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Abstract—This paper describes the vision-based control of 
a small autonomous aircraft following a road.  The 
computer vision system detects natural features of the scene 
and tracks the roadway in order to determine relative yaw 
and lateral displacement between the aircraft and the road.  
Using only the vision measurements and onboard inertial 
sensors, a control strategy stabilizes the aircraft and follows 
the road.  The road detection and aircraft control strategies 
have been verified by hardware in the loop (HIL) 
simulations over long stretches (several kilometers) of 
straight roads and in conditions of up to 5 m/s of prevailing 
wind.  Hardware experiments have also been conducted 
using a modified radio-controlled aircraft.  Successful road 
following was demonstrated over an airfield runway under 
variable lighting and wind conditions.  The development of 
vision-based control strategies for unmanned aerial vehicles 
(UAVs), such as the ones presented here, enables complex 
autonomous missions in environments where typical 
navigation sensor like GPS are unavailable. 

Figure 1 – The experimental autonomous aircraft is 
a modified Sig Rascal radio-controlled airplane 
with 110 in. wingspan. 
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I. INTRODUCTION 

The development of vision-based control strategies for 
unmanned aerial vehicles (UAVs) is critical to the success 
of future autonomous missions.  Applications such as traffic 
monitoring, border patrol and homeland defense, search and 
rescue, aerial surveillance, crop inspection, and law 
enforcement, require high levels of system robustness and 

performance.  Standard techniques which rely heavily on 
GPS for navigation and control will have difficulty in urban 
or hostile environments in which satellite signals can easily 
be blocked or jammed. 
 
Computer vision is an important sensor for UAVs operating 
in natural environments.  A sequence of video images 
contains large amounts of information that can be used for 
vehicle navigation and control, object detection and 
identification, obstacle avoidance, and many other tasks.  
Unlike radar- or laser-based systems, computer vision is 
passive and emits no external signals.  As a result, vision 
systems can be small in size, causing little payload burden 
to the UAV platform, and can operate undetected in hostile 
environments.  
 
The goal of the work presented here is to enable vision-
based following of a roadway -- using only the natural 
features of the scene and no additional navigation sensors -- 
by a small, autonomous aircraft (Figure 1).  Previous work 
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on vision-based control of UAVs has focused on 
autonomous helicopters.  In particular, vision-based landing 
has been studied extensively and solutions have used 
structured landing areas to aid the vision processing [1, 2].  
Likewise, artificial markings have been used to perform 
visual target following [3].  Several techniques have also 
been proposed for vision-based navigation, using depth 
maps to locally update occupancy grids [4] and using 
known databases to perform visual landmark navigation [5]. 
 Another vision-based system is being developed to operate 
over diverse geographical terrain containing road and traffic 
networks, with a focus on knowledge representation and 
high level reasoning [6]. 
 
Compared to helicopters, visual control of small 
autonomous aircraft is complicated by the speeds with 
which the vehicles fly.  Although basic stability is easier to 
achieve with an aircraft, precise lateral control (needed for 
road following) is challenging [7, 8].  Stability for a micro-
air vehicle has been attempted using visual horizon 
detection [9].  Stereo-based vision for pose estimation and 
monocular vision for navigation have been proposed in 
[10], although no results have been reported.  Simultaneous 
localization and map building (SLAM) for an unmanned 
aircraft has been performed using artificial markings [11].  
A biomimetic approach to vision-based control has been 
developed using simple optical flow sensors for terrain 
following and obstacle avoidance [12]. 
 
While vision-based road following has never been 
addressed for a small autonomous plane, the similar 
problem of lane tracking and following for autonomous 
ground vehicles traveling at freeway speeds has been 
studied [13, 14].  There are two main differences between 
the two applications.  First, the dynamics of a small aircraft 
are significantly different from those of an automobile.  In 
particular, the coupling between aircraft bank angle and 
turning rate complicate the sensing of the aircraft position 
relative to the road.  Second, the perspective of cameras on 
the aircraft and automobile vary greatly from another.  The 
automobile effectively sits on the ground and looks along 
the road, causing the lane or roadway to diverge in the 
image.  By comparison, the aircraft flies above the road 
looking downward, causing the road to appear as several 
parallel lines. 
 
