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Abstract— A lane detection system is an important compo-
nent of many intelligent transportation systems. We present
a robust realtime lane tracking algorithm for a curved lo-
cal road. First, we present a comparative study to find a
good realtime lane marking classifier. Once lane markings
are detected, they are grouped into many lane boundary
hypotheses represented by constrained cubic spline curves.
We present a robust hypothesis generation algorithm using a
particle filtering technique and a RANSAC (RANdom SAmple
Concensus) algorithm. We introduce a probabilistic approach
to group lane boundary hypotheses into left and right lane
boundaries. The proposed grouping approach can be applied
to general part-based object tracking problems. It incorporates
a likelihood-based object recognition technique into a Markov-
style process. An experimental result on local streets shows that
the suggested algorithm is very reliable.

I. INTRODUCTION

Detecting and localizing lanes from a road image is
an important component of many intelligent transportation
systems applications. There has been active research on lane
detection, and various algorithms have been suggested [1],
[2], [3], [4], [5], [6], [7]. Due to a realtime constraint and then
slow processor speed the lane markings have been detected
based only on their intensity values or simple gradient
changes, and many of their results were shown in straight
roads and/or highways with clear lane markings or with
an absence of obstacles on the road. Some exceptions of
detecting curved roads are found in [5] and [7]. However,
neither of the algorithms works in realtime and the results
are shown on a limited scenarios with one or no obstacles
present.

We present a realtime lane detection algorithm which
shows robust results on various lane marking types and
various difficult scenarios including lane changes, emerg-
ing/ending/merging/splitting lanes, intersections, and distrac-
tions by leading vehicles and markings on the road.

The lane curvature information is especially useful for
a collision warning system. A collision warning system
takes readings from various sensors, such as radar, LIDAR,
and accelerometer, detects objects in front of the vehicle,
estimates the collision times to the detected objects, and
generates warnings for the driver. A difficulty occurs when
there is a curved road in front. Without knowing the road
curvature, the system cannot distinguish an object on a road
from one on a sidewalk. One false alarm scenario is shown
in Fig. 1. Without the information on the road curvature, the
system may generate a false alarm for the postbox on the
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Fig. 1. A false alarm scenario of a collision warning system. Without
knowing the lane curvature, the system will generate a false alarm for the
postbox.

sidewalk. Our goal is to detect boundaries of the lane and to
estimate their rough curvatures.

One possible difficulty in applying vision-based lane de-
tection result to a collision warning system is that a small
calibration error (a change of camera’s pitch angle) can
cause a large error in distance [8]. However, this is not a
critical problem. For example, we can apply a sensor fusion
technique of combining vision-based obstacle detection and
active-sensor based obstacle detection to deal with it [9].

As an alternative to a vision-based approach, one may use
a global positioning system (GPS) and a geographic informa-
tion system (GIS). However, the GPS has a limitation on the
spatial and temporal resolution and detailed information is
often missing or not updated frequently in GIS. For example,
the curve at an off-ramp can cause false warnings but the
GPS-based systems suffer from discriminating whether the
vehicle entered an off-ramp or not.

There are several technical challenges of the vision-based
lane detection and tracking:

• The algorithm should work in realtime.
• When we introduce the road curvature, the search space

becomes quite large, and robust and fast detection is
difficult.

• We deal with a local road, while much of the previ-
ous work has focused on highways with regular lane
markings and a small curvature. There are various types
of roads and lane markings, and a simple intensity- or
gradient- based lane marking detection algorithm may
not work.

• There are many distracting features such as traffic di-
rectives written on the road, as well as leading vehicles.

• Many of the previous approaches apply constant-width
lane models. However, they cannot effectively deal with
various situations such as an emerging lane, merging
lanes, and splitting lanes at on/off ramps.

Our algorithm follows the “hypothesize and verify”
paradigm. In the “hypothesize” step, lower level features are
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Fig. 2. The flow diagram of the algorithm.

