
Better features to track by estimating the tracking convergence region

Zoran Zivkovic, Ferdinand van der Heijden

Laboratory for Measurement and Instrumentation
Faculty of Electrical Engineering, University of Twente

P.O. box 217, 7500 AE Enschede, The Netherlands
E-mail:Z.Zivkovic@el.utwente.nl

Abstract

Reliably tracking key points and textured patches from
frame to frame is the basic requirement for many bottom-
up computer vision algorithms. The problem of selecting
the features that can be tracked well is addressed here. The
Lucas-Kanade tracking procedure is commonly used. We
propose a method to estimate the size of the tracking pro-
cedure convergence region for each feature. The features
that have a wider convergence region around them should
be tracked better by the tracker. The size of the convergence
region as a new feature goodness measure is compared with
the widely accepted Shi-Tomasi feature selection criteria.

1. Introduction

Many computer vision algorithms rely on feature point
tracking through the image sequences (just to mention a
few [7, 2, 6, 5]). In the initialization stage the features to
be tracked are chosen. The main topic of this paper is the
problem of how to select the ”good” features that can be re-
liably tracked. A new feature goodness measure is proposed
that is more global in nature then the widely accepted local
measure proposed by Shi and Tomasi in [8].

The paper is organized as follows. First, the Lucas-
Kanade procedure for feature tracking and the Shi-Tomasi
method for feature selection are briefly described. Further, a
method for estimating the convergence region is given. The
implementation issues are also discussed in detail. Finally,
some experiments are presented comparing the two feature
quality measures and some conclusions are drawn.

2. Image Motion Model

Away from the occluding boundaries the changes be-
tween two frames in an image sequence can be described
as:

���
��� ��� � ���

��� �� �
��
Æ ���� ���� (1)

The new image���
��� � can be reconstructed by moving

the points from the initial image���
��� ��� by

��
Æ ���� ��� .

Here vector��� �� � � ��� ��� �� presents the 2D image
coordinates. The image motion displacement between the
two frames can be written as:

��
Æ ���� ��� �

��
� �

�
��
��

�
(2)

which is a simple pure translation image motion model.

3. Computing Image Motion

To compute image motion we need some additional as-
sumptions since we have just one equation and two un-
knowns in

��
� (see [1]). The simplest situation is the one

when the flow is the same everywhere. This can be a rea-
sonable assumption if we consider a patch from an image
that is small enough.

We use the standard measure of dissimilarity:

��
��
� � �

��
�

����
��� ���� ���

��� �� �
��
� ������� �� (3)

where� is the window of the given feature patch. In prac-
tice the integration denotes simply summing over all the im-
age pixels within the patch. The feature tracking problem is
then equal to the problem of finding

��
� that minimizes (3).

The equation (3) can be linearized with respect to
��
� by

a truncated Taylor expansion approximation:

���
��� �� �

��
� � � ���

��� ��� ���� ���� ����
��
� (4)

where

��� ���� ��� �

�
���

��� ���
���
��� ���

�
(5)

__ _ ____
To appear in ICPR 2002. Copyright IEEE

Here,���
��� ��� and���

��� ��� are the image derivatives in
the��� and the��� direction at the image point��� ��.

The
��
� that minimizes linearized version of (3) is the

solution of the following system:

�
��
� � ��	 (6)

where

� �

��
�

�
��� ����
���� ���

�
���� �� (7)

and

��	 �

��
�

��� � ���

�
��
��

�
���� �� (8)

The dependency on��� �� is left out for simplicity.
Note that we are talking about image motion. However,

in most of the practical situations we hope that the image
motion corresponds to real world 3D motion projected into
the image.

4. Texturedness

Not every image patch is suitable for tracking (for ex-
ample, for an intensity edge we can estimate only normal
velocity component). Various measures of ”texturedness”
or ”cornerness” are proposed to avoidthe aperture prob-

lem. If the displacement
��
� is small, the linear approxi-

mation can be considered as good enough. Tracking a fea-
ture is then equivalent to solving the system given by (6).
Consequently, the matrix� must be both above noise level
and well-conditioned. Therefore, eigenvalues of� should
be large and they should not differ by several orders of
magnitude. Since the pixels have some maximum value
the greater eigenvalue is bounded. In conclusion, a feature
patch can be accepted if for some predefined
 we have

��	�
��
�� �
 (9)

where
� and
� are the eigenvalues of the matrix�. This is
the widely accepted Shi-Tomasi feature goodness measure
[8].