Vision-based road following can be split into two important 
sub-problems: i.) detecting the road within an image and 
calculating the distance of the aircraft away from it and ii.) 
controlling the flight of the aircraft in order to follow the 
road and bring this cross-track error to zero.  The solutions 
to both sub-problems presented here build on previous 
approaches developed for other applications.   
 
Using only the natural characteristics of the roadway, the 
computer vision system segments the image by color into 
background and road pixels, performs a connected-
component analysis to identify the road, applies the Hough 

transform to calculate an initial estimate of the road 
direction, and performs a robust fitting to locate the 
roadway within the image.  Several different approaches are 
developed in order to calculate the lateral distance of the 
aircraft away from the road.  The first assumes the aircraft is 
at trim and that the pitch and roll of the aircraft is zero.  The 
second uses the onboard inertial sensors to calculate the 
aircraft orientation and correct for errors in the lateral 
distance measurement.  The final approach uses a stereo 
vision system to calculate the orientation of the aircraft 
relative to the ground plane. 
 
Once the distance between the aircraft and roadway is 
determined, a lateral control strategy drives this distance to 
zero, thus achieving autonomous road following.  Three 
strategies are presented that can perform the vision-based 
control task by commanding the aircraft turning rate.  The 
first uses simple proportional-integral-derivative (PID) 
control on the lateral distance.  The second and third each 
use nonlinear controllers to aim the aircraft toward a point 
on the road.  The second strategy explicitly calculates both 
the desired and estimated headings in order to generate the 
control signal while the third strategy attempts to enforce a 
geometric relationship between the aircraft velocity and 
lateral error.  
 
This paper presents the development of the road detection 
algorithms and the new lateral control strategies.  A 
hardware-in-the-loop (HIL) simulation environment is used 
to verify the performance of these algorithms.  Additionally, 
flight tests are conducted on a small autonomous aircraft 
(Figure 1) outfitted with a commercial avionics package 
modified for these experiments.  The new road-following 
system stably tracks a simulated road for over 2 kilometers 
under constant background winds of up to 5 m/s.  Using the 
experimental hardware, visual tracking of an airfield 
runway is achieved under various lighting conditions and 
light, gusting winds with control errors of approximately 
10-20 meters from an altitude of 100 meters. 
 

II. PROBLEM STATEMENT 
Vision Geometry 

The goal of the computer vision system is to detect the road 
in the camera images and calculate the relative distance and 
heading between the aircraft and the road.  In the basic 
pinhole camera model, the location of a point in the camera 
coordinate system ( )ccc zyx ,,  is related to a point in the 

image ( )vu,  by the projection: 
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where C  is the matrix of intrinsic parameters [15], ( )vu ff ,  
are the focal lengths of the camera in pixel dimensions, and 

 is the pixel coordinate of the image center.  Letting 

, , and , 
( )00 ,vu

)

czw = ( )Twwvwu ,, ⋅⋅=u ( )Tccc zyx ,,=cX
 
 . (3) cXCu ⋅=
 
Typically the camera coordinate system and the aircraft 
coordinate system will differ by a rotation  and 
translation , known as the camera’s extrinsic parameters 
and determined by camera calibration, such that  

eR

eT

 
 , (4) ee TXRX bc +⋅=
 
where is the location of a point in the aircraft coordinate 
system, so 

bX

 
 ( ee TXRCu b +⋅⋅= . (5) 
 
The aircraft moves in a world reference frame fixed to the 
road (Figure 2).  The location of the aircraft in this frame is 

 and the orientation between the 
road and aircraft frames is represented by the rotation 

, which is a function of the roll, pitch, and relative 
yaw of the aircraft.  A point in the road frame ( ) is 
related to a point in the aircraft frame ( ) such that 

( T
tracktracktrack zyx ,,=roadT )

roadR

roadX

bX
 
 . (6) roadbroadroad TXRX +⋅=
 
Combining (5) and (6) yields 
 
 ( )( )( )eroadroad

1
roade TTXRRCu +−⋅⋅⋅= −  (7) 

 
Road detection is the problem of finding the set of image 
points  that correspond to points on the center line of the 

road.  Given this image set, the intrinsic and extrinsic 
camera parameters, and the fact that 

iu

( )Tii 0,0,α=roadX , 
calculating the lateral distance and orientation between the 
roadway and the aircraft is equivalent to determining  
and . 

roadT

roadR
 
Control Problem 

Vision-based road following is essentially an outer 
(navigation) loop control problem that can be decoupled 
into two sub-problems: lateral control relative to the road 
and altitude hold above it (Figure 3).  One major 
assumption in the work presented here is that GPS is not 
available, so control and navigation must be performed 
using computer vision and other onboard sensors. 
 
