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Vogais: Doutor José Neira Parra
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Resumo

A tese tem como principal objectivo o desafio da navegação robótica em ambientes ex-
ternos não estruturados, para o que são propostas metodologias baseadas em abordagens
probabiĺısticas que focam os três grandes problemas: o tipo de representação, a localização
e a navegação. A metodologia escolhida assenta numa base matemática sólida que procura
resolver os três problemas simultaneamente de uma forma topológica, ou seja, a um ńıvel
elevado de abstracção.

A motivação da tese é inspirada na destreza de certas espécies animais com excelentes
capacidades de navegação que permitem recolher o essencial à vida e manter a espécie.

Para este desafio foram desenvolvidos algoritmos, testados em simulação e em ambi-
entes reais, com um robot móvel. As maiores contribuições cient́ıficas da tese baseiam-se
na representação do cenário (uma nova abordagem de representação topológica, um con-
junto de estados definidos por Gaussianas e ligados por orientações), na construção do
mapa topológico (uma versão dinâmica do algoritmo de Estimação e Maximização), uma
abordagem probabiĺıstica para a localização e navegação (versões optimizadas do algoritmo
Progressivo-Regressivo) e finalmente, a extracção e selecção de propriedades (metodolo-
gias de extracção de diferentes tipos de propriedades do ambiente e a respectiva selecção
de acordo com o ambiente a ser representado).

A tese termina com um caṕıtulo de resultados experimentais em cenários reais. As
experiências foram realizadas com um robot móvel equipado com diferentes tipos de sen-
sores, comprovando assim a aplicabilidade da abordagem topológica, com um alto ńıvel
de abstracção.

As principais contribuições da tese consistem na definição e demonstração de como é
posśıvel implementar uma abordagem de alto ńıvel de abstracção na navegação de robots
móveis em ambiente não estruturados.

A tese tem como pano de fundo cenários de busca e salvamento, em especial o Projecto
“The Rescue Project - Cooperative Navigation for Rescue Robots”, onde o objectivo
principal é desenvolver soluções para a criação de equipas de robots cooperativos que
operem em ambientes externos não estruturados.

Palavras Chave

Navegação, Robots Móveis, Mapa Topológico, Robótica Probabiĺıstica, Extracção e Se-
lecção de Features, Busca e Salvamento, Ambientes Externos
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Abstract

The thesis addresses the problem of mobile robot navigation in outdoor environments and
proposes methodologies based on a topological approach, concerning to three main issues:
environment representation, localization and navigation. The selected approach, based on
a mathematical support, has to solve the three main issues simultaneously.

The motivation of the thesis is based on some cutting edges of the nature, where are
millions of species with fantastic navigation capabilities, that retrieve the essential for life.

For this purpose, complete algorithms were developed and tested in realistic scenarios
with a real mobile robot. The main contributions of the thesis are the environment rep-
resentation (a new topological representation, a set of notes defined by sum of Gaussians,
connected by orientation), map building (a dynamic version of expectation and maximiza-
tion algorithm), a probabilistic approach for localization and navigation (an optimized
version of Forward-Backward algorithm) and feature extraction and selection (different
types of feature extraction procedures with a selection criteria).

The thesis concludes in a chapter describing the experimental results acquired by a
real mobile robot, showing that the developed algorithms achieve the main goals proposed
by a topological approach and a high level of abstraction.

The main contribution provided in the thesis is the definition and demonstration of
the applicability of mobile robot navigation in unstructured environments based on a high
level of abstraction.

This work is concerned on a search and rescue like project, “The Rescue Project -
Cooperative Navigation for Rescue Robots”, where the main goal is to provide integrated
solutions for the design of cooperative robots teams operating in outdoor environments.

Keywords

Navigation, Mobile Robots, Topological Map, Probabilistic Robotics, Feature Extraction
and Selection, Search and Rescue, Outdoor Environments
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Chapter 1

Introduction

The thesis addresses the problem of mobile robot navigation in unstructured outdoor
scenarios and proposes methodologies based on topological navigation to accomplish its
implementation. The topological navigation is a challenging approach given the high level
of abstraction used to represent the environment, which supports the robot localization
and navigation in a framework that also integrates the inherent uncertainty.

The motivation of the thesis starts on some cutting edges of the nature. There are
millions of species with fantastic orientation capabilities, that retrieve the essential for life.
In special, the ants, the honeybees and the migratory birds.

Ants have been living on the Earth for more than 100 million years and can be found
almost anywhere on the planet [1, 54]. It is estimated that there are about 20,000 differ-
ent species of ants as the one represented in Figure 1.1. For this reason, ants have been
called Earth’s most successful species. Western Harvester ants make a small mound above
the ground, but then tunnel up to 30 cm straight down to hibernate during winter. Ant
mounds consist of many chambers connected by tunnels. Different chambers are used for
nurseries, food storage, and resting places for the worker ants. These complex environ-
ments are hundreds or even thousands times larger than the size of a simple ant, but the
most enigmatic is that ants memorize and understand the maze. By looking carefully to
ants during a short period of time it is possible to perceive how they navigate along the
way and communicate with each other in an effective way. Ants communicate by touching
each other with their antennae. Ants also use chemicals called pheromones to leave scent
trails for other ants to follow.

Some scientists proved the efficiency of the ants navigation by blocking a “platoon”
of ants with a rock. The colony had planned a path to reach their goal (Figure 1.2-a)),
when an obstacle was placed, blocking the way (Figure 1.2-b)). To successfully reach the
other side, they tried different possibilities, some of them with success. This is called a
re-learning phase (Figure 1.2-c)). The succeeded ants reached the goal learning the right
trails by pheromones, demonstrating a cooperative behavior. After a couple of seconds,
all the ants were following the promising way, as illustrated in Figure 1.2-d).

7
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Figure 1.1: Ants, one of the Earth’s most successful species

a)

b)

c)

d)

Figure 1.2: An illustration of the efficient navigation of ants: a) initial trail to the food,
b) an obstacle was inserted to block the way, c) a learning phase d) the new (best) path
adopted
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The last sentence points out one important issue in robotics, the navigation aspect,
in particular, the consideration of the best path to reach a goal. The ants’ capability is
one of the motivations in the thesis, which addresses a navigation approach and obstacle
avoidance behaviors prepared to dynamic environments, underlying the orientation as an
important feature for the topological representation.

However, the ants’ navigation is not the only interesting issue of animals’ navigation.
There are several interesting questions of animal biology around social insects. The well-
known communication scheme between honeybees, as represented in Figure 1.3, has been
studied in particular by Dr. Karl von Frisch, honored for his research with the Nobel
prize, and his scholar Dr. Martin Landauer in [72]. They showed that during their famous
dancing, honeybees are able to communicate at least three types of information to their
sisters. Two of them are concerned with the navigation to a far nectar-source and the
third is about the quality of the nectar. Recent research developments made it possible
for the first time to communicate this information directly to the bees by simulating the
dance using small and simple robots. This technical support allowed a real breakthrough
in a science domain that was reserved for exact observation and description of this animal
capabilities, to implement in real and useful robots.

Figure 1.3: The communication of social insects - honeybees dancing

It remains to understand the scheme/mechanism under which bees get and transform
navigation information. The possible keys lie on the scheme with which bees collect visual
landmarks and/or record information using their magnetic sense organ. The navigation
abilities of bees retrieve the essential information to find their way home, by memorizing
the angle of flight to the position of the Sun, and even by computing the Sun’s movement in
the sky, as depicted in Figure 1.4. Bees know-how to measure the flight-distance, involving
the wind’s force.

A guard bee inspects an incoming bee to see if she belongs to the family or not. Going
into the wrong house may lead to rejection and occasionally, to death. Consequently, the
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navigation algorithm used by bees has to be efficient, otherwise, it is rewarded with death.
Inspired on honeybees, a robot equipped with orientation sensors [3] records the most

important directions between useful places. This issue is covered by the thesis, as the
direction between places is recorded similarly to the bees’ navigation.

Figure 1.4: The navigation ability of honeybees: find the way home and to flowers, com-
puting the position of the Sun and measuring the flight distance

Other species of animals also have special capabilities in different habitats, like the
geese shown in Figure 1.5 and explained in [6]. In [78], it is described how some species of
birds (ducks, geese, as well as migratory rails, doves and woodcock) with their feathered
wings and tails, bones, lungs, air sacs and their metabolic abilities contribute to the
amazing faculty of migratory journeys. The authors remark that even humans with their
many ways of locomotion do not equal some birds in mobility. No human population
moves each year as far as from the Arctic to the Antarctic with subsequent return.

Figure 1.5: Snow Geese, one of the most well known migratory birds, in flight

The long migratory journeys are followed by large flocks, large amounts of birds that
know their current location, their destination, and the direction to travel to get from the
current location to the destination, which could be represented by a vector. Most of the
researchers describe this capability as a vector navigation. This vector, which is passed
and updated along generations, is well defined given certain orientation cues (landmarks
on the Earth’s surface, the magnetic lines of flux that longitudinally encircle the Earth,
both the Sun and the stars in the celestial sphere arching over the Earth, and perhaps
prevailing wind direction and odors), resulting in patterns of migration (the routes of
migrations). These migratory species are also able to deal with storms or other aerial
obstacles or even with their own exhaustion, maintaining their orientation goal regardless
of these hazardous events.
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These species of birds develop a cooperative navigation mechanism, not only when
they help each other on their exhaustion, but mainly when they pass and update their
knowledge along generations.

Most of the target applications of topological navigation, as the project where the
thesis is included, compounds cooperative navigation between robots. But more than the
capability of developing a cooperative behavior, the migratory birds have a way to repre-
sent its trajectory and to anchor it to the world. The virtuous navigation of this species of
birds raises two important issues that the robotic application in the thesis also shares: the
type of map or representation of the environment (where the robot operates) and the way
to acquire or to build that representation. Similarly to ants and honeybees, the migratory
birds also record relevant features on the Earth and memorize them as landmarks to de-
fine a map. They use that map to optimize the trajectories, that are much longer when
compared to the size of these animals. The thesis also develops algorithms to build a map
of a large natural environment, based on clustering the available features, which results in
a set of places defined with different profiles, i.e., different sets of characteristics. Similarly
to the birds, if an environment representation is available, a mobile robot localizes itself
on that map, and follows the best sequence of places to reach a target.

At this point it is important to stress the capability of different animal species to travel
large distances, when compared to their dimensions. Motivated by this amazing capability,
robotic researchers have looked to the different types of navigation of the species, including
fishes, mammals (e.g., dolphins and whales, that travel between continents) and tried to
produce similar robotic systems to work in real environments. Hopefully, this type of
research gives some insight into why the animals do it this way and how they solve the
three main question of robotics, addressed in the thesis: localization, navigation and
mapping.

Furthermore, a robot must have a way to perceive the world like these animals. Oth-
erwise, it could not get a feedback for the action taken and, in particular, will not be able
to recognize and record the features previously referred. The world perception in robotics
is provided by electronic sensors, that act similarly to some animals’ organs. A question
arising at this stage is: how is the mobile robot navigation dependent of the world per-
ception? For instance, ants have compound eyes. How does this affect the visual homing
task? Besides using local landmarks, some insects also use the position of the Sun (in
fact, its polarization pattern) as a global landmark. The Sun does not move much during
a standard trip around the nest for an ant. Obviously, using the Sun would not be as
successful as using local landmarks for journeys of over a short period of time.

Animals also use dead-reckoning, just like the common odometry on robots, which
could be useful in navigation for short periods of time. The odometry on robots is subject
to drift errors. To deal with these errors and to minimize their effects, the robots use
landmarks to back up the information.

Minuscule animals, in particular insects, even though being very small and with a
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“peanut level of intelligence” can navigate with success in places thousands of times larger
than their dimensions. Their mechanisms are sufficient to retrieve the essential for life.
Given the mystifying nature of these animals’ navigation capabilities, most of the robotic
research started from biological inspiration, creating robots and copying the sensorial
organs to perceive the world in a similar way. The thesis is inspired in nature, implementing
algorithmic methodologies to build a topological representation, based on the perception
acquired by sensors and to navigate over that representation.

When the knowledge about nature is referred, it is common to project and compare the
animal behaviors into a human world, i.e., if the animals navigation capabilities also work
in scenarios created by humans. For instance, ants draw trajectories where they avoid
obstacles, honeybees are able to fly from flowers to their nest and even migratory birds
cleverly navigate along continents. But does any of these species navigate in buildings? As
their algorithms are robust enough, they can also navigate in extreme conditions, namely
when unexpected and hazardous events occur. This means that their world representation
(map), which can not be complex given their limited intelligence, is plenty of information
to accomplish life. The map is a set of important places with simple features extracted
using their sensorial capabilities, connected by events or actions. The places, further
named as states in the thesis, are described by simple features, as the pheromones for
the ants, position of the Sun or magnetic fields for the honeybees and migratory birds.
On humans, these places could be defined using other features, based on our enormous
database.

In humans it is much more complex to understand how the brain processes the observed
information to navigate through a scenario. Cognitive science researchers have suggested
that humans use cognitive maps that link together landmarks that are recognized given
his/her database. These landmarks are obvious (to avoid ambiguities), common and un-
derstandable for any human, as rooms, buildings, stations, parking-places, gardens, hills,
rivers, lands, oceans. They are often connected by routes. These types of maps, known as
topological maps, are complex enough to support traveling long distances according to the
appropriate transportation mean (e.g., foot, car, boat, train, plane) and simple enough to
avoid the incumbency of recording every information over the physical location covered by
the map. These cognitive maps, as the one illustrated in Figure 1.6, express an abstraction
level of world representation, which appears to be stored in the hippocampus (part of the
human brain responsible for emotions, navigation, spatial orientation and consolidation of
new memories, illustrated in Figure 1.7), as explained in [82].