Fig. 3. An example image and the rectified image.

grouped into many higher level feature hypotheses, and they
are filtered in the “verify” step to reduce the complexity of
the higher level grouping. Figure 2 shows the flow diagram.
First, the image is rectified assuming that the ground is
flat. An example image and the rectified image are shown
in Figure 3. In the rectified image, possible lane marking
pixels are detected. Detected lane marking pixels are, then,
grouped into lane boundary hypotheses. A lane boundary
hypothesis is represented by a constrained cubic spline curve.
A combined approach of a particle filtering technique (for
tracking) and a RANSAC (RANdom SAmple Consensus)
algorithm (for detection) is introduced to robustly find lane
boundary hypotheses. Finally, a probabilistic grouping algo-
rithm is applied to group lane boundary hypotheses into left
and right lane boundaries. Note that we generate left and
right lane boundary hypotheses separately (unlike much of
the previous work which has a lane model of a uniform
width) to deal with various situations such as on/off ramps
or an emerging lane.

Section II describes our lane marking detection approach
including a comparative study on various classification meth-
ods. There is a lack of such comparative study in realtime vi-
sion system research. In Section III we present our approach
to hypothesize lane boundaries. The probabilistic grouping
algorithm is proposed in Section IV. Experimental results
are presented in Section V, and we present the conclusion
in Section VI.

II. LANE MARKING DETECTION

Sample road images are shown in Figure 4. Most previous
algorithms simply look for “horizontal intensity bumps” to
detect lane markings. It shows reasonably good performance
in many cases, but there are difficult situations when the
lane markings are not clearly visible (for example, yellow

Fig. 4. Example road images.

Fig. 5. Example image patches of lane markings and non-markings.

center markings have similar grayscale intensity to the gray
road pixels) or when the image quality is poor. It also suffers
from false detections by leading vehicles and textures on road
and sidewalk. To find a better (but fast enough) classification
algorithm, we apply a machine learning technique on a larger
number of features: the RGB values of the pixels in 9×3
windows (total 81 features). Applying a stereo algorithm,
[3], [4], can further improve the performance, but we focus
on a monocular color image in this paper.

From a video sequence, we have gathered image patches of
565 lane markings and 11893 non-markings. Figure 5 shows
example image patches. We observe a variety in colors,
textures, and width.

We compare the classification performance and the com-
putation requirement of various classifiers on our data set.
We compare the following classifiers:

• Artificial Neural Networks (ANN): We compare two-
layer neural networks with various numbers of hidden
nodes. Training an ANN requires relatively significant
computation, but the actual classification time is rela-
tively small. When there are n features (inputs) and m
hidden nodes, it requires n+m weighted summation and
m sigmoid function calculation to classify a hypothesis
(n = 81 in our case).

• Perceptron: Perceptrons provide the simplest and
fastest classification. The classification is performed
by linear weighted summation and the parameters are
learned by an iterative (but fast) learning algorithm.

• Naive Bayesian Classifiers (NBC): Naive Bayesian
classifiers show good classification performances in
spite of its unrealistic conditional independence as-
sumption. We compare the discrete and the unimodal
Gaussian representations of the conditional probability.
For the both representations, the learning time is linear
to the number of the examples (fastest). A discrete
NBC requires very little computation for classification.
The Gaussian representation requires to compute the
exponential function for n times. However, we can
avoid calling the exponential function by using log
likelihood instead of the actual probability. In fact,
for both representations, it is necessary to use the log
likelihood to minimize the numerical errors, especially
when the number of features is large. For the discrete
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Fig. 6. The classification performance of the classifiers.

NBC, we can pre-calculate the logarithms of all the
probability table entries to save the computation.

• Support Vector Machine (SVM): During the last
decade, support vector machines have rapidly gained
popularity. They provide a good framework for incor-
porating kernel methods. We test the second order poly-
nomial kernel, which requires the smallest computation.
Learning requires relatively significant computation, but
it is bounded in polynomial time. The classification
invovlves a large number of multiplications (O(mn)
where m is the number of support vectors). The number
of support vectors which is at least n + 1. However,
when the data is not clearly separable (in the trans-
formed feature space) or when a small tuning parameter
is given, the number of support vectors can be much
greater than n.

• Ieng et al. 2003: In [6], Ieng et al. suggested a fast
and simple lane marking detection algorithm. It simply
finds the intensity bump of a pre-defined pixel width,
which is reported to show a good performance.

Details on most of the above classifiers can be found in
many of the machine learning literatures, for example, in
[10].

Figure 6 shows the classification performances of the pre-
sented classifiers. We follow the evaluation scheme presented
in [11]. We repeated stratified 5 fold cross-validation for
10 times, and show the ROC curves with the confidence
intervals. For all the classifiers, we obtained the ROC curves
by changing only the threshold values (no re-learning with
different parameters).