Aircraft stability can be achieved with four simple PID 
controllers that feed back airspeed, pitch rate, yaw rate, and 
roll rate to the aircraft throttle, elevator, rudder, and aileron 
servomotors [16].  Onboard sensors used to close these 
control loops include static and pitot tubes to measure air 
speed and rate gyros to measure the angular rates of the 
aircraft.  
 
Once the inner loops are stabilized, outer loop control can 
be used to navigate the aircraft.  Altitude control of small 
unmanned aircraft is typically achieved by feedback from 
barometric pressure sensors to aircraft thrust (throttle) [8].  
The same approach is used here.  Position control is 
achieved by commanding the aircraft turning rate, which is 
directly related to the aircraft orientation.  Turning rate 
commands are therefore achieved by mapping the turning 
rates into desired roll and pitch angles which are in turn 
used by the inner PID controllers. 
 
A full non-linear model of the autonomous aircraft has been 
developed and used for the HIL simulations described 
below.  Assuming tight inner loop control and good turning 
rate command tracking, a planar kinematic model is used to 
develop the lateral control strategy.  Given a straight 
roadway with any orientation in space, one point on the 
roadway is chosen as the origin of the control frame.  The x-
axis of this frame is defined along the road and the y-axis is 
perpendicular to it (Figure 3).  The vehicle kinematic model 
is: 
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Figure 2 - Aircraft in road coordinate system
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where  is the aircraft’s true airspeed, TASU ψ  is the heading 
of the aircraft relative to the road, cmdϖ  is the commanded 
turning rate,  and ( ) are wind disturbances. 

yx ww VV ,
 
Lateral control of the aircraft is achieved by commanding 
the vehicle turning rate cmdϖ  such that the cross-track 
distance ytrack is brought to zero.  An inner control loop 
based on the inertial sensors converts the turning rate 
commands into the corresponding aileron and rudder 
commands [16]. 
 

III. COMPUTER VISION 
Real-time road detection and localization 

Real-time road detection and localization is an essential part 
of the vision-based control. The detection and localization 
algorithm should be fast and robust at the same time. To 
achieve this, we applied various techniques such as 
Bayesian pixel classification, connected-component 
analysis, Hough transformation, and robust line fitting. 
 
After first rectifying the image (Figure 4b) to account for 
lens distortion, we applied a Bayesian pixel classifier to find 
a rough location of the road.  We used RGB values of the 
pixel to classify road pixels from non-road pixels.  Our goal 
is to find the probability  that a pixel belongs 
to the road given its RGB values.  According to Baye's rule:  

( bg,r, | roadP )

)
 
 ( ) ( ) (

( )bg,r,
roadroad | bg,r,bg,r, | road

P
PPP ⋅

=  (9) 

 
Since we do not know the prior distribution of RGB values, 

, we use likelihood   instead: ( bg,r,P ) ( )bg,r, | roadL
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We used multivariate Gaussian distributions to represent 
( )road | bg,r,P  and ( )roadnot  | bg,r,P .  We developed a 

user interface to gather the RGB values of over 20,000 
road- and non-road pixels (labeled). Then, we estimated the 
parameters of the distributions.  Figure 4c shows the 
classification result. 
 
Once the road pixels are classified, we apply connected-
component analysis to remove noise.  We applied two-pass 
connected-component analysis to remove the holes on the 
center of the road (the lane markings) as well.  Figure 4d 
shows the detected road after the connected-component 
analysis. 
 
After we detect the road, we search for lane markings on the 
road. We applied the same Bayesian pixel classification 
algorithm to find the lane markings. After we detected the 
lane markings, we apply Hough transformation to test 
multiple candidate lanes.  Figure 4e shows the detected lane 
markings (shown in cyan) and the fitted lane with the best 
score (in red).  The Hough transformation only gives a 
rough discretization of the lane. We applied a robust line 
fitting (least-trimmed square) to finalize the position and the 
orientation of the center lane marking (Figure 4f). 
 