One of the most ambitious goals of robotic research is to develop an approach for mobile
and completely autonomous navigation of robots in outdoor environments, similar to the
scenarios where animals survive. The approach implemented in the thesis is prepared
for a diversity of scenarios, the large spectrum of information acquired by the available
sensors and the unexpected events that occur during the operation. Furthermore, the
implementation must be robust to scenario changes and must take the best profit when
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Figure 1.6: Illustration of a possible topological representation of a map of Lisbon’s subway,
with each station identified by particular buildings or other features around the area
(mainly monuments)

cooperative operation is available. The thesis addresses this challenging mobile robot
navigation application supported on a probabilistic topological approach, based on the
previously motivations and supported by mathematical models to solve the three main
issues of environment representation, localization and navigation.

Figure 1.7: The hippocampus, part of the human brain responsible for emotions, naviga-
tion, spatial orientation and consolidation of new memories
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1.1 Problem Definition

The main problems of mobile robot navigation in outdoor and unstructured environments
consist on finding an appropriate type of representation and the methodologies to localize
and navigate in the scenario based on that representation. Selected the best type of
representation, it is necessary to find a methodology and a mathematical framework to
initialize, build and update that representation over the time. It also requires a linkage
between this type of representation characterized by a high level of abstraction and a
motion control level.

As described in the first part of this chapter, small animals can move in complex
environments and, consequently, perform their own lives, finding food, recognizing the
environment and returning to their home. But the question still remains: how and what
did they record with the sensorial capabilities available on their bodies? The answer bears
the necessity to know the specific type of world representation used by these animals. The
representation, at an unknown level of abstraction, can provide the essential information to
perform navigation several times with success. Moreover, there are several unpredictable
variables associated to the perception and to the representation that leads to uncertainty,
but animals are able to overcome it.

The target applications addressed by the thesis (described in detail in Section 1.2),
endow large and unstructured scenarios, which are similar to natural environments, where
animals, in particular, ants, honeybees and migratory birds, live. Therefore the thesis has
a biological inspiration, with the robot designed to observe, act and behave like an animal,
or even a human, to face the common issues.

A mobile robot is developed and programmed to accomplish a mission, a problem on
time and space: the robot has to move to the target(s) position(s) during a period of time
(as fast and safe as possible). The first problem implies that the robot has to localize the
target. It requires a world representation (commonly defined as a map), where the robot
identifies the target and has to estimate its current position (the localization problem).
The map could be incomplete or has to be updated, which addresses the map building
problem. Finally, to accomplish the mission, the robot has to move to reach the target
goal, selecting the best trajectory, which is the navigation problem.

In natural environments, large and unstructured scenarios, it is important that the
robot is robust. Robustness is not limited to a hard case and powerful batteries. It also
includes a way to perceive the world around and, based on a set of algorithms associated
to the mechanical body, move the device and react to sensorial input, according to the
perception of the world and its mission [85].

A robot designed to operate in outdoor environments is programmed to accomplish a
mission, regardless of being equipped with legs, wings or wheels and appropriate sensors
to perceive the world. Given the observations acquired by its sensors, it is important to
know-how to represent this information to support the envisaged applications, as explained
in Section 1.2. The first question lies on the choice of the best environment representation
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that fits in the scenario of the target mission. After the selection of the representation
type, it is necessary to build the environment map based on the acquired observations. The
type of representation must be robust to deal, not only with the world changes, but also
with the uncertainty included in the observations. Moreover, the map building algorithm
must update the current world representation.

The navigation is accomplished based on the available map. There are different types
of maps, as illustrated in Figure 1.8. The navigation and the map require the same lan-
guage, which means that a metric navigation requires metric information and a topological
navigation requires topological information available on the map. A metric navigation or
a topological navigation can be accomplished in the same scenario, for the same mission,
by using different levels of abstraction. For instance, when a robot moves from a room
A to a room B, it may have different levels of navigation. The first and more abstract
is “move from room A to room B”. The next one, with a lower level of abstraction, is
moving through the doors and corridors, followed by a metric navigation. The lowest level
of navigation, the metric navigation, includes the path following that requires a metric
referential, as illustrated in Figure 1.8. The same level also includes the obstacle avoidance
and a motion control that provides commands to the actuators of the robot. It is impor-
tant to underline that the different levels of navigation have connections between them.
Otherwise, it would be impossible to control the mobile robot using only the topological
level without the motion control.
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Figure 1.8: Environment representations at different levels of abstraction
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The thesis focus on the navigation of a mobile robot with a high level of abstraction,
defined as topological navigation. It is at exactly this level of abstraction that becomes
such possible to define places as “rooms” or “corridors”, or dividing the world in sub-
regions, which are not necessarily closed or connected spaces, as a common map of a
city (see Figure 1.6). For instance, a room or “corridor”, “garage”, “garden”, “station”,
“school”, are places characterized by a set of particular “properties” or “features”. The
sensors installed on the robot perceive the world by retrieving rawdata, which must be
processed to extract the features that represent the world. Therefore, the world is similar
to a panoply of mixed features and the places or “states” are well defined clusters of some
features to avoid ambiguities. The amount of information available at these scenarios
leads to a necessity of feature selection, to accomplish better world representation. In
this paragraph, we mention some important and complex issues addressed in the thesis:
feature extraction from the sensors’ observations (rawdata), selection of the best ones and
cluster and building a topological map.

The topological map is a set of clusters, places or, as defined in the thesis, a set
of states. So two other questions turned out: how to represent states, given that the
states are identified with features and how to represent the connection between states?
The first question requires a map building algorithm as well as a mathematical support
to develop the topological navigation approach and, consequently, to represent the states.
The second question requires physical connections (metric information, motion commands)
between states, linking to a low level of abstraction: a metric navigation, i.e., a navigation
based on sending motion commands to the actuators. The mathematical support for
navigation has to deal with the uncertainty included in the world, the perception of the
world (observations and/or consequently on features) and also on the motion. This justifies
a probabilistic approach, a fundamental key in the thesis.

After this perception and representation of the world at a high level of abstraction, it
endows to the problem of navigation at the same level, trying to accomplish the mission,
following the best path to reach the goal. New questions arise: how to localize over the
map given the acquired observation (transformed into features) and how to navigate over
the world given the map and the current location? These are the topological localization
and navigation issues that the thesis addresses.

Resuming, the main questions addressed by the thesis are the mapping, the localization
and the navigation. These questions are addressed by a topological approach, where
the development is supported by mathematical algorithms to deal with the uncertainties
always present on environment representation, perception and motion.

1.1.1 State of the Art

The mobile robot navigation is a broad topic, covering a large spectrum of different tech-
nologies and applications, which address the mapping, the localization and the navigation.

The first question, the mapping, aims at a scenario representation. There are several
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approaches, some of them based on very ancient techniques [32, 37] or even on animal
instinct, as mentioned in Section 1.

The first mobile robots, with small number of degrees of freedom and autonomy, were
based on programmed machines engaged with human-machine interface for tele-operation
as cited in [73, 116]. Consequently, the navigation was simply driving the machine to a
target position, with a poor or even none world representation. The observations retrieved
by on board sensors aimed only the assistance to human operator to perceive and recognize
the scenario and building an abstract map in his/her mind. Consequently, the human
operator drives the machine to the target goal, believing on his/her instincts and on the
poor sensors retrieval.

Later, several researchers started to develop high levels of navigation autonomy, where
the robot could self-localize. The pioneer works [20, 60, 70] discuss the localization prob-
lem, assuming that the map is known. The map could be defined as a set of beacons where
the robot localizes using simple triangulation [15] or trilateration (very common on Global
Positioning System - GPS [22], or Differential-GPS, DGPS [91]), or both techniques [20].
The installation of beacons require human intervention, which becomes a drawback or
even impossible in certain missions. Consequently, the maps must result from natural
landmarks available in the environment.

For map building in more complex world representations, it is necessary special types
of sensors installed on the vehicle. Most common mobile robot are equipped with range
sensors [87, 90] (ultrasound sensors and/or laser range finders) and intensity sensors [46,
57, 66, 121, 128]. Given the necessities and the growing up of the technology and the large
spectrum of the sensors available, the environment representation became a challenging
area of research. The most common approaches are divided in three groups: geometric
(necessarily with metric information), topological (adjacency-graph based representation)
and hybrid (sharing metric and topological information) .

The geometric representations commonly based on Hidden Markov Models (HMM)
and Kalman Filtering (KF) [63, 92, 111] are the most popular approaches to uncertainty
handling. The occupancy grids are a particular case of metric maps, deeply described in
[35], mainly for indoor environments. Most of the topological research to recognize places
and to record them as references is bundled on information retrieved by vision sensors,
in particular edges [44, 62], the main components of the image (particular objects like
trees, cars, people) [115], by colors [43] and by panoramic images [109]. There are several
approaches that use vision and motion commands in a qualitative way [42] for mapping
and navigation, based on bio-inspired techniques (as some species, e.g., ants and bees
referred in the Section 1). The resulting maps are often improved using other types of
information, like a set of geomagnetic signatures [10], when vision is not available or is
poor (specially in underwater environments [46]). Given the uncertainty associated to the
environments, as justified by [107], it is important that the topological maps also include
a probabilistic support. Geometric maps and topological maps can be combined as hybrid
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maps, described in [16, 29, 103], where most often the topological representation arises
from the metric one [36, 106, 112] (from grid maps [120]), or from features of motion (e.g.,
velocities, accelerations) that can be obtained from odometry [19].

In spite of being distinct problems, the localization and map building must be handled
as a combined issue. Moreover, the environment is not static [76] and since the localization
returns uncertain estimations, it could be a clue to update the representation by the map
building algorithm according to the feature dynamics [28].

One active and relevant research area is the Simultaneous Localization and Mapping
- SLAM [23, 31, 41, 80, 95, 114], also known as Concurrent Map Localization - CML
[12, 38, 113]. Most of the SLAM approaches are oriented to indoors, well structured and
static environments (like domestic ones [131]) and give only metric information regarding
the position of the mobile robot and of the landmarks. Furthermore, some applications on
dynamic scenarios are emerging [12] also for outdoor environments [48, 80]. There is some
research on cooperative or collaborative SLAM - CLAM [38], or probabilistic CLAM [100],
which covers some issues on topological approach [30]. The SLAM is a strong approach
to implement in particular areas, but extremely dependent of matching between beacons
or features. It also requires a high computational load, since the algorithm propagates a
matrix that models the uncertainty and correlation between the robot and the landmarks.
Since the SLAM usually requires a large number of landmarks, the size of the covariance
matrix is extremely large (the size is equal to the square of the number of landmarks plus
the pose), and therefore it is difficult to implement it in outdoor environments, since it
is necessary to use this matrix several times, namely its inverse. Even with an optimized
version of the algorithm, defined as FastSLAM [80, 86], it leads to a large computational
burden.

The SLAM approaches are fundamentally oriented to metric navigation, with the map
defined by the position of several landmarks on a referential. Consequently, the associ-
ated robot’s localization also retrieves metric information. It is important to extend the
SLAM for a more abstract level of navigation, where the three main issues, localization,
navigation and mapping, remain simultaneously addressed and supported on a topological
representation. Even for the topological approach, with a high level of abstraction, it is
important to establish a connection with the low level of navigation, providing motion con-
trols for the robot. Moreover, a topological approach could be implemented, concerning
different layers of abstraction, where the lowest level corresponds to the motion control.

1.1.2 The Thesis Approach

The thesis addresses the problem of mobile robot navigation in outdoor environments and
proposes methodologies based on a topological approach, including the three main issues
of environment representation, localization and navigation. The selected approach, based
on a statistical framework, solves the three main problems in an integrated scheme. The
main open and relevant questions regarding a solution to the described navigation problem
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are:

• Which type of world representation should be adopted;

• How to initialize, build and update this representation over the time;

• Using this same representation, how to localize and navigate a mobile robot to
accomplish a mission in a given scenario;

• Based on a type of representation with a high level of abstraction, how to link it
with a motion control level;

• May the same representation be shared by more than one robot and how to perform
this task.

There are several ways to represent the scenario where the robot operates, as referred
in Section 1.1.1. Most of them rely on metric information, commonly used in SLAM
approaches. Since outdoor environments include large scenarios, with enormous physical
areas, the amount of information for representing the environment increases immeasur-
ably. To accomplish the mobile robot navigation in real time with limited number of
sensors, actuators and computational power to process the information, the environment
representation must be discretized in locations or places, defined as states. This is de-
fined as a topological map, which provides an abstracted description of the environment.
This representation does not require metric information and is based on physical (nat-
ural or artificial) features that characterize the locations or places. The structure of a
topological map relies on a set of nodes that represent the states, characterized by a set
of relevant features modeled by mathematical functions. In the thesis we used a sum
of n-dimensional Gaussian probability density functions to represent each state of the
topological map, where the dimension n corresponds to the number of different features.
Given the high level of abstraction, each state defines a place not characterized by its
position, but with a feature’s profile observed by the robot when localized in that place.
A topological map does not provide a high accuracy representation to support the robot’s
motion. Instead, a metric approach can locally, in each state, control the robot. The
selected approach also addresses a modular architecture, where topological representation
is combined hierarchically with a metric representation for motion control purposes.

