

Good Features to Track

- Corners
- Moravec's Interest Operator

Corners
$$C = \begin{bmatrix} \sum_{Q} f_x^2 & \sum_{Q} f_x f_y \\ \sum_{Q} f_x f_y & \sum_{Q} f_y^2 \end{bmatrix}$$

$$C = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

Corners

- · For perfectly uniform = Agion
- · If Q contains an ideal step ed

$$\lambda_2 = 0, \lambda_1 > 0$$

• if Q contains a corner of black square on white background $\lambda_{\rm l} \geq \lambda_{\rm 2} \succ 0$

Algorithm Corners

- Compute the image gradient over entire image f.
- For each image point p:
 - form the matrix C over (2N+1)X(2N+1) neighborhood Q of p;
 - compute the smallest eigenvalue of C;
 - if eigenvalue is above some threshold, save the coordinates of p into a list L.

Algorithm Corners

- Sort L in decreasing order of eigenvalues.
- Scanning the sorted list top to bottom: for each current point, p, delete all other points on the list which belong to the neighborhood of p.

Results

Results

Moravec's Interest Operator

Algorithm

- Compute four directional variances in horizontal, vertical, diagonal and antidiagonal directions for each 4 by 4 window.
- If the minimum of four directional variances is a local maximum in a 12 by 12 overlapping neighborhood, then that widow (point) is interesting.

$$\begin{split} V_h &= \sum_{j=0}^{3} \sum_{i=0}^{2} \left(P(x+i, y+j) - P(x+i+1, y+j) \right)^2 \\ V_v &= \sum_{j=0}^{2} \sum_{i=0}^{3} \left(P(x+i, y+j) - P(x+i, y+j+1) \right)^2 \\ V_d &= \sum_{j=0}^{2} \sum_{i=0}^{2} \left(P(x+i, y+j) - P(x+i+1, y+j+1) \right)^2 \\ V_a &= \sum_{j=0}^{2} \sum_{i=1}^{3} \left(P(x+i, y+j) - P(x+i-1, y+j+1) \right)^2 \end{split}$$

$$V(x, y) = \min(V_h(x, y), V_v(x, y), V_d(x, y), V_a(x, y))$$

$$I(x, y) = \begin{cases} 1 & if V(x, y) local \text{ max} \\ 0 & 0 therwise \end{cases}$$

Feature-based Matching

Feature-based Matching

- The input is formed by f1 and f2, two frames of an image sequence, and a set of corresponding feature points in two frames.
- Let Q1, Q2 and Q' be three NXN image regions.
- Let "d" be the unknown displacement vector between f1 and f2 of a feature point "p", on which Q1 is centered.

Algorithm

- (1) Set d=0, center Q1 on p1.
- (2) Estimate the displacement "d0" of "p", center of "Q1", using Lucas and Kanade method. Let d=d+d0.
- (3) Let Q' bet the patch obtained by warping Q1 according to "d0".
 - Compute Sum of Square (SSD) difference between new patch Q' and corresponding patch Q2 in frame f2.
- (4) If SSD more than threshold, set Q1=Q' and go to step 2, otherwise exit.

Lucas & Kanade (Least Squares)

• Optical flow eq

$$f_x u + f_y v = -f_t$$

$$f_{x1}u + f_{y1}v = -f_{t1}$$

$$f_{y0}u + f_{y0}v = -f_{t0}$$

• Optical flow eq
$$f_{x}u + f_{y}v = -f_{t}$$
• Consider 3 by 3 window
$$f_{x1}u + f_{y1}v = -f_{t1}$$

$$\vdots$$

$$f_{x9}u + f_{y9}v = -f_{t9}$$

$$A\mathbf{u} = \mathbf{f_{t}}$$

Lucas & Kanade

$$Au = f_t$$

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{u} = \mathbf{A}^{\mathrm{T}}\mathbf{f}_{t}$$
$$\mathbf{u} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{f}_{t}$$

$$\min \sum_{i=-2}^{2} \sum_{j=-2}^{2} (f_{xi}u + f_{yi}v + f_{ti})^{2}$$

Lucas & Kanade

$$\min \sum_{i=-2}^{2} \sum_{j=-2}^{2} (f_{xi}u + f_{yi}v + f_{ti})^{2}$$

$$\sum (f_{xi}u + f_{yi}v + f_{ti})f_{xi} = 0$$

$$\sum (f_{xi}u + f_{yi}v + f_{ti})f_{yi} = 0$$

Lucas & Kanade

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \sum f_{xi}^2 & \sum f_{xi} f_{yi} \\ \sum f_{xi} f_{yi} & \sum f_{yi}^2 \end{bmatrix}^{-1} \begin{bmatrix} -\sum f_{xi} f_{ti} \\ -\sum f_{yi} f_{ti} \end{bmatrix}$$