5. Iterative search

The Lucas-Kanade procedure [4] minimizes (3) itera-
tively. The solution of the linearized system (6) is used to
warp the new image�� and the procedure is repeated. This
can be written as:

��
� �
 �
� �

��
� �
� � �����	 �
�, with

��
� ��� � � (10)

where
��
� �
� presents the estimated displacement at
-th it-

eration. The equation (8) with the image�� warped using
��
� �
� gives us��	 �
�. The described algorithm is the well
knownGauss-Newton minimization procedure for sums of
squares (see [3], chapter 6).

6. Convergence region estimation

If we denote the true displacement by
��
� � and define

��� �
� �
��
� � �

��
� �
�, the iteration equation (10) can be

rewritten as:

��� �
 �
� � ��� �
�� �����	 �
�, with��� ��� �
��
� � (11)

First we define:

� ���� � � ���� � (12)

Successful tracking would mean that

� ���� �
�� � ���� �
�� � � for
 �� (13)

Convergence region is the domain where for each ini-
tial displacement��� ��� the tracking process converges. The
size of this region would be an appropriate criterion to de-
fine how well the feature could be tracked.

Suppose that we can find a domain� with the following
properties:

���� �
� � �� �� ���� �
�� � � and��� �
 �
� � � (14)

with �� ���� �
�� � � ���� �
 �
�� � � ���� �
��. Conver-
gence is guaranteed within� since what we state is simply
that we want to always move closer to the solution. Our
function� ���� � is symmetric and monotonously increasing
with respect to��� . If we find the closest point��� � for
which �� ���� �� � �, the region���� � � ���� �� will have
the mentioned properties. The distance���� �� can be used
to describe the estimated convergence region size and con-
sequently it is a proper feature goodness measure.

The theory presented here is inspired by the nonlinear
system analysis methods and in this sense� ���� � corre-
sponds tothe Lyapunov function [9].

7. Implementation

The highly nonlinear function�� ���� � depends on the lo-
cal neighborhood of the feature. As an example see figure 1.
The function �� ���� � was sampled using a 0.5 pixel grid. We
show also the estimated convergence region���� � � ���� ��.

In practical implementation for each feature we compute
�� ���� � for some discrete displacements around the feature
till we find the first �� ���� � � �:

−10 0 10
−10

0

10

feature

−10 0 10
−10

0

10

−10
−5

0
5

10

−10

−5

0

5
10

−40

−20

0

20

40

pixelspixels

�� � � ��

Figure 1. Estimated convergence region

Input: ��, ��, �� (image derivatives),� (feature window),
���, �� (search strategy - an array of displacements
��
� with nondecreasing

������ ���- we use 8 points (every

��) on concentric circles with radiuses increasing in
��� pixel steps starting from initial��� pixels)

1. ��� ��� � �
��
� � �������

2. Calculate��	 (window � from �� � window �

shifted for
��
� � from ��)

3. ��� �
� � ��� ���� �����	 (Lucas-Kanade iteration)

4. If ���� �
�� � ���� ����(�� � �)

return���� �� � ���� ����

else

�� � ��
; goto
�

Output: ���� ��(estimated convergence region radius - dis-
crete in 0.5 pixel steps in our case)

Computation costs are comparable with the computa-
tions needed for tracking the feature. In our case, average
number of iterations, that are similar to the Lucas-Kanade
iterations, is� 	 �	average���� ��.

8. Experiments

In our experiments we use the functions provided in pub-
lic available OpenCV library (Intel Corporation). There-
fore, we try to mention further all the parameters we used so
that the experiments can be repeated. Our additional func-
tion to compute the���� �� for the selected features can be
downloaded at:www.mi.el.utwente.nl/zzz

8.1. Data set

In order to evaluate the proposed method we tried to
choose a representative data set. The image sequences
we used are presented in figure 2. Most of the se-
quences are taken from the CMU VASC Image Database

(vasc.ri.cmu.edu /idb). The sequence ”marbled-
block” from University of Karlsruhe (i21www.ira.
uka.de /image sequences) is added (complex mo-
tion - both camera and the object are moving).

