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Preface

Visual servoing is a mature robot control technique using vision in feedback control
loops. Though the first systems date back to the late 1970s and early 1980s, it is not
until the mid 1990s that there is a sharp increase in publications and working systems,
due to the availability of fast and affordable vision processing systems.

Since the last workshops, tutorials, and invited sessions to focus on this topic in the
most important robotics conferences throughout the world (ICRA 94, 96, 98; IROS’97;
AAAI’00; ECCV’00; CIRA’01), significant advances have been achieved, driven by im-
provements of technology (sensor and computation) and the underlying theories of image
segmentation, geometry, motion and control.

This workshop presents advanced theoretical and implementation issues in this field,
with a selection of papers by the most prominent researchers in the community. Innova-
tive control algorithms based on virtual fixtures, insect strategies, the human brain, or
hybrid dynamical systems, as well as robust vision processing techniques are extensively
discussed. Simulations and real experiments illustrate the presented approaches.

The article by Greg Hager outlines a theory of compliant virtual fixtures, and
presents its application to vision-guided assistance, within the framework of human-
machine cooperative manipulation. Visual servoing algorithms are converted into control
algorithms that provide such visual fixtures. A preliminary implementation on the JHU
Steady Hand Robot system is shown, in the domain of minimally invasive microsurgical
tasks.

Though manipulator applications have historically lead the field, visual servoing
for mobile robots is finding a niche with innovative developments. A visual homing
control method for nonholonomic vehicles is presented in the article by Usher, Corke
and Ridley. The method stresses the similarities between insect-based strategies and
visual servoing. Experimental results using an outdoor mobile platform equipped with
an omnidirectional camera illustrate the approach.

The lack of truly operational systems is characteristic in visual servoing. The need for
a robust, flexible vision system hinders its application in domestic environments. This
problem is discussed in the article by Kragic and Christensen, focusing on achieving
robustness for manipulating a variety of objects in a living room setting. A different
approach to increase stability is presented in the paper by Hutchinson and Gans. It relies
on the use of hybrid dynamical systems, consisting of a set of continuous subsystems
and a switching rule. A high-level decision maker selects from two low-level visual servo
controllers, with promising simulation and experimental results.

New control architectures aim to solve the limitations of classical visual servoing
approaches. The article by Hashimoto, Namiki and Ishikawa presents one such archi-
tecture based on the human brain motor control: it is a hierarchical parallel processing
architecture, based on the hierarchical efferent / afferent interaction model for human
visuo-motor control system. The task domain involves a dynamically moving object,
grasped and handled by a manipulator equipped with a dexterous hand and a high
speed vision system.

Finally, the article by Barreto, Martin and Horaud explores the benefits of enhancing
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the field of view with central catadioptric cameras, resulting in a new visual robot control
concept where tracking and control are embedded together. The catadioptric Jacobian
matrix is studied, showing that no additional singularities are introduced with respect
to the traditional pinhole camera model.

We would like to thank the authors for producing such high-quality contributions in
quite a short time. They deserve the credits for this successful event and our gratitude
for eagerly contributing to disseminate their most advanced research work.

Special thanks to Profs. Rüdiger Dillmann and Dario Floreano, IROS 2002 Work-
shop chairs, for their helpful support. And finally, we would like to thank IEEE, RSJ
and EPFL for hosting this workshop in the framework of the IROS conference.

Nicolas Andreff
Enric Cervera
Franois Chaumette
Philippe Martinet
Lausanne, Switzerland
September 2002

Further information

• This workshop is organized in the area of EURON (http://www.euron.org). Since
the beginning of 2002, there exists a European Scientific Interest Group on Visual
Servoing (http://www.robot.uji.es/EURON/visualservoing/).

• In September 2002, a Summer School on Visual Servoing was organized in Benicàssim,
Spain (http://www.robot.uji.es/EURON/visualservoing/summerschool/).
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Human-Machine Cooperative Manipulation With Vision-Based

Motion Constraints

Gregory D. Hager

Department of Computer Science

Johns Hopkins University

Baltimore, MD 21218

Abstract

This paper discusses a class of control algorithms that

provide enhanced physical dexterity by imposing pas-

sive motion constraints. Such motion constraints are

often referred to as virtual �xtures. It is shown that

algorithms originally designed for vision-based con-

trol of manipulators can be easily converted into con-

trol algorithms that provide virtual �xtures. As a re-

sult it is possible to create advanced human-machine

cooperative manipulation systems that take complete

advantage of information provided by vision, yet per-

mit the user to retain control of essential aspects of

a given task.

1 Introduction

Much of \classical" robotics has focused on creat-
ing machines that are autonomous. However, such
endeavors are fundamentally limited by our ability
to create machines that can perceive, judge, and re-
act to unforeseen (or sometimes foreseen!) circum-
stances in the world. To this day, there are still few
situations, other than rote, open-loop manipulation,
where robotics have even begun to compete with hu-
mans, in this regard.

At the other extreme, teleoperation tends to focus on
providing a high-performance, high-�delity operator
interface to a machine. In many ways, this is a nat-
ural marriage, as the human now controls a machine
that may be more accurate, reliable, or powerful than
the human operator. However, while the machine is
clearly amplifying some level of human skill, it does
so at the cost of attenuating others. In particular,
teleoperation systems do not have an underlying rep-
resentation of the intent of the operator. As a result,
it is not possible to adapt or modify the interface
to enhance those skills that are most germain to the
task at hand.

Our group in the Center for Computer Integrated
Surgical Systems (CISST) has been working to cre-
ate surgical systems that improve both the speed and

precision of medical interventions. Our goal is to
create mechanisms that are neither autonomous, nor
purely passive. Rather, our intent is to create mecha-
nisms that selectively provide cooperative assistance
to a surgeon, while allowing the surgeon to retain
ultimate control of the procedure.

In our recent work, we have focused on develop-
ing assistance methods for microsurgery. Here, the
extreme challenges of physical scale accentuate the
need for dexterity enhancement, but the unstruc-
tured nature of the tasks dictates that the human
be directly \in the loop." For example, retinal vein
cannulation [25] involves the insertion of a needle of
approx. 20-50 microns in diameter into the lumen
of a retinal vein (typically 100 microns in diameter
or less)1. At these scales, tactile feedback is prac-
tically non-existent, and depth perception is limited
to what can be seen through a stereo surgical mi-
croscope. In short, such a procedure is at the limit
of what is humanly possible in conventional surgical
practice.

Given the scale of operation, the most obvious need
is to increase the precision of human motion, ideally
without slowing or limiting the surgeon. In recent
work [16, 17, 15], we have begun to develop assis-
tant methods that are based on manipulating the
apparent compliance of tools simultaneously held by
both the surgeon and a robot. Intuitively, if a tool is
extremely sti�, then it is easier to achieve high preci-
sion of motion, and to remove tremor. Conversely, a
low sti�ness makes it possible to perform large-scale
\transport" motions.

Although they increase absolute precision, purely
isotropic compliances cannot take advantage of natu-
ral task constraints to provide structured assistance.
For example, when placing a needle into the lumen of
a blood vessel, the natural mode of assistance would
be to stabilize the needle in the lateral directions, but

1As a point of reference, a human hair is typically on the

order of 80 microns in diameter.
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permit relatively free, quasi-static positioning along
the needle axis.

In this paper, we speci�cally focus on the use of
anisotropic compliances as a means of assistance.
In previous work we have related these anisotropic
compliances to the notion of virtual �xtures [18, 22].
Virtual �xtures, like the real thing, provide a surface
that con�nes and/or guides motion. We initially de-
scribe how virtual �xtures can be produced as a gen-
eralization of previous work in [1, 2, 20], and then
turn to the problem of deriving vision-based virtual
�xtures. Through example, we show how visual ser-
voing algorithms for one camera [3] and two camera
[7, 8] systems can be translated into virtual �xtures.
As a result, much of the previous literature on visual
servoing can be applied to the problem of human-
machine cooperative manipulation.

2 Virtual Fixtures

Our work has been motivated by the JHU Steady
Hand Robot, and, in particular, the assistance
paradigm of direct manipulation it was designed for
[15, 16, 24]. Brie
y, the JHU Steady Hand robot is
a 7 DOF robot equipped with a force sensing handle
at the endpoint. Tools are mounted at the endpoint,
and \manipulated" by an operator holding the force
handle. The robot responds to the applied force,
thus implementing a means of direct control for the
operator. The robot has been designed to provide
micron-scale accuracy, and to be ergonomically ap-
propriate for minimally invasive microsurgical tasks
[24].

In this section, we introduce the basic admittance
control model used for the Steady Hand Robot, ex-
tend this control to anisotropic compliances, and �-
nally relate anisotropic compliances to an underlying
task geometry.

In the remainder of this paper, transpose is denoted
by 0, scalars are written lowercase in normal face;
vectors are lowercase and boldface; and matrices are
normal face uppercase.

2.1 Virtual Fixtures as a Control Law

In what follows, we model the robot as a purely
kinematic Cartesian device with tool tip position
x 2 SE(3) and a control input that is endpoint ve-
locity v = _x 2 <6, all expressed in the robot base
frame. The robot is guided by applying forces and
torques f 2 <6 on the manipulator handle, likewise
expressed in robot base coordinates.

In the Steady-Hand paradigm, the relationship be-
tween velocity and motion is derived by considering
a \virtual contact" between the robot tool tip and
the environment. In most cases, this contact is mod-

eled by a linear viscous friction law

kv = f (1)

or equivalently

v =
1

k
f (2)

where k > 0 controls the sti�ness of the contact. In
what follows, it will be more convenient to talk in
terms of a compliance c � 1=k:

When using (2); the e�ect is that the manipulator
is equally compliant in all directions. Suppose we
now replace the single constant c with a diagonal
matrix C:Making use of C in (2) gives us the freedom
to change the compliance of the manipulator in the
coordinate directions. For example, setting all but
the �rst two diagonal entries to zero would create a
system that permitted motion only in the x-y plane.
It is this type of anisotropic compliance that we term
a virtual �xture. In the case above, the �xture is
\hard, " meaning it permits motion in a subspace of
the workspace. If we instead set the �rst two entries
to a large value, and the remaining entries to a small
one, the �xture becomes \soft." Now, motion in all
directions is allowed, but some directions are easier
to move in than others. We refer to the motions
with high compliance as preferred directions, and the
remaining directions as non-preferred directions.

2.2 Virtual Fixtures as Geometric Con-

straints

While it is clearly possible to continue to extend the
notion of virtual �xture purely in terms of compli-
ances, we instead prefer to take a more geometric
approach, as suggested in [1, 2]. We will develop this
geometry by speci�cally identifying the preferred and
non-preferred directions of motion at a given time
point t: To this end, let us assume that we are given
a 6 � n time-varying matrix D = D(t); 0 < n < 6:
Intuitively, D represents the instantaneous preferred
directions of motion. For example, if n is 1, the pre-
ferred direction is along a curve in SE(3); if n is 2
the preferred directions span a surface; and so forth.

FromD; we de�ne two projection operators, the span
and the kernel of the column space, as

Span(D) � [D] = D(D0D)�1D0 (3)

Ker(D) � hDi = I � [D] (4)

This formulation assumes that D has full column
rank. It will occasionally be useful to deal with cases
where the rank of D is lower than the number of
columns (in particular, the case when D = 0). For
this reason, we will assume [ � ] has been implemented
using the pseudo-inverse [23, pp. 142{144] and write

Span(D) � [D] = D(D0D)+D0 (5)

andreff
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Ker(D) � hDi = I � [D] (6)

The following properties hold for these operators
[23]:

1. symmetry: [D] = [D]
0

2. idempotence: [D] = [D][D]

3. scale invariance: [D] = [kD]

4. orthogonality: hDi0[D] = 0

5. completeness: rank(�hDi + �[D]) = n where D
is n�m and �; � 6= 0

6. equivalence of projection: [hDif ]f = hDif

The above statements remain true if we exchange
hDi and [D]: Finally, it is useful to note the following
equivalences:

� [[D]] = [D]

� hhDii = [D]

� [hDi] = h[D]i = hDi

Returning to our original problem, consider now de-
composing the input force vector, f ; into two com-
ponents

fD � [D]f and f� � f � fD = hDif (7)

It follows directly from property 4 that fD � f� = 0
and from property 5 that fD + f� = f Combining (7)
and (2), we can now write

v = cf = c(fD + f� ) (8)

Let us now introduce a new compliance c� 2 [0; 1]
that attenuates the non-preferred component of the
force input. With this we arrive at

v = c(fD + c� f� )

= c([D] + c� hDi)f (9)

Thus, the �nal control law is in the general form of an
admittance control with a time-varying gain matrix
determined by D(t). By choosing c; we control the
overall compliance of the system. Choosing c� low
imposes the additional constraint that the robot is
sti�er in the non-preferred directions of motion. As
noted above, we refer to the case of c� = 0 as a
hard virtual �xture, since it is not possible to move in
any direction other than the preferred direction. All
other cases will be referred to as soft virtual �xtures.
In the case c� = 1; we have an isotropic compliance
as before.

It is also possible to choose c� > 1 and create a
virtual �xture where it is easier to move in non-
preferred directions than preferred. In this case, the
natural approach would be to switch the role of the
preferred and non-preferred directions.

2.3 Choosing the Preferred Direction

The development to this point directly supports the
following types of guidance:

� Motion in a subspace: suppose we are sup-
plied with a time-varying, continuous function
D = D(t): Then applying (9) yields a motion
constraint within that subspace.

� Motion to a target pose xt 2 SE(3): Suppose
that we have a control law u = f(x;xt) such
that by setting v = u;

lim
t!1

x = xt:

Then by choosing D = u and applying (9), we
create a virtual �xture that guides the user to
the given target pose.

These two tasks are, in some sense, at the extremes
of guidance. In one case, there is no speci�c objective
to attain; we are merely constraining motion. In the
second, the pose of the manipulator is completely
constrained by the objective. What of tasks that fall
between these two extremes?

To study this problem, let us take a simple, yet il-
lustrative case: the case of maintaining the tool tip
within a plane through the origin. For the moment,
let us neglect manipulator orientation and consider
the problem when controlling just the spatial po-
sition of the endpoint. We de�ne the surface as
P (p) = n � p = 0 where n is a unit vector expressed
in robot base coordinates.

Based on our previous observations, if the goal was
to allow motion parallel to this plane, then, noting
that n is a non-preferred direction in this case, we
would de�ne D = hni and apply (9). However, if the
tool tip is not in the plane, then it is necessary to
adjust the preferred direction to move the tool tip
toward it. Noting that P (x) is the (signed) distance
from the plane, we de�ne a new preferred direction
as follows:

Dc(x) = [(1� kd)hnif=kfk � kd[n]x] 0 < kd < 1:
(10)

The geometry of (10) is as follows. The idea is �rst
produce the projection of the applied force onto the
nominal set of preferred directions, in this case hni:
At the same time, the location of the tool tip is pro-
jected onto the plane normal vector. The convex

andreff
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combination of the two vectors yields a resultant vec-
tor that will return the tool tip to the plane. Choos-
ing the constant kd governs how quickly the tool is
moved toward the plane. One minor issue here is
that the division by kfk is unde�ned when no user
force is present. Anticipating the use of projection
operators, we make use of a scaled version of (10)
that does not su�er this problem:

Dc(x) = (1�kd)hnif�kdkfk[n]x 0 < kd < 1: (11)

We now apply (9) with D = Dc:

Noting that the second term could also be written

kfkkdP (x)n;

it is easy to see that, when the tool tip lies in the
plane, the second term vanishes. In this case, it is
not hard to show, using the properties of the projec-
tion operators, that combining (11) with (9) results
in a law equivalent to a pure subspace motion con-
straint. One potential disadvantage of this law is
that when user applied force is zero, there is no vir-
tual �xture as there is no de�ned preferred direction.
Thus, there is a discontinuity at the origin. However,
in practice the resolution of any force sensing device
is usually well below the numerical resolution of the
underlying computational hardware, so the user will
never experience this discontinuity.

With this example in place, it is not hard to see its
generalization to a broader set of control laws. We
�rst note that another way of expressing this example
would be to posit a control law of the form:

u = �(n � x)n = �[n]x (12)

and to note that assigning v = u would drive the
manipulator into the plane. This is, of course, ex-
actly what appears in the second term of (11). If we
now generalize this idea, we can state the following
informal rule.

General Virtual Fixture Rule: Given:

1. A surface S � SE(3) (the motion objective)

2. A control law u = f(x; S) where by setting v =
u;

lim
t!1

x 2 S:

(the control law moves the tool tip into S)

3. A rule for computing preferred directions D =
D(t) relative to S where hDiu = 0 i� u = 0 (the
motion direction is consistent with the control
law)

then applying the following choice of preferred direc-
tion:

Dg(x) = (1� kd)[D]f � kdkfkhDiu 0 < kd < 1:
(13)

yields a virtual �xture that controls the robot to-
ward S and seeks to maintain user motion within
that surface.

Note that a suÆcient condition for condition 3 above
to be true is that, for all pairs u = u(t) and
D = D(t); [D]u = 0: This follows directly from the
properties of projection operators given previously.

To provide a concrete example, consider again the
problem of moving the tool tip to a plane through
the origin, but let us now add the constraint that
the tool z axis should be oriented along the plane
normal vector. In this case, n is a preferred direc-
tion of motion (it encodes rotations about the z axis
which we don't care about). Let z denote the vector
pointing along the tool z axis and de�ne a control
law that is

u =

�
�(x � n)n
z� n

�
(14)

It is easy to see that this law moves the robot into
the plane, and also simultaneously orients the end-
e�ector z axis to be along the normal to the plane.
Now, let

D = D(t) =

�
hni 0
0 n

�

It follows that [D] is a basis for translation vectors
that span the plane, together with rotations about
the normal to the plane. Therefore [D]u = 0 since
(14) produces translations normal to the plane, and
rotations about axes that lie in the plane. Thus, the
general virtual �xturing rule can be applied.

3 Vision-Based Virtual Fixtures

Now, we turn to the problem of providing assistance,
where the objective de�ning the virtual �xture is ob-
served by one or more cameras. To simplify the pre-
sentation, in what follows we assume that we have
calibrated the camera internal parameters and can
therefore work in image normalized coordinates.

3.1 Controlling the Viewer: Pure Transla-

tion

Let us start with a well-studied problem. We have
a camera �xed to the endpoint of the manipulator,
and the camera observes a �xed, static environment.
Our goal is to control the motion of the end-e�ector
by de�ning a motion for the camera itself based on
information extracted from the camera image.

To keep things simple, consider �rst the case of pure
translation (v 2 <3) where the camera is aligned
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with the robot base frame. In this case, the rela-
tionship between the motion of the camera and the
image motion of a �xed point in space is given by
the well-known image Jacobian relationship [12]:

_h = Jv (15)

where h = (u; v)0 2 <2 is the image location of a
feature point, and J is 2� 3:

It is again well-known [3, 12] that the rows of J span
the (two-dimensional) space of motions that create
feature motion in the image, and therefore hJ 0i is
the (one-dimensional) space of motions that leave the
point �xed in the image. Consider, thus, creating a
virtual �xture by de�ning

D = J 0 (16)

in (9). From the discussion above, it should be clear
that this will create a virtual �xture that prefers mo-
tion in any direction except along the viewing direc-
tion. While it would seem we are done at this point,
there is one minor issue: the image Jacobian depends
on the depth of the estimated point. However, if we
consider the form of the Jacobian in this case, we see
it can be written thus:

J =

2
664

1

z
0

�u

z

0
1

z

�v

z

3
775 =

1

z

�
1 0 �u
0 1 �v

�
(17)

As such, we see that the term involving z is a scale
factor and, as noted earlier, our projection operators
are invariant over scaling of their argument. Thus,
we have our �rst result:

Image plane translation: If we restrict v to be
pure translation and choose an image location h =
(u; v)0; then implementing (9) using

1. D = J 0 creates a virtual �xture that prefers mo-
tion in the plane normal to the viewing direction
de�ned by h and the camera optical center

2. D = hJ 0i creates a virtual �xture that prefers
motion along the viewing direction de�ned by h
and the camera optical center.

As a special case, choosing u = v = 0 yields a vir-
tual �xture parallel to the image plane, which, as is
obvious from (17), is the camera x-y plane.

It is important to note that the image plane virtual
�xtures de�ned above can be implemented both with
and without feedback. That is, if we simply choose

a �xed image location (e.g. the origin), then the
camera will always move in a plane orthogonal to
the line of sight through the chosen location. On the
other hand, if we choose to track a feature over time,
then the motion will always be orthogonal to the line
of sight to that feature.

The other possibility, with a single feature, is to
maintain the visual cue at a speci�c image location.
For example, suppose the goal is to center an ob-
served point h in the image. Since our objective is
at the origin, we can de�ne a control law of the form

u = �J 0h (18)

where J is evaluated at the origin. It is possible to
show this law will converge for any feature starting
and remaining in the image [14]. Furthermore, the
preferred directions of motion in this case are hJ 0i
and so it follows that hhJ 0iiu = �[J 0]J 0h = 0 only
when h = 0: Since u 6= 0 when h 6= 0; we can apply
the general virtual �xturing rule.

At this point, we can state a useful specialization for
the rest of this paper:

General Vision-Based Virtual Fixtures Sup-
pose we are supplied with an error term e = e(x):
Let S = fxje(x) = 0g; let J = @e=@x; and de�ne
u =WJ 0e whereW is a symmetric, positive de�nite
matrix of appropriate dimension (e.g. W = (J 0J)+).
Then the general virtual �xture rule can be applied
with preferred directions hJ 0i provided u so com-
puted converges to S:

There is an interesting variation on this. Suppose we
choose no preferred direction of motion (i.e. D = 0:)
In this case, the �rst term of (13) disappears and the
preferred direction in (9) is simply u: Thus, the result
is a virtual �xture that moves the robot to a target
position (compare with the rules at the beginning
of Section 2.3) and then becomes isotropic. Note,
however, that by de�nition u is always orthogonal to
the line of sight, so the camera prefers to maintain a
constant distance to the point during motion.