Lucas & Kanade

$$\min \sum_{i=-2}^{2} \sum_{j=-2}^{2} w_{i} (f_{xi}u + f_{yi}v + f_{ti})^{2}$$

$$WAu = Wf_{t}$$

$$A^{T}WAu = A^{T}Wf_{t}$$

$$u = (A^{T}WA)^{-1}A^{T}Wf_{t}$$

Sum of Squares Differences

$$SSD = \sum_{j=-\frac{n}{2}}^{n} \sum_{i=-\frac{n}{2}}^{n} (Q'(x+i, y+j) - Q_2(x+i, y+j))^2$$

Kalman Filter

Main Points

- Very useful tool.
- It produces an optimal estimate of the state vector based on the noisy measurements (observations).
- For the state vector it also provides confidence (certainty) measure in terms of a covariance matrix.
- It integrates estimate of state over time.
- It is a sequential state estimator.

Kalman Filter Equations

State $\hat{\mathbf{z}}_b(k) = \Phi(k, k-1)\hat{\mathbf{z}}_a(k-1)$ Prediction

Covariance $\mathbf{P}_b(k) = \mathbf{\Phi}(k, k-1)\mathbf{P}_a(k-1)\mathbf{\Phi}^T(k, k-1) + \mathbf{Q}(k)$ Prediction

Kalman Gain $\mathbf{K}(k) = \mathbf{P}_{b}(k)\mathbf{H}^{T}(k)(\mathbf{H}(k)\mathbf{P}_{b}(k)\mathbf{H}^{T}(k) + \mathbf{R}(k))^{-1}$

State-update $\hat{\mathbf{z}}_a(k) = \hat{\mathbf{z}}_b(k) + \mathbf{K}(k)[\mathbf{y}(k) - \mathbf{H}(k)\hat{\mathbf{z}}_b(k)]$

Covariance-update $\mathbf{P}_a(k) = \mathbf{P}_b(k) - \mathbf{K}(k)\mathbf{H}(k)\mathbf{P}_b(k)$

Two Special Cases

• Steady State $\Phi(k, k-1) = \Phi$

$$\mathbf{Q}(k) = \mathbf{Q}$$

$$\mathbf{H}(k) = \mathbf{H}$$

$$\mathbf{R}(k) = \mathbf{R}$$

· Recursive least squares

$$\Phi(k, k-1) = \mathbf{I}$$

$$\mathbf{Q}(k) = 0$$

Comments

- In some cases, state transition equation and the observation equation both may be non-linear.
- We need to linearize these equation using Taylor series.

Extended Kalman Filter

$$\mathbf{z}(k) = \mathbf{f}(\mathbf{z}(k-1)) + \mathbf{w}(k)$$

$$\mathbf{y}(k) = \mathbf{h}(\mathbf{z}(k)) + \mathbf{v}(k)$$

$$\mathbf{f}(\mathbf{z}(k-1)) \approx \mathbf{f}(\hat{\mathbf{z}}_a(k-1)) + \frac{\partial \mathbf{f}(\mathbf{z}(k-1))}{\partial \mathbf{z}(k-1)} (\mathbf{z}(k-1) - \hat{\mathbf{z}}_a(k-1))$$
Taylor series
$$\mathbf{h}(\mathbf{z}(k)) \approx \mathbf{h}(\hat{\mathbf{z}}_b(k)) + \frac{\partial \mathbf{h}(\mathbf{z}(k))}{\partial \mathbf{z}(k)} (\mathbf{z}(k) - \hat{\mathbf{z}}_b(k-1))$$