Figure 4 - Road detection algorithm. a.) Original 
image. b.) Corrected for distortion. c.) Bayesian 
pixel classification. d.) Connected-component 
analysis. e.) Hough transform. f.) Least-trimmed 
square line fitting. 

            a.                                                b.

            c.                                                d.

            e.                                                f.
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Estimating lateral distance 

Our road detection and localization algorithm gives the 
position and the orientation of the road in image 
coordinates. To convert them to the world coordinates, we 
need to know the position and the orientation of the UAV 
with respect to the ground.  Aircraft altitude is currently 
measured by a barometric pressure sensor.  In order to 
calculate the height of the aircraft above the road, the 
altitude of the road must also be known.  Future systems 
will use stereo cameras to determine the aircraft height. 
 
 
The orientation of the aircraft is obtained in one of several 
ways.  First, we assume the aircraft is in trim flight and the 
roll and pitch angles are zero.  This assumption is typically 
valid for straight flight; however, significant roll (which can 
be as small as 5 degrees) is required to turn the aircraft.  The 
resulting errors in roll lead to errors in the cross-track 
distance measurement (Figure 5) of magnitude 
 
  (11) ( )φsin⋅≈ he

tracky

where  is the height of the aircraft above the road and h φ  
is the roll angle.  For the second method, onboard inertial 
sensors that measure yaw rate can be used to estimate roll 
angle.  Assuming the aircraft makes a coordinated turn and 
the pitch angle is small, the roll angle is directly related to 
the yaw rate, ψ& , (which can be estimated from the rate 
gyros) by the relationship 
 
 ( ) ( ) gU ψφ &⋅=tan  (12) 
where U  is the aircraft speed and g  is the acceleration due 
to gravity.  Onboard magnetometers could also be used to 
improve this estimation process.  Finally, a second camera 
is used to perform stereo triangulation of ground features.  
By assuming the ground is a flat plane, the orientation of the 
aircraft relative to this plane can be determined.  While a 
stereo system has been developed for this research, it is not 

part of the system presented here. 

φ

 
Once the orientation of the aircraft with respect to the 
ground is determined, we pick any two points on the road 
line (on the image) and project them onto the ground plane 
(with known internal camera parameters) to find the world 
coordinates of the road. The shortest distance between the 
road line (in world coordinates) and ( )Tp 0,0,0=  is the 
lateral distance. We assign the sign of the lateral distance by 
checking whether p is on the left or right side of the road 
line. The yaw is calculated in the same manner by 
projecting vector (0,0,1) on the ground plane and 
calculating the angle between the projected vector and the 

ad line. 
 

craft velocity and 
e desired intersection point on the road. 

ilable is the cross-
ack distance, the turning rate given by 

ro

IV. LATERAL CONTROL 
Three lateral control strategies are developed to enable 
autonomous road following.  The first uses direct PID 
feedback between the cross-track (lateral) error and the 
commanded turning rate.  The second and third strategies 
each use nonlinear controllers to aim the aircraft at a point 
along the road.  The second explicitly calculates both the 
desired and estimated headings and feeds the heading error 
to the turning rate command.  The third strategy enforces 
the geometric relationship between the air
th
 
PID Controller 

A simple PID control law can be used to drive the cross-
track errors to zero.  Since the controller is run as a discrete 
system and the only measurement ava
tr
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two nonlinear controllers presented 
elow were developed. 

 

 
A similar control law was shown to perform poorly for 
lateral tracking control of waypoint navigation using GPS 
[7], especially in the face of excessive errors in either cross-
track position or velocity.  Since the cross-track velocity is 
estimated from the lateral displacement we expect 
significant noise.  Therefore this control law was never used 
on the aircraft and the 
b

A 

B’ 
B 

x’

x 

)sin(h φ⋅≈

φ

φ

h 

Figure 5 - Lateral distance error due to roll angle 
error. If the aircraft is banked at a small angle (x-
axis) but assumes it is not (x’-axis), it will 
mistakenly calculate that the object at point B to is at 
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Arctan Controller 

Assuming the aircraft speed remains constant, the first 
nonlinear control strategy aims the aircraft, located at point 
A in Figure 6, at the point B a specified distance (dahead) 
ahead on the roadway.  Given this desired intersection point 
on the road, the heading error is calculated and fed back to 
the turning rate command through proportional control. 
 
