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Good Features to Track

e Corners
e Moravec’s Interest Operator

Corners




Corners

« For perfectly unifor,\rp:r,@gi:@

- If Qcontains an ideal step e«

A, =0,A,>0

- if Qcontains a corner of
bl ack square on white
backgr ound A=A, =0

Algorithm Corners

» Compute the image gradient over entire
image f.
 For each image point p:
— form the matrix C over (2N+1)X(2N+1)
neighborhood Q of p;
— compute the smallest eigenvalue of C;

— if eigenvalue is above some threshold, save the
coordinates of p into a list L.




Algorithm Corners

 Sort L in decreasing order of eigenvalues.

 Scanning the sorted list top to bottom: for
each current point, p, delete all other points
on the list which belong to the
neighborhood of p.
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Moravec’s Interest Operator

Algorithm

o Compute four directional variances in
horizontal, vertical, diagonal and anti-
diagonal directions for each 4 by 4 window.

e If the minimum of four directional variances
is a local maximum in a 12 by 12
overlapping neighborhood, then that widow
(point) is interesting.
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Feature-based Matching

* The input is formed by f1 and f2, two
frames of an image sequence, and a set of
corresponding feature points in two frames.

e LetQl, Q2 and Q’ be three NXN image
regions.

 Let “d” be the unknown displacement
vector between f1 and f2 of a feature point
“p”, on which Q1 is centered.

Algorithm

(1) Set d=0, center Q1 on p1.

(2) Estimate the displacement “d0” of “p”, center

of “Q1”, using Lucas and Kanade method. Let

d=d+do.

(3) Let Q’ bet the patch obtained by warping Q1

according to “d0”.

— Compute Sum of Square (SSD) difference between
new patch Q’ and corresponding patch Q2 in frame f2.

(4) If SSD more than threshold, set Q1=Q’ and go

to step 2, otherwise exit.
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Lucas & Kanade (Least Squares)

» Optical flow eq

fu+fyv=-—f

 Consider 3 by 3 window
fou+f v=—m,

f,ou+ fygv =—f,

Lucas & Kanade
Au =f,

ATAu = ATf,
u=(ATA)*ATF,
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Lucas & Kanade

2 2

min (fu+f v+f)?
i;J:ZZ 1y t

Z (fau+ fyiV+ fi)fq =0

Z (fau+ fyiV+ fi) fyi =0

Lucas & Kanade
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Lucas & Kanade

2 2
- 2
min i:—21:—2Wi (fu+f v+ 1)

!

WAU = WA,
ATWAU = ATWH,

u=(ATWA)ATWI,

Sum of Squares Differences

SSD =
j
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Kalman Filter

Main Points

» Very useful tool.

* It produces an optimal estimate of the
based on the noisy
(observations).

 For the state vector it also provides

confidence (certainty) measure in terms of
a

o It integrates estimate of state over time.
e Itisa state estimator.
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State-Space Model

State-transition equation

z(k) =d(k,k=-1)z(k =1) + w(k)

Measur enent (observation) equation

y(k) =H(K)z(k) +v(k) —

Observation

Kalman Filter Equations

Stat e 7, (k) = Dk, k -1)2, (k —1)

Predicti on

Covar i ance P, (k) =®(k,k —1)P, (k —1)@" (k, k —1) + Q(k)
Prediction

Kal man Gai n K (k) =P, (K)H (K)(H(K)P, (K)HT (k) +R(k))™

state-update 2, (K) =2, (k) + K(K)[y(k) ~H(k)Z, (k)]

Covari ance- updat e P, (k) = P, (k) - K(k)H(k)Pb (9
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Two Special Cases

. Steady StateP(k,k-1)=@
Q(k) =Q
H(k)=H
R(k) =R

- Recursive | east squares

d(k,k-1) =1

Q(k) =0

Comments

* In some cases, state transition equation and
the observation equation both may be non-
linear.

» We need to linearize these equation using
Taylor series.
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Extended Kalman Filter
z(k) =f(z(k -1)) +w(k)

y(k) =h(z(k)) +v(k)

RO . c{ (o)) U
/vf(Z(k D)=f(z,(k-D)+ 52(k=1) (z(k-1)-2,(k -1))

Tayl or series

I

h(z(k)) = h(z, (k) + 2228 4 -5, (k -1))

0z(k)

Extended Kalman Filter

z(k) =f(z(k -1)) + w(k)
of (z(k —1))
0z(k -1

z(k) = ®d(k,k =1)z(k —1) +u(k) +w(k)

z(k) =f(z,(k-1)+ (z(k-1)-2,(k =1)) +w(k)

u(k) =f(z,(k -1)-PKk,k-1)z, (k-1
of (z(k -1))

Pkl = kD)
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Extended Kalman Filter

y(k) =h(z(k)) +v(k)

y(K) =h(z, (k)) + 2&k)

a0 2002 K-D)+v(k)

y(k) =H(k)z(k) + v(k)

y(k) =y (k) —h(z, (k)) + H(K)Z, (k)

H (k) = 22(K)
0z(k)

Multi-Frame Feature Tracking

Application of Kalman Filter
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» Assume feature points have been detected
in each frame.