To press home these points, consider a �nal problem:
to place a speci�c image location on an observed line,
and to facilitate motion along the line. Following
the development in [8], suppose we observe a �xed
line l 2 <3; where the three components of l can be
thought of as the normal vector to the line in the
image, and the distance from the origin to the line.
This vector is also parallel to the normal vector to
the plane formed by the optical axis and the line
as it appears in the image plane. We also furnish
a distinguished image location ĥ 2 <3; expressed in
homogeneous coordinates. We can then de�ne e =
ĥ�l; to be the image-plane distance between the point
and the line.

andreff
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First, we note that the image Jacobian (relative to
e) is now simply

L = l0
�
J
0

�
2 <3

(note that the z dependence in L is once again a
non-issue). As we would now expect, L represents
non-preferred directions of motion, as it spans the
space of motions that change the distance from the
point to the line. As a result, choosing preferred
directions as hL0i in (9) would prefer camera motion
within the plane encoded by l:

In order to actually place the designated point onto
the line, we note that the control law

u = L0e (19)

will move the feature point ĥ to the observed line
[8]. Hence, we apply (13) using D = hL0i and u as
de�ned above | in short, another application of the
general vision-based virtual �xture rule.

3.2 Controlling the Viewer: General Case

In moving from pure translation to general robot mo-
tion, almost nothing changes from the previous sec-
tion other than increases in dimensionality. In the
case of full motion in SE(3); the image Jacobian be-
comes 2� 6 and has the following general form:
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As shown in [10], the kernel of the image Jacobian
given in (20), is spanned by the four vectors
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(21)
where d = (u2 + v2 + 1): As such, we can see that
the kernel spans motions that include: 1) motion
along the line of sight; 2) rotation about the line of
sight; 3) motion on a sphere linking the point with
the camera; and, linear combinations thereof. Note
that 3) spans two degrees of freedom.

If we reconsider all of the cases of the previous sec-
tion, we see that by using the full Jacobian, we
achieve the same virtual �xtures, albeit in a larger

space of allowed motions. In particular, choosing
D = hJi now prefers motions on a sphere about the
observed point, together with rotation about, and
translation along, the line of sight. It is, however,
important to note that the distance from the camera
to the observed point no longer \drops out" of the
system as in the case of pure translation. Therefore,
distance must be estimated, for example by using
adaptive schemes as outlined in [21].

At this point, we redirect the reader to [3], where it
is observed that regulating the motion of the cam-
era through invariants de�ned on observed features
or measures thereof creates a broad family of \vir-
tual linkages" between the camera and the world. In
e�ect applying the constructions as laid out above
to these control laws, creates a corresponding family
of virtual �xtures. Likewise, more recent \hybrid"
approaches to control that seek to produce more reli-
able converge of visual servoing methods [19] and/or
control other properties of the motion of features in
the image plane [4, 5] can be applied, to the extent
that the properties outlined in Section 2.3 are satis-
�ed.

3.3 More General Camera Con�gurations

Until now, we have only considered a single end-
e�ector mounted camera. However, it is important
to note that everything we have said above can be
applied to the case of a �xed camera observing an in-
dependently moving manipulator, with suitable ad-
justment of the form of the image Jacobian. Fur-
thermore, we note that, for either con�guration, ob-
serving both the end-e�ector and the external fea-
tures de�ning the task creates an endpoint closed-
loop control law which has well-known robustness
against camera calibration error [7, 8, 11, 12]. Like-
wise, methods for estimating the image Jacobian on-
line [13] can, in principle, be applied practically with-
out change.

As a �nal generalization, we could also add a second
observing camera. It is well known [8, 12] that the
relationship between control velocities and changes
in observed image errors are expressed by \stack-
ing" the individual image Jacobians for each cam-
era, now expressed in a common coordinate system.
Furthermore, the estimate of z (depth) in the Ja-
cobian becomes trivial using triangulation from the
two cameras. If we return to our list of examples,
the following comments apply:

Pure Translation In the case of feature points
and pure translation, the stacked Jacobian matrix
spans the entire space of robot motions (except for
points along the baseline of the two-camera systems),
and therefore it is not possible to de�ne interesting
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virtual �xtures other than point targeting.

If we consider the case of following a line, however,
then when we stack the two Jacobians as before and
apply the general vision-based virtual �xture rule,
we arrive at a control law that e�ectively creates a
prismatic joint that permits motion strictly along a
line in space.

General Motion For general motion, we see that
the \stack" of two Jacobians for feature-point servo-
ing creates a spherical joint: the preferred degrees of
freedom are motion on a sphere about the observed
point while maintaining direction to the point (two
degrees of freedom) and rotation about that line of
sight (one degree of freedom). This may, at �rst,
seem counter-intuitive since the stacked Jacobian has
4 rows. However, due to the epipolar constraints of
the camera, one of these constraints is redundant
and thus the Jacobian spans only three degrees of
freedom. If we add a second point, we further re-
duce the degrees of freedom by two, with the remain-
ing allowed motion being rotation about the line de-
�ned by the two observed points. A third observed
point completely determines the pose of the observed
(or observing) system, and so virtual �xturing once
again reduces to motion to a target pose.

In the case of placing a point on a line, the image
constraints now create a constraint on two degrees
of positional freedom. It is, however, still possible to
rotate in any direction (with the constraint that the
rotation preserved distance to the observed point)
and to move along the line. Placing a second point
on the line reduces this to two degrees of freedom
(rotation about the line and translation along it).

For a complete categorization of image-plane con-
structions for two-camera systems, we refer the
reader to [8, 6].

4 Preliminary Tests

A preliminary version of the algorithms described
above were implemented on the JHU Steady Hand
Robot system (SHR) [16]. Here, we brie
y describe
the setup, the results, and its relationship to the
more general framework given above. More details
can be found in [1].

The robot was equipped with a vision sensor rigidly
attached to the force-sensing handle on the end ef-
fector. We chose to execute two-dimensional tasks
parallel to the image plane, which was in turn ar-
ranged to be parallel to two of the base stages of
the robot. We performed experiments using a CCD
camera at the macro scale and a grin lens endoscope
at the micro scale. The vision sensor always viewed

Figure 1: The experimental setup of the steady hand

robot using virtual �xtures to assist in path following

and positioning tasks: left, macro scale; right, micro

scale.

the task plane, allowing reading of the motion refer-
ences and real-time display of task execution (Figure
1). On-screen display of the task execution is useful
for operators at the macro scale, and essential at the
micro scale, as it would be impossible to complete
the task using the naked eye.

The path was furnished to both the system and
the user by printing a sine curve (35mm amplitude,
70mm wavelength, and 0.54mm width) on the task
plane (in black on white paper). At micro scale, it
was not possible to print a suÆciently smooth curve,
so we instead embedded a wavy human hair (about
80 �m diameter) in glue on a yellow sheet of paper.
In the macro case, the camera was positioned 200mm
from the paper, yielding a pixel footprint of 0.066mm
on the working surface. In the micro case, the endo-
scope was about 150 �m above the working surface,
yielding a pixel footprint of about 1 �m (Figure 2).

The center of the image was graphically marked, and
users were instructed to perform path following tasks
relative to this mark. The sensor on the handle was
used to record user commands. The force sensor res-
olution is 12:5mN and force values are expressed as
multiples of this base unit.

Visual tracking (XVision system [9]) was used to
measure (in real time) the local position and tangent
direction, d; to the path. Subpixel interpolation was
used to increase the precision of these measurements.
The vision and control subsystems executed on two
di�erent PCs, and the data exchange was realized
over a local network. The control system operated
at 100 Hz, using the most recent available data from
the vision system and handle force sensor.

In terms of our previous formulation, the marked im-
age location at the image center means that x = 0
Further, the workspace is a plane, (x 2 <2): The
preferred direction is given by the tangent measure-
ments from the tracking algorithm. Implicitly, the
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control law used to position the manipulator on the
line is

u = s� x = s (22)

where s 2 <2 is the current location of the visual
tracker in the image. Further, s was constrained to
lie along the line through the marked image location,
normal to d: Choosing d as the preferred direction of
motion, we see the conditions of the general virtual
�xturing rule are satis�ed.

This class of virtual �xtures has been tested at both
macro and micro scales. Results for a speci�c user
and a wide class of compliances and situations can
be found in [1, 2]. Tests for a larger class of users
can be found in [20].

5 Conclusion

In this paper, we have outlined a broad theory of
compliant virtual �xtures, and have applied that the-
ory to the speci�c case of vision-guided assistance.
Our earlier work suggests that such virtual �xtures
can be a useful aid to dextrous manipulation.

In many ways, this paper is intended to point toward
interesting further directions to be explored. First
and foremost, we have begun to develop a general
means for translating control algorithms into virtual
�xtures. However, the treatment to this point has
not been suÆciently formal to determine when such
a translation is possible. In particular, we have not
described how to exhibit a set of preferred directions
that are consistent with a control input. Further,
we have not o�ered a formal de�nition of guidance
with virtual �xtures that would permit a general the-
oretical statement of an equivalence between active
control and passive virtual �xturing. These remain
interesting open problems.

On the practical side all of our experiments with
vision-guided virtual �xtures have been within a
very speci�c setup. Numerous issues must be solved
before a robust, general implementation of vision-

Figure 2: Endoscope image of the 80 �m-diameter

human hair used as the path in micro scale experi-

ments.

guided virtual �xtures can be achieved. For exam-
ple, in our previous work, gain shaping was essential
to maintain stability. Similarly, there needs to be
careful gain shaping to accommodate the di�ering
scales of forces and torques. More importantly, the
ergonomics of this wider class of guidance modes re-
mains to be explored.

Finally, it is important to point out that most virtual
�xtures apply in a very limited task context. Thus,
it is important to consider how to combine guidance
modes in parallel (e.g. a force-based guidance mode
along a needle axis combined with a vision-based vir-
tual �xture to position the needle and a position-
based alignment �xture), and to sequence them. Ini-
tial work on the latter problem will be reported in a
forthcoming paper.
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Abstract

In this paper, we extend the planar visual servoing
methodof Corke [8] to the caseof a nonholonomic,car-
like vehicle. Thecontrol methodpresentedis basedon a
Lyapunov-like function,such as that presentedby Aicardi
et al. [12] andalsoincorporatesa hypothesison thenavi-
gationbehaviourof thedesertant cataglyphisbicolor. The
methodallows positioningto a learnt location basedon
featurebearingangleandrangediscrepanciesbetweenthe
robot’s current view of the environmentand that at the
learnt location. We presentsimulationsand experimental
results,the latter obtainedusingour outdoormobileplat-
form which is fittedwith, amongothersensors,an omnidi-
rectionalcamera.

1 Intr oduction

Theproblemweaddresshereis thatof stabilisinganon-
holonomicmobile robot to a specifiedposeusing purely
sensor-basedstrategies. To this endwe have drawn inspi-
ration from themoretraditionalclosed-loopcontrol-based
approaches,andthosetakenby researchersinterestedin the
navigational behaviour of insects. In fact, thereare vast
similaritiesbetweenthesetwo approaches;hereweexploit
theadvantagesof each.

Insectsin generaldisplayamazingnavigation abilities,
traversingdistancesfar surpassingthe bestof our mobile
robotson a relative scale. To do this, evolution haspro-
vided insectswith many ‘shortcuts’enablingthe achieve-
ment of relatively complex taskswith a minimum of re-
sourcesin termsof processingpower andsensors[27]. In
particular, the high ground temperaturesencounteredby
the desertant, cataglyphisbicolor, eliminatepheremones
asa potentialnavigation aid, as is usedby antsin cooler
climates[19]. The desertant navigatesusinga combina-
tion of pathintegrationandvisualhoming.

Visualhoming,alsoknown asvisualpiloting, is thepro-
cessof matchinganagent’s currentview of a locationin a
distinctivelocaleto a(pre-stored)view atsometargetposi-
tion,usingany discrepanciesbetweenthetwo viewsto gen-
eratea commandthat drivesthe agentcloserto the target
position. Theprocessenablestheagentto ‘find’ positions
in distinctive locales.Thesedistinctive localescanthenbe
linked to generatepathsthroughan environment[14,18],
eliminatingtheneedfor complex map-likerepresentations,

insteadembeddingthis knowledge in terms of what the
agent’ssensorscan‘see’ [17].

Therearetwo classesof visualhoming,theimage-based
andthe landmark-basedtechniques.Image-basedhoming
usesdifferencesin theraw imagestakenat thecurrentand
targetlocationsto deriveahomingvector. Landmark-based
homingusessalientfeaturesextractedfrom thecurrentand
targetviews to derive a homingvector[29]. Here,we are
interestedin thelandmark-basedtechniques,andin partic-
ular thosethatdonotrequireuniquelyidentifiedlandmarks
— landmarksarecharacterisedby their rangeandbearing
with respectto a compassdirection.

Interestingstrideshave beenmadein servoing to a po-
sition throughtheapplicationof hypotheseson insectnav-
igation to themobile robotcase[19,29,30]. Thesestrate-
giesutilise thediscrepanciesbetweentheagent’s (robot’s)
currentview of the workspaceanda snapshotof the tar-
get location. For visual piloting, insectsrely on the rela-
tive bearinganglesbetweenlandmarks,andknowledgeof
an absolutereferencedirection, suchas that provided by
the polarisationpatternof sunlight [19,28]. Insectscan-
not measurerangedirectly dueto their fixed focusoptics
and immobile eyes. However, estimatesof rangecan be
achieved throughoptic flow techniquesandby estimating
changesin theapparentsizeof anobject[26].

In the control community, the problem of stabilising
a mobile robot to a specificposehasgenerallybeenap-
proachedfrom two directions; the open loop strategies
and the feedbackcontrol strategies. Openloop strategies
seekto find a boundedsequenceof control inputs,driving
thevehiclefrom aninitial positionto somearbitraryposi-
tion, usuallyworking in conjunctionwith amotionplanner
(e.g.[20,23]). Thereactive, feedbackcontrol systemsuse
theenvironmentitself for navigation. However, dueto the
well-known limitations presentedby Brockett, thereis no
smooth,continuouscontrollaw which canlocally stabilise
closedloop nonholonomicsystemsto a point [4]. These
limitations can be overcomeby either relaxing the con-
straintson desiredpose(i.e. stabilisingto a point without
a guaranteeon orientation,seee.g.[19,25,29,30]), using
discontinuouscontrol techniques(seee.g. [2, 3,7]), or by
usingtime-varyingcontrol(seee.g.[25]).

For thetaskat hand,we arguethecasefor thefeedback
control methods,with vision usedas the primary sensor.
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Thesefeedbackcontrol methodscorrespondwith the in-
sectinspiredstrategiesdiscussedearlier. Feedbackcontrol
systemsaregenerallymorerobust to uncertaintyanddis-
turbancesasopposedto their open-loopcounterparts.All
realmobilerobotsandsensorsaresubjectto noiseandun-
certainty— feedbackcontrol would thus seemessential.
However, it is clearthat a measureof openloop planning
is alsousuallyrequiredin orderto preventdeadlocksitua-
tionsfrom occurring.Here,weareconcernedonly with the
feedbackcomponentfor the taskof servoing to a position
andorientation.

Similarities betweenthe insect basedstrategies and
thoseof the more rigorouscontrol basedvisual servoing
algorithmsareabundant. However, when appliedto mo-
bile robots,the constraintsof Brockett’s theoremprevent
the insect-basedstrategies from completelyresolvingthe
pointstabilisationproblem;they canservo to apositionbut
cannotguaranteea particularorientation. In contrast,the
control-basedstrategiesarestill in their infancy with regard
to effectiveuseof vision asa sensor. Both theclosedloop
control andinsectbasedstrategiesbearstriking similarity
to theattractivefieldsfoundin artificial potentialfields.

Theremainderof thispaperis arrangedasfollows: Sec-
tion 2 detailsour control methodandhow we combinea
non-linearcontrolmethodwith the insect-basedliterature;
Section3 describesour experimentalsystemand briefly
outlinessomepreliminaryresults;Section4 concludesthe
paperandpresentssomedirectionsof futureinterest.

2 Control Strategy

In thissectionwedevelopacontrolstrategy whichcom-
binesa Lyapunov-like formulationwith a derivative of the
insectinspiredAverageLandmarkVectormodelof naviga-
tion presentedby Lambrinoset al. [19]. First we adaptthe
Lyapunov-basedcontrollerpresentedby Aicardi etal. [1,2]
to acar-likevehicle.We thenoutlinea techniquewhichal-
lowsservoing to apose,basedon measurementsof therel-
ative distanceandorientationto oneor morelandmarksin
aworkspace.Thetechniqueusedhasits basisin amodelof
ant navigationbut incorporatessomeimprovementsavail-
ableto oursensor’shigherresolutionview of theworld.

2.1 Kinematics

This particularapplicationof visual servoing seeksto
relatethe bearinganglechangesof selectedlandmarksto
vehiclemotion throughthreestateequationsderivedfrom
transformingtheCartesianrepresentationof a car-like ve-
hicle’s kinematicsinto a polar representation.The polar
representationis a more‘natural’ representationfor a ve-
hicle, andcorrespondsto the spaceusedby the vehicle’s
sensors.This transformationalsoallows the limitationsof
Brockett’s theoremto beovercome[12]. Referringto Fig-
ure1, thekinematicsin Cartesianspaceof ourexperimental
vehiclearecart-likeandgivenby:

ẋ vcosθ
ẏ vsinθ
θ̇ v tanφ

L

(1)

θ*

θ*

v

L y−
ax

is

x−axis
θ

ϕ

φ
e

(x, y)

δ

δ

target pose

Figure 1: Thecoordinatesystemandconventionsused.All
anglesaremeasuredcounter-clockwisepositive.

wherev is thevehicle’s forwardvelocity (measuredat the
centreaxleof therearwheels),L is thevehicle’slength,φ is
thesteeringangle,andthepoint x y refersto thecentreof
the front axle. In a polar representation,whenreferringto
sometargetposeasmarkedin Figure1, we defineseveral
quantities:

δ — the desiredheadingangle to the goal position
relative to thegoalorientation,θ

ϕ — the desiredheadingangleto the goal position
relative to thevehicle’scurrentheading,θ

e — thedistanceto thegoalposition.

The angles’ δ and ϕ are relatedby: δ θ θ ϕ.
Hence,in polar coordinates,the kinematicequationsbe-
come:

ė vcosϕ
ϕ̇ vsin ϕ

e
vtanφ

L
δ̇ vsinϕ

e

(2)

asθ is a constant.

Thefirstof theaboveequationsrelatestherateof change
of thedistancee to thetargetposition,to thevehicle’s ve-
locity andtherelativeorientationof thetargetposition.The
secondrelatesthe rateof changeof thebearingto the tar-
get location,relative to thedesiredorientationθ , andthe
vehicle’scontrolinputs(v andφ). Thethird equationis the
basicopticflow equation,relatingtherateof changeof the
targetpositionsabsoluteorientationto thevehicle’s trans-
lationalvelocity.

2.2 Lyapunov-lik econtroller

Aicardi et al. [1, 2] presenteda method basedon a
Lyapunov-like formulationenablinga unicycle-like vehi-
cle to stabiliseto a posefrom anywherein theworkspace.
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Our techniquebuilds on this work, adaptingit to a car-like
vehicle,allowing servoing to a goal positionandorienta-
tion.

The Lyapunov-like formulation seeksto minimise the
‘energy’ of thesystemdescribedby thesystem’sLyapunov
function — this function is minimisedat the target pose.
Thesystemis driventowardstheminimumenergy stateby
ensuringthatthederivativeof theLyapunov functionis al-
waysnon-positive. In fact, this hasmany similaritieswith
theattractivefieldsusedto driverobotstowardsagoalpose
usingartificial potentialfields(seee.g.[16,20]). This sim-
ilarity could be further exploited by alsoincluding analo-
gousrepulsivecomponentsin theLyapunov function,lead-
ing to combinedhomingandobstacleavoidance.

In orderto stabilisethesystemdescribedby equation2
to a particularpose,we considerthesimplestchoicefor a
candidateLyapunov function;thepositivedefiniteform:

E E1 E2

1
2

λe2 1
2

ϕ2 k3δ2 λ k3 0

Takingthederivativeof this functiongives:

Ė Ė1 Ė2

λėe ϕ̇ϕ k3δ̇δ

λevcosϕ ϕ
vsin ϕ

e
vtanφ

L
δ

vsinϕ
e

Thefirst termcanbemadenon-positivewith thefollow-
ing choicefor thevehicle’svelocity:

v k1ecosϕ k1 0 (3)

leadingto: Ė1 λk1e2cos2ϕ.

Thesecondtermcanbemadenon-positiveby choosing
thearctangentof thevehicle’ssteeringangleto be:

arctanφ
L
e

k2ϕ
k1cosϕ

sinϕ
ϕ

ϕ k3δ k2 0 (4)

wherethe earlierchoicefor velocity hasbeensubstituted.
This leadsto Ė2 k2ϕ2.

Theoverallderivativeof theLyapunov functionis then:

Ė λk1e2cos2ϕ k2ϕ2

which is always non-positive. By invoking LaSalle’s in-
variantsettheory, it canbeshown thattheabovesystemis
globally asymptoticallystableandconvergesto ϕ e δ
0 0 0 .

The control techniquederived above assumesthat the
distanceandanglesto thetargetlocationcanbemeasured.
In the next section,we detail a landmark-basedtechnique
which yields this informationwithout explicit knowledge
of the robot’s pose;sensingis provided by an omnidirec-
tional cameraanda compass.