To build and update a topological map, i.e., to find the parameters that define the sum
of n-dimensional Gaussian pdfs, a Dynamic Expectation and Maximization algorithm is
used. This represents a revised version of the Expectation and Maximization (EM) algo-
rithm [93, 111, 113], to estimate the number of states and the parameters that define the
sum of n-dimensional Gaussian pdfs. Given the natural conditions of outdoor environ-
ments and the robot dynamics, all the past information is condensed just into the previous
estimation, which represents a Markov assumption. Consequently, Markov Models are the
framework that supports the study of the state evolution along time.



20 Chapter 1. Introduction

The connection between the states is given by the orientation angles between them. For
instance, to cross from state A to state B the robot has to follow North-East direction. The
angles may assume discretized values (like a compass with the 8 main directions, north,
south, east, . . . ) or numerical values (commonly between -180o and 180o). To identify
the direction between states, a learning method (detailed in Chapter 4) is implemented,
similar to the transition probabilities estimation of Markov Models. For instance, if it
is possible to estimate the transition probability between state A and state B, it is also
possible to estimate the directions where this transition occurs.

After retrieving the map, the states and their connections, it is necessary to estimate
the robot’s position in that map. Since the map follows a topological representation, the
localization procedure is also developed using a topological approach. Similarly to the
metric maps used in SLAM, the topological navigation has to consider the uncertainty,
always present on environment representation, perception and motion. Therefore, the lo-
calization develops a probabilistic and topological approach. The robot estimated location
is the map’s state that is most likely to have produced the same features extracted from
the sensors’ rawdata, acquired during a given time interval. To estimate the robot’s state,
an optimized version of the Forward-Backward algorithm is used [98].

The navigation is developed based on the topological map, knowing the robot’s current
position and the target. Solving the navigation problem in this topological framework
corresponds to finding the best path to reach a goal in the map. Consequently, the paths
must be expressed in a language containing states, since the current location is a state
and the map is a set of states. The path is a sequence of well identified states, computed
by a revisited Forward-Backward algorithm, from the current state to the goal. Moreover,
the navigation has to include motion controls, for the robot to move along the sequence
of states, which corresponds to a lower level of control. The motion control is based on
a sum of behaviors, an attractive behavior to the state goal and a repulsive behavior to
avoid obstacles or not desired directions [14, 21, 34, 84, 105].

The construction of the topological map, defined by a set of states (each represented
by a sum of n-dimensional Gaussian pdfs that model the features), requires a feature
extraction procedure. The features are extracted from the sensors’ rawdata. Given the
sensors available on the robot, the essential features are edges, color-histograms, image
segmentation, image components, range-data, GPS and orientation. Since it is possible to
obtain large amounts of features extracted from the available sensors, most of the features
are redundant in certain scenarios, it is important to implement a feature selection criteria.
Thus, we used a correlation matrix to remove the redundant features.

The rawdata used for the map building is not necessarily obtained from the sensors
in a single robot. Underlining the importance of cooperative navigation, it is possible to
extract features from the observations of heterogeneous robots in a team (for instance,
terrestrial, aerial, legged, wheeled, etc). In a cooperative topological implementation, the
map can be processed by multiple robots, using the different points of view of the scenario
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and perception by each robot and sharing the updated map by all the robots of the team.

1.2 Target Applications

Nowadays, several companies are developing and implementing models of animal-like and
human-like robots (humanoids), as those illustrated in Figure 1.9. Their movement be-
comes similar to the human walking, climbing, picking something and consequently, they
are equipped with reactive sensors, as touch, force (including inertial), vision and others.
Given this growing proximity of humans and machines, it is quite important that they
share the “same language” and are able to operate in the same scenarios.

a) b) c) d)

Figure 1.9: Recent robots available on the market: a) Aibo from Sony [8], b) Asimo from
Honda [2], c) Qrio from Sony [9] and d) Hrp-2p from Kawada Industries [4]

These machines are able not only to use a metric navigation, but also a high level of
abstraction. For instance, the task “pick up this box and put it in the room”. This task
requires metric procedures to identify the distance to the box and how to pick up it but
more important, requires the knowledge of what a box is and what and where the room
is. Moreover, it requires the knowledge of where the robot is at the current time instant
and how to reach “that” room.

Not only these commercial humanoids but also other types of robots, for example
wheeled robots, developed for testbed, repetitive and/or dangerous tasks, or simply for
entertainment, are identified as possible targets to the research described in the thesis. The
scenarios where these robots operate cover important issues of mobile robot navigation,
such as unstructured environment or even scenario changes. For that reason, the thesis
mainly addresses outdoor navigation, that shares the same properties.

Outdoor scenarios represent high unstructured environments with large physical area,
where several times humans can not interfere or even be present, leaving the robot with a
high level of autonomy, as the Spirit [5] (see Figure 1.10) and Opportunity Mars rovers,
developed by the NASA, that reached the planet in 2004. Given the physical limitations
on communication and with GPS not available, it is strictly necessary a high level of
abstraction to control the machine. The robot has to adapt, record the main features of
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Figure 1.10: Spirit: the Mars rover, developed and implemented by NASA, that reached
to the planet at January 2004

the environment and start to navigate to accomplish the mission.

1.2.1 Search and Rescue like applications

The challenging applications do not exist only in other planets, as in Mars. There are
thousands of situations on Earth, where the robots intervention in outdoors scenarios could
return important profits. The topological approach is developed concerning real situations,
where the human intervention would not be possible. Most of the envisaged situations
require emergency response, as search, rescue, extrication hazardous material, incident
command, medical interventions, rapid sampling, plume tracking, hazard monitoring and
information technology.

Disaster rescue is one of the most serious social issues involving large numbers of
heterogeneous agents in hostile environments. Several researchers are working on this
socially significant domain at various levels, involving multi-agent team work coordination,
physical robotic agents for search and rescue, information infra-structures, personal digital
assistants, simulators and decision support systems, evaluation benchmarks for rescue
strategies and robotic systems.

The search and rescue area has been attracting an increasing number of researchers of
the robotic community. Moreover, scientific events have been gathering these researchers,
as the RoboCup-Rescue - a robotic approach to the disaster mitigation problem [108] and
as noticed by [53] is permanently leading new robotic components. This challenge domain
bears to the platform development, including sensors, control, communication, power, user
interfaces, reach-back and visualization of data and to a more sophisticated and high-level
of discussion - systems integration - human-robot integration, distributed robot/sensors
teams, metrics and standards and insertion of technology into workspace.

Most of the researchers use simulations or artificial scenarios provided on these scientific
events as a testbed for their prototypes. They are intended to be used in real situations
of disaster, as those illustrated in Figure 1.11.
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a) b) c) d)

Figure 1.11: Hazardous scenarios and challenging applications: a) Fire b) Demining c)
Earthquake and d) Chernobyl disaster

Earthquakes are one of the most critical and emergent situations where the scenar-
ios are completely unstructured, unpredictable and still unsafe, even in the presence of
scenarios under the ruins. Earthquakes lead to fire, floods, similar situations that result
from terrorism, like the one occurred on Federal Building in Oklahoma, May 1998. But
the most catastrophic was the 9/11 incident in New York city at World Trade Center,
where thousands of people died and the search and rescue operations were a rasping task
to accomplish. People tried to get inside the ruins, but this was quite difficult, if not
impossible. The mission was not only navigation, but also to discover possible victims
and deliver assistance to them.

Shortly after the World Trade Center collapsed, a team of researchers at University
of South Florida, supervised by Robin Murphy, tele-operated their robots and expertise
to assist the search for bodies and survivors at ground zero [26, 88, 89]. She noticed that
“robots can save lives and make the world a better place”.

Unfortunately, wars have always book-marked the history and left awful scenarios. In
spite of complex environments, it is often simple to navigate through. However, these
scenarios commonly hide a big problem: the mines. Several mines, randomly distributed
over the place, make the human intervention risky, time consuming and would require a
lot of people to detect and remove them. This job can be accomplished by a team of
robots to inspect the area to detect and demining, if possible.

Nevertheless, the hazardous scenarios are not necessarily caused by human intention.
Catastrophes also occur due to unforeseen circumstances. One example of unpredictable
catastrophes occurred in April 1986: one of the reactors at the Chernobyl Nuclear Power
Station, 100 km north from Kiev, blew up during a routine daily operation. Nearly nine
tons of radioactive material - 90 times as much as the Hiroshima bomb - were hurled into
the sky. Winds over the following days, mostly blowing north and west, carried a fallout
into large area. About 135 thousand of people were evacuated from a 30-km radius around
the plant, with the peripheral areas remaining at a high risk of radioactive exposure. The
reactor was enclosed in a concrete-and-steel sarcophagus. Over the following years about
600,000 people known as “the liquidators” worked on clean-up operations inside the 30-
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km zone. This is another example of mission that could have been executed by a team of
robots, where the human intervention is a risk.

1.2.2 The Rescue Project

The thesis was developed under the framework of the search and rescue like project,
“The Rescue Project – Cooperative Navigation for Rescue Robots”, whose main goal is
to provide integrated solutions for the design of teams of cooperative robots operating in
outdoor environments. It focus, with special detail, in the short and mid-terms on percep-
tion and world representation issues, as well as cooperative navigation, and, in the mid to
long-terms, on task modeling, planning and coordination. The project developments are
implemented in two platforms depicted in Figure 1.12. For a full project description see
[77], with a brief summary in Appendix A.

Figure 1.12: The two platforms of the Rescue Project: on the left side the aerial
blimp/zeppelin robot and, on the right side, the ATRV-Jr (a land indoor/outdoor robot)

1.3 Novelties and Major Contributions

The main contribution of the thesis is the definition and demonstration of the applicability
of a high level of abstraction on mobile robot navigation in unstructured environments.
For this purpose, complete algorithms were developed and tested in real scenarios with a
mobile robot.
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The main contributions of the thesis include:

• Environment representation - a topological map is more powerful to apply in outdoor
environments (large and unstructured scenarios), when compared with geometric
maps. A new topological representation is defined as a set of nodes or states modeled
by sum of Gaussians, representing the main features that characterize the states.
The connection between two states is given by an orientation value that indicates
the direction that the robot should follow to move from one state to the other;

• Map building - a dynamic version of the Expectation and Maximization algorithm
to build the world representation as a topological map. The importance of this
dynamic version of EM consists on adjusting the number of states in order to compute
the best environment representation. The map building algorithm estimates the
number of states and the respective sum of Gaussian pdfs (the mean vectors and
the covariance matrices). The algorithm updates the current map based on the
observed features along the robot motion, removing superfluous states (if the current
representation covers few observations) or adding new states to increase the precision
of the representation;

• Probabilistic approach for localization and navigation - it is covered by an optimized
version of Forward-Backward algorithm. In the overall framework, it is necessary
to estimate the localization of the robot given the current topological map and
the observed features. To deal with the presence of uncertainty associated to the
perception and motion, the localization algorithm is implemented with a probabilistic
approach, an optimized version of Forward-Backward algorithm that estimates the
current robot location in the topological map. This estimation is performed based
on the previous state, the observed features and the transition probabilities between
states. The navigation, also based on a probabilistic approach, provides the best
sequence of states starting in the current estimated state to reach the target state.
The algorithm, a revisited Forward-Backward, is used to estimate the best sequence,
whose length (the number of states) could be constant or variable according to the
time restrictions imposed at the initialization. The sequence of states is translated
in motion commands by a behavior approach: an attractive behavior to reach the
next state and a repulsive behavior to avoid obstacles;

• Feature extraction and selection - the features are relevant information extracted
from rawdata acquired by the sensors. Different types of feature extraction proce-
dures are endowed with a selection criteria. The robot is equipped with different
types of sensors that retrieve rawdata, from which the essential information is ex-
tracted, leading to the features. In the thesis we use different feature extraction
procedures proposed by some authors, since free-area is measured by range sensors
and vertical edges, histograms of colors, important regions on the image, are mea-
sured by a video camera. Some features retain similar information in same scenarios.
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Therefore, the correlation between features is evaluated and the less correlated fea-
tures are selected to reduce the ambiguity. The correlation is resumed to a single
matrix that evaluates the correlations between all the available features.

1.4 Outline of Dissertation

The thesis is structured as follows. After this first chapter of introduction, the thesis focus
on the various components of mobile robot navigation. Chapter 2 presents an overview of
the three main problems of robot navigation: Localization, Navigation and Map Building.
It is explained the importance of each block and the respective order. Since these three
main problems are based on an environment representation, this chapter includes a sub-
section that discusses the possible representations and justifies the adopted one, i.e., the
topological representation.

Chapter 3 discusses the localization problem, assuming that the topological map is
already known and the navigation is not required at this point. Since the localization con-
sists on estimating the current robot’s state in the map, this chapter presents a changed
version of the Forward-Backward algorithm that minimizes the uncertainty given the ob-
servations.

Still assuming that the map is already known and given the current robot’s position,
Chapter 4 describes how to get the best path to reach a goal in the map. The chapter
also includes the linkage between this high level of abstraction - topological navigation -
and a motion control, that supports the motion of the robot along the sequence of states
evaluated at the topological navigation. The motion control is based on a sum of behaviors,
an attractive behavior to the state goal and a repulsive behavior to avoid obstacles or not
desired directions. The algorithm is illustrated with simulated results.