Extended Kalman Filter

$$\mathbf{z}(k) = \mathbf{f}(\mathbf{z}(k-1)) + \mathbf{w}(k)$$

$$\mathbf{z}(k) = \mathbf{f}(\hat{\mathbf{z}}_a(k-1)) + \frac{\partial \mathbf{f}(\mathbf{z}(k-1))}{\partial \mathbf{z}(k-1)} (\mathbf{z}(k-1) - \hat{\mathbf{z}}_a(k-1)) + \mathbf{w}(k)$$

$$\mathbf{z}(k) \approx \Phi(k, k-1)\mathbf{z}(k-1) + \mathbf{u}(k) + \mathbf{w}(k)$$

$$\mathbf{u}(k) = \mathbf{f}(\hat{\mathbf{z}}_a(k-1)) - \Phi(k, k-1)\hat{\mathbf{z}}_a(k-1)$$

$$\Phi(k, k-1) = \frac{\partial \mathbf{f}(\mathbf{z}(k-1))}{\partial \mathbf{z}(k-1)}$$

Extended Kalman Filter

$$\mathbf{y}(k) = \mathbf{h}(\mathbf{z}(k)) + \mathbf{v}(k)$$

$$\mathbf{y}(k) = \mathbf{h}(\hat{\mathbf{z}}_b(k)) + \frac{\partial \mathbf{h}(\mathbf{z}(k))}{\partial \mathbf{z}(k)} (\mathbf{z}(k) - \hat{\mathbf{z}}_b(k-1)) + \mathbf{v}(k)$$

$$\mathbf{\tilde{y}}(k) \approx \mathbf{H}(k)\mathbf{z}(k) + \mathbf{v}(k)$$

$$\mathbf{\tilde{y}}(k) = \mathbf{y}(k) - \mathbf{h}(\mathbf{\hat{z}}_b(k)) + \mathbf{H}(k)\mathbf{\hat{z}}_b(k)$$

$$\mathbf{H}(k) = \frac{\partial \mathbf{h}(\mathbf{z}(k))}{\partial \mathbf{z}(k)}$$

Multi-Frame Feature Tracking

Application of Kalman Filter

- Assume feature points have been detected in each frame.
- We want to track features in multiple frames.
- Kalman filter can estimate the position and uncertainty of feature in the next frame.
 - Where to look for a feature
 - how large a region should be searched

$$\mathbf{p}_{k} = [x_{k}, y_{k}]^{T}$$
 Location $\mathbf{v}_{k} = [u_{k}, v_{k}]^{T}$ Velocity $\mathbf{Z} = [x_{k}, y_{k}, u_{k}, v_{k}]^{T}$ State Vector

System Model

$$\mathbf{p}_{k} = \mathbf{p}_{k-1} + \mathbf{v}_{k-1} + \boldsymbol{\xi}_{k-1}$$

$$\mathbf{v}_{k} = \mathbf{v}_{k-1} + \boldsymbol{\eta}_{k-1}$$

$$\mathbf{Z}_{k} = \boldsymbol{\Phi}_{k-1} \mathbf{Z}_{k-1} + \mathbf{w}_{k-1}$$

$$\boldsymbol{\Phi}_{k-1} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{w}_{k-1} = \begin{bmatrix} \boldsymbol{\xi}_{k-1} \\ \boldsymbol{\eta}_{k-1} \end{bmatrix}$$

Measurement Model

$$\mathbf{y}_{k} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k} \\ \mathbf{v}_{k} \end{bmatrix} + \mu_{k}$$
$$\mathbf{y}_{k} = \mathbf{H} \begin{bmatrix} \mathbf{p}_{k} \\ \mathbf{v}_{k} \end{bmatrix} + \mu_{k}$$

Measurement matrix

Kalman Filter Equations

State $\hat{\mathbf{z}}_b(k) = \Phi(k, k-1)\hat{\mathbf{z}}_a(k-1)$ Prediction

Covariance $\mathbf{P}_b(k) = \mathbf{\Phi}(k, k-1)\mathbf{P}_a(k-1)\mathbf{\Phi}^T(k, k-1) + \mathbf{Q}(k)$ Prediction

Kalman Gain $\mathbf{K}(k) = \mathbf{P}_b(k)\mathbf{H}^T(k)(\mathbf{H}(k)\mathbf{P}_b(k)\mathbf{H}^T(k) + \mathbf{R}(k))^{-1}$

State-update $\hat{\mathbf{z}}_a(k) = \hat{\mathbf{z}}_b(k) + \mathbf{K}(k)[\mathbf{y}(k) - \mathbf{H}(k)\hat{\mathbf{z}}_b(k)]$