2.3 Ant navigation

The desertant, cataglyphisbicolor, is unable to use
pheremonesto navigatedue to the high groundtempera-
turesfound in its habitat.Thus,it relieson a combination
of visual piloting andpath integration,enablingit to find
nestopeningsof lessthan a few millimetres after forag-
ing journeys of several hundredmetres[19,31]. Figure2
shows a particularforagingpathsuchanant [32]. On this
journey, theanthastravelleda roundtrip distanceof over
two hundredmetres,returningto anestwith anopeningof
lessthan5mm, equatingto adrift rateof lessthan0.0025%
in its navigationsystem.Comparingthis to high-endcom-
mercialinertial navigationunits for landbasednavigation,
which have drift ratesof the order0.1%of distancetrav-
elled [11], demonstratesthe effectivenessof this insects
navigationsystem.

Figure 2: An example of the amazing naviga-
tion feats of the humble ant. Diagram courtesy
www.neuroscience.unizh.ch/e/groups/wehner00.htm,Rudi-
ger Wehner.

Here however, we are interestedin the visual piloting
componentof theantsnavigationsystem.Whenvisualpi-
loting, antstake a ratherunprocessedview of thetargetlo-
cationandmatchit with a currentview, usingthediscrep-
anciesto derive a directionof movement.Matchingchar-
acteristicsusedare the differencesin landmarkbearings,
apparentsizeandapparentheight[19].

An eleganthomingmethoddevelopedfrom hypotheses
on how theseantsmight usevisualpiloting is theAverage
LandmarkVectormodel. An ALV for any particularpo-
sition in the workspaceis found by summingunit vectors
towardsall currentlyvisible landmarks,anddividing by the
numberof landmarks.By matchingthecurrentALV with
a pre-storedALV of the target location,a homingvector
canbe formedwhich drivesthe agent(robot) towardsthe
target location[19]. In order to consistentlyaddthe vec-
tors in the ALV model,an absolutereferencedirection is
required,and,unlessapparentsizeinformationis incorpo-
rated,aminimumof threelandmarksis needed.
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In mathematicalterms,a singlelandmarkvectoris de-
finedas:

Li x
x xi

x xi

wherex is thecurrentlocationandxi is thelandmarkloca-
tion. NotethatLi x givesthelandmark’s orientationrela-
tive to thecurrentpositionx; all thatis requiredto measure
Li is the absolutebearingof the landmark. The Average
LandmarkVectorat locationx is thengivenby:

ALV x
1
n

n

∑
i 1

Li x

wheren is thenumberof landmarks.TheALV at thetarget
locationis recordedanddesignatedALVt . GivenALVt and
the currentAverageLandmarkVector, ALVc, the homing
vectoris givenby:

H x ALVc ALVt

The ALV methoddoesnot requireany knowledgeof the
robot’slocation.All thatis neededis thetargetALV vector,
which representshome,andthebearingsof thelandmarks
thatcanbeseenat thecurrentlocation.Thus,it is asensor-
basedstrategy. Referto Figure3 (a) for an illustration of
theALV method.Figure3 (b) showstheattractivenatureof
the ALV methodfor a workspacewith several landmarks,
illustratingits similarity to theeandϕ measuresusedin the
Lyapunov controller.

Considera workspaceof 10m 10m, with the origin
defined as the home position, and landmarksplacedat
8 8 5 5 3 6 4 7 and 3 9 . We candis-

cretisetheworkspaceandcalculatethemagnitudeanddi-
rection of the homing vector at discretepositionsin the
environmentasshown in Figure4. As a comparison,the
actualangleand distancetoward homefor eachposition
arealsoshown. NotethatalthoughtheALV methodgives
a fairly closeapproximationof theangleand(scaled)dis-
tanceto the goal, thereareslight differencesin the angle
measure.Furthermore,themagnitudeof theALV homing
vector is not a monotonicfunction of the distanceto the
goal.Figure5 shows theangledifferencesbetweenthean-
glesgeneratedby the ALV strategy andthe actualangles
towardhome.

We have foundthatif we usethehomingvectorasgen-
eratedby theALV strategy to estimateδ anda scaledver-
sionof e astheinputsto theLyapunov controllerof equa-
tions3 and4, theseslight differencesleadto theagentob-
taining the homeposition,but with a steady-stateerror in
orientation,evenin thehighly idealisedcaseof thesimula-
tion. Theseverity of this steady-stateerror is increasedas
thelandmarkarrangementbecomesmoreasymmetric.

2.4 Impr ovedALV

Theseslight errorsled us to investigateimprovements
to the ALV method. In its original incarnation,the ALV
methodrequiredthe bearingsto landmarksonly. Range

ALVt

ALVt

A
L
V

c

homing vectorδ

landmarks

target position

current position

(a)How thehomingvectoris calculated.
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4
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8

10

(b) Homing vector calculatedfor a particular
landmarksetat eachpoint in theenvironment.

Figure 3: The average landmarkvector modelof insect
navigationis shownin (a). Unit vectors towards salient
featuresin theenvironmentarecombinedto formtheaver-
age landmarkvectorat a particular location (ALVc in the
diagram). ALVc is comparedto theaverage landmarkvec-
tor at the target location,ALVt, to form thehomingvector
VH. Figure (b) showstheattractivenatureof thevectorfor
a homepositiondefinedat the origin. Thehomingvector
hasbeencalculatedat everypoint in theenvironment.

informationcould be incorporatedby including landmark
apparentsize, and slight improvementsto its behaviour
could be made. However, we have found that by includ-
ing rangeinformationdirectly, a significantimprovement
is madeandin fact, thedistanceandangleto the goalare
yieldeddirectly.

Mathematically, theimprovedALV, or IALV1 is derived
as follows: the individual landmarkvectorsare given by
their rangeanddirection:

1PerhapsaugmentedALV wouldbemoreappropriatehereastheorig-
inal incarnationof theALV methodavoidedtheuseof rangeinformation
directly.
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(a) Homing vector magni-
tude.
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(b) Homingvectordirection.
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(c) Actual rangeto home.
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(d) Actual angle towards
home.

Figure 4: Illustration of the homingvectors generatedby
the ALV methodapplied at every point in a discretised
workspace. Also shownare the actual distancesand an-
glestoward home. Notethesimilarity in themeasures.
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Figure 5: Angledifferencesbetweenanglesgeneratedby
the ALV methodand the actual anglestoward home. The
differencesalongy 0 for positivex aresignificant,asare
theripplesaroundthehomeposition.

ILi x x xi

wherex is the currentlocationandxi is the landmarklo-
cation. All that is requiredto measureILi is the absolute
bearingof the landmarkandits range.The IALV at loca-
tion x is thengivenby:

IALV x
1
n

n

∑
i 1

ILi x

wheren is thenumberof landmarks.TheIALV atthetarget
location is recordedanddesignatedIALVt, andasbefore,
given IALVt andthe currentImprovedAverageLandmark
Vector, IALVc, thehomingvectoris givenby:

H x IALVc IALVt

An exampleof the IALV methodis shown in Figure 6.
In essence,the IALV methodis equivalent to finding a
position relative to the centroid of the landmarksin the
workspace.

δ

current position

target position

reference direction
IA

LV

IA
LV

c

t

homing ve
cto

r =
 e

Figure 6: Illustrationof thetheIALV methodfor two land-
marksin a workspace. TheIALV’sare foundbyaddingthe
vectors to the individual landmarks,and dividing the re-
sultingvectorby thenumberof landmarks.Thehomevec-
tor is thencalculatedby subtracting the target IALV from
thecurrentlyIALV.

Figure7 showsthemagnitudeanddirectionof theIALV
homingvectorcalculatedover the discretisedworkspace,
with the accompanying figuresindicating the differences
betweenactualvaluesto the goal andthosegeneratedby
theIALV homingvector.

As with the ALV method,the IALV methodis purely
sensor-based. Landmarkbearingsare readily ascertained
with an omnidirectionalcamera. If a flat-earthassump-
tion is made,rangeinformationcanalsobederivedfrom an
omnidirectionalcameraimagethroughthegeometryof the
camera/mirroroptics. Alternatively, optic flow techniques
couldbeusedto determinelandmarkrange,asin [5].

Implementationsof the ALV methodto datehave used
an omnidirectionalcamera,restrictingthe analysedimage
to a horizontalsliceof theenvironment.Here,we wish to
usethewholeimageandwe have foundthatunwarpingof
theimageis unnecessary.
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(a) Magnitude of the IALV
homingvector.
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(b) Direction of the IALV
homingvector.
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(c) Error in distancecalcula-
tion.

−10
−5

0
5

10

−10

−5

0

5

10
−1

−0.5

0

0.5

1

x 10
−15

x−axis

Angle differences between IALV and actual value

y−axis

a
n

g
le

 d
if
fe

re
n

c
e

 (
ra

d
)

(d) Error in anglecalculation.

Figure 7: TheimprovedALV methodappliedto the same
workspaceis Figure 4. Note that this methodyields the
distanceandorientationsto thegoal locationdirectly.

Oneof theadvantagesof theALV, andhencetheIALV
method,is thatknowledgeof a targetlocationis contained
within a singlequantity. This reducesthe needfor com-
plex map-like representationsof the environmentand is
well suitedfor a topologicalnavigation method,(seee.g.
[10,13,18,21,22,24]).

Importantly, with this methodlandmarksneednot be
unique,andtheneedfor landmarkcorrespondenceis also
bypassed.Many of the other homing algorithmsrequire
that the landmarksin the current image by ‘paired’ or
matchedwith thoseat the target location,usuallyby min-
imisation of the sum of the bearingdifferences(seee.g.
[30]). If landmarksareoccludedor missing,thesemethods
strike trouble.In factwehavefoundthatthesemethodsare
normallyrestrictedto aworkspaceenclosedby thepolygon
formedby the landmarks(which in a loosesenseguaran-
teesthat landmarkswill not beoccluded).Of course,like
all sensor-basedtechniques,this methodhasa finite catch-
ment area,limited by the omnidirectionalsensor’s range
andin additionhasthe potentialto suffer from perceptual
aliasing,or in a similar sense,thelocalminimaproblem.

The homingvectorprovidedby the IALV methodpro-
videsa meansof driving theagenttowardshomebut does
not provide a meansof guaranteeingan orientation on
reachingit. However, the distanceand orientationinfor-

mationprovidedby theIALV methodcouldbefed into the
Lyapunov basedcontrollerpresentedin equations3 and4.
Thenext sectionpresentssimulationsof this verypoint.

2.5 Simulations

In thesesimulations,landmarksaremodelledaspoints,
consistentwith therequirementsof theIALV modelwhich
merelyrequirestherangeandbearingto oneor morenon-
uniquelandmarksin theworkspace.An IALV is takenata
targetlocation,nominallytheorigin, with this targetIALV
being matchedwith the agent’s currentIALV throughout
thevehicle’s journey.

The vehiclemodelusedhereconsistsof the Cartesian
version of the vehicle kinematic equations(as given in
equation1), with theloopclosedthroughcalculationof the
homingvectorandthesubsequentcalculationof thecontrol
inputsvia theLyapunov-basedcontrollerpresentedearlier.
Figure 8 shows the pathgenerated,pose,and control in-
puts for a startingposeof x y θ 10 10 0 anda
goal poseof 0 0 0 , while Figure 9 shows the samein-
formationfor a startingandgoalposeof 10 10 π

2 and

0 0 pi
4 . Gainsweresetto k1 k2 k3 0 5 1 2 1 5

for thesesimulations. The methodworks for all starting
andgoalposes.

2.6 Discussion

UsingtheLyapunov controller, servoingto aposebased
on therelativepositionof a setof landmarksis a relatively
straightforward task. The methodis simpleandleadsto
intuitivepathsfor thevehicle.In fact,theLyapunov energy
functionis analogousto theattractivecomponentof anarti-
ficial potentialfield. Clearly this methodcouldbeadapted
to includeobstacleavoidanceby addinga complementary
repulsivefield to obstaclessensedin theenvironment.

Themainadvantageof thehomingmethodpresentedis
theavoidanceof explicit localisation;it is achievedthrough
a rathersimplemechanismwhich yields the inputs to the
Lyapunov controller directly. Further to this, no land-
mark correspondenceis required,circumventingthe need
for landmarkassociation.This is in oppositionto many of
theotherhomingmethodswhich requirelandmarksin the
currentandtargetviews to be ‘pairedup’. We have found
thatit is this associationprocessthatmostlimits thecatch-
mentareasof suchmethods.

3 Experiments

In this sectionwe describethe experimentstestingthe
validity of the IALV/Lyapunov control technique.To this
end,we test the theoryon our outdoormobile robot; the
Little RedTractor. Our workspaceis a flat, concreted,out-
doorenvironmentin which we have placeda setof bright
orangetraffic coneswhich actasour landmarks.TheLRT
is equippedwith an omnidirectionalcamerawhich allows
us to track the landmarksthrough colour segmentation,
while a magnetometerprovidesus with a referencedirec-
tion.
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(c) Controldemands.

Figure 8: Simulation results for a starting pose of
x y θ 10 10 0 anda goal poseof 0 0 0 . Note

that no obstacleavoidancehasyetbeenincluded.

First we introduceour robotic testbedand briefly de-
scribeour sensingand imageprocessing.We thendetail
theexperiments,which at the time of publicationwerein-
complete.We finishwith a discussionof theresults.
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(c) Controldemands.

Figure 9: Simulation results for a starting pose of

x y θ 10 10 π
2 anda goal poseof 0 0 pi

4 .

3.1 Robotic testbed

The experimentalplatform is a Toro ride-on mower
whichhasbeenretro-fittedwith actuators,acontrolsystem,
anda computer, enablingcontrolover thevehicle’s opera-
tions.All controlandcomputingoccurson-board.Theve-
hicle is fitted with anarrayof sensorsincludingodometry,
GPS,a magnetometer, a laserrange-finderand an omni-
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directionalcamera(seeFigure10 for a photographof the
vehicle).For theexperimentscitedhere,theprimarysensor
usedis theomnidirectionalcamerawith themagnetometer
providing anabsolutereferencedirection.

Figure 10: Theexperimentalplatform. Note the omnidi-
rectional camera mountedover the front wheelsand the
boxat therearwhich housesthecontrol andcomputersys-
tem.

3.2 Imageprocessing

Thedistinguishingfeatureof thelandmarksusedin this
experimentis theircolour. Hence,weusecoloursegmenta-
tion to trackthem;not a trivial taskin anoutdoorenviron-
mentwith no controlover lighting conditions.Our frame-
grabberprovidesus with a YCrCb signal,and, to reduce
processingtime,we work directly in this colourspace.

Essentially, we use a bivariant histogramon the Cr
and Cb of the objectswe wish to track, creatinga two-
dimensionallookup tableon colour. As eachimageis ac-
quired,pixels that fall within thehistogramareflaggedas
belongingto a landmark.We thenuseseveralmorphologi-
calprocessesto eliminateisolatedpixelsandto ‘close’ any
holesin groupedpixels.Blob extractionis thenperformed,
the objectssortedby size,andvery small andvery large
objectseliminated.Thecoordinatesof thecentroidof each
blob arethenconvertedto a polar form, giving the radial
distanceandbearingof eachblobwith respectto thecentre
of the image. At no stagedo we attemptto ‘unwrap’ the
image;webelievethis to beawasteof valuableprocessing
time andinsteadwork directlywith theradialimage.

Relativelandmarkbearingsareyieldeddirectlyfrom the
above process.Thesebearingscanthenbecombinedwith
the robot’s orientationobtainedfrom themagnetometerto
givebearingswith respectto thereferencedirection.Land-
markrangehoweveris notdirectlyavailable.Thenext sec-
tion describeshow we usetheopticsof our camera/mirror
systemto determinelandmarkrange.

Range fr om image radius. Using a flat-earthassump-
tion, an estimateof rangecanbe determinedin a similar
mannerto Horswil’s rangefrom height in imagemethod
[9,15] if thegeometryof thecamera/opticsystemis known.
An alternative to usingthe geometryof the systemwould
beto determineanempiricalrelationshipbetweenground-
planerangeandradialimagedistance.

Themirror in ouromnidirectionalcamera/mirrorassem-

bly hasequiangularopticsmeaningthatfor agivenangleof
incidenceinto themirror, thereflectedray is elevatedby a
particulargaindependingon thecamera/mirrorseparation
distance[6]; for anillustrationof this point referto Figure
11. Theequationdescribingthesurfaceof suchmirrors[6]
is :

r
ro

1 α
2

cos
θ 1 α

2
(5)

wherethe parametersaredefinedwith referenceto figure
11. Mappingdistancein the groundplaneto radial pixel

h

dd1 2

αθ+φ

θ

rr o

f

camera CCD

Figure 11: Theopticsof thecamera-mirror systemrelated
to thegroundplane. Diagramadaptedfrom[6]

distancecanbeachievedthroughsimplegeometry. Refer-
ring to Figure11, thedistanced1 canbecalculatedby:

d1 h r cosθ tan αθ φ (6)

andthedistanced2 is givenby:

d2 r sinθ (7)

Adding thesetogethergives the theoreticallydetermined
groundplanedistance,Rt Combiningequations5, 6 and7,
thefull equationfor Rt is:

Rt ro cos θ 1 α
2

2
1 α

sinθ

h ro cos θ 1 α
2

2
1 α

tan αθ φ
(8)

Now to map a ground plane distanceinto the image
planewe needa relationshipbetweenθ and radial pixel
distancep. A relationshipbetweenro and f canbe found
throughknowledgeof aknown radialimagedistance(mea-
suredin pixels)andanactualdistancein an image. Here,
we usethe diameterof the mirror (which is known to be
7 36cm), andtheradiusof its edgeasit appearsin theim-
age.Referringto Figure12,which is applicableto oursys-
tem,

tanθ
u
f

36 8 10 3m
ro
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Figure 12: Relationshipbetweenf andu.

For thecaseof a 288lines 384pixelsimage,theedge
of our mirror appearsin the image at a radial distance
of u 178pixels; the CCD usedhere is 1/3” acrossits
diagonal, and, using the numberof lines at this image
resolution(assumingthe pixels are square),we arrive at
u 178 5 987 10 3m

288lines 3 7 10 3m. Hence,

ro

f
9 9454

A relationshipfor θ at any pixel radiusp is thengivenby:

θ arctan
p 5 987 10 3m

288lines 9 9454

ro
(9)

wherero is given in metres. With knowledgeof the four
parametersro φh andα (whichwedetermineexperimen-
tally), and the radial image distanceof a landmark, its
ground-planerangecanbeestimated.

Figure13showsaplot of estimatedrangeasdetermined
from the processoutlined above, and the actual ground
planerange. The matchis excellent for rangesof up to
about10m, with the error betweenexperimentaldataand
estimatedrangebeinglessthan0 2m for rangeslessthan
7 5m. Inaccuraciesat greaterrangescanbe attributed to
measuringerrorsandto degradationof the constantα as-
sumptionat high angularelevations[6], i.e. high radial
distances.

3.3 Experiments

Hardwaredifficultiespreventedcompleteexperimenta-
tion at thetimeof publication.However, somepreliminary
resultswill bepresented.Thefirst experimentalrunplaced
therobot in a workspacecontaininga singlelandmark.At
thetargetpose,thelandmarkwaslocatedat approximately
2 85mdirectlyin frontof therobot;all anglesanddistances
aredefinedwith referenceto thispose.Figure14(a)shows
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Figure 13: Comparisonof estimatedand actual range
data. The estimateddata is plotted as an ‘o’, while the
actualgroundplanerange is plottedasa ‘*’.

the robot’s initial and final pose; clearly this is a rather
simplistic taskbut it is the first stepin demonstratingthe
effectivenessof themethod.Figure14 (b) shows thecon-
trol demandsascalculatedonline by the IALV/Lyapunov
controller while Figure 14 (c) shows the responseof the
vehicle.Figure14 (d) shows thevaluesof theinputsto the
Lyapunov controller;in thisfiguree is ameasureof thedis-
tanceto thegoalposition,while θ measurestheorientation
error. If thedistanceerrordroppedbelow 0 1m andtheori-
entationerrorwaslessthan 0 1rad 6 thecontroller
wasswitchedoff andthevehiclehalted.

3.4 Discussion

Although rather simplistic, this experiment demon-
stratesthat the methodindeedworks. The gains in the
controller of equations3 and4 weresetat k1 k2 k3

0 1 0 5 1 , whicharesignificantlydifferentto thoseused
in the simulation. The simulation gains were found by
linearisingthe closedloop stateequationsabout ϕ δ
0 0 , whichensuresthevehicleapproachesthetargetpose

alongthe rectilinearpathalignedwith the target pose[1].
Theanalysisfor theselectionof thegainsin thesimulation
wasbasedon the kinematicsof the systemalone. Clearly
the dynamicsof the vehicle’s velocity andsteeringloops,
alongwith thesignificantdelayscausedby theimagepro-
cessing,will have a marked effect on the performanceof
thesystemanda muchdeeperanalysisincorporatingthese
effectsis requiredin orderto correctlyselectthecontroller
gainsfor therealsystem.Along with extensiveexperimen-
tal verificationof themethod,thisanalysiswill bethefocus
of our work in theimmediatefuture.

4 Conclusion

We havedescribedamethodof stabilisingacar-likeve-
hicle to a targetposebasedon thediscrepanciesbetweena
targetview of thelandmarksin aworkspaceandtherobot’s
currentview. Thelandmarksneednot beunique;all thatis
requiredis their bearingandrange.Our methodcombines
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resultsfrom non-linearcontroltheorywith researchderived
from hypotheseson insectnavigation.

The robot’s view of the workspaceis summarisedby a
single quantity, the Improved AverageLandmarkVector,
which augmentsthe original formulationof Lambrinoset
al. [19] with rangeinformation. At eachinstant,the robot
comparesthecurrentIALV with thatat thetarget location
whichyieldsdirectly thedistanceandorientationto thetar-
get position. At no stageis therea requirementfor land-
markcorrespondence;this representsakey advantageover
many otherhomingmethods.This informationis thenfed
into a non-linearcontrollerderived from a Lyapunov-like
formulation,enablingthe robot to servo to the targetpose
usingomnidirectionalvision anda compass.Furthermore,
the methodusespolar representationsof the landmarks,
andthus,the needfor processorintensive imageunwarp-
ing is circumvented.