The adopted environment representation, a topological map relies on a set of nodes
that represent the states that are characterized by a set of relevant features modeled by
mathematical functions: a sum of the n-dimensional Gaussian pdfs, where the dimension
corresponds to the number of different features. Chapter 5 describes the algorithm to
estimate the number of states and the parameters that define the sum of n-dimensional
Gaussian pdfs. A Dynamic Expectation and Maximization algorithm and the Markov
Models are the framework used in this chapter.

The algorithms are tested using a real robot of the Rescue Project (described with
more detail in Appendix A) and the mobile vehicle ATRV-Jr (see Appendix B). The
experimental results in real indoor and outdoor scenarios are shown and discussed in
Chapter 6.

The thesis is concluded in Chapter 7 with an evaluation of the approach, underlining
the relevant issues of the novelties and discussing the advantages and limitations of the
proposed topological approach. The chapter is concluded describing the perspectives of
further research.



Chapter 2

Mobile Robot Navigation

The approach implemented in a mobile robot is developed to accomplish a given mission in
a well known, partially known or unknown environment. As underlined before, the world
is not perfect and the mobile robot navigation problem has to deal with the uncertainty
included in the world, in the perception of the world (observations and consequently
features) and also in its own motion.

Assuming that the robot has no perception of the world, the localization is provided
using only the robot’s motion. For a robot, with its dynamic and/or kinematic model
well known, the scientific explanation is easy: the position estimation is given by iner-
tial systems or by the odometric information, integrating the velocity commands over the
time. However, from the command injection to the action result, the uncertainty is always
present (wheel slippage, irregularity of the floor, sampling, etc). So, the position estima-
tion given by the odometry integrates the uncertainty over the time. Even for a small
uncertainty, it increases uninterruptedly along time and becomes so large than it is im-
possible to estimate the robot’s position. A simple illustration of uncertainty propagation
is shown in Figure 2.1 obtained by a particle filter simulation described in [101]. During
a period of time it is injected in the mobile robot a sequence of velocity commands to
follow a pre-defined trajectory, as presented on the left side of the image. The estimated
trajectory, knowing the initial position and using only the dead-reckoning is illustrated
on the right side of the Figure 2.1, where the increase of the uncertainty is visible. Each
particle simulates the mobile robot position. After a period of time, the cloud is so large
that the uncertainty on the real position of the vehicle is very large. If the robot’s posi-
tion is estimated based on that cloud, where the uncertainty is so large as the size of the
scenario, it is rough to accomplish any kind of mission.

In the referred relative localization procedures, there is no connection between the
robot and the world’s referential. The robot’s position is relative to the point when the
robot was switched on. The localization approach based on odometry and/or inertial
systems is commonly defined as dead-reckoning, a method of navigation used in ships,
aircrafts, and also mobile robots, when poor information is available. Essentially, it is
used to estimate the position based on the distance traveled during short periods of time,

27
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a) b)

Figure 2.1: Illustration of the uncertainty: a) a planned path and b) some estimations of
the path followed

where the uncertainty in the odometry acquisitions is still acceptable. In the example
illustrated in Figure 2.1 only the odometry information was used and the robot does not
have any perception of the world. There is no way to correct the position estimation,
as there is no type of environment perception feedback. A trajectory described by the
robot and estimated by odometry (even assuming there is no uncertainty) is not anchored
to the world. Consequently, the robot can not generally accomplish a mission, where the
knowledge of its location relative to a the world’s referential is required. The other sensors
installed on the robot (e.g., range sensors, image sensors), even though providing noisy
data, are important tools to receive feedback from the world. These sensors installed on a
robot, acquire measurements of the environment, which are used to build and update the
world representation. To accomplish this mission, it is necessary to quantize and correct
the error in the observations, to bound the uncertainty increasing and to link the estimated
trajectory to the world.

The localization problem is associated with the world representation. Therefore, when
using the perception given by the sensors according to the selected environment represen-
tation, the localization has to provide the information to bound the increasing uncertainty.

Having selected an appropriate world representation, the next problem to solve in a
robotic navigation framework is to build the map that endows the environment repre-
sentation. This is achieved from sensorial data acquired by the mobile robot during its
motion. The mobile robot navigation may start without a map. In this situation, the
map building algorithm starts from a single state that corresponds to the place where the
robot started. The map construction continues along the robot motion, while it acquires
new measurement and discovers new places. However, the mobile robot navigation can
start with a previous map. In this case, it is necessary to understand how to start the
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localization on the initial map and to progressively update that map. If the localization
does not identify the current robot’s position in the map, i.e., all the possible locations
are equiprobable, the mapping algorithm generates a new location corresponding to the
current position. When the localization identifies the current state belonging to the ini-
tial map, the map algorithm establishes the connection between the new state (or several
states) with the old map.

The environment representation is commonly associated with a geometrical description
and a global or local referential, to which the robot’s pose (metric information) is related.
In most of the SLAM approaches, the world is represented by a set of landmarks identified
in a referential. However, the same sensors used to measure the metric distances to the
landmarks can also provide different types of information.

The rawdata retrieved directly from the available sensors could be processed and trans-
formed into features, which endow different types of information. The map can be sup-
ported by a referential, but with a large number of dimensions and a completely different
meaning, with each axis representing a different feature. This map provides a high level
of abstraction of the environment, a topological representation. Using the same example
described in the Introduction of Chapter 1, to move the robot from “room A” to “room
B”, it is necessary to identify the rooms, which is done using the features that character-
ize them, for instance, the color of the walls or patterns. The representation resolution is
accomplished by the type and the amount of features extracted. The same features used
to navigate between rooms may be insufficient and/or inappropriate to navigate between
chairs and tables of a room or even between buildings, where the rooms are located. The
appropriated resolution used on the map is a function of the robot, dependent on the
target mission.

The topological maps are deeply explained in the Section 2.2 and compared with other
types of representations. Before explaining the different types of representations and the
adopted one, it is important to understand how the mobile robot navigation problems are
related and the importance of each one.

2.1 The three main problems: Localization, Navigation and

Mapping

Mobile robot navigation has three main associated problems: Localization, Navigation and
Mapping. When the robot is moving, it is necessary to estimate its location (the localiza-
tion problem), and to compute a path to the goal (the navigation problem). Moreover, if
the robot moves, it changes to a new location, where the new acquired observations could
be used to improve the current map (the mapping problem). From these three problems
emerges the loop in Figure 2.2, that is executed while the robot performs its mission.

This loop does not require a specific sequence, i.e., the three problems can be accom-
plished at different times. Moreover, each problem can be accomplished at a different
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Localization Navigation

Mapping

Figure 2.2: The main loop of mobile robot navigation

ratio, which could change dynamically, this meaning that the three components may have
different priorities. Given that the robot is moving to reach a specific target or goal, it is
important to recognize its position at each time instant and to update the planned path
if necessary. Both localization and navigation are based on a map, an environment rep-
resentation, which is built by the mapping algorithm. It is assumed that the robot does
not travel long distances during short periods of time. So, it is expected that the small
distance followed by the robot between to consecutive sensor data acquisition leads to a
location still covered by the current map. Therefore, the map should be updated when the
localization ambiguities occur repeatedly and new types of features are added or any type
of feature is removed. Consequently, it is not necessary to run the mapping procedure so
often. Moreover, the priority of the mapping component may decrease along time, since
the environment becomes well represented by the current map.

LocalizationMappingInitialization

Navigation

Figure 2.3: The three steps of mobile robot navigation at different rates

The localization requires high priority, since other blocks are dependent on it. The
navigation is the next priority, to evaluate the best way to reach the main goal of the
mission. Since all the procedures are based on the environment representation, it should
be updated even though it is not necessary to run it every time the robot acquires a new
observation. Based on this concept, the procedure implemented with the highest rate
is the localization, followed by the navigation and finally the mapping, as illustrated in
Figure 2.3. If there is no map available at the beginning, the loop must start with the
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mapping procedure to provide a first map, or loading a previous estimation of the scenario.
The mobile robot navigation loop includes different elements, which require an initial-

ization procedure. The map, the most import element, is initialized by loading a previous
version, if available. Otherwise, it is necessary to select which are the best suited features
to represent the scenario (as explained in Section 5.4.3). In the localization, the most
important component is the initial robot position in the current map. If not known and
assuming a probabilistic approach, the initial position is assumed as equiprobable in the
entire map. In the navigation, a target goal is set according to the mission. If there is
a map available at the beginning, the target goal can be pointed out in the map, other-
wise, it has to be characterized by a set of features understandable by the robot. After
the initialization, the loop starts, following the priorities illustrated in Figure 2.3. The
localization is running permanently, sometimes interrupted by the navigation algorithm,
imposing an updated path based on the current map. The map building algorithm occurs
at a slower rate, when compared with the localization and navigation. During the first
iterations, i.e., when the robot is switched on and no initial map is available, it is necessary
to build a minimal map. In this case, it is imposed the loop closure of Figure 2.2 that all
the components should have the same priority, to built an initial map.

Figure 2.4: The linkage between the topological navigation and motion control

The loop, available at any level of abstraction, can be accomplished by a metric or by a
topological approach. However, when a specific approach is selected, the three main prob-
lems of mobile robot navigation must be addressed in this same way. If the environment is
represented by landmarks in respect to a referential, the localization and navigation have
to be accomplished in the same referential. When the localization-navigation-mapping
loop is implemented at a high level of abstraction, e.g., at a topological approach, there
should exist also an implementation of the loop or part of the loop at a lower level of ab-
straction, a geometric level, responsible for the local robot motion control. In the thesis the
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loop is addressed as a topological approach, but the navigation has also a motion control
component to implement the resulted path planned at a topological level, as illustrated in
Figure 2.4

The adopted approach strongly depends on the type of the environment representation.
Since the loop is based on the environment representation, it is important to take in ac-
count the available representations. In particular, the topological approach is the selected
representation in the thesis, justifying the selection according to the target scenarios and
the main applications.

2.2 Environment Representation

One of the key issues on the research on navigation has been centered on the problem of
building full or partial 2D or 3D representations of the environment, which are then used
to support the navigation of autonomous robots. However, the navigation problem based
on full or partial 2D or 3D maps requires large computational power. This is a severe
limitation for systems with limited sensory and computational resources.

Studies of animal navigation suggest that most species utilize a parsimonious com-
bination of perceptual, action and representational strategies that lead to much more
efficient solutions when compared to those implemented on today’s robots. Many animals
combine the local/accurate vs global/coarse navigation strategies, as referred in Chap-
ter 1. For instance in [126], there is evidence of animals using landmark-based navigation
and (approximate) route integration methods. The distance/accuracy trade-off between
long-distance/low-precision and short-distance/high-accuracy mission segments plays an
important role in finding efficient solutions to the robot navigation problem. We denote
these navigation modes as Global and Local.

However, the navigation depends on the type of world representation adopted. When
we mentioned before the landmark-based navigation, the landmarks can be represented
by the metric position (as it is common in SLAM) or by specific features (as used by
the animals that memorize places by colors, temperatures or magnetic information). The
information is sometimes recorded as metric information and other times by particular
features.

Current global methods for environment representation can be classified as topological,
geometric or hybrid:

• A Topological Map is an adjacency-graph based representation of the environment
composed by nodes (or states) and links. Nodes or states represent distinctive places
that the system must be able to recognize using external sensors. Links represent
ways or motions between nodes and contain procedural information about going from
node to node, using either internal and/or external sensors. System localization is
defined as the state of the map containing properties that best suit the measurements
acquired by the external sensors.
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• A Geometric Map is a metric representation of the environment, where the posi-
tion of landmarks (for instance, corners, walls and doors) are relative to a refer-
ential (2D/3D, or even 6D with 3 axis for positioning plus 3 axis for orientation
roll/pitch/yaw). The grid maps (two/three dimension cells) are also a common ge-
ometric approach, where each cell contains information on its occupancy. System
localization is defined in precise metric terms and it is best suited for use with range
sensors (laser, ultrasound) and for accurate motion planning.

• Hybrid Maps are grid based local maps connected by topological relations. Each
node of a topological map has an associated metric map. For example, an house
is an hybrid map: the topological map is defined by the enclosed areas (rooms,
corridors, bathrooms) and each state has a metric map, which can be an occupancy
grid map to represent the free-area and the obstacles.

2.2.1 Topological Maps

Topological maps make possible the exploration of unknown and unstructured environ-
ments in the absence of metric information, being mostly adequate for the representation
of outdoor environments. The world is represented by a graph (not necessarily 2D) con-
sisting of a finite number of nodes representing regions, connected by bi-directional links
representing ways of motions between regions.

A topological map is also a structured feature map, i.e., a featured-based map, which
combines the optimal tracking capabilities of feature maps with the scalability of a topolog-
ical map. The optimal tracking capabilities result from the fact that the features include
more information than the metric location, which reduces the uncertainty perception [68].
The scalability of a topological map depends on the type and amount of features used,
which defines the accuracy of the coverage of a large or small physical area. Each node
is represented by a set of “nearby” features (e.g., distinct places, regions or landmarks)
and each link connects a pair of nodes. When traversing such a graph, the current node is
changed when the majority of the observed features belongs to another node. Topological
approaches do not require the exact determination of the geometric localization of the
robot.

The resolution of a map is proportional to the complexity of the environment repre-
sentation. Compactness is a key advantage of this type of representation and low com-
puter processing allows fast planning and facilitates interfacing to symbolic planners and
problem-solvers. However, with no metric information available, the topological represen-
tation requires feature (or landmark) selection/detection/recognition. This means that
topological representations are heavily dependent on a powerful system to identify key
elements of the environment. As a result, one of the most known localization problems
using topological representations occurs when the robot traverses two places that look
alike. The topological mapping often has difficulty determining if theses places are the



34 Chapter 2. Mobile Robot Navigation

same or not, particularly if these places have been reached via different motion commands,
actions or paths.

