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Abstract—We introduce a realtime vehicle detection and large when the target is further than 30 meters away [2]. If
tracking algorithm for in-vehicle video images. Although var- e use vision-based obstacle detection (with a sensormfysio
ious vehicle detection approaches have been proposed, it is yhe yision-based lane detection can be more useful because

difficult to find a fast and reliable algorithm for realtime it i ier to tell wheth biect is in th |
applications, such as for vehicle collision warning. We introduce ItIs easier 1o tell whether an object IS In the same lane or

a realtime appearance-based vehicle detection approach. It uses NOt. In addition, it can help improving the lane detection
constrained Delaunay triangulation to make image evidence performance by eliminating localization errors caused by
collection for multiple overlapping hypotheses computation- yehicle’s texture.

ally efficient. We also propose an integrated detection and  gaqeq on such needs, we introduce a realtime vehicle
tracking approach where redundant detection and tracking ’

can compensate each other's shortcomings. The experiment detection and tracking approach. The detection is based on
was performed on various video clips of highways and local texture analysis and we use constrained Delaunay triangula

roads with various traffic and illumination conditions, and the  tion for fast image feature gathering. We also introduce an

res_ulting performance is competitive compared to those of other integrated object detection and tracking framework where

active sensors. detection and tracking results can compensate each others’
I. INTRODUCTION shortcomings. We first review related work in Section I

and present our approach. The detection is presented in

In the past decade, there has been a significant improvg- .. . . : .
ment in the field of object detection and recognition. Ho Section Il with experimental results. The tracking algfori

. . : . is presented in Section IV, and the conclusion will be in
ever, most of object detection algorithms use computatiypna ection V
expensive feature sets and algorithms such as Lowe’s scalé '
invariant features [1]. Although the computing power has
been improved significantly, such approaches still recioioe

much computation for realtime applications. There have been various efforts to detect vehicles in
Realtime vehicle detection is an important research aregaitime or non-realtime [3]. Many of the generic obstacle

and has useful applicat?o_ns such as for a vehicle collisiofletection work also deal with images of vehicles [4]. While

warning system. A collision warning system informs thesch algorithms can give good detection rate even for images

driver on obstacles on the road and warns a possible callisiqy;ip, complicated backgrounds, most of them are not even

Vision-based detection and tracking algorithm can be verygse to realtime.

helpful to improve the collision warning performance. For piost of the previous realtime vehicle detection efforts

example, many LIDAR sensors have long latencies of age pased on motion or stereo analysis. The motion-based
much as 400ms or even more due to mechanical scanniggyoaches use the fact that the image motion of an obstacle

and data pre-processing. It limits the system's ability tQrq,ghly on a vertical plane) is different from that of the
quickly respond on leading vehicle’s sudden movement. O&

II. RELATED WORK AND PROPOSEDAPPROACH

Y= , ound (on a horizontal plane) [5]. However, such a differ-
the other hand, computer vision systems can provide Mueh,ce is ysually much smaller than a pixel and it takes at least

less latency when the processing time is small enough. I gecond of tracking to distinguish the differences between
addition, computer vision algorithms can have much highgpem [5]. various stereo algorithms have been also proposed
lateral positioning and tracking accuracy. _ However, the resolution of stereo depth is significantly-lim
Vision-based vehicle detection can also help improve thg,q This is problematic especially with the collision wimg
collision warning performance when it is combined with &, jications which require to detect obstacles of usudlly 3
lane detection algorithm. In collision warning applicap 140 meter away. Increasing stereo depth accuracy intreduce
it is important to know whether the obstacle is in theynqiher problem of recovering camera parameters which may
same lane with the ego-vehicle or not. While a wsmn-base@nange due to vehicle’s vibration.
Ian_e de_tectlon system can S.hOW a good performance, theWith an increased computing power, realtime appearance-
calibration of camera gnd active sensors can be prpble.matbcased vehicle detection became feasible. In [6], Sun et al.
For example, most vision algorithms estimate the distance Bpplied a set of Gabor filters to vehicle hypotheses classi-
a curve by assuming flat ground which is often wrong dug . vion \while it shows a good classification performance
to hills and vehicle’s fluctuation. Such an error can be very . 1ime (10Hz in an embedded computer), the overall
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CA 90732, USA (http://path.berkeley.edufuwhan). potheses generation algorithm, which may not generate good



hypotheses in an urban environment with many distracting
features.