For all the classifiers, we applied various parameters, and
chose the best ones. For ANN, we compared the ones with
5 and 15 hidden nodes. For the discrete naive Bayesian
network, we used 7-level discretization. The SVM was
learned with the tuning parameter 100.0. We see that the
support vector machine and the neural networks show the
best performances.

We also compared the classification computation for the
classifiers. We have applied the classifiers on 52 × 159
images, and summarized the computing time in Table I.
The algorithms ran on a Pentium III 1GHz machine. We
optimized all the classification algorithms to bring maximum

(a) (b)

Fig. 7. (a) Detected lane marking pixels, and (b) the selected hypotheses
from the particle filtering/RANSAC algorithm.

performance. Our decision based on the presented result is
to use an ANN with 5 hidden nodes which showed a good
classification performance with small computation.

TABLE I

COMPUTATION TIME OF THE CLASSIFIERS.

Classifier Classification time
ANN (5 hidden nodes) 60 ms

ANN (15 hidden nodes) 180 ms
Perceptron 10 ms

Gaussian NBC 60 ms
Discrete NBC 70 ms

SVM 1.2 sec
Ieng et al. Under 10 ms

III. LANE BOUNDARY HYPOTHESES GENERATION WITH

PARTICLE FILTERING AND RANSAC

Once possible lane marking pixels are detected (an exam-
ple is shown in Figure 7a), they are grouped into cubic spline
curves of 5 control points. A spline is a smooth piecewise
polynomial function, which is widely use to represent a
curve. Various spline representations have been proposed and
we use a cubic spline. In a cubic-spline representation, a
point p on a curve between i-th and (i+1)-th control point
is represented as:

p = (xi(t),yi(t)),where

xi(t) = ai +bit + cit
2 +dit

3,

yi(t) = ei + fit +git
2 +hit

3,

. The parameters ai, . . . ,hi are uniquely determined by
the control points that the curve is smooth. 0 ≤ t ≤ 1,
(xi(0),yi(0)) is the i-th control point, and (xi(1),yi(1)) is
the (i+1)-th control point.

A cubic-spline curve has a useful property for robust fitting
that the control points are actually on the curve. We use this
property to apply a RANSAC (RANdom SAmple Concen-
sus) algorithm [12] to curve fitting. A RANSAC algorithm is
a robust fitting algorithm that has been successfully applied
to various computer vision problems. In [7], Wang et al.
used a B-spline curve to represent a curved road. In a B-
spline representation, control points reside outside of the
curve and its fitting procedure requires a significant number
of iterations. On the other hand, cubic spline fitting is much
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faster, but it suffers from unexpectedly irregular shapes, in
general. Our algorithm uses a cubic spline for fast fitting, but
imposes additional constraints that yi(t) is monotonic and the
curvature be reasonable.

Our RANSAC fitting procedure is as follows. First, lane
markings are grouped into line segments. A hypothesis is
generated from a random set of one, two, or three line seg-
ments. The number of the line segments is also determined
randomly for each hypothesis. A single line segment gives
a straight line, a set of two line segments gives a curve
with a single curvature (roughly), and a set of three line
segments gives a more complicated curve. Three of the five
control points are determined from these line segments. The
positions of the first and the last control point are determined
by extrapolating the first and the last line segment. The
first control point is always on the lower boundary of the
rectified image, and the last control point is the upper-most
lane marking pixel along the extrapolated curve.

Once a curve hypothesis is generated, its validity is tested.
First, a simple geometrical test is performed to see whether
the curve is aligned with the original line segment. Then,
the second test is performed based on its lane marking pixel
support:

CurveScore = (1−λ )∑
m

1,

where m is a supporting lane marking pixel on the curve, and
λ is a penalty for the minimum description length (MDL)
criteria. In our implementation, λ = 0.1 for a hypothesis
generated from a set of two line segments and λ = 0.2 for
a hypothesis from three line segments.

In our implementation, 500 random hypotheses are gen-
erated given a frame. Once hypotheses are generated and
validated, an overlap analysis is performed and a small num-
ber of non-overlapping (but may be partially overlapping)
hypotheses are finally selected.