Topological maps explore the acquired observations efficiently, because information
is represented with accuracy levels adapted to the application needs, whereas geometric
maps represent detailed metric information in the map. The resolution of the topological
maps is related to the type and amount of information used to represent the nodes and
links. Based on a poor selection or small amount of features, the map building algorithm
can provide poor topological maps to accomplish a given mission.

Most robotic systems to date use geometric maps, mainly because the commonly used
sensors acquire range data (e.g., laser, ultrasound sensors, infra-red). Vision can be an
important complementing sensor, motivated by the richness of the visual information,
which is extremely important in some animals, as the ants, the honeybees and the mi-
gratory birds. In [42] it is shown that many biological systems, ranging from honeybees
to humans, use several visual behaviors in their interaction with the environment, but
in general visual information is not used to acquire accurate range information. Instead,
visual information is used in a more qualitative way with a strong integration in motion
control loops, without explicit use of metric information. Some relevant vision based be-
haviors found in biological systems are trail following aiming at targets, appearance and
landmark based guidance, place recognition, among others. For most of these behaviors,
environment representations expressed by topological maps are best suited for target ap-
plications in outdoor environments. The information involved in topological maps can be
expressed qualitatively with relation to explicit sensor data (targets, landmarks, pictorial
appearance, tracks, paths, etc) instead of metric information. Furthermore, when consid-
ering large complex outdoor environments, geometric maps have an exponential growth
in complexity, while topological maps are more computationally efficient.

In [44], a topological map is built by driving a robot through an indoor environment
and acquiring grey-scale omni-directional images along the path. A principal component
analysis (PCA) is performed on the images to compress the data set, retaining only the
image components. At place recognition time, the current image is projected on the
components of the PCA space and a qualitative localization is obtained by detecting the
nearest neighbors. To move from node to node, local navigation methods are used, such
as following corridor guidelines and positioning relative to landmarks.

In [115], the image content is enriched by using a color omni-directional camera. The
topological map is acquired manually by driving a robot and grabbing images at a given
rate. These images are analyzed and some representative images are selected to represent
the nodes of the graph. The recognition phase is done by comparing images acquired online
with the images of neighbor nodes, by histogram matching on individual color bands of
components HLS and normalized RGB. Histograms are compared with Jeffrey’s divergence
criteria [97] and images are classified by unanimous voting. This method is inspired in
some image-database retrieval techniques but is more efficient because comparison is only
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made with images in a neighborhood of the current location.
Works [16, 44, 115] show distinct ways of defining distinctive places. While [16] rep-

resents places by the geometric relations between environment features (points, edges)
[44, 115] use the global appearance of the scene for comparison with run-time acquired
images. Additionally, [44] represents appearance as a PCA basis, which retains geomet-
rical organization of tokens in the images, whereas in [115] that information is lost by
computing the color histogram of images. The former may have difficulties when dealing
with geometric changes in the environment, while the latter may give ambiguous results on
environments with uniform color and luminance characteristics. The combination of both
methods in a hierarchical scheme may provide a better solution: the latter would classify
the current location in terms of broad classes that present distinct luminance and color
distributions (the nodes identifying distinct scenario profiles, e.g., urban, forest, beach).

Many topological maps are built manually in a training phase, without major concerns
on the definition of states. Nevertheless, map construction should match the capabilities of
the system, i.e., the definition of distinctive places should conform with the system’s ability
to recognize and navigate between them. Both temporal and spatial distinctiveness are
important characteristics for selecting “good” nodes for topological maps. Global vision-
based approaches do not have to concern with spatial distinctiveness since the whole
image information is used. Local (feature) based approaches must select spatially distinct
landmarks for node definition and matching. The following referenced papers address
issues concerning the problem of distinctive place definition.

In [43], the temporal distinctiveness problem is addressed. Panoramic images are used
in a non-structured environment. Distinctive Places (DP) are identified whenever an image
is distinct enough from the previously stored images (snapshots). The distinctiveness is
computed from the cross correlation between the current image and the snapshots on the
database. A homing behavior is presented that drives the robot towards a DP provided
that the robot is close enough to it (catch area).

In [62], the problem of selecting salient and distinctive features from grey-scale images
is addressed. Task independence, domain independence and view point invariance are
desirable features for the system. Salient features are selected with the Harris Corner
Detector (a combined corner and edge detector [50]), which is robust to small changes
in view point. Potential landmarks are characterized by a feature vector containing the
brightness and its first and second derivatives. They define functions F of the feature
vector that are invariant to view point small changes (differential invariant). The matching
function is given by the Mahalanobis distance of F at each template point, where the
covariance matrix is computed in a training phase. Recognition is then performed with
the Nearest Neighbor criteria. The most distinctive landmarks are the ones that have
large Mahalanobis distance from all the others.

In [109], panoramic images are also used but instead of using all image data to describe
the places, some landmarks are selected from the image. Landmarks selected in this way
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can also be used for in-place localization. Landmarks are represented by 16x16 windows.
Good landmarks are defined as those having good static and dynamic reliability and that
are uniformly distributed in the image. Static reliability is evaluated by a measure of
uniqueness of the landmark in a neighborhood, given by the ratio of its auto-correlation
and the maximum correlation in the neighborhood. Dynamic reliability is measured by
the average of the static reliability along a test trajectory involving view point changes.
Uniform distribution is enforced by dividing the image in four sections (front, back, left,
right) and selecting four landmarks on each section. The best landmarks, according to
this criteria, are used to represent the place. Matching is performed by a normalized
correlation to gain some robustness to illumination changes.

A context-free attentional operator based on symmetry is proposed in [99]. This work
is not related to navigation but presents a psychologically motivated operator for focusing
attention on the visual field. According to the Gestalt psychology [64], symmetry is
considered one of the basic principles of perception. Human sense of symmetry is so
strong that almost every man-made object is symmetric. Symmetry has been suggested
as one of the non-accidental properties of objects which should trigger attention and guide
higher level processes. In this sense, symmetry can be used as a property of landmark
distinctiveness.

2.2.2 Geometric Maps

A Geometric Map is a metric representation of the environment, relative to a referential,
where the information is referred to physical distances and dimensions of places or land-
marks (for instance, corners, walls and doors). The referential could be global or local.
The referential is global whenever the reference is equal in all maps and anchored to the
world and local if it covers a particular place where the origin and orientation of the ref-
erential are chosen according to the initial position of the robot. The geometric maps are
commonly based on a 2D/3D referential, where the robot pose, position and orientation
(or even 6D where 3 axis for positioning plus 3 axis for orientation roll/pitch/yaw) and
the position of landmarks are related. Another type of environment representation, also
included in the class of geometric maps, are the grid maps. This type of representation is
equivalent to a sampling of the world in cells according to a referential. The grid maps
consist on two/three dimension cells, where each cell contains information on its occupancy
(deterministic or stochastic).

The robot’s location based on geometric maps is defined in precise metric terms and
is best suited for use with range sensors (laser, ultrasound) and for accurate motion plan-
ning. The probabilistic approach to the localization problem is typically more robust than
the deterministic approach due to sensor limitations, sensor noise and environment dy-
namics, as referred in [29]. In [111], Thrun identifies the global localization problem as
particularly challenging. Approached probabilistically, the localization problem is a den-
sity estimation problem computed using Bayes’ rule, the theorem of total probability and
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the Markov assumption. Within the context of mobile robot localization, the keywords
is often referred as Markov Localization (ML) or Hidden Markov Models (HMM). In ad-
dition, the Kalman Filter (KF) is the most popular approach to uncertainty handling,
representing the belief on the current location by Gaussian pdfs. As referred in [111], it
has also been developed the Bayesian Landmark Learning (BaLL) algorithm, using Bayes’
rule for indoor environment applications. This algorithm enables mobile robots to learn
what features/landmarks are best suited for the localization process.

In [103], inspired by traditional ship navigation, a coastal navigation algorithm is pre-
sented, using Markov Localization (ML) as a probabilistic approach. The motivation
for coastal navigation is, more than generating trajectories for the robot that reduce the
likelihood of localization error, to build a geometric map where the coast is represented.
However, proximity sensors such as laser or ultrasound range-finders have finite range
and can not reach landmarks on the coast. Consequently, the geometric maps require
odometry and/or inertial systems for dead-reckoning, given the sensors limitations. Ex-
perimental results were obtained with the Minerva robot in a museum tour-guide robot
(indoor environment). These results demonstrated that a probabilistic approach is robust
enough for the navigation using a coastal representation in dynamic environments such as
a museum with a significant people density.

In [63], a partially observable Markov decision process (POMDP) is used to estimate
the position of the robot in the form of a probability distribution. The algorithm adjusts
the probabilities of the initial Markov model by passively observing the robot interactions
with its environment representation. Learning is unsupervised and passive, meaning that
the robot gets no information from a teacher while it is performing other tasks. This un-
supervised passive method is based on the Baum-Welch algorithm, described in [98]. This
is a simple expectation-maximization algorithm for learning POMDP from observations.

The most common geometric representation is the occupancy grid maps [35], a high-
dimensional space, maintaining all dependencies between neighboring cells. Existing oc-
cupancy grid mapping algorithms decompose the high-dimensional mapping problem into
a collection of one-dimensional problems, where the occupancy of each grid cell is esti-
mated independently. This induces conflicts that may lead to inconsistent maps, even for
noise-free sensors.

Most of the work developed using geometric representations was applied to indoor en-
vironments. In [92], Olson describes a probabilistic self-localization technique for mobile
robots that is based on the principle of maximum-likelihood estimation. The map may
be generated by any method to detect features in the robot’s surroundings, using vision,
ultrasound sensors, and laser range-finder. The basic idea is to compare a map generated
using any method to detect features at the current robot position with a previously gener-
ated map. This method is able to operate in both indoor and outdoor environments using
geometric maps, mainly of occupancy grids type. A drawback is that the method requires
a previous map of the environment, as illustrated by the experimental localization results
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for the Sojourner rover on Mars [92, 127].

2.2.3 Hybrid Maps

Hybrid maps aim at combining the advantages of topological and geometric maps. Both
approaches exhibit strengths and weaknesses. In [103] an approach that integrates topo-
logical maps and grid-based maps is described. In [36], the author presents an approach
where a topological based map is extracted from a grid map.

Since the intrinsic geometry of a grid corresponds to the environment geometry, the
position and orientation of the robot in the real world can be determined. Topological
maps determine the location of the robot relative to the model based on landmarks or
distinct sensor features and provides the essential information for a global navigation.
However, each node of a topological map may represent a large physical area, where the
stated information could not be enough to compute trajectories to operate the robot inside
a node. Hybrid maps combine both representations, where the topological component is
located at a high level of abstraction and each one of its nodes contains a different and
independent geometric map. When the localization algorithm identifies the robot in a
different node of the topological map, the metric navigation also changes to a different
geometric map associated to this new node of the topological map.

A recent work presented in [16] describes an outdoor vehicle navigating in a park
and suburban street environment based on a topologically structured feature map. A
laser range finder is used to detect features in the environment (points and edges) and
topological nodes are defined as spatial arrangements of features. The topological map is
selected manually on a training phase. A data association algorithm allows the system
to recognize previously trained places and the navigation inside places is made by metric
localization using both odometry and feature tracking data (the features belonging to each
state).

The main idea under hybrid map building consists on two steps, shown in Figure 2.5.
The first step is the definition of a topological map as a set of nodes and links to ac-
complish the mission. Second, each node (as a set of nearby features) has an associated
geometric map. Each geometric map has a coordinate system, a global/local referential
that provides the parametric information to the local navigation, local path planning and
obstacle avoidance. Moreover, each navigation planner requires a specific level of envi-
ronment representation (more abstract, as a topological map or more objective, as a set
of landmarks represented in a metric map) [29]. Both topological and geometric maps
require features/landmarks processing, which are entirely sensor dependent. In addition,
it is necessary to define the links between all the nodes. That connection could be made
by motion commands, like go ahead until you find something or move in this direction.

It is common to apply Markov Localization, a probabilistic approach that requires the
model of the sensors (often non-linear but assuming a Gaussian approximation) in grid
maps. Each grid cell is identified by a combination of feature values (set of features).
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Figure 2.5: Block diagram of topological map building

This type of representation is different from the topological maps, since each grid cell
represents a physical area with the same dimensions, connected only with a small number
of neighbor cells, while in topological maps the states, representing different places, can
all be connected. However, the topological maps still require a know-how to identify and
update the Gaussian parameters that define each state, as referred in [98]. Transitions
between cells are defined by motion commands (as previously mentioned) and have an
associated probability. The transition probabilities can be related to metric distances
between nodes unless there is no metric information among nodes. In that case (and
without previous information) the probability density function of transitions starts as an
uniform distribution that is updated through time, according to the robot’s transitions
between states.

Therefore, the integration of both map representations (hybrid maps) and the combi-
nation of the probabilistic approaches becomes a challenging problem, mainly in outdoors
applications. It requires a high capacity of autonomy, when started without an a priori
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map. The most promising probabilistic approach is ML, that solves the localization prob-
lem based on a probability density function in hybrid representations, as proven by the
large number of papers and bibliography. In spite of the large number of experimental
results documented, most of them belong to indoor results. In addition, the outdoor envi-
ronments still require a previous knowledge of the environment to determine (or learn) the
optimal parameters of a mathematical support. These approximations define the proba-
bility density functions that belong to the Markov model. Using Gaussian approximation
is an assumption to overcome the non-linear models.