Covariance-update $\mathbf{P}_a(k) = \mathbf{P}_b(k) - \mathbf{K}(k)\mathbf{H}(k)\mathbf{P}_b(k)$

Kalman Filter: Relation to Least Squares
$$f_{i}(\mathbf{Z},\mathbf{y}_{i}) = 0 \qquad \hat{y}_{i} = y_{i} + l_{i}$$

$$\mathbf{I} \qquad \text{Taylor series}$$

$$f_{i}(\mathbf{Z},\mathbf{y}_{i}) = 0 \approx f_{i}(\hat{\mathbf{Z}}_{i-1},\hat{\mathbf{y}}_{i}) + \frac{\partial f_{i}}{\partial \mathbf{y}}(\mathbf{y} - \hat{\mathbf{y}}_{i}) + \frac{\partial f_{i}}{\partial \mathbf{z}}(\mathbf{z} - \hat{\mathbf{z}}_{i})$$

$$-f_{i}(\hat{\mathbf{Z}}_{i-1},\hat{\mathbf{y}}_{i}) + \frac{\partial f_{i}}{\partial \mathbf{z}}\hat{\mathbf{z}}_{i} = \frac{\partial f_{i}}{\partial \mathbf{z}}\mathbf{z} + \frac{\partial f_{i}}{\partial \mathbf{y}}(\mathbf{y} - \hat{\mathbf{y}}_{i})$$

$$-\mathbf{Y}_{i} = H_{i}\mathbf{Z} + w_{i} \qquad \text{where}$$

$$\mathbf{Y}_{i} = -f_{i}(\hat{\mathbf{Z}}_{i-1},\hat{\mathbf{y}}_{i}) + \frac{\partial f_{i}}{\partial \mathbf{z}}\hat{\mathbf{z}}_{i-1}, H_{i} = \frac{\partial f_{i}}{\partial \mathbf{z}}$$
New measurement
$$w_{i} = \frac{\partial f_{i}}{\partial \mathbf{y}}\mathbf{A}_{i}\frac{\partial f_{i}}{\partial \mathbf{y}}, \text{ covariance matrix of new measurement}$$

Kalman Filter: Relation to Least Squares

$$C = (\hat{\mathbf{Z}}_0 - \mathbf{Z})^T P_0^{-1} (\hat{\mathbf{Z}}_0 - \mathbf{Z}) + \sum_{i=1}^k (\mathbf{Y}_i - H_i \mathbf{Z})^T W^{-1}_i (\mathbf{Y}_i - H_i \mathbf{Z})$$

$$\hat{\mathbf{Z}} = [P_0^{-1} + \sum_{i=1}^k H_i^T W_i^{-1} H_i]^{-1} [P_0^{-1} \hat{\mathbf{Z}}_0 + \sum_{i=1}^k H_i^T W_i^{-1} \mathbf{Y}_i]$$
Batch Mode

Kalman Filter: Relation to Least Squares

$$\hat{\mathbf{Z}}_{k} = [P_{0}^{-1} + \sum_{i=1}^{k} H_{i}^{T} W_{i}^{-1} H_{i}]^{-1} [P_{0}^{-1} \hat{\mathbf{Z}}_{0} + \sum_{i=1}^{k} H_{i}^{T} W_{i}^{-1} \mathbf{Y}_{i}]$$

$$\hat{\mathbf{Z}}_{k-1} = [P_0^{-1} + \sum_{i=1}^{k-1} H_i^T W_i^{-1} H_i]^{-1} [P_0^{-1} \hat{\mathbf{Z}}_0 + \sum_{i=1}^{k-1} H_i^T W_i^{-1} \mathbf{Y}_i]$$

Recursive Mode

Kalman Filter: Relation to Least Squares

$$\mathbf{Z}_{k} = \mathbf{Z}_{k-1} + K_{k} (Y_{k} - H_{k} \mathbf{Z}_{k-1})$$

$$K_{k} = P_{k-1} H^{T}_{k} (W^{T} + H^{T} P_{k-1} H_{k}^{T})^{-1}$$

$$P_{k} = (I - K_{k} H_{k}) P_{k-1}$$

$$Y_{k} = -f^{T} (\mathbf{Z}_{k-1}, \mathbf{y}) + \frac{\partial f}{\partial \mathbf{Z}} \mathbf{Z}_{k-1}$$