The computational bottleneck of the generic object detec-
tion approach is on collecting features. While a large number
of features are required to achieve a good classification
performance, the computational cost to gather them is far
beyond the realtime. One popular approach proposed by
Viola and Jones [7] combines a cascade classifier with a large
number of simple (binary) convolution masks for realtime
object detection. It shows a good performance for face
detection where the target objects have a common shape,
but has not been applied for a vehicle detection task.

Our approach is a complementary one to [7] because it
allows to use somewhat complicated texture features. Since
vehicles’ colors and shapes largely vary, texture feafures
such as the numbers of lines and corners in the region can be
more effective in classifying vehicles. To apply such fees
image segmentation is a crucial step to avoid computationab- 1. An example line detection and constrained Delaunapdulation
redundancy. However, image segmentation is a difficult pro®sU"
lem which requires a significant amount of computation.

In this paper, we propose to apply constrained Delaungy Image Segmentation
triangulation (CDT) for realtime image segmentation. ] i ) )

The target image is first segmented by applying CDT Most image segmenta’uon algorlthms require too much
and object hypotheses are generated by grouping theprp.mputat!on for realtime processing or fast glgonthrnsﬁeruf
We adopt the “hypothesize and verify” paradigm to ﬁrS{rom Ieaklng 'Fhat makes grouping dn‘flcu!t. Since our instre
generate many overlapping hypotheses then validating.theffi "t ©n finding an accurate segmentation of objects, but on
However, the computation to gather the image statistics f&ndmg small superpixels to r.educe the compqtatlon, we do
classification is still manageable because the statisties 4'°t N€€d to use such complicated segmentation algorithms.

not gathered directly from the pixels but from larger imageStéad, we use a constrained Delaunay triangulation (CDT)
chunks (triangles). which was recently recognized as a useful preprocessipg ste

In addition to the vehicle detection, we present a probars)rI 'néag_l? segrr;entatlon ES],[.[Q]' . i btained
bilistic framework to combine vehicle detection and track- ' -based segmentation, Image segments are oblaine

ing. In this approach, both the tracking and the detectiopiy finding line segments and applying CDT to find a proper
algorithms help improve the performance of each othe _|aqgulat|on. We use a C_:anny edge. de_tector [10] followed
For example, the tracking helps eliminate false detectio line grouping and fitting to obtain line segments. For

while redundant detections over frames compensate trgcki DT it is .|mportant to make sure that no resulting line
failures such as drifting, segments intersect each other, and all the curves should be

properly broken into straight line segments that the fitting
error is small enough. We adopted a line detection approach
proposed by Guru et al. [11] to break curves then performed
We use simple texture features for the vehicle classknother round of line segmentation to ensure all the curves
fication: density of corner features, density of horizonta@re properly broken. The resulting line segments (longan th
line features, density of vertical line features, and istgn 5 pixels) and the triangulation results are shown in Figure 1
variance of the region. In fact, these four features alone )
provide good classification as will be shown later in thid: Hypotheses Generation
section. Applying more complicated features [1] or a featur A vehicle hypothesis is generated from two horizontal line
selection technique [6] may improve the final classificatiosegments. First, horizontal lines are selected amongglgan
result, which is not the focus of this paper. edges. Given a horizontal line (a candidate for vehicle's
Even though we use simple feature sets, collecting statisaseline), the vehicle hypothesis’ rough 3-D position is
tics for many (as many as a hundred) overlapping hypothesestimated by applying camera calibration parameters. ,Then
is computationally expensive. Therefore, we segment imagee can estimate the vehicle’s rough size in the image (given
into small pieces (also referred asperpixel} to efficiently a fixed vehicle size in the world coordinates). The next step
gather such information. In the following subsections, wés to perform a search for possible top lines (based on the
present fast image segmentation based on constrained @stimated vehicle size in the image). The top line should be
launay triangulation, our hypotheses generation pro&duroughly parallel to vehicle’s baseline. The top line caadis
and the hypotheses verification (classification) algoritiva  for an example baseline candidate are shown in Figure 2a.
also present detection results. Given two lines, the triangles between them are collected.