The above algorithm does not take advantage of a strong
temporal coherence of the lane boundaries. We combine
it with a tracking algorithm based on a particle filtering
technique. For particle filtering, we model vehicle’s motion
(rotation and translation) by Gaussian distributions. Given
a randomly selected motion, a lane boundary hypothesis is
generated by moving the previously detected lane boundary’s
control points according to the motion. The position of
the new control point is slightly adjusted when there is a
lane marking pixel nearby. A number of hypotheses are
generated (100 per each left and right boundaries, in our
implementation) and scored based on the supporting lane
marking pixels.

The final position of a control point is estimated by the
weighted sum over all the hypothesized positions, where the
weights are the scores of the corresponding curve hypotheses.
Due to the vehicle’s forward motion, all the control points
will eventually move closer. Therefore, we need to adjust the
position of the first control point that it does not disappear
from the image. We enforce that the first control point’s
position be always on the boundary of the image (the

adjusted position is found by interpolating the curve). For the
last control point, a search is performed on the extrapolated
curve position. If there is any lane marking pixel above the
currently determined last control point, it is selected as the
new last control point. In addition, the second control point
is also examined to see if its position is too low (if it keeps
going down, it will eventually collide with the first control
point). If its position is too low, it is removed and a new
control point is generated between the fourth and the fifth
(last) control point.

The selected lane boundary hypotheses from the
RANSASC algorithm and the particle filtering process are
shown in Figure 7b. Up to five hypotheses per lane boundary
(left/right) are selected including the ones from the particle
filtering process. The particles are also shown as clouds of
points nearby the control points.

IV. PROBABILISTIC GROUPING OF LANE BOUNDARIES

Our next goal is to choose the best pair from the selected
hypotheses shown in Figure 7b. We apply probabilistic
reasoning for decision making. The available evidence for
the reasoning includes the lane marking support of each lane
boundary hypothesis (see Section III), compatibility of the
two boundary hypotheses, and the temporal coherance. In
fact, this is a typical object tracking problem. This one is
focused on part-based tracking while most of the previous
work focused on a single part tracking. In this section, we
introduce a new formulation for object tracking which fits
especially well with the “hypothesize and verify” paradigm
of object detection.

A. Probabilistic Grouping for Part-based Tracking

We use capital letters, such as X , to denote random
variables and lowercase letters, x, to denote certain assign-
ments taken by those variables. We mostly deal with binary
classification, where the assignments are true or false. For a
multi-nomial random variable X , the statement P(X = φ) is
used as a shorthand for P(X = missing). A set of multiple
variables or assignments are denoted by boldface letters, such
as X and x.

Typical temporal reasoning models, such as dynamic
Bayesian networks [13], use a posterior probability to select
the best hypothesis from pre-defined candidates:

argmax
x

P(X = x|e), (1)

where X is the target random variable and e is observed
evidence (current and past).

However, many of the object recognition approaches use
the maximum likelihood estimate [14], [15]. Their goal is to
find:

argmax
X

P(X = true|e), (2)

where X is a random variable for a specific hypothesis.
There are various reasons to use the maximum likelihood
estimates. First of all, many object recognition algorithms
use the “hypothesize and verify” paradigm, and the goal is
to choose the best one from a large (and not pre-determined)
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number of hypotheses. In fact, it makes more sense to use
the likelihood estimates because the generated hypotheses
are not really disjoint. Many of them are overlapping or
share common parts such that selecting one does not exactly
mean rejecting another. In addition, it is much easier to
model a binary classification problem than a multinomial
classification one especially for learning.

We introduce a dynamic Bayesian network-style formu-
lation using the likelihood estimates. When we assume that
the evidence variable e is a set of three types of independent
evidence variables, e = (ec,et,ep), where ec is a set of
evidence collected in the current frame, ep is a set of
evidence collected in the past, and et is a set of transitional
evidence (such as temporal correlation). Then, we want to
know P(x|ec,et,ep) for all possible combinations of the part
hypotheses, x. Then,

P(x|ec,et,ep) = αP(ec|x)P(x|et,ep), (3)

where α = 1/P(ec|et,ep) is a normalizing constant.
To estimate P(ec|x) given an image frame is well-studied

in the object recognition field. The challenge is to estimate
P(x|et,ep). Applying the Markov assumption,