We have presentedsimulationsanda brief experiment
demonstratingthevalidity of thetechnique.Furtherto this,
we havepresenteda methodof deriving rangeinformation
from a singleomnidirectionalimage,basedon a flat-earth
assumption. Our future work includesextensive experi-
mentalvalidationof the method,alongwith a deeperun-
derstandingof theimpactof dynamicelementsin thecon-
trol loops. Finally, it is clearthat this techniqueis ideally
suitedto topologicalnavigation, andthis too representsa
directionfor furtherresearch.
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Figure 14: Resultsfrom the first experiment. At the tar-
getpose, (shownas x y θ 0 0 0 , thesinglelandmark
is locatedat approximately2 85m directly in front of the
robot. The robot was thendriven to the starting poseof
x y θ 4 0 0 at which timetheIALV/Lyapunov con-

troller wasactivated.Therobot then‘homed’back to the
startingposewith minimalresidualerror.
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1 Introduction

Visual servoing is by now a mature research field in the
sense that the basic paradigms largely have been defined
as for example seen in the tutorial by [1]. Over the last
few years a variety of visual servoing refinements have
been published. It is, however, characteristic that rela-
tively few truly operational systems have been reported.
Given that the basic methods are available, why is it that
so few systems are reported in the literature. Some ex-
amples have been reported. Good examples include the
work on vision for highway driving by [2] and the work
on vision based assembly by [3] and [4], and the work
on vision guided welding by [5]. It is characteristic for
these applications that they are implemented in setting
where the scenario and its constituent objects are well
defined and can be model at great detail prior to the ex-
ecution of the task.

1.1 Issues in servoing

For use of visual servoing in a general setting such as
a regular domestic environment it is not only necessary
to perform the basic servoing based on a set of well de-
fined features, the full process involves:

1. Recognition of the object to interact with

2. Detection of the features to be used for servoing

3. Initial alignment of model to features (pose esti-
mation or initial data association)

4. Servoing using the defined features

In addition it must be considered that most visual ser-
voing techniques have a limited domain of operation,
i.e. some techniques are well suited for point based es-
timation, while others are well suited for detailed align-
ment at close range. For many realistic tasks there is

consequently a need to decompose the task into several
visual servoing stages to allow robust operation. I.e.
something like

1. Point based visual servoing to achieve initial align-
ment

2. Approximate alignment using 2.5D or homogra-
phy based servoing

3. Model based servoing to achieve high quality
alignment

Depending on the task at hand these tasks might be
executed in parallel (i.e. in car driving the coarse align-
ment is used for longer term planning and model esti-
mation, while the model based techniques is used for
short term correction – model based correction), or in
sequence (initial alignment, that can be used for initial-
ization of the intermediate model, which in term pro-
vides an estimate for model initialization). In this paper
we will in particular study the manipulation of objects
in a domestic setting and consequently the sequential
model will be used.

1.2 Outline

In the next section (2) the basic processes involved in
end-to-end visual servoing are outlined. To achieve ro-
bustness it is necessary to utilize a mixture of object
models (object models, appearance models, geometric
models) and fusion of multiple cues to compensate for
variations in illumination, viewpoint, and surface tex-
ture, this is discussed in section 3. The use of the pre-
sented methodology is illustrated for the task of manip-
ulating a variety of objects in a living room setting as
reported in section 4. Finally a few observations and
issues for future research are discussed in section 5.
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2 Processes in
Vision based Grasping

2.1 Detection/Recognition

The object to be manipulated is first recognized using
the view-based SVM (support vector machine) system
presented in [6]. For execution of a task such as “pickup
coke can on the dinner table” the robot will navigate to
the living room, and position itself with the camera di-
rected towards the dinner table. The recognition step
will then deliver regions in the image that may repre-
sent the object of interest. The recognition step deliv-
ers the image position and approximate size of the im-
age region occupied by the object. This information
is required by the tracking system to allow initializa-
tion through use of a window of attention. Initially the
recognition step is carried out at a distance of 2-3 meters
to allow use of a field of view that is likely to be large
enough include the object of interest. Once a valid im-
age region has been identified the position and scale in-
formation is delivered to the image based servoing step.

2.2 Object Approach

While approaching the object (getting within reach), we
want to keep it in the field of view or even centered of
the image. This implies that we have to estimate the
position/velocity of the object in the image and use this
information to control the mobile platform.

Our tracking algorithm employs the four step detect–
match–update–predict loop, Fig. 1. The objective here
is to track a part of an image (a region) between frames.
The image position of its center is denoted with p ��
x y � T . Hence, the state is x � � x y ẋ ẏ � T where a piece-

wise constant white acceleration model is used [7]:

xk � 1 � Fxk � Gvk

zk � Hxk � wk
(1)

where vk is a zero–mean white acceleration sequence,
wk is measurement noise and

F � � 1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1 ��� G �
	� ∆T2

2 0

0 ∆T 2
2

∆T 0
0 ∆T

�
 � H ��� 1 0 0 0
0 1 0 0 � (2)

For prediction and estimation, the α � β filter is

used, [7]:

x̂k � 1 � k � Fkx̂k

ẑk � 1 � k � Hx̂k � 1 � k
x̂k � 1 � k � 1 � x̂k � 1 � k � W

�
zk � 1 � ẑk � 1 � k � (3)

with

W � � α 0 β
∆T 0

0 α 0 β
∆T � T

where α and β are determined using steady–state analy-
sis The tracking of the object is used to direct the arm so

x̂k+1|k ẑk+1|k

zk+1
Detection

Prediction

Estimation

Initialization

x̂k+1|k+1

Search

N
Exit

not found found

Y
Matching

Figure 1: A schematic overview of the tracking system.

as to ensure that the TPC is pointing at the object while
it is being approached. The standard image Jacobian is
being used for specification of the control of the arm.
Once the object occupies more than, an object, speci-
fied portion of the image the servoing is terminated and
control is handed over to the coarse alignment control
for pre-grasping and gripper - object alignment.

2.3 Coarse alignment

The basic idea is the use of a reference position for the
camera. It is assumed to be known how the object can
be grasped from the reference position (see Fig. 2).

Using a stored image taken from the reference posi-
tion, the manipulator should be moved in such a way
that the current camera view is gradually changed to
match the stored reference view. Accomplishing this
for general scenes is difficult, but a robust system can
be made under the assumption that the objects are piece-
wise planar [8], i.e. a homography models the transfor-
mation between the current and the reference view. The
scheme implemented requires three major components
– initialization, servoing and tracking. Each component
exploits the planarity of the tracked object. For initial-
ization, a wide baseline matching algorithm [8] is em-
ployed to establish point correspondences between the
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Figure 2: The left image shows the gripper in a refer-
ence position while the right image shows the camera
in another position and situation. Servoing is then used
to move the camera to the reference position relative to
the object.

current and the reference image. The point correspon-
dences enable the computation of the homography H
relating the two views. Assuming known internal cam-
era parameters, the homography matrix is used in the
“2.5D” servoing algorithm of Malis et al [9]. Finally,
as initialization is computationally expensive, matches
are established in consecutive images using tracking.
This is accomplished by making a prediction of the new
homography H � relating the current and the reference
images, given the arm odometry between frames and
the homography H relating the reference image and the
previous image [8]. H � is then used in a guided search
for new correspondences between the current image and
the reference image [10].

2.4 Grasp alignment

Although suitable for a number of tasks, previous ap-
proaches lacks the ability to estimate position and orien-
tation (pose) of the object. In terms of manipulation, it
is usually required to accurately estimate the pose of the
object to, for example, allow the alignment of the robot
arm with the object or to generate a feasible grasp and
execute a grasp of the object. Using prior knowledge
about the object, a special representation can further
increase the robustness of the tracking system. Along
with commonly used CAD models (wire–frame mod-
els), view– and appearance–based representations may
be employed [11].

A recent study of human visually guided grasps in sit-
uations similar to that typically used in visual servoing
control, [12] has shown that the human visuomotor sys-
tem takes into account the three dimensional geomet-
ric features rather than the two dimensional projected

image of the target objects to plan and control the re-
quired movements. These computations are more com-
plex than those typically carried out in visual servoing
systems and permit humans to operate in large range of
environments.

We have therefore decided to integrate both appear-
ance based and geometrical models to solve different
steps of a manipulation task. Many similar systems use
manual pose initialization where the correspondence
between the model and object features is given by the
user, (see [13] and [5]). Although there are systems
where this step is performed automatically [14], [15]
proposed approaches are time consuming and not ap-
pealing for real–time applications. One additional prob-
lem, in our case, is that the objects to be manipulated by
the robot are highly textured (see Fig. 3) and therefore
not suited for matching approaches based on, for exam-
ple, line features [16], [17], [18].

After the object has been recognized and its position
in the image is known, an appearance based method is
employed to estimate its initial pose. The method we
have implemented has been initially proposed in [19]
where just three pose parameters have been estimated
and used to move a robotic arm to a predefined pose
with respect to the object. Compared to our approach,
where the pose is expressed relative to the camera coor-
dinate system, they express the pose relative to the cur-
rent arm configuration, making the approach unsuitable
for robots with different number of degrees of freedom.

Compared to the system proposed in [20], where
the network has been entirely trained on simulated im-
ages, we use real images for training where no par-
ticular background was considered. As pointed out in
[20], the illumination conditions (as well as the back-
ground) strongly affect the performance of their sys-
tem and these can not be easily obtained with simu-
lated images. In addition, the idea of projecting just the
wire–frame model to obtain training images can not be
employed in our case due to the objects’ texture. The
system proposed in [16] also employs a feature based
approach where lines, corners and circles are used to
provide the initial pose estimate. However, this initial-
ization approach is not applicable in our case since, due
to the geometry and textural properties, these features
are not easy to find with high certainty.

Compared to the system proposed in [20], where
the network has been entirely trained on simulated im-
ages, we use real images for training where no par-
ticular background was considered. As pointed out in
[20], the illumination conditions (as well as the back-
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Figure 3: Some of the objects we want robot to manipulate.

ground) strongly affect the performance of their sys-
tem and these can not be easily obtained with simu-
lated images. In addition, the idea of projecting just the
wire–frame model to obtain training images can not be
employed in our case due to the objects’ texture. The
system proposed in [16] also employs a feature based
approach where lines, corners and circles are used to
provide the initial pose estimate. However, this initial-
ization approach is not applicable in our case since, due
to the geometry and textural properties, these features
are not easy to find with high certainty.

Our model based tracking system is presented in
Fig. 4. Here, a wire-frame model of the object is used to
estimate the pose and the velocity of the object in each
frame. The model is used during the initialization step
where the initial pose the object relative to the camera
coordinate system is estimated. The main loop starts
with a prediction step where the state of the object is
predicted using the current pose (velocity, acceleration)
estimate and a motion model. The visible parts of the
object are then projected into the image (projection and
rendering step). After the detection step, where a num-
ber of features are extracted in the vicinity of the pro-
jected ones, these new features are matched to the pro-
jected ones and used to estimate the new pose of the ob-
ject. Finally, the calculated pose is input to the update
step. The systems has the ability to cope with partial
occlusions of the object, and to successfully track the
object even in the case of significant rotational motion.

2.4.1 Prediction and Update

The system state vector consists of three parameters de-
scribing translation of the target, another three for ori-
entation and an additional six for the velocities:

x � � X � Y � Z � φ � ψ � γ � Ẋ � Ẏ � Ż � φ̇ � ψ̇ � γ̇ � (4)

x̂k+1|k ẑk+1|k
x̂k+1|k+1

zk+1CAMERA MODEL

OBJECT MODEL

PROJECTION

RENDERING
AND

IMAGES

DETECT MATCH

INITIALIZATION

UPDATE

ESTIMATION
POSE

PREDICT

Figure 4: Block diagram of the model based tracking
system.

where φ, ψ and γ represent roll, pitch and yaw angles
[21]. The following piecewise constant white accelera-
tion model is considered [7]:

xk � 1 � Fxk � Gvk

zk � Hxk � wk
(5)

where vk is a zero–mean white acceleration sequence,
wk is the measurement noise and

F � �
I6 � 6 ∆TI6 � 6

0 I6 � 6 � � G � � ∆T 2
2 I6 � 6

∆T I6 � 6 � � H � � I6 � 6 � 0 �
(6)

For prediction and update, the α � β filter is used:

x̂k � 1 � k � Fkx̂k

ẑk � 1 � k � Hx̂k � 1 � k
x̂k � 1 � k � 1 � x̂k � 1 � k � W

�
zk � 1 � ẑk � 1 � k � (7)

Here, the pose of the target is used as measurement
rather than image features, as commonly used in the
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literature (see, for example, [22], [14]). An approach
similar to the one presented here is taken in [18]. This
approach simplifies the structure of the filter which fa-
cilitates a computationally more efficient implementa-
tion. In particular, the dimension of the matrix H does
not depend on the number of matched features in each
frame but it remains constant during the tracking se-
quence.

Figure 5: On the left is the initial pose estimated using
PCA approach. On the right is the pose obtained by
local refinement method.

2.4.2 Initial Pose Estimation

Initialization step uses the ideas proposed in [19]. Dur-
ing training, each image is projected as a point to the
eigen-space and the corresponding pose of the object
is stored with each point. For each object, we have
used 96 training images (8 rotations for each angle on
4 different depths). One of the reasons for choosing
this low number of training images is the workspace of
the PUMA560 robot used. Namely, the workspace of
the robot is quite limited and for our applications this
discretization was satisfactory. To enhance the robust-
ness with respect to variations in intensity, all images
are normalized. At this stage, the size of the training
samples is 100 � 100 pixels color images. The training
procedure takes about 3 minutes on a Pentium III 550
running Linux.

Given an input image, it is first projected to the
eigenspace. The corresponding parameters are found
as the closest point on the pose manifold. Now, the
wire-frame model of the object can be easily overlaid
on the image. Since a low number of images is used in
the training process, pose parameters will not accurately
correspond to the input image. Therefore, a local refine-
ment method is used for the final fitting, see Fig. 5. The
details are given in the next section.

During the training step, it is assumed that the object
is approximately centered in the image. During task

execution, the object can occupy an arbitrary part of the
image. Since the recognition step delivers the image
position of the object, it is easy to estimate the offset of
the object from the image center and compensate for it.
This way, the pose of the object relative to the camera
frame can also be arbitrary.

An example of the pose initialization is presented in
Fig. 6. Here, the pose of the object in the training im-
age (far left) was: X=-69.3, Y=97.0, Z=838.9, φ=21.0,
ψ=8.3 and γ=-3.3. After the fitting step the pose was:
X=55.9, Y=97.3, Z=899.0, φ=6.3, ψ=14.0 and γ=1.7
(far right), showing the ability of the system to cope
with significant differences in pose parameters. In ad-
dition,

2.4.3 Detection and matching

When the estimate of the object’s pose is available, the
visibility of each edge feature is determined and inter-
nal camera parameters are used to project the model
of the object onto the image plane. For each visible
edge, a number of image points is generated along the
edge. So called tracking nodes are assigned at regu-
lar intervals in image coordinates along the edge direc-
tion. The discretization is performed using the Bresen-
ham algorithm [23]. After that, a search is performed
for the maximum discontinuity (nearby edge) in the in-
tensity gradient along the normal direction to the edge.
The edge normal is approximated with four directions:� � 45 � 0 � 45 � 90 � degrees, see Fig. 7.

0

90
45

s

s

p

p
k

k+1

−45

Figure 7: Determining normal displacements for points
on a contour in consecutive frames.

In each point pi along a visible edge, the perpendicu-

i to the nearby edge is determined using a
one–dimensional search. The search region is denoted
by

�
S j

i � j � � � s � s ��� . The search starts at the projected
model point pi and the traversal continues simultane-
ously in opposite search directions until the first local
maximum is found. The size of the search region s
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Figure 6: Training image used to estimate the initial pose (far left) followed by the intermediate images of the fitting step.

is adaptive and depends on the distance of the objects
from the camera.

After the normal displacements are available, the
method proposed in [5] is used. Lie group and Lie alge-
bra formalism are used as the basis for representing the
motion of a rigid body and pose estimation. Implemen-
tation details can be found in [24].

2.5 Grasping

The ability of a system to generate both a feasible and
a stable grasp adds to its robustness. By a feasible
grasp, a kinematically feasible grasp is considered, that
is, given the pose of the object the estimated configu-
ration of the manipulator and the end-effector are kine-
matically valid. By a stable grasp, a grasp for which the
object will not twist or slip relative to the end-effector.

We have integrated our model–based vision system
with a model-based grasp planning and visualization
system called GraspIt! (see [25] and [26] for more de-
tails). To plan a grasp, grasp planners need to know
the pose of objects in a workspace. For that purpose
a vision system may be employed which, in addition,
may be used to determine how a robot hand should ap-
proach, grasp, and move an object to a new configura-
tion. A synergistic integration of a grasp simulator and
a model based visual system is described. These work
in concert to i) find an object’s pose, ii) generate grasps
and movement trajectories, and iii) visually monitor the
execution of a servoing task [27].

An example grasp is presented in Fig. 8. It demon-
strates a successfully planned and executed stable grasp
of an L-shaped object. After the first image of the scene
is acquired, the estimated pose of the object is sent to
GraspIt, which aids the user in selecting an appropriate
grasp. After a satisfactory grasp is planned, it is exe-
cuted by controlling both the robot arm and the robot

hand. As can be seen in the figures, the grasping is per-
formed in two steps. The first step sends the arm to the
vicinity of the object, i.e., to the pose form which the
grasp will be performed. After the arm is positioned,
the hand may be closed.

3 Robustness

To achieve robustness in realistic situations it is neces-
sary to deploy multiple features and integrate these into
a joint representation. To fusion of multiple cues here
deploys a voting strategy to enable use of weak model
for the integration of cues.

3.1 Multiple Cues

3.1.1 Voting

Voting, in general, may be viewed as a method to
deal with n input data objects, ci, having associated
votes/weights wi (n input data–vote pairs � ci � wi � ) and
producing the output data–vote pair � y � v � where y may
be one of the ci’s or some mixed item. Hence, voting
combines information from a number of sources and
produces outputs which reflect the consensus of the in-
formation.

The reliability of the results depends on the informa-
tion carried by the inputs and, as we will see, their num-
ber. Although there are many voting schemes proposed
in the literature, mean, majority and plurality voting are
the most common ones. In terms of voting, a visual cue
may be motion, color, disparity. Mathematically, a cue
is formalized as a mapping from an action space, A, to
the interval [0,1]:

c : A � � 0 � 1 � (8)
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Figure 8: Grasping of the L-shaped object: The pose of the object is estimated in the camera coordinate frame
(the estimated pose is overlaid in black). The pose is transformed to the manipulator coordinate system using
the off–line estimated camera/robot transformation. The estimated pose is propagated to GraspIt (first row, right)
where a stable grasp is planed (the measures of the quality of the grasp are shown in the lower left corner of the
image: e=0.317 and v=1.194). The planned grasp is used to position the manipulator and the hand.

This mapping assigns a vote or a preference to each ac-
tion a � A, which may, in the context of tracking, be
considered as the position of the target. These votes are
used by a voter or a fusion center, δ � A � . Based on the
ideas proposed in [28], [29], we define the following
voting scheme:
Definition 3. 1 - Weighted Plurality Approval Voting
For a group of homogeneous cues, C � �

c1 ������� � cn � ,
where n is the number of cues and Oci is the output of
a cue i, a weighted plurality approval scheme is defined
as:

δ � a � � n

∑
i � 1

wi Oci � a � (9)

where the most appropriate action is selected according
to:

a � � argmax
�
δ � a � �

a � A � (10)

3.1.2 Visual Cues

The cues considered in the integration process are:
Correlation - The standard sum of squared differences
(SSD) similarity metric is used and the position of the
target is found as the one giving the lowest dissimilarity
score:

SSD � u � v � � ∑
n

∑
m

�
I � u � m � v � n � � T � m � n � � 2 (11)

where I � u � v � and T � u � v � represent the grey level values
of the image and the template, respectively.
Color - It has been shown in [30] that efficient and ro-
bust results can be achieved using the Chromatic Color

space. Chromatic colors, known as “pure” colors with-
out brightness, are obtained by normalizing each of the
components by the total sum. Color is represented by r
and g component since blue component is both the nois-
iest channel and it is redundant after the normalization.
Motion - Motion detection is based on computation of
the temporal derivative and image is segmented into re-
gions of motions and regions of inactivity. This is esti-
mated using image differencing:

M
� � u � v � � k � � H

���
I
� � u � v � � k � � I

� � u � v � � k � 1 � � � Γ �
(12)

where Γ is a fixed threshold and H is defined as:

H � x � � �
0 : x � 0
x : x � 0

(13)

Intensity Variation - In each frame, the following is
estimated for all m � m (details about m are given in
Section 3.1.4) regions inside the tracked window:

σ2 � 1
m2 ∑

u
∑
v

�
I � u � v � � Ī � u � v � � 2 (14)

where Ī � u � v � is the mean intensity value estimated for
the window. For example, for a mainly uniform region,
low variation is expected during tracking. On the other
hand, if the region was rich in texture large variation is
expected. The level of texture is evaluated as proposed
in [31].