I1l. REALTIME VEHICLE DETECTION
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Fig. 4. The classification performance of a neural networlg\erBayesian
classifier, and a support vector machine (SVM). We chose the 8V the
classification.

Fig. 3. Total 25 hypotheses were generated by the triangdepgng
procedure.

Starting from the triangle right above the baseline cartdida
an exhaustive search is performed to find all the triangles
which has at least one vertex inside the bounding box of
the two lines (themember triangles An example grouping Fig. 5. Theselected hypothesebtained by applying the support vector
result is shown in Figure 2b. In Figure 3 the bounding boxe®achine classifier. Among the overlapping hypotheses thedargne is
of all 25 hypotheses generated from the example image df&!y chosen.

shown.

square sum of them are kept for each triangle. Then, the

C. Hypotheses Verification el 7 Al
standard deviation of a hypothesis is given by

Four texture features are used to verify a hypothesis.

« A cormner density is obtained by averaging the eigen- \/EtSZ(t) -~ (Zt S(I))z (1)
energy [12] over all the pixels in the hypothesis region. A A 77

« A horizontal line density is obtained by averaging \heret is a member triangleS(t) is the sum of the intensity
max(|d1/ox| — a|d1/dy|,0) over all the pixels in the yajyes of the triangle, S(t) is the square sum, anlis the

region, wherea is a constant and a larger value @f  area of the hypotheses (the sum of the areas of the member
will give more emphasize on strictly horizontal linesyrigngles).

and disregard angled lines. In our implementation 3. For classification, we gathered 708 learning data where
d1/dxanddl /dy were obtained by applying:33 Sobel 103 of them were positive. We tested a neural network (with
masks. two hidden nodes), a nave Bayesian classifier (with 7 level

« A vertical line density is obtained by averaging giscretization), and a support vector machine (SVM) with a
max(|01/dy| — B|01/9x|,0) over all the pixels in the polynomial kernel. We followed the evaluation scheme pre-
region, where3 = 3 in our implementation. sented in [13]. We repeated stratified 5 fold cross-valiati

« A standard deviation of the region is also used. for 10 times to obtain the ROC curves with the confidence

Although all of the above features are computationallyntervals shown in Figure 4. For all the classifiers, we

cheap to obtain, repeatedly gathering such informatioraforobtained the ROC curves by changing only the threshold
large number of overlapping hypotheses is computationallalues (no re-learning with different parameters). We see
expensive for realtime processing. Therefore, we first prehat the SVM shows slightly better performance than other
calculate required statistics for each triangle, theniolitee  classifiers.

feature values of a hypothesis by summing up the statisticsEach and every hypothesis is evaluated based on the
of its member triangles. SVM's output (thehypothesis scojeand hypotheses with

Since the first three are the average values, the overéiigh scores are selected (treelected hypothesesThe

average of the region is obtained by weighted summingelected hypotheses of the example image are shown in
the triangles’ averages with respect to their areas. For tliégure 5. We see that there are many overlapping hypotheses.
standard deviation, the sum of the intensity values and thmong them we choose the largest one because our feature



sets cannot distinguish a large hypothesis covering a whdiames) is given by the following equation (applying Bayes’

vehicle from a small hypothesis which is a part of it.rule followed by marginalization):

However, it can effectively filter out over-sized hypothese -

because the background (road) does not usually have enougﬁ(X‘Ec’ Et,Ep) = aP(EchP(X(E:, Ep). _

texture, which decreases the overall texture density. = aP(Ec[x)[P(x/h, Et)P(h|Ep) + P(x|h, Et)P(h[Ep)],
where a is the normalizing constant and is the target

D. Detection Results hypothesis in the previous frame. Two assumptions are used

It is difficult to show an objective detection performancehere. First,Ec, E; and Ep are independent to each other.
in numbers because the results will be very much dependepgcond, current frame’s hypothesis is independent to the
on how to choose the examples. However, we can get a roufjigtory given the previous frame’s hypothesis (the Markov
idea by examining the classification performance shown i@ssumption).