P(x|et,ep) = ∑
h

P(x|H = h,et)P(H = h|ep), (4)

where H is a random variable for the previous object and
h represents an individual hypotheses (ΣhP(H = h) = 1)).
Note that we not only use the previously detected object,
but also use many of the previously rejected hypotheses.
There are two reasons for this. First, there are cases in
which some hypotheses are generated, but none of them
are strong enough to be accepted. It could be a false alarm
(noise) or an object of a relatively weak evidence support.
We want to choose an object, which might have relatively
weaker image support (et) but is consistently observed over
time, rather than a false alarm which might have stronger
et at one frame but came out of nowhere (weak temporal
support). Using the information on the rejected hypotheses
can deal with this problem. Second, when an object is in a
transitional stage (for example, a lane boundary is split into
two lines at the off-ramp), two or more strong hypotheses
might be competing. The original hypotheses will eventually
get weaker and weaker image support, but will still have a
strong temporal support. The emerging one will get stronger
image support but no temporal support unless the rejected
hypotheses of previous frames are taken into an account.

The problem we face is that what we estimate from the
previous frame is the likelihood of the hypotheses, not P(H =
h|ep). To deal with this, we estimate P(H = h|ep) from the
previous likelihood:

P(H = hi|ep) =
P(Hi = true|ep)

∑ j P(Hj = true|ep)
, (5)

where Hi is for a previously selected hypothesis (cf. Sec-
tion III). We also consider the probability of mis- or false
detection of some or all of the object. Therefore, Hi may
represent mis-detection.

For P(x|H = hi,et), we assume that the individual parts’
tracking histories are independent to each other. When x (as
well as Hi) consists of individual parts x1, . . . ,xn,

P(x|Hi = hi,et) = ∏
j

P(x j|H j
i = h j

i ,et). (6)

When h j
i is not a mis-detection,

P(x j|H j
i = h j

i ,et) = P(x j|h j
i = true,et)

= β jP(et|x
j,h j

i )P(x j|h j
i ),

(7)

where β j is a normalizing constant, P(et|x j,h j
i ) can be

learned by examples, and P(x j|h j
i ) is assumed to be con-

stant (prior probability given that there is a previously
detected part). When h j

i represent a mis-detection (H j
i = φ ),

P(x j|H j
i = φ ,et) is assumed to be a constant, which is the

prior probability of an emerging part.
In addition, we also need to know the probability of the j-

th part of the object being mis-detected in the current frame
(denoted by φ j). In this case, we need to separately estimate
P(φ j|H

j
i = h j

i ,et), which is set to constant – either P(φ j|H
j

i =

φ) or P(φ j|H
j

i = detected).

B. Application to Lane Boundary Grouping

In the lane boundary grouping case, X = (L,R), where L is
for the left and R is for the right lane boundary hypotheses.
For P(ec|l,r), we separate the evidence variable, ec, into
the ones that are independent to each other (el for the left
hypotheses and er for the right ones) and the dependent ones
(elr). Then, P(ec|l,r) = P(el|l)P(er|r)P(elr|l,r).

For el and er we use the lane marking support score
introduced in Section III. For elr, we examine the average
lane width and the lane compatibility score. In fact, the lane
width can be slightly increasing or decreasing (within an
image) due to the presence of up-/down-hills or changing
road width. We assume that the lane width can be linearly
increasing or decreasing at a small ratio. Given a lane
boundary pair, the lane width is sampled at various distance
and fit into a linear equation. The lane compatibility score
is inverse proportional to the maximum residual distance.

For P(et|l, lprev) and P(et|r,rprev) the maximum distance
between a curve and a sampled point of the other curve is
used.

Note that there is no hidden variable and all the proba-
bility distribution (including the background models, such
as P(ec|L = false)) can be directly learned from positive
and negative examples. We assumed that most of the above
conditional probability distributions follow a unimodal Gaus-
sian model. One exception is on the lane width. To enforce
a minimum and maximum lane width we use a discrete
distribution instead of a Gaussian one.

It is very tedious to manually give a large number of
positive and negative examples. Therefore, a semi-supervised
learning approach was applied to estimate the parameters.
The procedures are as follows:

1) The probability distribution parameters are given man-
ually to generate a reasonable result. This is not very
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difficult because all the probability distributions are
very intuitive.