3.1.3 Weighting

In (Eq. 9) it is defined that the outputs from individ-
ual cues should be weighted by wi. Consequently, the
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reliability of a cue should be estimated and its weight
determined based on its ability to track the target. The
reliability can be determined either i) a–priori and kept
constant during tracking, or ii) estimated during track-
ing based on cue’s success to estimate the final result or
based on how much it is in agreement with other cues.
In our previous work the following methods were eval-
uated [24]:
1. Uniform weights - Outputs of all cues are weighted
equally: wi � 1 � n, where n is the number of cues.
2. Texture based weighting - Weights are preset and
depend on the spatial content of the region. For a highly
textured region, we use: color (0.25), image differenc-
ing (0.3), correlation (0.25), intensity variation (0.2).
For uniform regions, the weights are: color (0.45), im-
age differencing (0.2), correlation (0.15), intensity vari-
ation (0.2). The weights were determined experimen-
tally.
3. One-step distance weighting - Weighting factor, wi,
of a cue, ci, at time step k depends on the distance from
the predicted image position, ẑk � k � 1. Initially, the dis-
tance is estimated as

di � � �
zi

k � ẑk � k � 1
� �

(15)

and errors are estimated as

ei � di

∑n
i � 1 di � (16)

Weights are than inversely proportional to the error
with ∑n

i � 1 wi � 1.

4. History-based distance weighting - Weighting fac-
tor of a cue depends on its overall performance during
the tracking sequence. The performance is evaluated by
observing how many times the cue was in an agreement
with the rest of the cues. The following strategy is used:

a) For each cue, ci, examine if
� �
zi

k � z j
k

� ���
dT where

i � j � 1 ������� � n and i �� j. If this is true, ai j=1, otherwise
ai j=0. Here, ai j=1 means that there is an agreement
between the outputs of cues i and j at that voting cycle
and dT represents a distance threshold which is set in
advance.

b) Build the � n � 1 � value set for each cue:
ci : � ai j

�
j � 1 ������� � n and i �� j � and estimate sum

si � ∑n
j � 1 ai j.

c) The accumulated values during N tracking cycles,
Si � ∑N

k � 1 sk
i , indicate how many times a cue, ci, was in

the agreement with other cues. Weights are then simply
proportional to this value:

wi � Si

∑n
i � 1 Si

with
n

∑
i � 1

wi � 1 (17)

3.1.4 Implementation

We have investigated two approaches where voting is
used for: i) response fusion, and ii) action fusion. The
first approach makes the use of “raw” responses from
the employed visual cues in the image which also rep-
resents the action space, A. Here, the response is rep-
resented either by a binary function (yes/no) answer, or
in the interval [0,1] (these values are scaled between
[0,255] to allow visual monitoring). The second ap-
proach uses a different action space represented by a
direction and a speed, see Fig. 9. Compared to the first
approach, where the position of the tracked region is
estimated, this approach can be viewed as estimating
its velocity. Again, each cue votes for different actions
from the action space, A, which is now the velocity
space.
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Figure 9: A schematic overview of the action fusion ap-
proach: the desired direction is (down and left) with a (slow)
speed. The use of bins represents a neighborhood voting
scheme which ensures that slight differences between differ-
ent cues do not result in an unstable classification.

Initialization
According to Fig. 1, a tracking sequence should be ini-
tiated by detecting the target object. If a recognition
module is not available, another strategy can be used.
In [32] it is proposed that selectors should be employed
which are defined as heuristics that selects regions pos-
sibly occupied by the target. When the system does not
have definite state information about the target it should
actively search the state space to find it. Based on this
ideas, color and image differences (or foreground mo-
tion) may be used to detect the target in the first image.
Again, if a recognition module is not available, these
two cues may also be used in cases where the target has
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either i) left the field of view, or ii) it was occluded for
a few frames. Our system searches the whole image for
the target and once the target enters the image, tracking
is regained.
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Figure 10: A schematic overview of the response fusion ap-
proach.

Response Fusion Approach
After the target is located, a template is initialized
which is used by the correlation cue. In each frame,
a color image of the scene is acquired. Inside the win-
dow of attention the response of each cue, denoted Oi,
is evaluated, see Fig. 10. Here, x represents a position:
Color - During tracking, all pixels whose color falls in
the pre–trained color cluster are given value between
[0, 255] depending on the distance from the center of
the cluster:

0 � Ocolor � x � k � � 255 with

x � � ẑk � k � 1 � 0 � 5xw � ẑk � k � 1 � 0 � 5xw � (18)

where xw is the size of the window of attention.
Motion- Using (Eq. 12) and (Eq. 13) with Γ � 10, im-
age is segmented into regions of motion and inactivity:

0 � Omotion � x � k � � 255 � Γ with

x � � ẑk � k � 1 � 0 � 5xw � ẑk � k � 1 � 0 � 5xw � (19)

Correlation - Since the correlation cue produces a sin-
gle position estimate, the output is given by:

OSSD � x � k � � 255e � � x̄2

2σ2 � with σ � 5

x � � zSSD � 0 � 5xw � zSSD � 0 � 5xw � �x̄ � � � 0 � 5xw � 0 � 5xw � (20)

where the maximum of the Gaussian is centered at the
peak of the SSD surface. The size of the search area
depends on the estimated velocity of the region.
Intensity variation - The response of this cue is esti-
mated according to (Eq. 14). If a low variation is ex-
pected, all pixels inside an m � m region are given val-
ues (255-σ). If a large variation is expected, pixels are
assigned σ value directly. The size m � m of the sub-
regions which are assigned same value depends on the
size of the window of attention with n � 0 � 2xw. Hence,
for a 30 � 30 pixels window of attention, m=6. The
result is presented as follows:

0 � Ovar � x � k � � 255 with

x � � ẑk � k � 1 � 0 � 5xw � ẑk � k � 1 � 0 � 5xw � (21)

Response Fusion
The estimated responses are integrated using (Eq. 9):

δ � x � k � � n

∑
i

wiOi � x � k � (22)

However, (Eq. 10) can not be directly used for selec-
tion, as there might be several pixels with same number
of votes. Therefore, this equation is slightly modified:

δ
�

� x � k � � �� � 1 : if δ � x � k � is argmax
�
δ � x

� � k � � x �
� � ẑk � k � 1 � 0 � 5xw � ẑk � k � 1 � 0 � 5xw � �

0 : otherwise
(23)

Finally, the new measurement zk is given by the mean
value (first moment) of δ

�
� x � k � , i.e., zk � δ̄

�
� x � k � .

Action Fusion Approach
Here, the action space is defined by a direction d and
speed s, see Fig. 9. Both the direction and the speed are
represented by histograms of discrete values where the
direction is represented by eight values, see Fig. 11:

LD � � 1
1 � � L � � 1

0 � � LU � � 1� 1 � � U � 0� 1 � �
RU � 1� 1 � � R � 10 � � RD � 11 � � D � 01 � (24)

with L-left, R-right, D-down and U-up. Speed is repre-
sented by 20 values with 0.5 pixel interval which means
that the maximum allowed displacement between suc-
cessive frames is 10 pixels (this is easily made adaptive
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based on the estimated velocity). There are two reasons
for choosing just eight values for the direction: i) if the
update rate is high or the inter–frame motion is slow,
this approach will still give a reasonable accuracy and
hence, a smooth performance, and ii) by keeping the
voting space rather small there is a higher chance that
the cues will vote for the same action. Accordingly,
each cue will vote for a desired direction and a desired
speed. As presented in Fig. 9 a neighborhood voting
scheme is used to ensure that slight differences between
different cues do not result in an unstable classification.
(Eq. 3) is modified so that:

H � � 0 0 1 0
0 0 0 1 � and W � �

α∆T 0 β 0
0 α∆T 0 β � T

(25)

In each frame, the following is estimated for each cue:
Color - The response of the color cue is first estimated
according to (Eq. 18) followed by:

acolor � k � � ∑x Ocolor � x � k � x � k �
∑x x � k � � p̂k � k � 1

with x � � p̂k � k � 1 � 0 � 5xw � p̂k � k � 1 � 0 � 5xw � (26)

where acolor � k � represents the desired action and p̂k � k � 1
is the predicted position of the tracked region. Same
approach is used to obtain amotion � k � and avar � k � .
Correlation - The minimum of the SSD surface is used
as:

aSSD � k � � argmin
x

� SSD � x � k � � � p̂k � k � 1 (27)

where the size of the search area depends on the
estimated velocity of the tracked region.

Action Fusion After the desired action, ai � k � , for a cue
is estimated, the cue produces the votes as follows:

direction di � P � sgn � ai � � �speed si � � �
ai

� � (28)

where P : x � �
0 � 1 ������� � 7 � is a scalar function

that maps the two–dimensional direction vectors (see
(Eq. 24)) to one–dimensional values representing the
bins of the direction histogram. Now, the estimated
direction, di, and the speed, si, of a cue, ci, with a
weight, wi, are used to update the direction and speed
of the histograms according to Fig. 9 and (Eq.9). The
new measurement is then estimated by multiplying the
actions from each histogram which received the maxi-
mum number of votes according to (Eq. 10):

zk � S � argmax
d

HD � d � � argmax
s

HS � s � (29)

where S : x � � ��� 1
0 � ������� � � � 1

1 � � . The update and pre-
diction steps are then performed using (Eq. 25) and
(Eq. 3). The reason for choosing this particular repre-
sentation instead of simply using a weighted sum of first
moments of the responses of all cues is, as it has been
pointed out in [29], that arbitration via vector addition
can result in commands which are not satisfactory to
any of the contributing cues.

zk+1

x̂k+1|k+1zk+1|k
^x̂k+1|k

right

up

down

Detect/Match

left

fast

Estimation

slow

wait

VOTING

Prediction

c

c

c

2

n

1w

w2

wn

1

Figure 11: A schematic overview of the action fusion ap-
proach.

4 Experiments

Here, we consider the problem of real manipulation in
a realistic environment - a living room. Similarly to
the previous example, we assume that a number of pre-
defined grasps is given and suitable grasp is generated
depending on the current pose of the object. The exper-
iment shows a XR4000 platform with a hand-mounted
camera. The task is to approach the dinner table includ-
ing several objects. The robot is instructed to pick up
a package of rice having an arbitrary placement. Here,
Distributed Control Architecture [33] is used for inte-
gration of the different methods into a fully operational
system. The system includes i) recognition, ii) im-
age based tracking, iii) initial pose estimation, iv) hand
alignment for grasping, v) grasp execution and vi) de-
livery of object. The details of the system implementa-
tion are unfortunately beyond this paper. The results of
a mission with the integrated system are outlined below.

The sequence in Fig. 12 shows the robot starting at
the far end of the living room, moving towards a point
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where a good view of the dinner table can be obtained.
After the robot is instructed to pick up the rice package,
it recognizes it and locates in the scene. After that, the
robot moves closer to the table keeping the rice package
centered in the image. Finally, the gripper is aligned
with the object and grasping is performed. The details
about the alignment can be found in [34].

5 Summary

A key problem of deployment of manipulation in realis-
tic setting is integration of a multitude of methods into
a unified framework that manages the different phases
of grasping from i) identification, ii) approach, iii) pre-
grasping, and iv) grasp execution. In this paper we have
presented a system in which all of these aspects are in-
tegrated into an operational system. Each of the partic-
ipating processes have been designed to accommodate
handling of a large variety of situations. No single vi-
sual servoing technique is well suited for operation of
a large range variations, consequently techniques with
varying operation characteristics have been combined
to provide an end-to-end system that can operate in sit-
uations with realistic complexity.

At present the system is tailored to the task in terms
of sequential execution of the different steps in the ser-
voing process. To achieve smooth transition between
the different phases it is naturally of interest to provide a
control framework for integrated modelling of the con-
trol, which will be a key problem to be studies as part
of future work. In addition generality across a range of
different application domains will be studies.
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Abstract

There exist numerous methods for visual servo control of
a robot system, each with particular strengths and weak-
nesses. We investigate the use of dynamic switching ap-
proaches to visual servo control, in which a high-level de-
cision maker selects from two low-level visual servo con-
trollers. We will discuss two such switching controllers,
one of which uses two PBVS systems and one of which
utilizes an IBVS and a PBVS system. We present experi-
mental results and will introduce a discussion of stability
for each system.

1 Introduction

Visual servoing has proven to be a highly effective means
to control a robot manipulator through the use of visual
data. It provides a high degree of accuracy using even
simple camera systems, robustness in the face of signal
error and uncertainty of system parameters.

Visual servo methods have classically been divided into
two camps, Position Based Visual Servoing (PBVS) and
Image Based Visual Servoing (IBVS). PBVS uses camera
data to estimate the robot’s current pose; the error signal
is typically the difference between the current pose and
a desired pose stored in memory, and the control state is
expressed in 3D Cartesian space.

IBVS came about in the mid-eighties, with the introduc-
tion of the image Jacobian [1, 2]. The error signal is mea-
sured as the difference between the current image and a
desired image stored in memory. The state exists in the
two dimensional image, and the image Jacobian maps the
error signal to 3D Cartesian velocities for the end effec-
tor.

IBVS proved extremely popular, and for the next several
years, researchers proposed a variety of image-based con-
trol systems that relied either explicitly or implicitly on
the linearization embodied by the image Jacobian (e.g.,
[3, 4]). In the late nineties, Chaummette outlined a num-
ber of problems that cannot be solved using the traditional
local linearized approaches to visual servo control [5].

This resulted in a variety of visual servo systems which
used the image Jacobian linearization of IBVS for spe-
cific degrees of freedom, and 3D techniques exemplified
in PBVS for the remainder [6, 7, 8, 9].

Rather than combining systems, another approach is the
use of hybrid dynamical systems, i.e., systems that com-
prise a set of continuous subsystems along with a rule that
switches between them [10, 11]. Dynamic switching sys-
tems can potentially increase stability, or move systems to
their region of attraction that might otherwise fail, though
often at the cost of increased complexity and computa-
tion. We have begun investigating the feasibility of using
dynamic switching systems for visual servoing.

In Section 2, we introduce the fundamentals behind IBVS
and PBVS systems and present concepts methods utilized
in these systems. Section 3 will provide an introduction
to the theory behind switched systems, including a dis-
cussion of stability. Finally, in Sections 4 and 5 we will
present dynamic switching systems we have developed,
along with mathematical investigations into stability and
experimental results.

2 Visual Servoing

2.1 IBVS

In IBVS systems, the control exists in the image space. In
the common case of a camera mounted on the robot end
effector, the motion of a two-dimensional feature point����� ���	��

�

in the image is related to the velocity screw
of the end effector �� ��� �����	�����	��������������� �����!
 �

by the
relation ��"�$#�%'&)(*�+���,�	-�. �� � (1)

where / %0& is the image Jacobian defined as

/ %0& � 1223 4 - 5 6 � - 6 �,�4 487:9;��74 6 �5 4 - 6 � - 6 487 6 ��74 �,�4 �
<>==? (2)

in which
4

is the focal length of the camera. Derivations
of this can be found in a number of references including
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[12, 13, 14]. The simplest approach to IBVS is to merely
use (1) to construct the control law@ �$AB#DCFE%0& ( � . �� (3)

in which �� is the desired feature motion on the image
plane,

A
is a (typically diagonal) gain matrix, and @ � ��

is the control input, an end-effector velocity. Since im-
ages are acquired at discrete time instants, one typically
defines ��G�H�JI 6 �

, in which the superscript
I

denotes
the goal value for a quantity. Thus, given a goal image
(either previously captured or calculated), IBVS systems
zero the error in the image space, bringing the features of
the current image coincident with those the goal image.

This approach assumes that the image Jacobian is square
and nonsingular, and when this is not the case, a general-
ized inverse, /�K%'& , is used [12].

Since (3) essentially represents a gradient descent on
the feature error, when this control law is used, feature
points tend to move in straight lines to their goal posi-
tions (though the values of the gain matrix will have a
strong effect on the feature point velocities). This pro-
vides desirable performance in the image space, but as
first reported by Chaumette[5] it can lead to extraneous
motions of the end effector in 3D Cartesian space. Taken
to the extreme, these motions can lead to singular posi-
tions for the robot or singularities in the image Jacobian,
leading to task failure.

For faster visual servo systems, equation (3) can be ex-
panded to detail the robot dynamics, which can affect the
visual feedback loop. Define a vector of the robot joint
positions by L and the respective joint velocities by ML .
Define N as the symmetric positive definite manipula-
tor inertia matrix, O as a matrix describing the effects of
centripetal and Corialis torques, and P/ � / %'& /�Q�RTS as the
product of the image Jacobian and robot manipulator Ja-
cobian. We now define two positive definite gain matricesAVU

and
AXW

. The control loop can now be described by:A W �L 9 NZYL 9 O[ML �\A U P/ C�E M� (4)

Clearly then,
� L � ML 
 T �]� L�^ �`_�
 , where L�^ is the desired

joint configuration, is an equilibrium point for this sys-
tem.

Indeed, IBVS has been proven asymptotically stable un-
der certain conditions related to accuracy of the camera
calibration and the lack of singularities in the robot [3].
Of particular note is a proof by Kelly, et al., [15], using
Lyapunov’s direct method. Kelly, et al, basically develop
a total energy energy function of the forma �Hbc ML � NdML 9ebc M� � A U M� (5)

Which is the sum of the kinetic and potential energies.

Taking the time derivative and making some substitutions
(see [15] for specifics) , Kelly, et al., arrive at�a � 6 ML � A W ML�f (6)

Since
AgW

is defined to be positive definite, the system is
shown to be asymptotically stable.

2.2 PBVS

In PBVS systems, the control task remains in 3D Carte-
sian space. Numerous techniques exist for accurately es-
timating the position and orientation of end effector from
a set of image features using iterative [16, 17] or Kalman
filter techniques [18]. The general technique in PBVS is
to capture the image of a known set of features, and es-
timate the pose of the end effector in relation to the fea-
tures. This estimated pose is compared against a desired
pose, and a trajectory then generated to eliminate the dif-
ference between the two poses.

In contrast to IBVS, PBVS systems generate a gradient
descent in 3D space. The end effector will typically fol-
low the shortest path to the goal position. This, however,
leads to large motions of the features in the image space.
This can cause the feature points to leave the field of view,
resulting in system failure.

PBVS has also been proven to be asymptotically stable if
certain conditions are met. Recently, Deng, at al, proved
asymptotic stability through Lyapunov techniques based
on the proof of Kelly, et al, for IBVS [19]. They describe
the following control function,Aih ML 9 NZYL 9 O[ML �$Aij / C�EQ�RTS �� (7)

where / Q	RTS is the robot manipulator Jacobian and �� is the
distance between the current and goal poses. This leads
to the candidate Lyapunov functiona � bc ML � NkML 9 bc �� � A U �� (8)

which has precisely the same time derivative as Kelly, et
al, arrived at for IBVS,�a � 6 ML � A W ML�f (9)

3 Switching Control

The theory of hybrid dynamical systems, i.e., systems
that comprise a number of continuous subsystems and a
high-level decision maker that switches between them,
has received considerable attention in the control theory
community. In this paper, we are concerned with the spe-
cific topic of switched control systems. In particular, we
present a controller that uses a high level decision maker
to select from two visual servo controllers.

In general, a hybrid dynamical system can be represented
by the differential equation�l �nmJo�( l .qp rtsgu b f'f v+w (10)
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Figure 1: trajectories of switched systems

where
m�o

is a collection of v distinct functions. For
our purposes, it is convenient to explicitly note that the
switching behavior directly affects the choice of the con-
trol input

� �l �\m�( l ���xo8.:p rtsgu b � c w�f (11)

In our system, each visual servo controller provides a ve-
locity screw,

�V�y� � � ��� � ��� � ��� � ��� � ��� � 

�
, and a switch-

ing rule determines which is used as the actual control
input at each control cycle.

The stability of a switched system is not insured by the
stability of the individual controllers. Indeed, a collec-
tion of stable systems can become unstable when inap-
propriately switched. As an illustration, Figure 1 (from
[20]) show trajectories for two asymptotically stable sub-
systems in (a) and (b). A set of switches resulting in a
stable system is shown in (c), while a series of switches
resulting in an unstable system are shown in (d). To in-
sure stability, it must be proved that all switches from
one system to another cannot result in an unstable out-
put, regardless of the time of the switch or the state of
the system. Stability of switched systems can be proven
using Lyapunov’s direct method under certain conditions
[20, 21]. Generally this requires establishing a common
Lyapunov function which works for all subsystems. Al-
ternately, one can establish a family of Lyapunov func-
tions for the systems such that at each switch, the value
of the function at the end of that interval is less than the
value of the function of the interval that proceeded it, as
illustrated for a one dimensional family of two functions
in Figure 2. In our initial investigations reported here, we
have not yet formally proven the stability of our system.

V(  ,t)σ

t

Figure 2: stable family of Lyapunov function

We have, however, performed extensive empirical evalu-
ations that demonstrate the efficacy of our approach, and
some of these are presented below.

4 Homography/Affine Switched System Con-
troller

The first dynamic switched system presented here was in-
troduced in [22]. That paper focused primarily on initial
simulated results, while here we will present early exper-
imental results and a discussion of stability issues.

The system is composed of two subsystems which, given
two views of the same set of features, estimate the trans-
lation and change in orientation of the camera. In the
sense that these methods use a goal and current image,
they certainly fall into the realm of IBVS systems. How-
ever, a complete translation and rotation is estimated, thus
delivering a trajectory relating the current pose and the
goal pose, which is the output of a PBVS system. In ad-
dition, these systems tend to perform similarly to PBVS
systems in regards to optimal motion of the end effector
at the expense of sub-optimal feature trajectories. Addi-
tionally, knowledge of the geometry of the features can be
exploited to make the systems much more accurate. Thus
we will typically consider these methods to be PBVS
methods.

4.1 Homography Based Controller

The homography method exploits the epipolar constraints
between two images of planar feature points. The homog-
raphy matrix has been used previously for visual servoing
in [6, 8] to control a restricted set of degrees of freedom.
We however, use it to generate a control for all degrees of
freedom.

Define P�JI , P� , as the homogeneous coordinates in two im-
ages of a set of 3D points lying on a plane z . These are
related by P� I �\{ P� (12)

where
{

is the calibrated homography matrix. As shown
in [23, 24],

{
can be decomposed as{��\|G(*}�~ 6���� �� .

(13)

andreff
36



where
}�~

is a ���G� identity matrix and
|

and � are the
rotation matrix and translation vector, respectively, relat-
ing the two camera views. The parameter n is the the
normal of the plane z and describes the orientation of z
with respect to the current camera view;

�
is the distance

from the current camera origin to the plane z . We cal-
culate the vector � �k� ��������� �����!