Given point A at ( and point B at 

 in the control frame, the desired heading 
angle is 

T
tracktrack yx ,

( T
aheadtrack dx 0,+

 
 ( aheadtrackdes dy ,arctan −=ψ . (16) 
 
The actual aircraft heading is calculated from the 
components of its velocity: 
 
 ( tracktrackact xy && ,arctan= )ψ . (17) 
 
The error signal is defined as the difference between the 
desired and actual headings, desacte ψψψ −=∆= , and this 
signal is driven to zero by proportional feedback with a 
saturation limit of rad/sec. 2.0±
 
In order to perform this control strategy, an estimate of the 
aircraft velocity in the control frame must be calculated.  
Given the global velocity of the aircraft and its orientation 
relative to the road, the velocity in the control frame could 
be calculated.  However, without navigation sensors, the 
global velocity of the aircraft cannot be determined.  
Instead, the components of the aircraft velocity in the 
control frame are estimated from the time history of the 
cross-track distance  and the indicated airspeed 

 (true airspeed as measured from an 
onboard dynamic pressure sensor, where  is the sensor 

noise).  The cross-track velocity estimate is calculated by 
(11) while the along-track component is 

)(tytrack

pdynTASIAS vUU +=

pdynv

 
 ( ) ( )iestIASiest tyUtx 22 && −= . (18) 
 
By directly estimating  from  the effects of the 
cross-track wind disturbance are explicitly incorporated. 
 However, the wind disturbances effect  by causing a 
discrepancy between indicated airspeed as measured by the 
dynamic pressure sensor and the true speed 

esty& tracky

xwV

estx&

22
yx wwpdynIAS VVvUU +++= .  The vision system is capable 

of determining the relative orientation (yaw) of the aircraft 
with respect to the road.  However, due to the wind and 
sideslip, the relative yaw is not necessarily equivalent to the 
aircraft heading. 
 
Velocity Ratio Controller 

A third nonlinear strategy, based on [7], is developed to 
control the lateral motion of the aircraft relative to the road. 
 Like the second, keeping speed constant, the controller 
commands the aircraft to aim at the point B a specified 
distance (dahead) ahead on the roadway (Figure 7).  Given 
this desired heading, a control signal is derived by 
establishing the geometric relationship between the desired 
aircraft position and aircraft velocity 
 

 
x
y

d
y

ahead

track

&

&−
= , (19) 

 
where the cross-track and along-track velocities are 
estimated by (11) and (16).  In order to enforce this 
relationship the error signal is defined as 
 
 aheadtrack dyyxe ⋅+⋅= &&  (20) 
 
and is driven to zero by proportional feedback control of the 
commanded turning rate with a saturation limit of 

2.0± rad/sec.  A value of k  was found to achieve 00001.0=

B

x&

y&− U
ytrack

dahead

Figure 7 – Velocity ratio control strategy
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Figure 6 – Arctan nonlinear control strategy
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Figure 11 - Vega generated visualization. a.) 
Camera view. b.) View from behind aircraft. 

a. b.

good tracking performance. 
 

V. EXPERIMENTAL SYSTEM 
The vision-based control system described here was 
developed for testing on a Sig Rascal model aircraft (Figure 
1).  This aircraft has a wingspan of 2.8m, an empty weight 
of 5.5 kg and a gross weight of 10 kg, allowing 4.5 kg for 
fuel, avionics, and payload.  Low level aircraft control and 
stabilization is performed by a commercial Cloud Cap 
Piccolo avionics package (Figure 8), which weighs 212 g 
[16]. 
 
Two downward looking CCD cameras with 320x240 pixel 
resolution and 62° field-of-view are mounted to the wing 
struts of the aircraft with a baseline separation of 1.35m.  
The vision processing is performed on the ground by a 
PC104 stack.  
 
The cameras send analog video to the ground using two 
2.4GHz transmitters.  The measurements from the vision 
system are sent to a Piccolo ground station, via a laptop 
interface.  The ground station sends control inputs to the 
onboard avionics.  This experimental setup is depicted in 
Figure 9.  For future tests, the vision processing will be 
placed onboard the aircraft and the PC104 will 
communicate directly with the Piccolo avionics box through 
a serial port. 
 