2) Automatic detection results are used as a ground truth
to estimate the parameter. Rejected hyoptheses are
considered as negative examples.

3) The lane detection algorithm is once again applied with
the new parameters.

V. EXPERIMENTAL RESULTS

Most of the previous work present the experiments only
on a small number of “demo” images. In [7], the result
is shown on a larger number of image frames, but on a
specific scenario where the lane is detected in the first frame
and tracked throughout the entire sequence. In contrast, we
present experimental results on two recorded video clips
(MPEG) of 176 × 120 image resolution. The total com-
putation was about 30 ∼ 70ms per frame on an Intel R©

Pentium R© M 2GHz processor, and we ran the algorithm
for 10 frames per second. The computation is similar on
a higher resolution video (352× 240) because most of the
computation is done on the fixed sized rectified image.
However, increased resolution will increase the performance,
in general, because we can obtain a rectified image of a better
quality. Currently, a Pentium R© M processor of up to 1.8GHz
is available for embedded computing (PC/104).

The first video clip was 1 minute and 39 seconds in length
(about 1000 frames) and in over 600 frames of them one
or two lane boundaries were visible. The second video clip
was 2 minutes and 8 second long. The video clips include
various different lane types, emerging/ending/merging lanes,
intersections, lane changes, significant obstacles (leading
vehicles), and distracting markings on the road. In addition,
the image resolution and quality (quatersize of MPEG) is
generally poorer than those have been used in the previous
work.

Example results are shown in Figure 8 and Figure 9. No
noticeable false alarms were detected in the first video clip.
The robust lane marking detection procedure removed many
of the false lane markings, and the probabilistic grouping
procedure removed many of the false hypotheses which did
not have enough temporal correlation.

Some detection failures were reported due to a lack of
lane marking support. In the first video clip, single lane
boundaries were temporarily misdetected in 8 cases of total
23 frames and both of the lane boundaries were misdetected
for one case of total 32 frames (in 20 frames of them, only
a single lane boundary was visible).

The overall detection rate is similar to that of a state-
of-the-art non-realtime algorithm [7]. Taking into account
that our example contains much more complicated scenarios
including intersections, lane changes, and obstacles, this is a
very promising result.

In the second video clip, two false alarm cases were
generated by competing lane hypotheses, and one false
tracking was caused by a leading vehicle and its shadow
cast on a lane boundary. In the both of the false alarm
cases, the correct hypotheses were temporarily rejected due

Fig. 8. Example detection results.

to weaker lane marking supports and temporary misdetection
of the right lane boundaries. In addition, one significant
misconfiguration (detecting a curve as a straight line) and
several cases of slight misconfiguration were reported. All
the false alarm cases and the misconfiguration cases are
shown in Figure 9.

The suggested algorithm also work on video images with
low illumination. Preliminary results on dark video images
are shown in Figure 10. Note that the same parameters as
for the above result were used. More misdetections were
observed in this case since the lane marking classifier was
learned with daytime video images. However, it still shows
the robustness of our approach. The mistdetection rate can
be significantly reduced by re-learning the lane marking
classifier with dark video images.

The resulting video clips can be downloaded at
http://path.berkeley.edu/∼zuwhan/lanedetection. Thin red
curves on the left are the selected hypotheses and the thick
orange and yellow curves are the detected left and right lane
boundaries). The raw video clips are also provided for future
comparative studies.

VI. CONCLUSION

We introduced a robust realtime lane detection algorithm
for curved local roads. We first presented a comparative
study on the lane marking classification performance and
the computing cost. Our grouping algorithm is based on
the “hypothesize and verify paradigm. We introduced a
novel approach to combine lane detection and tracking based
on the particle filtering and RANSAC technique. We also
presented a probabilistic grouping approach for part-based
object tracking which can incorporate a likelihood-based
object recognition algorithm into a Markov framework. A
promising result was presented. Our algorithm showed a
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Fig. 9. Example misdetection and false alarms. Only three cases of
significant false alarms or tracking failure were reported in two video clips
of about 2200 total frames.

Fig. 10. Example results on images with low illumination. The right most
on is a misdetection case.

comparable result to a state-of-the-art non-realtime algorithm
on video clips of more complicated scenarios. The future
work will be applying the suggested tracking and grouping
framework to other part-based tracking applications such as
human body tracking.
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