The features/landmarks selection problem also occurs in hybrid maps. From the dif-
ferent types of available sensors, such as ultrasound sensors, laser, vision, odometry, GPS,
compass, inertial, orientation and temperature, and from the observation measurements
it is strictly necessary to extract the fundamental information to choose the appropriate
features/landmarks and build/update/spread the map. On the other side, in each node
of the map is also present metric information

2.2.4 The adopted representation: Topological Maps

A topological map is a representation of an environment with no metric information avail-
able, showing physical (natural or artificial) features that characterize particular locations
or places. The map expresses a functional relationship among relevant features with a
resolution that is proportional to the complexity of the environment’s representation. The
structure of a topological map relies on a set of nodes that, in this work, represent places
in an outdoor environment. Each node is defined as a state of the map and is characterized
by a set of relevant features to support the state identification and to avoid mismatching.

One of the most ambitious goals of robotic research is to develop an approach for
mobile and completely autonomous robots to operate in outdoor environments, similar
scenarios where animals and humans survive. The topological maps are complex enough
to provide the crucial information for mobile robots to travel long distances according to
the appropriate way and simple to avoid the incumbency of recording all the information
over the physical location covered by the map. This type of representation, topological
maps, is prepared to cope with the diversity of scenarios, the large spectrum of information
acquired by the available sensors, the unexpected events that occur during the operation
and, moreover, is robust to scenario changes and the same maps can be shared by different
robots.

Furthermore, it is possible to extend a topological map to a hybrid map, building a
geometric map associated to each state, providing local navigation. However, the thesis
is mainly focused in the capabilities of building a topological representation of the envi-
ronment and the algorithms to navigate through the map with a topological navigation
approach. The novelties are inner to the topological navigation, while the possible geomet-
ric navigation in each state could be addressed by one of the several techniques available
in the references.
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Given the choice of the topological maps as the appropriate environment representa-
tion, it is important to describe the mathematical framework that is used from this point
forward. The notation used to define a topological map is the following:

• si is the state i of the map,

• S = {s1, . . . , sN} is the set of states of the map considered herein with N states,

• vj is the jth feature or attribute, j = 1, . . . ,M , that may classify any state si,

• vj ∈ Vj , i.e., the feature j takes values in the set Vj ,

• si(vj) is the value of the attribute vj at state si. si(vj) = ∅ means that the attribute
vj is not existent at state si.

In a traditional map of a city, the topological representation is often used as a support
for path planning. The relevant interesting places, considered as map states, are empha-
sized with their most important features like buildings, monuments, shops, stations. The
states are linked by roads, streets and rails.

The notation used for the link between states is the following:

• aij is the transition probability between state i and state j,

• θij is the direction between state i and state j, for instance, north, south, east, or
other direction.

An example of a topological representation of the map of a city is depicted in Figure 2.6
where seven different states (S = {s1, s2, . . . , s7}) are displayed. Three features (v1, v2, v3)
are used: transport, building and leisure. The values taken by each feature are, for
example, V1 = {airport, underground, boat, train, parking}, V2 = {university, castle,
church, statue} and V3 = {camping, garden, restaurant}.

The main goal of localization, in the context of topological navigation, is related with
identifying the state of the map in the closest vicinity of the mobile robot, which is a
concept that will be formalized in Chapter 3. To perform topological localization the robot
perceives the environment with its on-board sensors and the acquired data is processed
aiming at extracting the most relevant features. The robot localizes by a matching between
the observations acquired by the sensors and the features represented in the map. This
points to the key role played by the sensing processing that collects observations, for which
the following related notation will be used:

• rt is the rawdata or unprocessed data acquired by the robot’s sensors at time instant
t,

• ot = [ ot(v1) ot(v2) . . . ot(vM ) ] is a M -dimensional vector of features extracted
from rt,
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Figure 2.6: An example of a topological map in a city

• ot(vj) is the value of the attribute vj on the feature ot,

• ot(vj) = ∅means that observation of the attribute vj at time instant t is not achieved,

• Ot = {o1, o2, . . . , ot} is a feature sequence up to the time instant t.

As a result of the localization procedure, the current state of the mobile robot is
evaluated. The following notation is used:

• qt is the robot location (state) at time instant t,

• Qt = {q1, q2, . . . , qt} is a sequence of robot location states up to the time instant t,

• qt ∈ S.

The localization, explained in Chapter 3, estimates the current robot position, q̂t, which
is a state of the topological map. This is notably different from the usual localization
procedures that aims at providing a pose estimation in a local or global frame. In fact,
when the proposed localization procedure yields a robot estimated location q̂t = si this
does not mean that the robot physical location (pose) coincides exactly with that of the
environment place from where the features that characterize that state were acquired.
This situation is illustrated in Figure 2.7, where, by human perception, three different
snapshots taken in different positions identify the same state, the Central Building of IST
campus of Alameda.
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Figure 2.7: Three different snapshots identify the same state, the Central Building of IST
campus of Alameda

2.3 Initial Conditions

The mobile robot navigation is based on the topological representation and consequently,
beyond the three problems represented in Figure 2.2, it also includes an initialization
procedure to provide an initial map. There are two possibilities to create an initial map:

• loading a previous or predefined map and

• starting from the scratch, with no map.

When no a priori map is available, it is necessary to initialize the number of states, N ,
and the corresponding states. Since the states are represented by mathematical functions
that model the features, it is also necessary to select the initial features, procedure that is
described in Subsection 5.4.3. The relevant information present in the rawdata acquired
by the robot, i.e., the features, are consequently used by the map algorithm to build and
update a topological map, as described in Chapter 5.

Given an initial topological map, it is necessary to understand how to initialize the
localization algorithm, the next component of mobile robot navigation represented in the
loop of Figure 2.2. Also accomplished with a topological and probabilistic approach, the
localization problem is developed over the states that define the map. The initial state
probability, πi, represents the probability that the robot initial state is si, this procedure
being described in Subsection 5.1.

To start the localization, it is necessary to know the initial robot’s position on the map,
or the initial state. Similarly to the mapping problem, the initialization of the localization
algorithm also includes two possible ways. One, when the initial state is known, which
requires an a priori map. The probability πi is defined as equal to 1, when the initial state
is si and 0 for the other states. The other possible way for initialization occurs when the
initial state is unknown, whether a map is available or not. In the last case, πi is defined
as an uniform distribution for all the states present in the map.

The localization is the first problem addressed in the thesis. Consequently, it is assumed
that an initial topological map is available and the localization is presented in Chapter 3,
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followed by the navigation, discussed in Chapter 4 and finally the mapping algorithm, in
Chapter 5, which provides the topological map.



Chapter 3

Localization

3.1 Problem Statement

As described in Chapter 2, a topological map is a representation of an environment with
no metric information available, showing physical features that characterize particular
locations or places, defined as states. At this point forward, the mathematical notation
becomes more important and it is listed in the Chapter List of Symbols, at the beginning of
the thesis. In the current chapter and Chapter 4 it is assumed that the topological map is
already known to describe and to simulate the localization and the navigation algorithms.
The localization procedure proposed in the thesis considers that, at each time instant, the
robot location, qt, is equal to the map’s state in its closest vicinity using a probabilistic
approach to decide on this proximity function. The robot estimated location is the map’s
state that is most likely to have produced the observations acquired by the robot sensors
during a given time interval in its operation along which it is necessary to localize it. This
is notably different from the usual localization procedures that aim at providing a pose
(position and orientation) estimation in a local or global frame associated to a geometric
map. In fact, when the proposed localization procedure yields a robot estimated location
q̂t = si this does not mean that the robot has always the same pose (physical or geometric
location) in the environment place that lead to the map state si. This difference between
localization in a geometric and in a topological map is illustrated in Figure 3.1.

As a result of the measurements uncertainty, the current robot state estimation can
not be performed using a deterministic criteria, as referred in [118]. Consequently, the
main issue of the topological localization problem is to find the state that minimizes the
uncertainty, given the observations. The state estimation at each time instant t is evaluated
using all the available observations during the interval T , OT = {o1, o2, . . . , ot, . . . , oT }.
The time instant t is not necessarily the current time instant ta, i.e., t ≤ ta since the
localization also estimates the previous robot’s locations.

According to a probabilistic approach, the current state estimation, q̂t, is the argument
that maximizes the probability of the state given the observation sequence acquired in the
time interval T ,

45
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P (qt = si | o1, . . . , oT ), (3.1)

i.e.,

q̂t = arg max
qt

P (qt = si | o1, . . . , oT ). (3.2)

According to (3.2), the current state estimation procedure only returns topological map
states. Consequently, the robot may have different geometric locations, i.e., be placed in
different geometric poses (position and orientation) and be localized in the same topological
state, i.e., have the same topological localization. Figure 3.1 illustrates this situation: the
robots A, B and C, having different geometric locations but are all in State 1, i.e., have
the same topological location, while robot D and E are in different states.

State 1

State 2

State 3

Robot A
Robot B

Robot C

Robot D

Robot E

Figure 3.1: Illustration of a topological map with three states where five robots are place
with different geometric locations (poses)

Mobile robot sensors acquire rawdata whose nature depends on the types of sensors.
For example, vision cameras provide intensity images, while laser range sensors or ultra-
sound sensors provide range data. Regardless of the types of sensor, it is assumed that
rawdata is processed and that the relevant features are extracted. These features are
those used as attributes for the characterization of the states of the topological map. In
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the context of the localization methodology described in the thesis, (3.2), observations are
considered to be the state attributes extracted from sensor data along the mobile robot
trajectory. In others words, oj in (3.2) is assumed to be the features extracted from the
sensors rawdata.

To evaluate (3.2) it is necessary to compute the pdf of the state given the observa-
tion sequence. The following subsections introduce the Markov Models and the Forward-
Backward algorithm that support the evaluation of (3.2).

3.2 Markov Models

The localization process requires the information that results from the processing of the
data acquired by the sensors installed on the robot, (o1, o2, o3, . . . , oT ), since this is the only
way to perceive the environment where the robot moves. This knowledge is used to solve
(3.2) at each time instant t. Given the large amount of information, the maximization in
(3.2) becomes a rough problem to solve. However, given the natural conditions of outdoor
environments and the robot dynamics, all the past information can be condensed just into
the previous estimation, as depicted in Figure 3.2, which represents the strong Markov
assumption. Valid in this context, the Markov assumptions overcomes the problem of
solving (3.2), given the large amount of information.

q1 q2 q3 qt

o1 o2 o3 ot

...

Figure 3.2: Markov Model: states and observations assumptions

The Markov property [61], states that the knowledge of the state at time instant t, qt,
is enough to determine the pdf of the state in future instants, or, in different words, all
the information acquired before the time instant t is already reflected in the state estimate
qt−1. It important to remember that each state, si, does not correspond to a particular
pose, but rather to a place characterized by a set of relevant features. In addition, the
observation ot depends only on the state of the mobile robot at the time instant t. This
Markov property is graphically illustrated in Figure 3.2, where the variable qt corresponds
to the mobile robot location estimation at time instant t, this corresponding to a state of
the topological map.

A Markov Model (MM) [11, 17, 18, 69, 81], is the framework that supports the study of
the state evolution along time. The MM is completely characterized by three parameters,



48 Chapter 3. Localization

(3.3), (3.5) and (3.8). The first one is the state transition probability density function,
aij ,

aij = P (qt+1 = sj | qt = si), i, j = 1, . . . , N (3.3)

changing from the state i to the state j, as illustrated in Figure 3.3. The state transition
probability aij characterizes the edge of the topological map between states si and sj . The
value of each transition depends mainly on the distance between the states. However it
is important to retrieve particular situations, for instance, two near states with a river in
the middle, as an obstacle. The robot can not overcome this obstacle and consequently,
the transition probability between these two states is zero. As a first approximation, it is
possible to model aij by

aij =

 c , i = j

1−c
N−2

(
1− ‖si−sj‖∑N

j=1‖si−sj‖

)
, i 6= j

(3.4)

where c corresponds to the probability of the robot remaining in the same state and
‖ si − sj ‖ is the distance between the features that characterize the states. This distance
definition is explained in Chapter 5. The parameters aij are learned during the navigation
procedure, in Chapter 4, according the most probable transitions between the current
states of the map.

s i s j

sk

a jk

akj

a ij

a ji

aki

a ik

Figure 3.3: Markov Model with 3 states si, sj and sk and transition probabilities

The second parameter that characterizes the MM is the observation probability density
function bi(ot), that represents the pdf of observing ot at time instant t given that the
state is si,

bi(ot) = P (ot | qt = si), i = 1, . . . , N. (3.5)

The observation pdf depends on the sensors’ model. As proposed in [79], this pdf can
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be approximated by a sum of Gaussian pdfs, written as

bi(ot) =
G∑

l=1

kilN (ot, µil, Ril) (3.6)

with,

N (ot, µil, Ril) =
1

(2π)
M
2

√
‖Ril‖

· exp
{
−1

2
(ot − µil)T R−1

il (ot − µil)
}

, (3.7)

where M is the dimension of the observation vector, which corresponds to the number of
distinct features.

To determine the parameters that define the pdfs in (3.7) and also the number of
Gaussian pdfs, G (a large value of G corresponds to a good approximation of the model)
it is necessary to carry out a statistical characterization of the sensors.