������ � , where

��
is

an estimate of
�
. Given knowledge of the geometry of

the feature point locations it is possible to accurately es-
timate

��
and so determine � to the proper scale. From

the rotation matrix
|

, we extract the roll, pitch and yaw
angles, which we use as

� � ��� � ��� �
to obtain the velocity

screw
�V�n��� � � ��� � ��� � ��� � ��� � ��� � 


in which
�

is a scalar
gain constant, or a �)�i� gain matrix..

Of the numerous methods to calculate H, we have used a
linear solution since visual servoing, in general, requires
quicker calculations than iterative methods may provide.
Decomposing the homography as in (13) is not a trivial
exercise and generally cannot be solved to a unique so-
lution. Additional information or views are required to
select form multiple solutions. In visual servoing, an ex-
tra view is necessary at the first iteration, as the results of
previous iterations can be used for all later calculations.

4.2 Affine-Approximation Controller

For camera motions that do not involve rotation about the
camera l - or � - axes, the initial and goal images will be
related by an affine transformation. While this is a con-
strained set of motions, it is common in many situations,
such as aligning camera with a component on a conveyer
belt.

Define
��I

,
�
, as the calibrated pixel coordinates of two

points in the image plane. Then these points are related
by the affine transformation� I � ����9��� � b��5 b!� ��� E 55 � 7 � ���q� 6�� �� � �q� � � m �m � � 9 �¢¡ �¡ � �(14)

in which � � and � � denote respectively £!¤ ¥�¦ and ¥�§'¨�¦ ;m��
and

m©�
are image point coordinates; � , � % , and ¦ de-

scribe the skew, scale, and rotation respectively; and
�

is
the translation. Both

�
and

�
can be obtained by solving

a linear system of equations, and QR decomposition can
then be used to determine � � � % � and ¦ .� I �$|«ª��:9;�t���*¬ E	E ¬ E 75 ¬ 7�7 � �¢­ 7 E ­ E 7­ E�E ­ 7�7 � � m��m�� � 9®� ¡ �¡ � �

(15)
The Q matrix is a permutation of the rotation matrix
in (14), and rotation ¦ about the camera z axis equals
arcsine( ­ 7 E ). During an affine transformation, the rota-
tions about the l 6 and y axes are, by definition, zero.
The ¬ E	E and ¬ 7�7 of (15) respectively equal the � E and� 7 parameters of (14) and provide z translation to scale.
Translation along the l 6 and � 6 axes are defined to scale

in the vector
�

. Multiplying the scaled translations by a
depth estimate will provide true values. Again, knowl-
edge of the feature point geometry will allow for the
depth estimate to be accurately derived.

Given � � � % � ¦ � ¡ � � ¡ � we again have the position and
orientation relating the initial and camera goal posi-
tions. This controller provides the velocity screw

�y���� ¡ � � ¡ � � � 7 � 5 � 5 � ¦ 
 where
�

is a gain constant or matrix.
Note that if there is no rotation about the l 6 or � 6 axes,
we will have � E � � 7 .
In general, two images are unlikely to be perfectly related
by an affine transformation. However, in the absence of
signal noise the approximation is often fairly accurate. In
our scheme, it is left to the switching rule to determine
when it is appropriate to use this controller.

4.3 Methodology of System Switching

To date, we have explored three switching rules. The
first is deterministic, and is based on our evaluation of the
performance of each controller under various conditions.
The other two switching rules include a nondeterministic
element.

Comparison of the Two Controllers. The major
strength of the homography-based controller in our sys-
tem is that it is the only controller capable of handling
general motions which include rotation about the l and� 6 axes. If the camera motion does not involve such
rotations, the two approaches have similar performance.
However, in the presence of noise, the affine method is
much more accurate. We conducted a series of Monte
Carlo tests in which both systems performed an identical
affine motion under the effects of increasing white noise.
The homography-based method typically had an error in
the pose estimation that was fifty times greater than the
affine approach, and error in the total rotation was almost
fifteen times greater.

With regard to speed, the affine approximation controller
requires far fewer calculations per iteration. However,
both systems are capable of operating at above the typical
camera frame rate of 30Hz.

Discussion of Switching Rules. In this section we de-
scribe the three switching rules.

Deterministic Switching. The degree to which a camera
motion can be approximated by an affine transformation
can be determined by examining the rotation matrix re-
turned by solving the homography. In particular, if the
motion can be approximated by an affine solution, then
the rotation about the camera l 6 or � 6 axes is necessar-
ily very small. We take the RMS value of the rotations
about l 6 and � 6 and compare them to a threshold value,
if the amount of rotation is less than this value, we select
the affine solution.

The threshold value is arbitrary, a lower value will force
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the system to choose the affine method for larger rotations
about the l 6 and � 6 axes. We have found that, the affine
method can zero the error for any motion with a rotation
about y or x less then 0.2 ¯ . Thus the rotation matrix is
calculated at each iteration, and if RMS(

�D�������
) is greater

than that amount, the homographic method is chosen to
reduce that rotation.

Random Switching. The previous switching rule cap-
tures the full abilities of the homographic method, but
fails to fully utilize the benefits of the affine system in the
case of noise. Our second switching rule is to randomly
select, with equal likelihood, one controller at each itera-
tion. Random switching has been used in network control
systems to handle task routing [25]. A random choice is
the simplest decision mechanism, and in a stable hybrid
system will result in an averaging of the performance of
all systems. However, this may be a dangerous choice for
a potentially unstable system.

Biased Random Switching. A compromise can be
struck between the two switching methods. At each itera-
tion the affine approximation controller is selected with a
probability that is a monotonic function of RMS(

�°�������
),

since, as noted earlier, a larger value for RMS(
�°�������

)
indicates that the homographic method is more suitable.
However, it still allows for the affine method to occasion-
ally occur. Likewise, the affine method is much more
likely to be chosen should the rotation about the l 6 and� 6 axes be small, but the homographic method can still
occasionally be selected to reduce minor rotations about
the l 6 and � 6 axes.

4.4 Experimental Results

Our experiments were performed using a camera
mounted on the end effector of a PUMA 560 robot. The
camera is a Sony VFW-V500, which has �©± 5 �²±�³ 5 color
pixel display. The lens focal length was 14.4mm. The
feature points consisted of four color dots on a black
sheet. The image was thresholded in RBG space to locate
the center points of each dot. This provided 4 co-planar
feature points.

Experiments presented here consisted of a goal image
wherein the camera optical axis was parallel to the normal
of the feature point plane, and approximately 0.75 meters
away. The initial error image was an oblique view, much
closer to the feature point plane with heavy rotation about
the camera � 6 axis, moderate rotation about camera the
z-axis, and translation along all axes. The two images can
be seen in Figure 3.

We first explored the deterministic switching method.
Since there is a great deal of rotation about that the cam-
era � 6 axis, we expect that it will use the homographic
method for the majority of iterations, and switch to using
the affine method when the y axis rotation has become
very small.

Figure 3: Goal and Initial Image
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Figure 4: Deterministic Switching

Figure 4 shows the feature point error, the velocity screw
of the vector and the recorded feature point position for
each iteration. In the first two graphs, small lines on the
bottom of the graph indicate a switch has taken place; a
black line indicates the homography method is being used
for the following iteration, while a cyan line indicated the
affine method will be used. We do see the homographic
method used for almost two thirds of the iterations, at
which point it switches between the affine solution and
the homographic method as the amount of � 6 axis ro-
tation becomes negligible. The third graphs shows the
trajectory the point followed in the image plane. Portions
of the lines with a black shadow indicate when the affine
method is being used.

Figure 5 shows the results of random switching. All the
measured values are much more chaotic. The feature
point error tends to be greater, as does the magnitude
of the of the velocity screw variables. However, the er-
ror is still zeroed in approximately the same amount of
time and we also avoid the extremely large initial motion
which the homographic method introduced in the deter-
ministic case.
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Figure 5: Random Switching
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Figure 6: Probabilistic Switching

Finally, Figure 6 shows the probabilistic system. The fea-
ture point error is similar to the deterministic method,
though it tends to be slightly smaller. Likewise the ve-
locity screw tends to have similar shape and size to the
deterministic method. The system is, however, not able
to zero the error as quickly as the other switching meth-
ods.

4.5 Discussion of Stability

While we have not yet established a proof of stability,
we will present a brief discussion of what we feel are
the main topics. Both systems are PBVS systems, and
thus both can use the common Lyapunov function (8),

reproduced below.a � bc ML � NkML 9 bc �� � AVU �� (16)

However, for the affine system there is not guaranteed to
be a solution which takes the potential energy function to
zero, rather it will take it to a local minimum.

5 IBVS/PBVS Switched System Controller

The second switched system presented here is a combi-
nation of IBVS and PBVS methods. This system was
designed in hopes of using the strengths of each system
to counterbalance the weaknesses of the other.

5.1 IBVS and PBVS systems

The IBVS system was discussed in section 2.1. At the
time of publication, we have not successfully created an
iterative or Kalman filter based PBVS system. Thus for
experimental results we have elected to use the homog-
raphy based method described in Section 4.1. As noted
there, the the homography based system has performance
characteristic of a PBVS system, and should be indicative
of how other PBVS systems should perform in a dynamic
switching system.

5.2 Methodology of System Switching

We have explored the the same types of switching rules
for this system as for the Homography/Affine system.
Namely a deterministic rule, a random choice of systems,
and a probabilistic rule.

Comparison of the Two Controllers. As discussed in
Sections 2.1 and 2.2, IBVS systems exhibit optimal per-
formance in the image space. Feature points will tend
along straight lines or least distance trajectories towards
the goal configuration. However, this can result in non
ideal performance in the 3D Cartesian space as unneces-
sary motions are performed, failure can result from the
robot reaching a singular position or reaching the end of
the task space.

In contrast, PBVS systems perform optimally in the
Cartesian space, moving the camera straight to the goal
position. However feature points can be lost during the
process, resulting in system failure.

Deterministic Switching. We simply attempt to avoid
the weaknesses of both systems by switching when the
current system is approaching a problematic state. We
determine a threshold level for how far the feature points
will be allowed to stray from the center of the image, as
well as a threshold on the distance we will allow the cam-
era to move from the feature points. At each iteration,
we compare each switching paramater to its treshold. If
the feature points are closer to their threshold we select
IBVS to bring them towards goal; if the camera distance
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is closer to it’s threshold we select PBVS to bring the
camera towards goal.

Random Switching. Again, a simple binary random
variable is used to select between the two systems with
equal probability.

Biased Random Switching. The deterministic levels
discussed above are now used as part of probabilistic
function used to determine the next system used. The far-
ther the camera is from the image plane, the more likely
the system is to choose the PBVS method. Likewise, the
farther the feature points are from the image center, the
more likely a the system is to choose to use IBVS. The
probability will be unity at either threshold level defined
for the deterministic switching.

Like the determinstic system, we see how close each
switching paramater is to it’s threshhold. We focus on
the more pressing paramter, and divide it by its thresh-
old. We then create a random number between 0 and 1.
If the random number is smaller than the the divided pa-
rameter, ue we choose the method we would have chosen
under deterministic switching. If the random umber is
larger, we choose the alternate method.

5.3 Experimental Results

Due to errors in precisely measuring the offset of the fo-
cal point of our mounted camera to the end effector, the
IBVS system did not perform ideally in our experiments.
The system did not always reduce the feature point error,
though it did perform expected motions such as camera
retreat during rotation. For this reason we first present
a series of simulation to show performance under ideal
conditions. We will then present the results of our ex-
periments. We feel that the fact that the systems worked
well, even when the subsystems did not perform properly,
is a testiment to the strength of the switching method.

For the simulations we have a goal image where the fea-
ture points are close to the image border, and an error
image where the camera is rotated by 160 ¯ about the op-
tical axis. This is an extremely difficult task for the in-
divisual subsystems. In our simulations, using only the
PBVS method would result in a loss of the feature points,
and using only the IBVS method induced a camera retreat
of 10 meters. Either of these would likely cause failure
in a physical system. All three methods of switching sys-
tems were successfully able to zero the error.

The first simulation shows the deterministic switching
system. Figure 7 Shows the feature point errors, the ve-
locity screw, the value of our switching parameters and
the feature point positions at each iteration. Tick marks
at the bottom of the graphs show the system currently be-
ing used: black for IBVS, cyan for PBVS. The color of
the lines regarding position follow the same color scheme
regarding which system is determining the motion.

The feature points begin far from the center of the image,
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Figure 7: Deterministic Switching

so we begin in IBVS mode to bring the points towards
the goal. Indeed, the maximum error decreases, along
with a sharp increase in the distance of the camera from
the feature points. We enforced a threshold of 1 meter
for the camera distance, so the camera performs a num-
ber of switches, keeping both distance and feature error
below their threshold. when the majority of rotation is
performed and camera retreat no longer occurs, the sys-
tem settles into IBVS to complete the motion.

Figure 8 shows results for the random switching method.
The feature points are kept within the image, but the cam-
era retreats past the threshold we set for the deterministic
method. Our final simulation result is for probabilistic
switching, shown in Figure 9. The feature point excur-
sion is kept extremely low, and the camera distance is
generally a bit lower than that experienced under the de-
terministic method.

We conducted experiments for a very similar situation,
feature points close to the image edge and a large amount
of rotation. We used the same camera, robot and fea-
ture points described in Section 4.4; examples of the goal
image and initial offset image are shown in Figure 10.
Both subsystems failed for this task. PBVS lost the fea-
ture points, and IBVS, experienced a great deal of camera
retreat before ultimately losing the feature points when
making rotations.

The figures show the same data we presented in the sim-
ulated results, with some subtle changes. The graphs of
both the feature point error and feature point trajectories
have the color of the dot they correspond to, and trajecto-
ries with a black shadow indicate that PBVS was used to
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Figure 8: Random Switching
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Figure 9: Probabilistic Switching

calculate that motion.

Figure 11 shows the results for the deterministic switch-
ing method. Since the feature points are close to the im-
age edge we are in IBVS mode initially. The distance of
the feature points from the image center is reduced with
a corresponding increase in camera distance. As we re-
ported, the IBVS system does not perform perfectly, there

Figure 10: Goal and Initial Image
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Figure 11: Deterministic Switching

is a brief period where both camera distance and increase,
then IBVS is able to begin reducing the feature point dis-
tance again while increasing the camera distance. Finally
PBVS takes over and is able to reduce both. The system
is unable to completely zero the feature point error, after
250 iterations when visual servoing was halted. The only
remaining motion was translation along the optical axis.

Results for random selection are seen in Figure 12. The
feature distance from the image center is higher than seen
in the deterministic method, but the camera retreat is kept
much lower. Due to the lower camera retreat, the system
is able to zero the error faster than either the deterministic
or probabilistic methods. However, the maximum feature
point distance is 250 pixels; clearly, this must be along
the horizontal image axis, or the feature point would have
left the field of view and the system would have failed.
This indicates a potential for system failure using the ran-
dom method, though the system never failed during our
experiments.

The probabilistic method is presented in Figure 13 The
method choices are identical to the deterministic method
for the first thirty iterations or so, thus the graphs are ex-
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Figure 12: Random Switching
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Figure 13: Probabilistic Switching

tremely similar. After this point the switching does be-
come fairly random, though the velocity screw is the only
graph where there is much evidence of change. This sys-
tem is also unable to completely zero the error after 250
iterations.

In figures 14, 15 and 16 we repeated the experiments of
section 4.4 for an oblique view. For this task, both sub-
systems are capable of zeroing the feature point error, and
camera retreat is not a dangerous factor here. The de-
terministic and probabilistic methods again perform very
similarly. The random system is able to zero the error
more quickly than the other two methods, but, in general,
experiences a larger feature point error.
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Figure 14: Deterministic Switching
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Figure 15: Random Switching

5.4 Discussion of Stability

As mentioned in section 3, there are two potential ways
to establish stability of this switched system that seem
fruitful. The two Lyapunov functions, (5) and (8), for the
IBVS and PBVS systems, respectively, are reproduced
below with an added notation to distinguish the potential
energy matrices

A U
.a � bc ML � NdML 9 bc M� � AVU�´	µ M� (17)a � bc ML � NkML 9 bc �� � AVU �� (18)

These functions are extremely similar, and according to
[19]both have the same time derivative, (6). Therefore it
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Figure 16: Probabilistic Switching

seems promising that we can find a common Lyapunov
function for both systems. Indeed, using (1) we can give
(5) the same form as 8.a � bc¶ML � NkML 9 bc·�� � �A U�¸Fµ �� (19)

where
�A U�¸Fµ � /�¹>º � A U�´Tµ / %'& . We now have a com-

mon Lyapunov function, however the matrix
�A U�¸Fµ

is
time varying and dependent upon P» . The effects this
will have on the proof of stability have not yet been ex-
plored.

Alternately we can leave the Lyapunov functions inde-
pendent, but focus on their similarities. The magnitude of
both functions differ only in the potential energy portion.
Due to the performance characteristics of the systems, it
is possible that a decrease in the potential energy of one
function will be accompanied by an increase in the other,
e.g. camera retreat reduces the feature point error and
the IBVS energy function, but increases camera distance
and the PBVS energy function. If it can be established or
enforced that the system only switches when the current
energy function has been brought below the last value of
the energy function before the previous switch (Figure 2),
then stability can be assumed.

6 Conclusion

We have presented two dynamic switching visual servo
systems. Each system is composed of two very differ-
ent subsystems, each a visual servo system in its own
right, and a decision maker that chooses which system to
use at each iteration depending on the current state of the
camera or image features. Simulation and experimental
results are extremely promising, in some cases allowing

for successfully completing a task when either subsystem
would fail alone. We investigated several basic switching
rules to see how this affected performance. While there
remains room for future experimentation and mathemati-
cal establishment of stability, the results seen thus far are
compelling.
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Abstract

A control architecture for visual servoing is dis-
cussed. A basic comparison is given between
position-based and feature-based schemes. Also an
architecture based on the human brain motor control
is presented. The model has five hierarchical mod-
ules: motoneurons, premotor interneurons, pattern
generator, parameter selection and action planning.
In this architecture, the effectors including biophysi-
cal properties receive the commands from motoneu-
rons; the premotor interneurons and motoneurons
are implemented as a servo module; the pattern gen-
erator corresponds to the motion planner; and the
parameter selection is realized by adaptation mod-
ule. The afferent information is the feedback sig-
nal and the efferent information corresponds motion
command and parameter adaptation. This architec-
ture is implemented on a DSP network system with
a high-speed vision, a dextrous hand and a 7 DOF
manipulator. An example of task, grasping/handling
of a dynamically moving object, is realized. The re-
sults show responsive and flexible actions that ex-
hibit the effectiveness of the proposed hierarchical
modular structure.

1 Introduction

Human beings have high ability to achieve dynami-
cal tasks based on visual information feedback. Ball
games such as baseball, football and tennis are good
examples that require vision-based dynamical tasks.
Hitting a cockroach with folded newspaper is a little
more difficult because the dynamics of the object mo-
tion is unknown. To realize such ability it is essential
to measure the dynamically changing environment
and the moving object in real-time. The object mo-
tion model learned by training may be an important
help but real-time visual feedback is necessary since
model construction should be done through visual
measurement. Thus use of real-time sensory feed-
back of vision as well as other sensors is essential
[1, 2].

Visual servoing schemes proposed so far can be classi-
fied into two categories: position-based and feature-
based. Discussion on the difference have been done
in many references but discussion based on human
architecture has not been found. Since human archi-
tecture provides us important suggestions, a review
is given below.

Limiting the task to grasping, several applications of
real-time sensory (mainly visual) feedback have been
studied. Allen et al. realized grasping of a toy train
based on the optic flow field [3]. Hong et al. realized
grasping of a flying ball using stereo visual feedback
[4]. Jägersand et al. realized grasping using visual
servo with model estimation [5]. Namiki et al. de-
veloped a high-speed grasping system using visual
feedback at the cycle time of 1 ms [6]. For the grasp-
ing tasks realized so far, the visual feedback is used
only for position control of the gripper.

However, the visuo-motor loop in human brain con-
trols not only hand position. At least, the shape of
the hand and the directions of both eyes are simul-
taneously controlled. Moreover, the sensory outputs
from other sensors (afferent information) and the in-
formation of arm motion command (efferent copy)
interact in the visuo-motor loop. A model of this
motor control architecture is shown in Figure 1 [7].
It illustrates the many structural/functional levels on
which sensory and motor pathways interact.

In this paper, a control architecture for visual servo-
ing is discussed. Some comparison on position-based
and feature-based architecture is given. Also an ar-
chitecture based on the human brain motor control
is presented. The hierarchical parallel processing ar-
chitecture is proposed based on the hierarchical ef-
ferent/afferent interaction model for human visuo-
motor control system. The hierarchical structure of
the proposed architecture is appropriate for multiple
heterogeneous tasks. Grasping is a good example of
a coordination of heterogeneous tasks, such as track-
ing control of active vision, position control of the
arm and preshaping of the hand. Thus we developed
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Figure 1: Efferent/afferent interaction model

a real-time system that realizes very quick grasping
tasks. Experimental results of high-speed tracking,
grasping, manipulation and collision avoidance are
presented to demonstrate the effectiveness of the pro-
posed hierarchical parallel processing architecture.

2 Basic Discussion: position or feature?

To clarify the difference between position-based and
feature-based visual servoing, we consider a simple
example. Suppose a 2 link robot and a pair of cam-
eras shown in Figure 2. The robot is controlled on
the basis of the image obtained by the stereo cam-
eras. The robot can move in a horizontal plane and
the cameras are placed in parallel on the plane. Let
the optical axes of the cameras be in parallel to the z
axis. The image plane is perpendicular to the z axis
and the base line length is b.