In addition to the actual aircraft test bed, a hardware-in-the-
loop (HIL) simulation, illustrated in Figure 10, was also 
developed in order to perform initial tests of the vision 
system and the control algorithms.  The flight avionics, 
ground station, and video processing hardware are used in 
the HIL simulation.  The aircraft dynamics are replaced by a 
high-dimensional nonlinear simulation provided with the 
Piccolo avionics package. The camera outputs are simulated 
using the Vega software package.  This software package 
provides real time visualization of three dimensional models 
of the testing environment.  Figure 11 depicts two Vega 
generated views.  The first image is the simulated camera 
view, after being processed by the road detection algorithm. 
 The second image depicts a view from a virtual observer 
behind the aircraft. 

Figure 8 - Cloud Cap Piccolo avionics package 

 
VI. RESULTS 

The road detection algorithm was first tested independently 
of aircraft control.  The road detection algorithm was able to 
correctly identify the road in 90% of the images of real 
roads it was given. 
 
The road following demo was tested using the HIL 
simulation to follow a simulated 2.5 km stretch of straight 
road.  During the initial tests, the roll and pitch of the 
aircraft were assumed to be zero.  The vision based control 
allowed the aircraft to successfully keep the road in view 
during the HIL testing. 
 

Control 
Computations

Ground 
Station

Video
Processing

Video
Receiver 

Piccolo
Avionics

Video
Transmitter

Figure 9 - Flight hardware setup 
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The performance of the vision-based cross-track distance 
measurements is evaluated by comparing the vision 
measurements to the simulated GPS flight measurements.  
Over the course of the 2.5 km experiment, the vision 
measurements had a mean error of 1.19 meters and a 
standard deviation of 2.51 meters (Figure 12a).  The 
disparity between the vision and GPS measurements can be 
attributed largely to the assumption of zero roll, which 
results in larger vision-based measurements as the aircraft 
banks to turn toward the road.  By overlaying the GPS and 
vision measurements on the same plot (Figure 12b) and 
comparing to the vision error plot, this correlation can be 
seen.  Future tests will take into account roll measurements 
either from stereo vision or onboard inertial sensors. 
 
Figure 13 shows the tracking performance of the aircraft 
along the straight road during the HIL simulation using the 
velocity-ratio control law.  The aircraft successful tracks the 
road for 2.5 km while oscillating with a magnitude of 
approximately 5 meters.  The background wind for this run 
had a constant velocity of (2.0, 2.0) meters per second, 
accounting for the slow drift of the aircraft oscillation away 
from the road. 

 
Single camera road following, with the zero pitch and roll 
assumption and the velocity-ratio controller, was also tested 
on the Sig Rascal aircraft at the TIMPA airfield in Tucson, 
Arizona.  Figure 14 shows the results of the aircraft tracking 
a 230 m long, 15 m wide model aircraft runway.  The actual 
aircraft position was measured using GPS.  
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Figure 13 – Tracking performance of vision-
based lateral control of HIL simulation. 

a.

b. 
Figure 12 – Vision-based lateral distant 

measurements. a.) Vision measurement error 
vs. time. b.) Vision and GPS lateral distance 

measurements vs. time 
Figure 14 - Results of road tracking on actual aircraft.
lthough the road following algorithm showed some 
ncouraging results when tested with a single camera, the 
erformance was limited by the assumption of zero roll.  In 
rder for this assumption to be valid, only small gains could 
e used in the control algorithm to prevent excessive 
anking of the aircraft.  Integration of a stereo algorithm or 
nertial attitude sensors with the road following should 
llow more aggressive gains and improved tracking 
erformance. 

 
VII. CONCLUSIONS 

 vision-based system for tracking and following a road 
sing a small autonomous aircraft is presented.  Hardware-
n-the-loop (HIL) demonstrations and actual flight tests 
erify the performance of the system and offer encouraging 
esults for more aggressive control in the future.  The 
erformance of the control strategy is directly related to the 



accuracy of the lateral distance measurements, which are in 
turn directly related to errors in the aircraft attitude.  Future 
work will address the optimal fusion of all sensors onboard 
the aircraft. 
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