ep|x̄,h)P(x̄|h)] (the nor-
malizing constant).

We use two evidence features to estimateP(Ec|x): the
hypothesis score (Ecs, the output of the SVM classifier) and
the re-detection (Ecr). The hypothesis score is obtained in the
same way as in the detection procedure except that we do not
use triangles but directly collect the evidence in the bounding
box. It does not take much computation since there are not
many targets being tracked. We also examine whether the
target is re-detected in the current frame or not. Many false
hypotheses are generated because of an accidental alignment
of triangles. In such a case, they are not usually re-detected.
We assume that the two evidence features,Ecs and Ecr,
are independent to each other:P(Ec|x) = P(Ecs|x)P(Ecr|x).
The distribution forP(Ecs|x) andP(Ecs|x̄) can be estimated
from the learning dataset used in the detection. In our
implementation, we discretizedEcs into 7 levels.P(ecr|x)
is the overall detection rate andP(ecr|x̄) is the false alarm
rate.

For Ep, we use a single feature: the template matching
score (the square of the cross correlation). To get the distri-
bution of P(Ep|x,h), we collected template matching scores
of some valid tracking results. We assumed thatP(Ep|x̄,h) =
P(Ep|x, h̄) = P(Ep|x̄, h̄) and estimate their distributions by
collecting the template matching scores of the false matches
in the same tracks as forP(Ep|x,h). In our implementation
we discretizedEp into 7 levels. The prior,P(x|h), were given
manually, andP(h̄|Ep) is the posterior from the previous
frame.

For a newly detected target only a single evidence feature,
Ecs, is available. Therefore, we applied a simple Bayes
rule to estimate the initial posterior probability:P(x|Ecs) =
αP(Ecs|x)P(x), whereP(x) is the detection precision.

B. Tracking Framework

For a robust tracking result, we allow at most two overlap-
ping hypotheses kept tracked at the same time and compete
with each other. The overall tracking strategy is as follows:
First, each target from the previous frame is tracked by
correlation matching and the respectiveP(x|Ec,Et ,Ep) is es-
timated. Then, an overlap analysis is performed to distinguish
active targetsfrom backup candidates. The active targets
are the ones finally used and the backup candidates are



Fig. 6. Example detection results. Both good and bad (in the last row) results are shown.

tracked background for robust tracking. The next step is to
perform another round of overlap analysis among the backup
candidates to ensure that no backup candidates overlap
each other (we allow at most two overlapping hypotheses
including the active targets).

Then for each newly detected target, the initial posterior,
P(x|Ecs), is estimated. If there is an overlapping backup
candidates, the two posterior probabilities are compared
to choose one. Otherwise, it is initially set as a backup
candidate. For robustness, a newly detected target remains
as a backup candidate for the first two frames, then may
become an active one if it survives.

1) Results: The tracking result is very promising. False
detected targets were effectively filtered out. For example,
in a cluttered scene with multiple leading vehicles, false
detection can occur in every two or three frames. The SVM’s
detection precision in the learning dataset is about 75% given
80% detection rate (where we set the threshold around).
Therefore, we roughly get one false alarm per three correct
detections. However, most of such false alarms were filtered
out because they did not have enough feature support in
the next frame, were not re-detected, or did not get a good
correlation score (for example, when it was a mixture of a
target and a textured background).

At the same time, the tracking failures were compensated
by redundant detection. When a matching score of a target
was low or when there was a drifting (thus have a low
feature support), the target was replaced by its backup can-
didate which had a higher posterior probability. In addition,
misplaced initial detections were repositioned in the same
manner. Figure 7 presents examples of tracking failures or
localization errors being replaced by better new detections
in the following frames.

The test was performed on various video clips (the same
parameters were applied to all) and an excerpt video clips
containing both good and bad results can be downloaded
at http://path.berkeley.edu/∼zuwhan/obstacledetection. The

Fig. 7. At most two overlapping tracking hypotheses compete with
each other. Theactive targets(cyan) are for the final use and thebackup
candidates(dark gray) are for background tracking. The example results
show inferior active targets (due to tracking failure or mis-positioning in
the initial detection) being replaced by the backup candidates of higher
posterior probabilities.

resulting detection performance is competitive compared to
those of active sensors such as LIDAR and radar. For future
comparative study an example video and our result on it can
also be downloaded at the same website.

The overall computation for detection and tracking was
under 100ms for a 352×240 resolution video clips and about
30ms for 174×108 clips on a Pentium III 1GHz processor.
Currently, a Pentium M processor of up to 1.8GHz is avail-
able for embedded computing (PC/104). Most computation
were spent on the detection.

V. SUMMARY AND CONCLUSION

We introduced a realtime appearance-based vehicle detec-
tion algorithm based on constrained Delaunay triangulation
(CDT). The proposed use of CDT provides an efficient way
of collecting image features for a large number of overlap-
ping hypotheses which could otherwise require a serious
amount of computation. We also presented a probabilistic
integration of detection and tracking that redundant detection
in consecutive frames can compensate tracking failures and
temporal redundancy for tracking can compensate detection
errors such as false detection or localization errors.



The resulting detection performance is competitive com-
pared to those of other sensors such as radar and LIDAR
while the latency is significantly smaller and the lateral
tracking performance is more accurate. Our future work
includes:

• Enhance the detection performance further by apply-
ing more advanced features and a feature selection
approach.

• Integrate the vehicle detection algorithm with an exist-
ing lane detection system.

• Find a proper sensor fusion approach to maximize
the benefit of each sensor. For example, we can use
distance measured by active sensors to properly locate
the detected targets or we can pre-filter target locations
by the vision algorithm to reduce the sensor latency.
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