» We want to track features in multiple
frames.

» Kalman filter can estimate the position and
uncertainty of feature in the next frame.
— Where to look for a feature
— how large a region should be searched

P, = [Xk’ yk]T Locati on

V, = [Uka]T Vel oci ty

Z= [Xk, yk,uk,Vk]T Stat e Vect or
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System Model

P =Py TVt

Measurement Model

@0 0 0mp[O
"B 10 o H ™

Measurenent matri x
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Kalman Filter Equations

State 2b(k) :cp(k,k—l)ia(k _1)

Prediction

Covar i ance P, (k) = ®(k,k 1P, (k -1)®" (k,k —1) +Q(k)
Predi ction

Kal man Gai n K (k) =P, (K)H" (K)(H(K)P,(K)H" (k) +R(k))™

St at e- updat e Z,(kK)=2,(k) +K(K)[yk)-HKk)z, (k)]

Covari ance- updat e P. (k) =P, (k) - K(k)H(k)P, (k)
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Kalman Filter: Relation to Least Squares
Vi=V; +,

fi(Z,y;)=0 E[L1i]=A,

1 Tayl or series

f(Z,y,) = 0~f<z-1y>+ﬂ(y )+ 2 (z-2)

of. . Gf of,
—£(Z 9+ 2 =% Ty
|( |_1 |) az az ay( )

where

Y =HZ+w, v o
/ | MRS AR I

New measurement _
w, = —(y vi)

of,  of'
W =—A, 6_ , covariance matrix of new measurement

dy ' dy

Kalman Filter: Relation to Least Squares

C=(Z,-2)' R, (Z,-2)+ i (Y —H,Z)'W (Y -H,2)

1 mnimze

" k " k
Z=[R+Y H/WTH T RZ, + 3 H/W™Y]
0 ; 0 0 ;

Bat ch Mbde




Kalman Filter: Relation to Least Squares

~ k ~ k
Zk = [PO_1 t Z HiTWi_lHi]_l[PO_le t Z HiTWi_lYi]

. k-1 kA
Ly = [Po_1 i Z HiTWi_lHi]_l[Po_lzo a Z HiTWi_lYi]

Recur si ve Mde

Kalman Filter: Relation to Least Squares

Z =2, +K (Y, -HZ)
Ky = Pk—lHTk (WT + HTPk—lHkT)_l
Pk =1 =-KH )R

of
Yk =—f" (Zk—11Y) +Ezk—l

Hk:a_f cD(k,k—l)zl
0Z K) = 0
W:ﬂATﬂT Q( )_
oy oy
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Kalman Filter (
State ib(k):d)(k,k—l)ia(k _1)

Prediction

Covari ance P, (k) = ®(k,k —1)P, (k ~1)®" (k,k —1) + Q(k)

Predi cti on

K(k) =P, (K)H (K)(H(K)P, (K)H" (k) + R(K))™

Kalman Filter (

state-update Za(K) =2, (K) +K(K)[y(k) —H(k)Z, (k)]

Covari ance- updat e

P, (k) = P, (k) — K(k)H(K)P, (k)
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Computing Motion Trajectories

Algorithm For Computing Motion Trajectories

» Compute tokens using Moravec’s interest
operator (intensity constraint).

» Remove tokens which are not interesting
with respect to motion (optical flow
constraint).

— Optical flow of a token should differ from the

mean optical flow around a small
neighborhood.
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Algorithm For Computing Motion Trajectories

 Link optical flows of a token in different
frames to obtain motion trajectories.

— Use optical flow at a token to predict its
location in the next frame.

— Search in a small neighborhood around the
predicted location in the next frame for a token.

« Smooth motion trajectories using Kalman
filter.

Kalman Filter (Ballistic Model)

X(t):.SaXt2+th+Xo Z:(ax’ay’vx’vy)

y(t) =.5a,t> +vit+y,  y=(x(t), yt)

f(Z,y) = (x(t) —.5a,t* —v,t —x,, y(t) —.5a,t* vt - y,)
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Kalman Filter (Ballistic Model)

Z(k) = Z(k =1) + K (k)(Y (k) = H (k) Z(k -1))
K(K)=P(k-D)HT (k) W +H"P(k -)HT (k)™
P(k) = (I =K(k)H (k))P(k —1)

e
V() == (Z(k-1).y)+— Z(k-1)

of
H(k)=—
K)=57

T
i :iATﬂ

dy oy
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