Finally, the initial state probability, πi, represents the probability that the robot initial
state q1 is si, i.e.,

πi = P (q1 = si), i = 1, . . . , N, (3.8)

that is defined a priori.
The compact notation for the MM characterization is represented by λ = (A,B, π),

where A is a square matrix containing all the probability transitions, aij , i, j = 1, . . . , N ,
B is a vector of the observation probability in all possible states and π is a vector that
contains the initial localization probability in all possible states, πi,

A =


a11 . . . a1N

... aij
...

aN1 . . . aNN

, B =


b1(ot)
b2(ot)

...
bN (ot)

, π =


π1

π2

...
πN

. (3.9)

Based on Markov Models, the localization procedure in (3.2) is similar to the high-
dimensional maximum likelihood estimation problem, as referred in [98]. This problem is
efficiently solved using the Baum-Welch algorithm, as well as the Forward-Backward (FB)
algorithm or simply the Alpha-Beta algorithm. The same problem is referred in [113] as
a special version of the Expectation and Maximization algorithm.

3.3 Maximization Criteria

The localization problem requires the evaluation of the argument that maximizes

q̂t = arg max
qt

P (qt = si | o1, . . . , oT ), t ≤ T . (3.10)
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To accomplish this goal, the FB algorithm, described in this subsection, is applied
along the lines described in [98]. The conditional probability of the current state given the
observation sequence during the time interval T is decomposed in P (o1, . . . , ot, qt = si)
and P (ot+1, . . . , oT | qt = si), using the Bayes rule,

P (qt = si | OT ) = P (qt = si | o1, . . . , oT )

=
P (o1, . . . , oT , qt = si)

P (o1, . . . , oT )

=
P (o1, . . . , ot, (ot+1, . . . , oT ), qt = si)

P (o1, . . . , oT )

=
P (o1, . . . , ot, qt = si) · P (ot+1, . . . , oT | o1, . . . , ot, qt = si)

P (o1, . . . , oT )

=
P (o1, . . . , ot, qt = si) · P (ot+1, . . . , oT | qt = si)

P (OT )
. (3.11)

Therefore, the probability (3.1) is divided into two main components: one contain-
ing the past information, P (o1, . . . , ot, qt = si) and the other the future information,
P (ot+1, . . . , oT | qt = si), as shown in (3.11).

3.3.1 Forward-Backward Algorithm

From inspection, the two probabilities in (3.11) are the keywords in the Forward-Backward
algorithm, described in [98]. Let,

αt(i) = P (o1, . . . , ot, qt = si) (3.12)

βt(i) = P (ot+1, . . . , oT | qt = si) (3.13)

with which the equality (3.11) may be rewritten as,

P (qt = si | OT ) =
αt(i) · βt(i)

P (OT )
. (3.14)

In the sequel, we show that P (OT ), in the denominator of (3.14), may be written as a
function of the parameters αt(i) and βt(i) in (3.12) and (3.13). Applying the Bayes rules
in the denominator of (3.14) and using (3.12) and (3.13), we successively obtain:

P (OT ) = P (o1, . . . , ot, . . . , oT )

=
N∑

i=1

P (o1, . . . , ot, . . . , oT , qt = si)

=
N∑

i=1

P (o1, . . . , ot, qt = si) · P (ot+1, . . . , oT | o1, . . . , ot, qt = si)
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=
N∑

i=1

P (o1, . . . , ot, qt = si) · P (ot+1, . . . , oT | qt = si)

=
N∑

i=1

αt(i) · βt(i). (3.15)

P (OT ) corresponds to a normalization factor in t, which is defined as 1/ηt. Using
(3.15) in (3.14), P (qt = si | OT ) becomes:

P (qt = si | OT ) =
αt(i) · βt(i)∑N
i=1 αt(i) · βt(i)

= ηt · αt(i) · βt(i). (3.16)

One of the probabilities in (3.14), the component αt(i), is relative to all the observations
from the past up to the time instant t. On the other hand, all the future observations are
in the βt(i) parameter. The Figure 3.4 illustrates the influence of the past, α, and the
future, β, on (3.1).

0

α t βt

1 2 T       tt t+1t-1... ...

Figure 3.4: Influence of the past, α, and the future, β, at time instant t

The main result expressed in (3.16) is that there is a complete decoupling of the
observation sequence relative to the time instant t. The observations prior to t (past
observations) and the observations from t to T (future observations) appear in different
factors. This decomposition is illustrated in Figure 3.4, where the pdf represented by α

and β parameters are represented during a time interval T .
Whenever t is the current time instant and t ≤ T , it is reasonable to consider that there

is no future observations up to T , and therefore βt(i) is considered to have an uniform
distribution, this expressing the absence of future information. On the contrary, whenever
the current time instant is ta with t < ta ≤ T , the state estimate at time instant t can
profit from the observations from t to ta.

To evaluate the pdf (3.16) for each time instant t, it is necessary to evaluate αt(i)
and βt(i). The Forward-Backward algorithm [98], provides an iterative solution to this
problem. The forward and backward iterations of the algorithm are represented in (3.18)
and (3.19), respectively,
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αt(j) = P (o1, . . . , ot, qt = sj)

=

[
N∑

i=1

P (o1, . . . , ot−1, qt−1 = si) · P (qt = sj | qt−1 = si)

]
· P (ot | qt = sj)

=

[
N∑

i=1

αt−1(i)aij

]
· bj(ot), (3.17)

with bj(ot) defined in (3.5). For time instant t + 1, (3.17) is written as,

αt+1(j) =

[
N∑

i=1

P (o1, . . . , ot, qt = si) · P (qt+1 = sj | qt = si)

]
· P (ot+1 | qt+1 = sj)

=

[
N∑

i=1

αt(i)aij

]
· bj(ot+1). (3.18)

In (3.18) it was used j in αt+1(j) to keep the notation of the aij parameter in the sum
inside the square brackets.

βt(i) = P (ot+1, . . . , oT | qt = si)

=
N∑

j=1

P (qt+1 = sj | qt = si) · P (ot+1 | qt+1 = sj) · P (ot+2, . . . , oT | qt+1 = sj)

=
N∑

j=1

aij · bj(ot+1) · βt+1(j) (3.19)

Equation (3.18) evolves forward in time while (3.19) evolves backwards. The forward
and backward iterations are initialized at time instant t = 1 and t = T , respectively.
The initialization of (3.18) requires a priori information in the variable π, as expressed
in (3.20). The initialization of the variable β corresponds to an uniform distribution, as
stated in (3.21),

α1(i) = P (q1 = si) · P (o1 | q1 = si) = πi · bi(o1), (3.20)

βT (i) = 1, i = 1, . . . , N. (3.21)

As shown in the second line of (3.15),

P (OT ) =
N∑

i=1

P (o1, . . . , ot, . . . , oT , qt = si),

the probability of the observation sequence, P (OT ), can be evaluated by
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P (OT ) =
N∑

i=1

αT (i), (3.22)

when no future information is available, i.e., t is equivalent to T .
In summary, the localization procedure consists on finding the best state estimate,

given the observations, (3.2). Replacing the pdf (3.2) by (3.16) and applying the FB
algorithm, (3.18), (3.19), (3.20) and (3.21), the equation (3.2) is modified to,

q̂t = arg max
qt=si

[αt(i) · βt(i)] . (3.23)

The best state estimate for each t, q̂t, during a time interval T , is the state si, i.e.,
q̂t = si, that maximizes αt(i) · βt(i).

For a sequence of estimations, Q̂T = {q̂1, q̂2, . . . , q̂T }, incongruent sequences might
occurs, when some of the probability transitions are equal to zero. To solve this problem,
the optimization criteria must be changed. In (3.23) the argument is a sequence of states,
Q̂T , that maximizes the probability in (3.24), similar to the Viterbi algorithm, see [98].

Q̂T = arg max
q1,...,qT

P (QT | o1, . . . , oT ) (3.24)

3.3.2 Forward-Backward Algorithm Revisited

In the FB algorithm described in the previous subsection, the time interval of length T

from t = 0 to t = T has a fixed length, while t is the unique variable of time. For long
time intervals, corresponding to large operating periods, the FB algorithm implementation
becomes too time consuming. For this reason, it is necessary to understand the depen-
dence of the algorithm on the length of the observation sequence and to find an iterative
procedure to implement the localization in a feasible way.

Given the importance of the length of the observation sequence, we introduce a new
notation on associated to the parameters α and β, explicitly including the time interval T

in superscript. Rewriting the equations (3.12), (3.13) and the iterations, (3.18) and (3.19),
yields,

αT
t (j) = P (o1, . . . , ot, qt = sj) (3.25)

βT
t (i) = P (ot+1, . . . , oT | qt = si) (3.26)

αT
t+1(j) =

[
N∑

i=1

αT
t (i)aij

]
· bj(ot+1) (3.27)

βT
t (i) =

N∑
j=1

aij · bj(ot+1) · βT
t+1(j), (3.28)



54 Chapter 3. Localization

that will be used along this section.
To evaluate αT

t (j) and βT
t (i) as a function of T , consider, as an example, two distinct

values for T , T1 and T2, with T1 ≤ T2.

Result: Consider T1, T2 ∈ IN , T1 ≤ T2 and t ≤ T1. Then αT1
t (j) = αT2

t (j),∀j.

Proof: Consider the sequence of observations up to time instants T1 and T2, OT1 =
{o1, . . . , oT1} and OT2 = {o1, . . . , oT2}, respectively. Using the FB initialization,
(3.20) and (3.21),

αT
1 (i) = P (q1 = si) · P (o1 | q1 = si)

from where,
αT1

1 (i) = αT2
1 (i),

which is equivalent to
αT1

1 (j) = αT2
1 (j).

Moreover, by mathematical induction, if αT1
t (j) = αT2

t (j) and taking into account
the iteration (3.18), it is shown that,

αT1
t+1(j) =

[
N∑

i=1

P (o1, . . . , ot, qt = si) · P (qt+1 = sj | qt = si)

]
· P (ot+1 | qt+1 = sj)

=

[
N∑

i=1

αT1
t (i)aij

]
· bj(ot+1)

=

[
N∑

i=1

αT2
t (i)aij

]
· bj(ot+1)

= αT2
t+1(j), t ≤ T1

which concludes the proof, i.e.,

αT1
t (j) = αT2

t (j), t ≤ T1, T1 ≤ T2. (3.29)

�

Result: Consider T1, T2 ∈ IN with T1 < T2 and t ≤ T1. Then βT1
t (i) = βT1

t (i) · βT2
T1

(i),∀i.

Proof: Consider βT1
t (i) for t ≤ T1 and βT2

t (i) for t ≤ T2, given by:

βT1
t (i) = P (ot+1, . . . , oT1 | qt = si)

βT2
t (i) = P (ot+1, . . . , oT1 , . . . , oT2 | qt = si)

= P (ot+1, . . . , oT1 , (oT1+1, . . . , oT2) | qt = si)

= P (ot+1, . . . , oT1 | oT1+1, . . . , oT2 , qt = si) · P (oT1+1, . . . , oT2 | qt = si)

= P (ot+1, . . . , oT1 | qt = si) · P (oT1+1, . . . , oT2 | qt = si)
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0 1 t T2       tT1+1... ...2 ...
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Figure 3.5: The past and future influence at time instant t. The future is divided in two
sub-intervals

= βT1
t (i) · βT2

T1
(i)

which concludes the proof, i.e.,

βT2
t (i) = βT1

t (i) · βT2
T1

(i), t ≤ T1, T1 ≤ T2. (3.30)

�

As illustrated in Figure 3.5, αT1
t is equal to αT2

t , for t ≤ T1, since both consider the
same past information, while βT2

t is decomposed in two components: the first contains
the information of the interval from t to T1 and the second results from the observations
acquired during the fixed interval from T1 to T2.

If T1 is constant and T2 changes, to determine βT2
t (i) in (3.30) only requires the eval-

uation of βT2
T1

(i), since βT1
t (i) remains unchanged. Assuming T1 as a fixed time interval T

and T2 as T + k∆T , then (3.30) is replaced by:

βT+k∆T
t (i) = βT

t (i) · βT+k∆T
T (i) (3.31)

where ∆T corresponds to the time interval between successive observations and k =
1, 2, 3, . . .. The decomposition of β in two components reduces the computational costs, as
it is only necessary to evaluate the innovative component of β, i.e., what is new between
T and T + k∆T .