In left camera, let the hand image be lh and the goal
image be lg. In right camera, the hand and goal
images are rh and rg, respectively. For the robot,
let the joint angle be θ = (θ1, θ2), link length be

l l r r

b

θ

θ

hg

g

a

a

hghg

xx

1

1

2

2
z

zh
z

x

hand

arm
camera

left image right image

Figure 2: 2 Link Arm with Stereo Setup

a = (a1, a2), hand position be h = (hx, hz). The
goal position is g = (gx, gz).

2.1 Position-based Scheme

Imaging Model. We denote the imaging model
by Cg : g → ξg, where ξg = (lg, rg) is the goal image
in both cameras. Simple calculation yields

lg = f
gx + b/2

gz
, rg = f

gx − b/2
gz

(1)

where f is the focal length.

Stereo Model. The stereo model Eg : ξg → ĝ is
the inverse of (1), i.e.,

ĝx = f̂
b̂(lg + rg)

dg
, ĝz = f̂

b̂

dg
(2)

where dg = lg−rg is called disparity. It is well known
that disparity is important in 3D reconstruction of
human. Error in the estimate of goal position ĝ is
due to the error of camera’s internal and external
parameters (in this example, only f̂ and b̂ are used).

Kinematic Model. If one estimates the hand po-
sition from the joint angle measurements θ, kine-
matic model K̂ : θ → ĥ where

ĥx = l̂1 cos θ1 + l̂2 cos(θ1 + θ2),

ĥz = l̂1 sin θ1 + l̂2 sin(θ1 + θ2) (3)

are necessary. The kinematic parameters (l̂1, l̂2 in
this example) affects the hand position accuracy.
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Figure 3: Position-based Stereo

Control Law. Assume that the robot has perfect
velocity controller (the command velocity is assumed
to be perfectly realized). Then a very simple resolved
motion velocity control law can be used. Since the
relationship between the joint and hand velocities are
given by

Ja =
∂h

∂θ
(4)

=
[−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

]
,

the control law becomes as follows:

θ̇ = λĴ−1
a (ĝ − ĥ) (5)

The elements of the matrix Ja includes the kinematic
parameters, the error in kinematic parameters can
affect the closed loop stability. The block diagram of
this control scheme is shown in Figure 3.

Robustness. If there are errors in the model E or
K̂, the feedback, which tries to ĥ → ĝ, will not work
to eliminate the model errors; and thus h will not
converge to g. This fact can be easily understood
from the block diagram (Figure 3).

If E and K̂ are accurate enough, then the condition
for convergence of h to g depends on Ĵa. By consid-
ering a Lyapunov function candidate as

V = (h − g)T (h − g) (6)

then it is easy to verify that the condition is:
JaĴ−1

a > 0. This is due to

V̇ = −2λ(h − g)T JaĴ−1
a (h − g) (7)

and this condition is much milder than the assump-
tion “E and K̂ are accurate enough.”

2.2 Position-based Scheme II

If one can observe the hand by cameras, the hand po-
sition can be estimated using vision. Let the imaging
model for hand be Ch and stereo model for hand po-
sition estimation be Eh. Then the block diagram of
this control scheme becomes Figure 4.
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g

.
θ

h
^

ĴaCg Eg

h ξh
Ch Eh

-1

Figure 4: Position-based Stereo II

In this case we do not need K̂. It is easy to confirm
that, if Eg and Eh use the same camera parameters,
the parameter error do not affect the task accuracy.
For example if b and f are modeled as b′ and f ′,
respectively, then the effects of the estimation error
on ĝ and ĥ become the same ( b′f ′

bf ). Thus this con-
trol scheme guarantees the task accuracy even under
parameter uncertainty. The closed loop robustness
condition is the same as the previous position-based
scheme.

2.3 Feature-based Scheme

In feature-based scheme the hand image is directly
controlled. The relationship between the joint and
hand image ξh = (lh, rh) velocities is given by

Ji =
∂ξh

∂θ
=

∂ξh

∂h

∂h

∂θ
. (8)

It is straightforward to compute

∂ξh

∂h
=

[
f b

2hx
−f hx+b/2

h2
z

−f b
2hx

−f hx−b/2
h2

z

]
=

[
dh/2 −lhdh/fb
−dh/2 −rhdh/fb

]
.

(9)
where dh = lh − rh the disparity. The matrix ∂h

∂θ is
given in (4). A resolved motion rate control for hand
image becomes as follows:

θ̇ = λĴ−1
i (ξg − ξh). (10)

The block diagram of this control scheme is depicted
in Figure 5.

This control scheme do not need the kinematic model
nor the stereo model, thus the task accuracy is not
affected by the uncertainties in these parameters.
Though, the matrices ∂ξh

∂h and ∂h
∂θ includes these pa-

rameters, the estimation error in Ji is not very signif-
icant because the closed loop stability is guaranteed
when JiĴ

−1
i > 0. However, one should note that the

stability of this control scheme is local and the task
definition is not very flexible (suppose a task to keep
constant the distance between hand and moving ob-
ject: how do you define the reference image?).
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3 Efferent/afferent Interaction Model

The different functions incorporated in motor control
structure define a hierarchy of control levels. Gen-
eration of activity in specific motor units lies at the
bottom and task function is at the top. The sig-
nal from sense organs (afferent information) and the
copy of the commands (efferent copy) for the pat-
tern generator (and premotor interneurons) act on
each levels [7].

The lowest structural level denotes the reflex in
which activity in sensory fibers (proprioceptors and
exteroceptors) is passed directly onto motoneurons.
The function of these connections ranges from select-
ing a response to modifying details of motor activity.
These direct connections provide fast responses but
offer limited complexity. Direct connections from
sense organs to motoneurons which trigger actions
are common in withdrawal reflexes where a fast re-
sponse is advantageous for avoiding injury.

The premotor interneurons are introduced as an in-
termediate structural level between the oscillator or
pattern generator and the motor neurons. This level
is not present in all systems but it is useful for il-
lustrating some kinds of temporal and spatial inte-
gration. Premotor interneurons can participate in
temporal integration by prolonging a response trig-
gered by brief sensory inputs and by transforming
sensory input in various ways. The introduction of
interneurons is a simple way to increase the number
of response combinations.

The pattern generator may incorporate complicated
central networks as well as sensory influences. In
many behaviors, sensory inputs can affect a rhythm
and the sensory information on a pattern generator
is used to determine the successful completion of a
movement.

At higher levels of motor organization, sensory infor-
mation is used to select appropriate motor control
structures and to determine their parameters. This
function depends on the extraction of appropriate
sensory information about the environment. It re-
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Figure 6: Model of Saccade

quires sensory processing of variable complexity and
may even involve internal maps or representation of
the animal and its relation to its environment.

Note that the hierarchical representation of the con-
trol functions does not necessarily correspond to sep-
arate structural levels in the nervous system.

4 A Model for Saccade

When the eyes track a moving stimulus, there is a
slow phase of eye movement to keep the gaze focused
on the object (smooth pursuit); when the eyes move
to focus on a different point, the eyes snap to the
new position in a rapid movement (saccade) [8]. In
this section the model of saccade control is consid-
ered. Two hypotheses can be made on the model
of saccade: one is the image-based and the other
is the position-based. The image-based scheme as-
sumes that the motion is generated to compensate
the error between the target image in retina and the
center of retina. In the position-based hypothesis,
the brain constructs the object position in 3D space
to control the position estimation.

A model of saccade proposed by Zee [9] is shown in
Figure 6. The block M is the eye muscle and the
signal E stands for the eye direction. The target
position is T and the retina image is R. The block
D means a delay, P and G are the gain block. The
signals v and p are the velocity and position parts in
the motion control command. The brain estimates
the target direction T̃ from the visual information of
the retina R and the direction of eye with respect
to the head Ẽ. After a delay of about 0.2 second,
saccade motion is started. At the beginning of the
motion the brain compares the directions of eye and
target, and until the difference becomes sufficiently
small the brain commands the eye to keep moving.

This model has two important engineering interpre-
tation. One is that the brain continuously monitors
the directional error between the eye and the target
to generate the motion command. The other is that
the brain integrates the temporal information (di-
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rection of motion of the eye) and spatial information
(retinal image).

From biological experiments it is proved that the eye
direction signal is composed of two different signals
Ẽ and Ê. First is the afferent signal from propri-
oceptor (sensor signal) and the other is the copy of
efference signal (copy of motion command). The sen-
sor signal includes about 10ms delay because it fires
after eye completes its motion. On the other hand,
the efference copy do not include the delay. However
the efference copy requires learning based on propri-
oceptor signal to keep the accuracy.

The efference copy is used in the inner feedback loop
to servo the eye direction. Since the proprioceptor
signal include large delay it is not suitable for stabi-
lization. On the other hand, the proprioceptor signal
is used in conjunction with the retina image to recon-
struct the object direction. This outer loop feedback
composes a position-based visual servo system.

5 Usage of Visual Feedback

5.1 Feedback for servo control

Part (a) in Figure 7 shows an example of servo con-
trol in which a hand is controlled by observing the
positional error through vision. When the vision sen-
sor is slow compared to the arm dynamics, the vision
feedback is used as an outer loop of the joint servo
loop and an inner servo loop based on efference copy
becomes necessary [2, 10]. However, as shown in this
example, if the vision system is fast enough to con-
struct direct servo loop, a stable and highly respon-
sive control can be expected.

5.2 Desired trajectory generation

Sensory feedback can be used for generating desired
hand trajectory. Part (b) in Figure 7 is an example
in which the optimal arm trajectory against a mov-
ing obstacle is computed by using visual feedback.
The servo control system becomes a sublayer of this
module.

5.3 Task switching

Sensory feedback can be used for switching tasks ac-
cording to the state of environment. Part (c) in Fig-
ure 7 gives an example of task switching in which
three subtasks (grasping, object handling, and colli-
sion avoidance) are switched according to the state
of the environment. To select an optimal subtask in
a dynamical changing environment, high-speed feed-
back is needed. Each subtask requires the trajectory
generation module.

Collision avoidance

HandlingGrasping

Error

Trajectory

Desired trajectory Vision

Jacobian
Image

Gain

Obstacle
Vision

switch

switch

switch

Desired trajectory

Trajectory generator

(c) Task switching

(b)  Trajectory generation

(a)  Servo control

Figure 7: Use of real-time sensory feedback

6 Hierarchical Sensory Feedback Model

To simplify the problem, it is assumed that the state
of the system is uniquely described by a state vector
z ∈ Rmz . A part of the state can be controlled, e.g.
joint angle of the arm and direction of the eye. We
assume the existence of a function f that selects the
controllable state from the whole state θ = f (z).
The controllable state θ ∈ Rmθ is called the motion
parameter. We also introduce a state of sensor signal
s ∈ Rms . It is also assumed that the sensor signal is
rich enough to estimate the whole system state.

6.1 Control layer

Corresponding to the usage of vision sensor shown
in Figure 7 (a), servo control layer is implemented as
the levels 1 and 2 of the efferent/afferent interaction
model.

Let the number of subtasks that need servo control
be Mz and let the state concerning each tasks be
zi(s) ∈ Rmz for (i = 1, . . . , Mz). For example, let
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the first subtask i = 1 corresponds to the pan motion
of the eye and the pan angle qp is the third element
of the system state z. Then z1(s) selects qp from
the sensor output s and maps it to the third element
of the state, i.e., z1 = [0, 0, qp, 0, . . . , 0]T . If the pan
angle control needs other sensor output, z1 also picks
up the sensor signal, combines the signal with the
pan angle and maps the combined signal into the
third element.

Then we define the actual state that is estimated
from current sensor output as a linear combination
of all subtasks

z =
Mz∑
i=1

Si(s)zi(s). (11)

The coefficient matrices Si(s) ∈ Rmz×mz for i =
1, . . . , Mz are functions of s, sensor output, and are
used for adaptation. The adaptation law is described
in 6.3. Note that the coefficients are semi positive
definite and satisfy

∑Mz

i=1 Si(s) = Imz where Imz is
the mz × mz identity matrix.

We assume that all actuators are velocity-control
type and we adopt a simple proportional control law

θ̇ =
∂f

∂z
(zd − z) , (12)

where zd is the reference state. Since the purpose of
this paper is to present the architecture, we do not
discuss the control law. One may use any kind of
control law to improve the accuracy. The important
point is the estimation of system state (11) and gen-
eration of the reference zd, which is discussed below.

6.2 Planning layer (pattern generation)

The reference trajectory is generated in this layer on
the basis of the sensor usage described in Figure 7
(b). This layer corresponds to the level 3 in the effer-
ent/afferent interaction model. To deal with various
subtasks, the desired trajectories (for eye direction,
arm motion, finger shape and so on) are given as
combinations of trajectories for all subtasks.

Let the number of subtasks that affects the control
parameters of the system be Mdz (which is not nec-
essarily equal to Mz) and let the reference state for
each subtask be zdi(s) ∈ Rmz for (i = 1, . . . , Mdz).
Then the actual reference state (motion pattern) is
generated as a linear combination of each reference
state

zd =
Mdz∑
i=1

Ui(s)zdi(s). (13)

The coefficients Ui(s) ∈ Rmz×mz for i = 1, . . . , Mdz

are used for adaptation and they are semi positive
definite matrices that satisfy

∑Mdz

i=1 Ui(s) = Imz .
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Figure 8: Hierarchical sensory feedback model

6.3 Adaptation layer (task selection)

The third layer is the adaptation. This corresponds
to the sensor usage of Figure 7 (c). This layer is
mainly for the selection of main task among various
subtasks. The selection is realized by changing the
coefficient matrices Si(s) and Ui(s).

On the basis of these control strategies, a hierarchical
parallel processing model is constructed as depicted
in Figure 8. Since all feedback loops (including vision
loop) have very high sampling rate (1 kHz), adapta-
tion and task selection corresponding to the dynamic
changes of the environment can be achieved. More-
over, this computation model has an advantage that
the structural change of the control system, e.g., ad-
dition or deletion of sensory feedback, is relatively
easy because the dependence between tasks and sen-
sors are described explicitly in the definition of the
state.

7 High-speed Grasping Algorithm

We assume that the system is composed by a 6-axis
manipulator with a multi-finger hand and a monocu-
lar vision. Each joint of the finger has a force sensor.
The contact force between the fingers and the object
can be measured by using them. The task is a se-
ries of general manipulation processes, i.e., grasp the
object, handle the object, and avoid other objects.

7.1 Control algorithm

Suppose that the joint angle vector is θa ∈ R6, the
position and the orientation of the hand is xa ∈ R6,
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the position and orientation of the object is xo ∈ R6,
the force and moment observed by the force/torque
sensor is F a ∈ R6. The object position is measured
by vision and the force is measured by force/torque
sensor. Then, on the basis of a typical force control
scheme, the desired joint angle velocity va

d ∈ R6 is
computed as follows:

va
d = Ja−1

Ka (xd − xs) − Kavθ̇
a

+ JaT

KafF a,(14)

where xd and xs correspond to the desired and the
actual hand positions, respectively. These vectors
are defined in the following subsection. The matrix
Ja ≡ ∂xa

∂θa is the arm Jacobian and the matrices Ka,
Kav and Kaf are positive definite diagonal gain. In
this equation the first term denotes the position con-
trol based on vision sensor (xd and xs are generated
from the object position and the hand position ob-
served by vision sensor), the second term denotes
the velocity feedback, and the third term is the force
feedback using the force/torque sensors.

7.2 Task encoding

The variables appeared in the first term of (14) are
defined as follows:

xd ≡ (I6 − Ga)(I6 − Gm)(I6 − Gs)xo

+ (I6 − Ga)(I6 − Gm)Gs xa
d,

+ (I6 − Ga)Gmxo
d + Ga xc

d, (15)
xs ≡ (I6 − Cm)xa + Cm xo, (16)

where xd is the reference trajectory generated by in-
tegrating desired trajectories of the subtasks and xs

is the actual controlled position. The reference is a
function of the object position xo, the desired han-
dling trajectory xo

d, the desired avoidance trajectory
xc

d and the desired reaching trajectory xa
d. The ma-

trices Ga and Gm select the subtasks and the matrix
Gs divide the workspace into tracking and reaching
subspaces. The vector xs denotes the task depen-
dent state of the system generated by combining the
visual information xo with the internal sensor in-
formation xa (the fingertip position computed from
the joint angle measurement θa). The matrix Cm

switches the controlled point (If the hand is holding
the object the controlled point becomes the object.
Otherwise, the controlled point is the fingertip).

7.3 Selection matrices

The coefficient matrices appeared in (15) and (16)
are defined as follows:

Gs = diag (1, 0, 0, 0, 1, 1) ,

Gm = diag ( gm
i ) , i = 1, 2, · · · , 6, (17)

gm
i =




1 (1 < ḡm
i )

ḡm
i (0 ≤ ḡm

i ≤ 1)
0 (ḡm

i < 0)
, (18)

ḡm
i =

∫ t

t′=0

γm
i sgn(τh(t′) − τh

o ) dt′, (19)

τh =

√√√√ 4∑
i=1

τ h
i

T

Hiτ h
i ,

Ga = diag ( ga
i ) , i = 1, 2, · · · , 6, (20)

ga
i =

1
1 + exp(γa

i (l − lo))
,

Cm = Cα Gm, (21)

where τh shows the size of the weighted average of
the joint torque of the hand τ h

i ∈ R3, τh
o ∈ R is

a threshold, l ∈ R shows the distance between the
manipulated object and the obstacle, and lo ∈ R
is a threshold for adjusting the distance in which
avoidance motion starts. The matrices Cα, Hi and
the scalers γm

i , γa
i are appropriate constants.

7.4 Encoded arm subtasks

The arm control law (14), (15) and (16) are switched
according to the subtasks, i.e., tracking and reach-
ing; handling and collision avoidance. During these
subtasks, the control law can be simplified as follows:

Tracking and Reaching. In these subtasks, since
the fingers do not touch the object, the finger joint
torque is zero (τh = 0) and thus the selection ma-
trices satisfy Gm = O6 and Ga = O6. Therefore the
control law (14) becomes

va
d = Ja−1

Ka {(I6 − Gs) (xo − xa) + Gs (xa
d − xa)}

−Kavθ̇
a

+ Ja
T

KafF a, (22)

where the tracking motion (I6 −Gs) (xo −xa) is or-
thogonal to reaching motion Gs (xa

d − xa), there is
no interference between them.

Handling. After grasping the object, the subtask
is switched to handling mode. When the grasp is
stiff, the switching function gm

i becomes unity. Thus
the selection matrices are given by Gm = I6 and
Ga = O6. Then the control law (14) is described
by

va
d = Ja

−1

Ka (xo
d − xo

s) − Kavθ̇
a

+ Ja
T

KafF a,(23)

where xo
s ≡ (I6−Cα)xa +Cαxo is the controlled po-

sition generated by combining the visual information
with the internal sensor information.

Collision avoidance. After grasping, if other ob-
jects appear in the viewing area then the subtask is
switched to collision avoidance mode. In this subtask
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Figure 9: Block diagram

the selection matrices become Gm = I6 and Ga = I6.
Thus the control law (14) is given by

va
d = Ja

−1

Ka (xc
d − xo

s) − Kavθ̇
a

+ Ja
T

KafF a.(24)

Note that the avoidance force is generated by the
term (xc

d − xo
s) which is obtained by combining the

visual information with the internal sensor informa-
tion. The desired trajectory for collision avoidance
is defined by

xc
d ≡


 xo

s +
[

nl (lo − l)
0

]
if lo − l > 0,

xo
s otherwise,

(25)

where nl ∈ R3 is the unit vector in the direction
from the obstacle to the manipulated object.

8 Experiment

8.1 Experimental system

The experimental system is the 1 ms sensory-motor
fusion system [11]. This system consists of a hier-
archical parallel processing system, an active vision,
a 7-axis axis arm, and a 4-fingered hand. The hi-
erarchical parallel processing system is a multipro-
cessor system with eleven general-purpose floating-
point DSPs. The active vision is a 2-DOF actuator
(tilt and pan) and a high-speed vision chip system
SPE-256 (resolution: 16 × 16 pixel) [12] is mounted
on it. The hand is a 4-fingered 14-DOF system that
has force sensors in each joint. The cycle time of
whole system control is 1 ms.

8.2 Experimental result

We assume that the handling subtask is to keep the
object at a specified position. Part (a) of Figure
10, shows the time response of object and hand tra-
jectories. After grasping, obstacle trajectory is also
shown. It illustrates that tracking, grasping, han-
dling and collision avoidance subtasks are carried
out. To show the subtask switching mechanism, the
time responses of coefficients for adaptation Ga and
Gm is given in part (b) and the time response of
the grasping torque τh is given in part (c). Task
switching from the reaching subtask to the object
handling subtask is realized by the change of the co-
efficient matrix Gm according to the grasping torque
τh. The task switching from the object handling sub-
task to the collision avoidance subtask is realized by
the change of the coefficient matrix Ga due to the
approach of the obstacle. In Figure 11 the total ma-
nipulation process is shown as a continuous sequence
of pictures every 0.3s.

9 Conclusion

In this paper, a hierarchical parallel processing model
based on high-speed sensory feedback is proposed.
On the basis of this model, grasping and manipu-
lation tasks are realized. It is shown that the sys-
tem is highly responsive and flexible to the dynamic
changes of an environment. The proposed algorithm
for multiple heterogeneous subtasks is well suited for
hierarchical efferent/afferent interaction model. The
experimental results demonstrate that the manipula-
tion is adaptable to dynamic changes of an environ-
ment and the adaptation can be realized by using
the real-time sensory feedback.
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João P. Barreto† Frédérick Martin‡ Radu Horaud‡

† Institute of Systems and Robotics
DEEC - University of Coimbra

3030 Coimbra, Portugal ∗

‡ INRIA Rhône-Alpes
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Abstract

Visual control of robot motion may benefit from
enhanced camera field of view. With traditional
cameras the available fields of view are only enough
to view a region around the observed object (for
eye-in-hand systems) or around the end-effector
(for independent-eye systems). Central catadiop-
tric systems have larger fields of view thus allowing
the entire robot AND the surrounding objects to
be imaged with a unique camera. Therefore, the
whole robot’s articulated mechanism can be ob-
served and its joints can be tracked and controlled
simultenously. This results in a new visual robot
control concept where tracking and control are em-
bedded together. Key to the understanding of both
servoing and tracking is the central catadioptric Ja-
cobian matrix linking the robot’s joint velocities to
image observations. In spite of a more complex
projection matrix associated with catadioptric sen-
sors, we study the catadioptric Jacobian matrix and
we show that it does not introduce any additional
singularity with respect to the traditional pinhole
camera model. Experiments showing a rigid body
being tracked with a catadioptric camera are de-
scribed.