The sequences exhibit a variety of camera movements,
object textures and scene depth variations. Also, differ-
ent cameras were used and different environment conditions
were present. All the sequences have�
�

�� format ex-
cept the sequences ”house”���
��
 and ”marbled-block”
�
�
�
�. Some further motivation for our choices is given
in the next section.

8.2. Real data experiment

For each sequence we take the initial image and select
200 best features according to the Shi-Tomasi criterion. The
features are selected to be at a distance of at least 15 pixels
from each other (10 pixels for the ’house’ sequence because
of the large black background area) and at least 10 pixels
from the image border. We calculate the convergence re-
gion estimates for the features. Further, we calculate the
displacement between the initial and�-th image in the se-
quence using the Lucas-Kanade procedure with fixed 20 it-
erations (the image derivatives are calculated using the�
�
Sobel operator). We choose� so that for at least
�� of the
features the displacement is erroneously calculated. If we
denote the initial image as the�-th then for our sequences
we had� values of 6,2,2,1,3,4,6,7,3,5 (written in the order
as presented in figure 2) and the number of lost features was
45,147,64,83,102,40,57,20,38,54.

The ground-truth for detecting erroneously calculated
displacements is generated using the Lucas-Kanade tracker
but now using all the frames between the initial and the�-
th frame. Therefore, when we were choosing our test se-
quences, we had to take care that the displacements between
the consecutive frames are small. We also use acoarse to
fine approach by blurring the images and calculating the dis-
placement for larger windows first (helpful for almost flat
scenes and camera translation only - for example ’build-
ing01’). Our ground truth is not perfect so finally we have
checked most of the features by visual inspection.

In the initialization phase we are trying to select the fea-
tures that can be tracked well. We have two criteria: mini-
mum eigenvalue (’Good features’) and the new defined ra-
dius of the estimated convergence region (’Better features’).
For both criteria we choose a threshold and throw away
the features below the threshold. For our data set (total of
2000 ”corner-like” features selected from the sequences),
the Receiver Operator Characteristic (ROC) for both criteria
is presented in figure 3. A feature belongs to true-positive
if it was selected and it was well tracked. False-positive
are the features selected but lost. Clearly the new feature
goodness criteria carries more information about how well

artichoke backyard

building01 building02

charge cil-forwardL

hotel house

marbled block unmarked rocks

Figure 2. Image sequences

the features can be tracked. Local neighborhood is impor-
tant for local search methods like the Lucas-Kanade tracker
used here.

9. Conclusions

A new feature goodness measure is presented based on
the Lucas-Kanade tracker performance. Selecting first a
larger number of features and then throwing away the ones
with small convergence region could be very useful for

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive

T
ru

e
P

os
iti

ve

Good features
Better features
Random guess (theoretical)

Figure 3. ROC - real sequences

many bottom-up computer vision algorithms that rely on the
well tracked features. For example, if from our data set (the
selected 2000 features) we keep the features having larger
then average convergence region we get 708 features from
which 118 erroneously tracked. Selecting the 708 features
directly using the Shi-Tomasi ”cornerness” criterion gives
207 wrong features and that is almost two times more.

References

[1] S. S. Beauchemin and J. L. Barron. The computation of op-
tical flow. ACM Computing Surveys, 27(3):433–467, Sept.
1995.

[2] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik. A real-
time computer vision system for measuring traffic parameters.
In Proceedings of the IEEE Conf. on Computer Vision and
Pattern Recognition, 1997.

[3] R. Fletcher. Practical Methods of Optimization. J. Wiley,
1987.

[4] B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision.In Proceedings
IJCAI81, pages 674–679, 1981.

[5] Y. Song, X. Feng, and P. Perona. Towards detection of human
motion. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 810–817, June 2000.

[6] J. Strom, T. Jebara, S. Basu, and A. Pentland. Real time track-
ing and modeling of faces: An ekf-based analysis by synthe-
sis approach.In Proceedings of International Conference on
Computer Vision: Workshop on Modelling People, September
1999.

[7] C. Tomasi. Pictures and trails: a new framework for the
computation of shape and motion from perspective image se-
quences.In Proceedings of CVPR, pages 913–918, 1994.

[8] C. Tomasi and J. Shi. Good features to track.In Proceedings
of IEEE Conf. on Computer Vision and Pattern Recognition,
pages 593–600, 1994.

[9] M. Vidyasagar. Nonlinear Systems Analysis. Prentice-Hall,
1993.