Figure 4. The result is surprisingly good considering that We also get from the Bayes’ rule,

we only used simple features. In addition, the learning _

data contains morep“challenging“ cases (high scoring false POdh, Ep) = BP(Eplx POJN). )
hypotheses) than what usual images give because we adadiere 3 = 1/[P(Ep|x,h)P(x|h) + P(Ep|x, h)P(x]h)] (the nor-
such hypotheses on purpose to induce sharper classificativalizing constant).

performance. We use two evidence features to estim®gc|x): the

In fact, the classification result of Figure 4 does not courftypothesis scores, the output of the SVM classifier) and
the mis-detections in the hypotheses generation procedutiee re-detectionH). The hypothesis score is obtained in the
When the bottom or top lines are not detected (and ag&&me way as in the detection procedure except that we do not
not generated by CDT either), the vehicle hypothesis igse triangles but directly collect the evidence in the baumd
not generated. However, our approach generates many moex. It does not take much computation since there are not
hypotheses than most of other approaches and the loss in thany targets being tracked. We also examine whether the
hypotheses generation procedure is small. target is re-detected in the current frame or not. Many false

Example detection results are shown in Figure 6. BotAypotheses are generated because of an accidental alignmen
good and bad detection examples are shown in the figure. Taktriangles. In such a case, they are not usually re-detecte
detection was performed on various video clips with différe We assume that the two evidence featurEg and E,
traffic and illumination conditions and image resolutionsare independent to each oth@&(Ec|x) = P(Ecs|X)P(Ecr|X).
but the same parameters were applied to all. We see thEte distribution forP(Ec¢x) and P(Ecs|x) can be estimated
our simple feature sets work very well even in a venfrom the learning dataset used in the detection. In our
complex scenes. However, it still has limitations as airealt implementation, we discretizeBcs into 7 levels. P(ec|x)
algorithm, and mis-detections and false detections ocsur & the overall detection rate arf{e|X) is the false alarm
shown in the last row of the figure. In the next section, wéate.
present a tracking framework that can effectively compensa For Ep, we use a single feature: the template matching

)

such limitations. score (the square of the cross correlation). To get thei-distr
bution of P(Ep|x, h), we collected template matching scores
IV. INTEGRATION OFDETECTION AND TRACKING of some valid tracking results. We assumed #dp|x,h) =

Detected targets are tracked based on a template matchﬁw Ep|X? h) = P(Ep|x h) and es_tlmate their distributions by
coflecting the template matching scores of the false matche

a]gorlthm. The target Image 1 resized to t'he template 'Magds the same tracks as fét(Ep|x, h). In our implementation
size (15 pixels/meter in our implementation), and a cross- " . . : :

: C . ! we discretizedE into 7 levels. The prioP(x|h), were given
correlation matching is applied on a search window x11 =

7 pixels in our implementation). However, the correlatio manually, andP(h|E,) is the posterior from the previous

matching alone cannot effectively deal with tracking feglsl hrame. . .
o . : ., For a newly detected target only a single evidence feature,
such as drifting and tracking failures caused by vehcheE

) . L2 .~ Ecs, is available. Therefore, we applied a simple Bayes
orientation changes or calibration errors from camerdishpi : L . o
S rule to estimate the initial posterior probabiliti{X|Ecs) =
angle changes due to vehicle’s movement.

To deal with such problems and to compensate detectié{ﬁp(Ecs|X)P(X)’ whereP(x) is the detection precision.

errors, we introduce a probabilistic approach to integratB. Tracking Framework
detection and tracking. We use the temporal redundancy of ror 5 robust tracking result, we allow at most two overlap-
the video to suppress the false detections and use redundgily hypotheses kept tracked at the same time and compete
detection (in every frames) to compensate the tracking®rmo yith each other. The overall tracking strategy is as follows
First, each target from the previous frame is tracked by
correlation matching and the respectR&|Ec, E¢,Ep) is es-

The probability of a target hypothesisbeing valid given timated. Then, an overlap analysis is performed to distsigu
a set of evidenceE., (evidence from the current frame) active targetsfrom backup candidatesThe active targets
E; (transitional evidence), andE, (evidence from the past are the ones finally used and the backup candidates are

A. Probabilistic Reasoning



Fig. 6. Example detection results. Both good and bad (in thertaw) results are shown.

tracked background for robust tracking. The next step is to

perform another round of overlap analysis among the backup
candidates to ensure that no backup candidates overlap
each other (we allow at most two overlapping hypotheses

including the active targets).