$$H_{k} = \frac{\partial f}{\partial \mathbf{Z}} \qquad \Phi(k, k-1) = \mathbf{I}$$

$$W = \frac{\partial f}{\partial \mathbf{y}} \mathbf{A}^{T} \frac{\partial f}{\partial \mathbf{y}}^{T}$$

$$\mathbf{Q}(k) = 0$$

Kalman Filter (Least Squares)

$$\hat{\mathbf{z}}_b(k) = \Phi(k, k-1)\hat{\mathbf{z}}_a(k-1)$$

$$\hat{\mathbf{z}}_b(k) = \hat{\mathbf{z}}_a(k-1)$$

Covariance Prediction

$$\mathbf{P}_b(k) = \mathbf{\Phi}(k, k-1)\mathbf{P}_a(k-1)\mathbf{\Phi}^T(k, k-1) + \mathbf{Q}(k)$$

$$\mathbf{P}_b(k) = \mathbf{P}_a(k-1)$$

Kalman Gain

$$\mathbf{K}(k) = \mathbf{P}_b(k)\mathbf{H}^T(k)(\mathbf{H}(k)\mathbf{P}_b(k)\mathbf{H}^T(k) + \mathbf{R}(k))^{-1}$$

$$\mathbf{K}(k) = \mathbf{P}_b(k)\mathbf{H}^T(k)(\mathbf{H}(k)\mathbf{P}_b(k)\mathbf{H}^T(k) + \mathbf{W}(k))^{-1}$$

Kalman Filter (Least Squares)

State-update

$$\hat{\mathbf{z}}_{a}(k) = \hat{\mathbf{z}}_{b}(k) + \mathbf{K}(k)[\mathbf{y}(k) - \mathbf{H}(k)\hat{\mathbf{z}}_{b}(k)]$$

$$\hat{\mathbf{z}}(k) = \hat{\mathbf{z}}(k-1) + \mathbf{K}(k)[\mathbf{y}(k) - \mathbf{H}(k)\hat{\mathbf{z}}(k-1)]$$

Covariance-update

$$\mathbf{P}_{a}(k) = \mathbf{P}_{b}(k) - \mathbf{K}(k)\mathbf{H}(k)\mathbf{P}_{b}(k)$$

$$\mathbf{P}(k) = \mathbf{P}(k-1) - \mathbf{K}(k)\mathbf{H}(k)\mathbf{P}(k-1)$$

Computing Motion Trajectories

Algorithm For Computing Motion Trajectories

- Compute tokens using Moravec's interest operator (intensity constraint).
- Remove tokens which are not interesting with respect to motion (optical flow constraint).
 - Optical flow of a token should differ from the mean optical flow around a small neighborhood.

Algorithm For Computing Motion Trajectories

- Link optical flows of a token in different frames to obtain motion trajectories.
 - Use optical flow at a token to predict its location in the next frame.
 - Search in a small neighborhood around the predicted location in the next frame for a token.
- Smooth motion trajectories using Kalman filter.

Kalman Filter (Ballistic Model)

$$x(t) = .5a_x t^2 + v_x t + x_0$$
 $\mathbf{Z} = (a_x, a_y, v_x, v_y)$
 $y(t) = .5a_y t^2 + v_y t + y_0$ $\mathbf{y} = (x(t), y(t))$

$$f(\mathbf{Z}, \mathbf{y}) = (x(t) - .5a_x t^2 - v_x t - x_0, y(t) - .5a_y t^2 - v_y t - y_0)$$

Kalman Filter (Ballistic Model)

$$\mathbf{Z}(k) = \mathbf{Z}(k-1) + K(k)(Y(k) - H(k)\mathbf{Z}(k-1))$$

$$K(k) = P(k-1)H^{T}(k) (W^{T} + H^{T}P(k-1)H^{T}(k))^{-1}$$

$$P(k) = (I - K(k)H(k))P(k-1)$$

$$Y(k) = -f^{T}(\mathbf{Z}(\mathbf{k} - \mathbf{1}), \mathbf{y}) + \frac{\partial f}{\partial \mathbf{Z}} \mathbf{Z}(k - 1)$$

$$H(k) = \frac{\partial f}{\partial \mathbf{Z}}$$

$$W = \frac{\partial f}{\partial \mathbf{y}} \mathbf{A}^{T} \frac{\partial f}{\partial \mathbf{y}}^{T}$$