1 Introduction

Machine vision provides noncontact measurements
of the world, extending the robot ability to oper-

ate in circumstances and environments which can
not be accurately controlled. The approach of con-
trolling motion using visual information is referred
in the literature as visual servoing. Visual control
of motion has been the object of intensive research
in the last years. Several applications have been
described for pose estimation [3], robot navigation
[13] and positioning tasks of robotic manipulators
[1, 2].

Visual servoing applications can benefit from
sensors providing large fields of view. The advan-
tages of omnidirectional imaging in egomotion re-
covery from video were first discussed in [5]. Am-
biguities and confusion between translation and ro-
tation may arise whenever the translation direction
lies outside the camera field of view. Panoramic
sensors overcome this problem making the uncer-
tainty of egomotion estimation independent of the
direction of motion. More recently Aloimonos et
al. proposed a spherical eye built with six cameras
specifically designed for egomotion recovery [10].
Enhanced fields of view can also be advantageous
for positioning tasks of robotic manipulators. The
approaches to this problem are traditionally classi-
fied in two groups: position based and image based
visual servoing [4]. In the former the control in-
put is defined in the 3D task space. The pose of
the target is estimated from image features based
on the knowledge of a geometric model of the ob-
ject and the camera calibration [1]. With only one
camera there are ambiguities and singularities in
pose estimation and the target can get out of the
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field of view during the tracking. In [3] a multiple
camera approach is used to cope with these diffi-
culties. Panoramic imaging can also overcome the
refered problems avoiding multiple view geometry
and calibration of several cameras.

One effective way to enhance the field of view of
a camera is to use mirrors. The general approach of
combining mirrors with conventional imaging sys-
tems is referred to as catadioptric image forma-
tion. In [6], Baker and Nayar derive the entire
class of catadioptric systems with an unique view-
point. Central catadioptric systems can be highly
advantageous for many applications because they
combine two important features: a single projec-
tion center and a wide field of view. Applica-
tions of these sensors in visual servoing, mainly for
robot navigation purposes, appear in the literature
[10, 13]. However a global theory for visual con-
trol of motion using central catadioptric images has
never been proposed.

This work introduces the Jacobian matrix J for
a generic central catadioptric system. Matrix J
is derived from the central catadioptric mapping
function presented in [8]. According to this uni-
fying theory, central catadioptric imaging can be
modeled by a generic function fi, with the type of
sensor and shape of the mirror described by a pa-
rameter ξ. For the particular case of a conventional
perspective camera the parameter ξ is null. Thus,
by assuming ξ = 0, the general Jacobian matrix Jg

becomes the well known interaction matrix Jp in-
troduced the first time in [2]. Moreover it is shown
that the derived Jacobian matrix can be decom-
posed in the product of two matrices Jc and Jp

(Jg = Jc.Jp). Jc is a 2×2 matrix that is always
invertible which proves that the general catadiop-
tric Jacobian Jg has exactly the same singularities
as the standard perspective Jacobian Jp [11, 12].

Experiments on iterative pose estimation from
points in the catadioptric image are performed.
The singularities of Jg and the stability and conver-
gence of image based visual servoing from catadiop-
tric images are discussed. Point-to-contour track-
ing [3] on omnidireccional images is used to esti-
mate the rigid displacement of objects. The ap-
plication of the derived framework to control the
position of a robotic arm is also discussed.
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Figure 1: Central catadioptric projection of a rigid
body

2 Modelling Central Cata-
dioptric Image Formation

A catadioptric realization of omnidirectional vi-
sion combines reflective surfaces and lenses. In [5],
Baker et al. derive the entire class of catadioptric
systems verifying the fixed viewpoint constraint.
The fixed viewpoint constraint is a requirement en-
suring that the visual sensor only measures the in-
tensity of light passing through a single point in 3D
space. An unique projection center is a necessary
condition for the generation of geometrically cor-
rect perspective images [5], and for the existance
of epipolar geometry inherent to the moving sen-
sor and independent of the scene structure [7]. A
central catadioptric system can be built by combin-
ing a parabolic mirror with an orthographic camera
or an hyperbolic, elliptical or planar mirror with a
perspective camera.

Fig.1 is a scheme of the catadioptric system com-
bining an hyperbolic reflective surface with a per-
spective camera. Consider the coordinate systems
< and <cam associated respectively with the mirror
and the perspective camera. The hyperbola axis is
coincident with the Z-axis of <, and its foci are co-
incident with O and Ocam (the origins of < and
<cam). The latus rectum of the hyperbolic surface
is 4p and the distance between the foci is d. Light
rays incident with O (the inner focal point) are
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reflected into rays incident with Ocam (the outer
focal point). If the projection center of the per-
spective camera is coincident with Ocam the the
captured light rays go originally through the inner
focus of the hyperbolic surface. The effective view-
point of the grabbed image is O and is unique. El-
liptical catadioptric images are obtained combining
an elliptical mirror with a perspective camera in a
similar way. In the parabolic situation a parabolic
mirror is placed such that its axis is the Z-axis,
and its unique finite real focus is coincident with
O. Light rays incident with O are reflected into
rays parallel with the Z-axis which are captured by
an orthographic camera with image plane perpen-
dicular to the Z-axis. The effective viewpoint is in
O and is unique. A catadioptric system made up of
a perspective camera steering a planar mirror also
verifies the fixed viewpoint constraint. The effec-
tive projection center is behind the mirror in the
perpendicular line passing through camera center.
Its distance to the camera center is twice the dis-
tance between the planar mirror and the camera.
Tab. 1 shows the equations of the different reflec-
tive surfaces.

In [8] Geyer and Daniilidis introduce an unifying
theory for central catadioptric systems. Assume
that a point with 3D coordinates X = (X,Y, Z)t is
projected in xi = (xi, yi)

t in the catadioptric im-
age plane (Fig. 1). It can be shown that central
panoramic projection is isomorphic to a projective
mapping from a sphere to a plane. Consider the
scheme of Fig. 2 with the unitary sphere centered
in the effective viewpoint O, the point Oc with co-
ordinates (0, 0,−ξ)t and the plane Z = ψ − 2ξ or-
thogonal to the Z axis. Both ξ and ψ are function of
mirror parameters d and p (Tab. 1). The projective
ray x going through X intersects the spherical sur-

Mirror Surface ξ ψ

Parabolic
√
X2 + Y 2 + Z2 = 2p− Z 1 1 + 2p

Hyperbolic
(Z− d2 )2

( 1
2 (
√
d2+4p2−2p))2

− X2+Y 2

p(
√
d2+4p2−2p)

= 1 d√
d2+4p2

d+2p√
d2+4p2

Elliptical
(Z− d2 )2

( 1
2 (
√
d2+4p2+2p))2

+ X2+Y 2

p(
√
d2+4p2+2p)

= 1 d√
d2+4p2

d−2p√
d2+4p2

Planar Z = d
2 0 1

Table 1: Column 1: Reflective surfaces for the different cases of central panoramic imaging. Column 2 and 3:
Parameters ξ and ψ of the general central catadioptric model
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Figure 2: Modelling central catadioptric image for-
mation

face in Q = (Xρ ,
Y
ρ ,

Z
ρ )t with ρ =

√
X2 + Y 2 + Z2.

A second projective ray xc can be defined by joining
the intersection point Q with Oc. The intersection
xi of the projective ray xc with the plane Z = ψ−2ξ
is the catadioptric image of the original point X.
Central catadioptric imaging can be modeled by
projecting the scene in the sphere surface and then
re-projecting these points in the image plane from
a novel projection center Oc. If the reflective sur-
face is parabolic then ξ = 1 and the re-projection
is a stereographic projection. For the hyperbolic
and elliptical mirror the re-projection center Oc is
inside the sphere in the negative Z axis. The planar
mirror is a degenerate case of central catadioptric
imaging with ξ = 0 and Oc coincident with the
effective viewpoint O. Notice that a catadioptric
sensor with a planar mirror is equivalent to a con-
ventional perspective camera with a sign inversion
in the Y axis.
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Figure 3: Iterative pose estimation is a regulation
control problem. I is the 2n × 2n identity matrix.
The dashed line corresponds to the feedback loop.

fi(X) =

(
fx(ψ−ξ)X

Z+ξ
√
X2+Y 2+Z2

− cx
− fy(ψ−ξ)Y
Z+ξ

√
X2+Y 2+Z2

− cy

)
(1)

The catadioptric image is acquired by a camera
steering the reflective surface. Assume that that
the X and Y camera focal lengths are respectively
fx and fy and C = (cx, cy)t is the principal point.
Equation 1 provides function fi which maps points
in the scene in the catadioptric image plane (xi =
fi(X)). Any central catadioptric system with ξ 6= 0
can be easily calibrated from the image of three
lines [9]. If the sensor calibration is known, function
fi can be simplified by making fx(ψ − ξ) = fy(ψ −
ξ) = 1 and cx = cy = 0. We will assume without
loss of generality that the mapping function is given
by equation 2:

fi(X) =

(
X

Z+ξ
√
X2+Y 2+Z2

− Y
Z+ξ

√
X2+Y 2+Z2

)
(2)

3 Tracking and control

Fig. 1 depicts a moving rigid object observed by a
central catadioptric sensor. The referential frame
<b is attached to the moving body, R is the rota-
tion matrix between <b and < and T is the position
of Ob in sensor coordinates. Our goal is to estimate
the pose of the rigid body knowing the coordinates
{X1

b ,X
2
b , . . . ,X

n
b } of a set of ’n’ object points.

Let Xb be a generic point of the object model.
If the pose (R,T) is known then the point 3D posi-
tion in sensor coordinates is X = RXb + T. From
equation 2 it comes that point X is projected in
xi = fi(X) in the catadioptric image plane. Object

rigid motion implies a change in pose that can be
described by a kinematic screw δ = (ω,v)t. Con-
sider the 3 × 6 matrix Jm = [X̃|I] where X̃ is the
skew-symetric matrix of X and I is the 3× 3 iden-
tity matrix. The 3D velocity of point X due to
object rigid motion is Ẋ = Jmδ. Moreover if Ji is
the Jacobian matrix of function fi (equation 2) and
Jg = JiJm then the corresponding velocity in the
catadioptric image plane is ẋi = Jgδ.

E =




x1
i − x̂1

i

x2
i − x̂2

i
...

xni − x̂ni


 ≈




J1
g

J2
g
...
Jng


 δ̂ = Jδ̂ (3)

Let ŝ = {x̂1
i , x̂

2
i , . . . , x̂

n
i } be the set of model

points projected in the image accordingly to
a certain pose estimation (R̂, T̂), and s =
{x1

i ,x
2
i , . . . ,x

n
i } the real positions of those points.

Vector E is defined as E = s− ŝ and depends on the
pose estimation error described by the kinematic
screw δ̂. From the above discussion it comes that
(xj

i − x̂j
i) ≈ Jj

gδ̂ with j = 1, 2, . . . , n and Jj
g the Ja-

cobian matrix Jg evaluated on the jth model point.
Equation 3 establishes the relationship between the
measured image error E and the error δ̂ on the pose
estimation of the rigid body. J is a 2n × 6 matrix
comprised by the Jacobian matrix Jg evaluated in
the ’n’ points of the object model. The objective is
to update the pose estimation such that the image
of the model becomes coincident with the object
image and the measured error vector E converges
to zero.

{
E(k + 1) = IE(k) + Jδ(k) + JU(k)
Y (k) = E(k)

(4)

The problem stated in the previous paragraph
can be formulated as a regulation control problem.
Consider the system whose block diagram is de-
picted in Fig. 3. The state vector is the error E(k)
measured in the catadioptric image, the system in-
put matrix is J (equation 3), and the system output
is Y(k) which must be zero. Accordingly to the
system state-space equation 4 the pose change δ
acts as a perturbation disturbing the output Y(k).
The purpose is to find a state feedback controller L
such that if U(k) = −LE(k) then the disturbance
is rejected and the system state converges to zero.
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L = (J tJ)−1Jt (5)

{
E(k + 1) = (I − J(J tJ)−1Jt)E(k) + Jδ(k)
Y (k) = E(k)

(6)
The least squares solution of equation 3 is δ̂(k) =

(JtJ)−1JtE(k). δ̂(k) is an estimate of the pose
error associated with the measured image error
E(k). System regulation can be achieved by mak-
ing U(k) = δ̂(k) (equation 5). Equation 6 pro-
vides the state space model of the final closed
loop system. System stability and transient re-
sponse depend on the eigenvalues of the matrix
(I− J(JtJ)−1Jt). However it is important to re-
mind that the state transition matrix is a function
of rigid body position which changes along time.
Moreover the controller of equation 5 is only realiz-
able when (JtJ) is non singular. Whenever matrix
(JtJ) is not invertible we are in presence of a sin-
gularity.

4 The Jacobian Matrix for
General Central Catadiop-
tric Projection

To design the controller of equation 5 we need to
obtain matrix J depending on the Jacobian matrix
Jg which is evaluated on the ’n’ points of the object
model (equation 3).

Consider the central catadioptric mapping
function fi which maps 3D point coordinates X in
image coordinates xi. The corresponding Jacobian
matrix Ji is derived by diferentiating the function

Ji =
1

ρ(Z + ξρ)2

[
ρZ + ξ(Y 2 + Z2) −ξXY −X(ρ+ ξZ)

ξXY −(ρZ + ξ(X2 + Z2)) Y (ρ+ ξZ)

]
(7)

Jg =

[
xiyi

(1+x2
i )Υ−y2

i ξ
Υ+ξ yi

1+x2
i (1−ξ(Υ+ξ))+y2

i

ρ(Υ+ξ)
xiyiξ
ρ −xiΥρ

(1+y2
i )Υ−x2

i ξ
Υ+ξ xiyi −xi −xiyiξρ

1+x2
i+y

2
i (1−ξ(Υ+ξ))
ρ(Υ+ξ) −yiΥρ

]
(8)

Ji =

[
Z(ρZ+ξ(Y 2+Z2))

ρ(Z+ξρ)2
ξXY Z

ρ(Z+ξρ)2

ξXY Z
ρ(Z+ξρ)2

Z(ρZ+ξ(X2+Z2))
ρ(Z+ξρ)2

]

︸ ︷︷ ︸
Jc

[
1
Z 0 − X

Z2

0 − 1
Z

Y
Z2

]
(9)

of equation 2. The achieved result is presented on
equation 7 where ρ =

√
X2 + Y 2 + Z2.

Assume Ji provided by equation 7 and Jm =
[X̃|I] with X̃ the skew symetric matrix associated
with point coordinates X. It was already shown
that the Jacobian matrix Jg can be computed as
Jg = JiJm. Equation 8 presents the general central
catadioptric Jacobian matrix as a function of image
position xi, point depth ρ and sensor ξ parameter (
Υ =

√
1 + (x2

i + y2
i )(1− ξ2)). Notice that if ξ = 0

then matrix Jg becomes the well known Jacobian
matrix Jp introduced in [2] for conventional per-
spective cameras.

The Jacobian Ji of the mapping function fi can
be decomposed in the matrix product of equation
9. Jc is the 2 × 2 matrix depending on point co-
ordinates X and on the mirror parameter ξ. If
ξ = 0 then Jc is the identity matrix. The sec-
ond matrix has dimension 2 × 3 and it is the Ja-
cobian matrix of the perspective mapping function
fi = (X/Z,−Y/Z)t obtained making ξ equal to zero
in equation 2. Thus the general catadioptric ma-
trix Jg can be written as Jg = JcJp with Jp the
2×6 Jacobian for the perspective camera situation.
Moreover for Z > 0 the square matrix Jc is posi-
tive definite with eigenvalues {Z/(Z + ρξ); (Z2(ρ+
ξZ))/(ρ(Z + ξρ)2)}.

J =




J1
c 0 . . . 0
0 J2

c . . . 0
...

...
. . .

...
0 0 . . . Jnc




︸ ︷︷ ︸
C




J1
p

J2
p
...
Jnp




︸ ︷︷ ︸
P

(10)

The controller of equation 5 is realizable if and
only if J is a full rank matrix. J has dimension
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2n× 6 where ’n’ is the number of considered model
points. Clearly the full rank constraint can not be
verified with less than three points. Equation 10 is
derived from equation 3 knowing that Jj

g = Jj
cJ

j
p.

Matrix J is the product of a 2n× 2n square matrix
C with a matrix P with dimension 2n × 6. It was
shown that Jj

c is positive definite for j = 1, 2, . . . , n
and matrix C is always full rank. This poofs that
J is rank deficient only when P is also rank de-
ficient. The general central catadioptric situation
does not present more singularities than the per-
spective case. These singularities were studied in
[12, 3].

5 Tracking experiments and
Conclusions

Based on the tracking method described above we
implemented an object tracker. Since with cata-
dioptric cameras straight lines map onto the image
plane as quadrics, we devised a contour-to-point
tracker along the lines described in [3]. The figures
below show a rectangular object moving towards
the camera and in a direction perpendicular to the
camera. The advantage of this method is that only
points along contours are to be found in the image
thus avoiding the tedious and unreliable process of
fitting a quadric to a set of points.

The model based tracking of a rigid object can
be exploited in many ways for visual servoing ap-
plications. The proposed approach is being used
in robot navigation and cooperation [13]. The ex-
perimental setup consists in two mobile plataforms
both equipped with central catadioptric cameras.
A visual landmark, similar to the one depicted in
the figures, is positioned in the room ceil. One
robot is the leader with independent motion and
the other is the slave. The objective is to control
slave motion such that the relative position between
the two plataforms is kept constant. To achieve this
goal both robots use the omnidirectional vision to
estimate their pose from the model based tracking
of the landamark. A method to control the po-
sition of a robotic arm using a static catadioptric
system is also being develoed. Typically, in visual
servoing using a conventional perspective camera,
the available field of view is only enough to im-
age the region around the end-effector. The pose

Figure 4: A tracking sequence. The object trans-
lates along axis of camera
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Figure 5: A tracking sequence. The object trans-
lates in front of camera..

of the end-effector is estimated by visual feedback,
and motion control is achieved using the manipu-
lator jacobian known “‘a priori”. The success of
this approach is highly dependent on the arm cali-
bration. We use the wide field of view provided by
the omnidirectional sensor to image the entire arm.
The different manipulator links are tracked in the
catadioptric image and the motion of each joint is
estimated. This approach increases the robustness
and accuracy of the visual servoing.

References

[1] W. Wilson, C. Hulls, and G. Belles,“Relative
end effector control using cartesian position-
based visual servoing,” IEEE Trans. on
Robotics and Automation, vol. 12, no. 5, pp.
684–696, October 1996.

[2] B. Espiau, F. Chaumette, and P. Rives,“A new
approach to visual servoing in robotics,” IEEE
Trans. on Robotics and Automation, vol. 8, no.
3, pp. 313–326, June 1992.

[3] F. Martin and R. Horaud, “Multiple Camera
Tracking of Rigid Objects”, Research report
4268 INRIA, Montbonnot, France, September
2001.

[4] S. Hutchinson, G. Hager, and P. I. Corke, “A
tutorial on visual servo control,” IEEE Trans.
on Robotics and Automation, vol. 12, no. 5, pp.
651–670, October 1996.

[5] J. Gluckman and S. Nayar, “ Egomotion and
Omnidirectional Cameras,” ICCV98 - Proc.
IEEE International Conference on Computer
Vision, pp. 999-1005, Bombay 1998.

[6] S. Baker and S. Nayar, “A Theory of Catadiop-
tric Image Formation,” ICCV98 - Proc. IEEE
International Conference on Computer Vision,
pp. 35-42, Bombay 1998.

[7] T. Svoboda, T. Pajdla and V. Hlavac, “Mo-
tion Estimation Using Central Panoramic Cam-
eras,” Proc. IEEE Conference on Intelligent Ve-
hicles, Stugart Germany 1998.

[8] C. Geyer and K. Daniilidis, “A Unifying The-
ory for Central Panoramic Systems and Prat-
ical Implications,” ECCV2000-Proc. European

60



Conference on Computer Vision, pp. 445-461,
Dublin 2000.

[9] Joao P. Barreto and H. Araujo,“Geometric
Properties of Central catadioptric Line Im-
ages,” in Proc. of the European Conference on
Computer Vision, Copenhag, Denmark, May
2002.

[10] P. Baker, C. Fermuller, Y. Aloimonos and R.
Pless,“A Spherical Eye From Multiple Cameras
(Makes Better Models of the World),” in Proc.
of the IEEE Int. Conf. on Computer Vision and
Pattern Recognition, Kauai, Haway, USA, De-
cember 2001.

[11] Francois Chaumette, “Potential Problems of
Stability and Convergence in Image Based and
Position Based Visual Servoing”, The Conflu-
ence of Vision and Control, Lecture Notes in
Control and Information Systems, Vol. 237, pp
66-78, Springer-Verlag, 1998.

[12] H. Michel and P. Rives, “Singularities in the
determination of the situation of a robot ef-
fector from the perspective view of 3 points”,
Research report 1850 INRIA, Sophia-Antipolis,
France, February 1993.

[13] A. Paulino and H. Araujo, “Multiple Robots
in Geometric Formation: Control Structure
and Sensing”, in Int. Symposyum on Intelligent
Robotic Systems, Reading, UK, 2000.

61