Then for each newly detected target, the initial posterior,
P(x|Ecs), is estimated. If there is an overlapping backup
candidates, the two posterior probabilities are compared
to choose one. Otherwise, it is initially set as a backup
candidate. For robustness, a newly detected target remalfis 7. At most two overlapping tracking hypotheses competth wi

as a backup candidate for the first two frames. then m ch other. Thective targets(cyan) are for the final use and theackup
! ndidates(dark gray) are for background tracking. The example results

become an active one if it survives. show inferior active targets (due to tracking failure or m@sitioning in
1) Results: The tracking result is very promising. Falsethe ini_tial delt)ecgil(_)n) being replaced by the backup candslaf higher

detected targets were effectively filtered out. For exagnpl@2S'e"o" Propapiities.

in a cluttered scene with multiple leading vehicles, false

detection can occur in every two or three frames. The SVM'g,qiting detection performance is competitive compaced t
detection precision in the learning dataset is about 75%rgiv y,,se of active sensors such as LIDAR and radar. For future

80% detection rate (where we set the threshold arounc)omnarative study an example video and our result on it can
Therefore, we roughly get one false alarm per three corregico be downloaded at the same website.

detections. However, most of such false alarms were filtered The overall computation for detection and tracking was

out because they did not have enough feature support i qer 100ms for a 352240 resolution video clips and about
the nex_t frame, were not re-detected, or did not _get a go%‘bms for 174« 108 clips on a Pentium Ill 1GHz processor.
correlation score (for example, when it was a mixture of %urrently, a Pentium M processor of up to 1.8GHz is avail-

target and a textured background). able for embedded computing (PC/104). Most computation
At the same time, the tracking failures were compensateflore spent on the detection.

by redundant detection. When a matching score of a target
was low or when there was a drifting (thus have a low V. SUMMARY AND CONCLUSION
feature support), the target was replaced by its backup can-We introduced a realtime appearance-based vehicle detec-
didate which had a higher posterior probability. In addifio tion algorithm based on constrained Delaunay trianguiatio
misplaced initial detections were repositioned in the samgDT). The proposed use of CDT provides an efficient way
manner. Figure 7 presents examples of tracking failures of collecting image features for a large number of overlap-
localization errors being replaced by better new detestiorping hypotheses which could otherwise require a serious
in the following frames. amount of computation. We also presented a probabilistic
The test was performed on various video clips (the samiategration of detection and tracking that redundant dietec
parameters were applied to all) and an excerpt video clips consecutive frames can compensate tracking failures and
containing both good and bad results can be downloadéeimporal redundancy for tracking can compensate detection
at http://path.berkeley.eduzuwhan/obstacledetection. Theerrors such as false detection or localization errors.




The resulting detection performance is competitive com-4]
pared to those of other sensors such as radar and LIDAR
while the latency is significantly smaller and the lateral [5]
tracking performance is more accurate. Our future work
includes: 6]

» Enhance the detection performance further by apply-

[1]
2

(3]

ing more advanced features and a feature selection 1 ] ) ) )
[7] P. Viola and M. Jones, “Rapid real-time face detectidntérnational

approach.

Integrate the vehicle detection algorithm with an exist-[g]

ing lane detection system.
Find a proper sensor fusion approach to maximiz

NE

the benefit of each sensor. For example, we can use

distance measured by active sensors to properly locate : _
0] J. Canny, “A computational approach to edge detectitleEE Trans.

the detected targets or we can pre-filter target locatio
by the vision algorithm to reduce the sensor latency.
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