Moreover, it is possible to generalize (3.31) for several observations, i.e., for different
values of k:

k = 1, βT+∆T
t (i) = βT

t (i) · βT+∆T
T (i)

k = 2, βT+2∆T
t (i) = βT

t (i) · βT+2∆T
T (i)

= βT
t (i) · βT+∆T

T (i) · βT+2∆T
T+∆T (i)

k = 3, βT+3∆T
t (i) = βT

t (i) · βT+3∆T
T (i)
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= βT
t (i) · βT+∆T

T (i) · βT+3∆T
T+1∆T (i)

= βT
t (i) · βT+∆T

T (i) · βT+2∆T
T+1∆T (i) · βT+3∆T

T+2∆T (i)

. . .

k = n, βT+n∆T
t (i) = βT

t (i) ·
n∏

k=0

βT+k∆T
T+(k−1)∆T (i) (3.32)

or

k = n, βT+n∆T
t (i) = β

T+(n−1)∆T
t (i) · βT+n∆T

T+(n−1)∆T (i). (3.33)

Replacing βT+k∆T
T+(k−1)∆T (i) in (3.32) by (3.26) and consequently by (3.28) yields,

k = n, βT+n∆T
t (i) = βT

t (i) ·
n∏

k=0

P (oT+k∆T | qT+k∆T = si)

= βT
t (i) ·

n∏
k=0

N∑
j=1

aij · bj(oT+k∆T )

= βT
t (i) ·

N∑
j=1

aij

n∏
k=0

bj(oT+k∆T ) (3.34)

or

k = n, βT+n∆T
t (i) = β

T+(n−1)∆T
t (i) · P (oT+n∆T | qT+n∆T = si)

= β
T+(n−1)∆T
t (i) ·

N∑
j=1

aij · bj(oT+n∆T ). (3.35)

Given
P (oT+n∆T | qT+n∆T = sj) = bj(oT+n∆T ) ≤ δj < 1,

the equation (3.34) and (3.35) are rewritten as:

k = n, βT+n∆T
t (i) ≤ βT

t (i) ·
N∑

j=1

aijδ
n
j (3.36)

or

k = n, βT+n∆T
t (i) ≤ β

T+(n−1)∆T
t (i) ·

N∑
j=1

aijδj . (3.37)

It is important to understand the relation between β and δ. From (3.3), it is obvious
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that
∑N

j=1 aij = 1. Since δj < 1,∀j, yields

N∑
j=1

aijδj = τ < 1,

where τ is a factor that represents the importance of β through time. From (3.37) it is
clear that

βT+n∆T (i) ≤ β
T+(n−1)∆T
t (i) ·

N∑
j=1

aijδj

≤ β
T+(n−1)∆T
t (i) · τ

≤ τn, (3.38)

which is bounded by an exponential function.
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n∆
T

t
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Figure 3.6: The evaluation of βT+n∆T
t during 12 time intervals, with τ = 0.5

The influence of the observations acquired up to the time instant t decreases exponen-
tially. Figure 3.6 illustrates the evolution of βT+n∆T

t with τ = 0.5. After 4 time intervals
the effects of the parameter β is less than 10%. Therefore, the time interval T has to be
selected according to the decay referred in (3.38).

3.3.3 Time Interval Dimension

As explained in the previous section, the localization is accomplished using the information
returned by the observed features. However, the influence of that information decreases
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along time, i.e., an observation acquired in a far away instant of time is less important than
an observation acquired in a closer instant. Therefore, it is not suitable to equally integrate
all the information acquired up to the time instant t to estimate the robot’s location at t.
There is an interval where the information is more relevant for the localization algorithm.
As illustrated in Figure 3.6, the influence may be less then 10% after 4 iterations or less
than 1% after 8 iterations.

Consider now that the overall observation sequence interval is sampled in time intervals
of length T , as illustrated in Figure 3.7, with each window represented by kT + T , for
k = 1, 2, . . ..

T

0   T   2T     3T     ...      t

observations

Figure 3.7: Observation sequence divided in time intervals of length T

Using the introduced notation, this yields:

OkT+T = {o1, . . . , okT , okT+1, . . . , okT+T }

= {OkT , okT+1, . . . , okT+T }. (3.39)

Defining
OkT+T

kT = {okT+1, . . . , okT+T },

the observation sequence up to kT + T is written as

OkT+T = {OkT , OkT+T
kT }. (3.40)

The probability of the current state given the observation sequence, {OkT , OkT+T
kT },

along the acquired time interval from kT to kT + T is given by:

P (qt = si | OkT+T ) = P (qt = si | o1, o2, . . . , okT , okT+1, okT+2, . . . , okT+T )

= P (qt = si | okT , okT+1, okT+2, . . . , okT+T )

= P (qt = si | okT , OkT+T
kT )

=
αkT+T

t (i) · βkT+T
t (i)

P (OkT+T )
(3.41)

where α and β are expressed by
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αkT+T
t (i) = P (okT , . . . , ot, qt = si) (3.42)

βkT+T
t (i) = P (ot+1, . . . , okT+T | qt = si) . (3.43)

Both equations require that kT ≤ t ≤ kT + T . To evaluate the pdf (3.41) for each
time instant t, it is necessary to evaluate αkT+T

t (i) and βkT+T
t (i) in (3.42) and (3.43),

respectively.
At each interval of length T , the initialization of both parameters is required. The

initialization values for (3.42) and (3.43) are presented in (3.44) and (3.45), where we use
the fact that the P (qkT+1 = si) = P (qkT = si),

αkT+T
kT+1 (i) = P (qkT+1 = si) · P (okT+1|qkT+1 = si)

= πkT+T
i · bi(okT+1) (3.44)

βkT+T
kT+T (i) = 1 , ≤ i ≤ N. (3.45)

The equations (3.42) and (3.43) are similar to the forward and backward iterations in
(3.18) and (3.19) and consequently, (3.42) and (3.43) can be rewritten as follows:

αkT+T
t+1 (j) =

[
N∑

i=1

αkT+T
t (i) · aij

]
· bj(ot+1) (3.46)

βkT+T
t (i) =

N∑
j=1

aij · bj(ot+1) · βkT+T
t+1 (j) . (3.47)

Further developments on the parameter β in (3.47) are still possible. By inspection on
(3.35) and (3.33), (3.47) can be written as

βkT+T
t (i) = β

(k−1)T+T
t (i) · βkT+T

(k−1)T+T (i) (3.48)

βkT+T
t (i) = β

(k−1)T+T
t (i)

N∑
j=1

aijbj(okT+T ). (3.49)

Since the parameter bj(okT+T ) is equal to P (okT+T | qkT+T = sj) = δj , (3.49) is
rewritten as shown in (3.51), where δj < 1,∀j. From (3.3),

∑N
j=1 aij = 1, and so

N∑
j=1

aij · δj = τ < 1. (3.50)
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Equivalently to (3.36) and (3.37),

βkT+T
t (i) ≤ β

(k−1)T+T
t (i) ·

N∑
j=1

aij · δj (3.51)

≤ β
(k−1)T+T
t (i) · τ

βkT+T
t (i) ≤ τk, (3.52)

which means that β is bounded by a decreasing power series with time constant τ . This
is the clue to choose the appropriate time interval T , which is defined according to the
values of aij already known.

The necessary tools to evaluate the localization probability were described. To imple-
ment this methodology, it is first necessary to define a time interval T . Second, along each
time interval the α and β parameters are calculated using the observations and iterative
equations. The localization probability for each state, qt = si, i = 1, 2, · · · , N is evaluated
using the FB algorithm. The state that maximizes the probability is defined as the current
robot location estimate.

3.4 Simulation Results

This section presents experimental simulated results on the localization procedure de-
scribed in this chapter with the revisited FB algorithm. In the experiments the environ-
ment is represented by a topological map with 6 states, s1, s2, . . . , s6, each one character-
ized by a set of five different attributes, v1, v2, . . . , v5. Two different paths are considered
in this map, as represented in Figures 3.8 and 3.20.

Even though each state may, in general terms, be characterized by a sum of Gaussian
pdfs, the present simulations consider, for simplicity, that each state is defined by a single
Gaussian pdf. The corresponding mean is a 5-dimensional vector collecting the attribute
values, represented by colored bars as shown in Figure 3.8. The covariance matrix is
diagonal to express a null correlation among the attributes.

To implement the simulation and assess the localization performance it is necessary to
define a metric referential that provides the exact position and orientation of the mobile
robot along its path and the exact position of each map’s state. It should be reinforced,
that the topological localization procedure proposed in the thesis does not require this
metric information, which is exclusively used to simulate the observations, to accomplish
the path planning and to evaluate the results. The tests consider that the mobile robot
is equipped with a range sensor whose statistical model is also one dimensional Gaussian
pdf. It is considered that the probability that the mobile robot observes the attributes of
a state is proportional to the inverse of the Euclidean distance to the state. Additionally,
it is assumed that the robot’s sensor measures, in each time instant, all the attributes of
the closest state.
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Figure 3.8: Experiment 1: Map states, via points, attributes of each state and the executed
path

At this stage, the performance analysis of the localization procedure requires the a
priori definition of the path the mobile robot will follow. This path is specified by the
set of via points, Pi, illustrated in Figures 3.8 and 3.20. In the complete application of
the algorithm, the path is defined as a sequence of states that result from the topological
navigation procedure and described in Chapter 4.

As a consequence of the disparity of the probability values returned by the local-
ization (determined by the exponential decreasing referred in (3.52), one or two states
with probability while the other states have low probabilities) the experimental results
are displayed in logarithmic scale, log P (·). At each time instant t, the current location
estimate corresponds to the state with the highest probability value. The results dis-
played in Figures 3.9-3.19 and 3.21 represent the evolution of log P (qt = si | o1, . . . , oT )
for i = 1, 2, . . . , 6 along the simulation iterations. The small circles in each function are
numbered according to the via points displayed in Figures 3.8 and 3.20.

The first simulated results, obtained with a standard deviation σ on the observation,
are shown in Figure 3.9. The value of σ is not mentioned, since the goal is to compare the
algorithm performance with different standard deviations, namely 2σ, 4σ and 8σ compare
with the first experiment. The P (qt = si) is higher when the mobile robot is in the close
vicinity of state si. However, in this situation, the probability function displays some peak
values. These peaks are periodic with period related with the length of the observation
time interval, T (defined in Subsection 3.3.1), as illustrated in Figures 3.9-3.12 with T
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Figure 3.9: Experiment 1-a): Log of the localization probability in each state with T = 14
iterations. The time interval between iterations is 0.125s. Observation variance noise σ2

equal to 14, 10, 15 and 22, respectively. They occur at the beginning of each interval
T as consequence of the initialization referred in (3.44), without any connection with
the previous αkT

kT value. The smoothing of these peaks is achieved by normalizing the
parameter αkT+T

kT+1 (i) in (3.44) and replacing it by

αkT+T
kT+1 (i) =

αkT
kT (i)∑N

j=1 αkT
kT (j)

. (3.53)

Figure 3.13 displays the results obtained as in Figure 3.9 but after the referred nor-
malization. It is clear that the peaky evolution of the probability decreased, this resulting
from the implemented normalization.
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Figure 3.10: Experiment 1-b): Log of the localization probability in each state with T = 10
iterations. The time interval between iterations is 0.125s. Observation variance noise σ2
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Figure 3.11: Experiment 1-c): Log of the localization probability in each state with T = 15
iterations. The time interval between iterations is 0.125s. Observation variance noise σ2
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Figure 3.12: Experiment 1-d): Log of the localization probability in each state with T = 22
iterations. The time interval between iterations is 0.125s. Observation variance noise σ2
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Figure 3.13: Experiment 2-a): Log of the localization probability in each state with T = 14
and normalization in α. Observation variance noise σ2
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To test the localization algorithm robustness, the standard deviation of the sensor noise
was increased. The results in Figures 3.14-3.16 were obtained with the normalization in
(3.53) and an observation standard deviation of 2σ, 4σ and 8σ, respectively, where σ refers
to the value used in Figures 3.9 - 3.13.

It is clear the performance degradation in the localization estimate as the observation
noise increases. In particular, in Figure 3.16, the localization result oscillates when the
mobile robot travels between the states s1 and s2. The localization results show some
activity in states s4, s5 and s6, between iterations 0 and 200, which reflects that the
high uncertainty presented in the observations leads to an increasing probability of the
robot to localize in states with similar attributes. When the states are represented by
attributes without metric information and the observation noise is high, the localization
results present some uncertainty between states that are physical distant. This is a result
of topological maps. In these situations, the navigation algorithm explained in Chapter 4
has to re-estimate a new trajectory from the current state to the main goal. Given the
uncertainty, the current location estimate oscillation imposes the navigation to compute
a new sequence of states to the goal. The map improvement, identifying or updating new
states, can also reduce the ambiguities, even with high uncertainty in the observations, as
demonstrated in Chapter 5.

In Experiment 4 the path planning presented in Figure 3.20 provides ambiguities. In
some parts of the trajectory, the mobile robot is equally distant from two or more states.
For instance, in Figure 3.21 the ambiguity situation among the states s1, s2 and s3 is
evident between the via points P3 and P4 (between the iterations 100 and 200). Also
between P4 and P6 the ambiguity between s2 and s3 remains (iterations 200 to 300).
After crossing the via point P12 the mobile robot becomes equidistant to the states s3

and s4 this creating, due to sensor noise, an ambiguity situation evident in Figure 3.21
(iterations 800 to 950). As illustrated in Figure 3.16, the localization algorithm may return
oscillations (uncertainty) between two or more states. In Figure 3.16, the oscillations were
caused by the uncertainty of the observation, whereas in Figure 3.21 the oscillations occur
due to the trajectory shape relative to the states. The robot follows the trajectory that
was defined in the middle of states and, therefore, the robot observes simultaneously the
attributes of some state.

The navigation has to deal with these situations of uncertainty in the localization,
updating the sequence of states to reach the goal. In the second situation, shown in
Figure 3.21, the oscillations occur when the trajectory moves throw near states (small
physical distances, as s2 and s3, s2 and s6 and, s3 and s4). The navigation may return
similar sequences, only changing the first states of the sequence, as explained in Chapter 4.
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Figure 3.14: Experiment 2-b): Log of the localization probability evolution with normal-
ization in α. Observation variance is 4σ2
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Figure 3.15: Experiment 2-c): Log of the localization probability evolution with normal-
ization in α. Observation variance is 16σ2
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Figure 3.16: Experiment 2-d): Log of the localization probability evolution with normal-
ization in α. Observation variance is 64σ2
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Figure 3.17: The localization probability evolution P · log(P (qt = si | Ot))
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Figure 3.18: Experiment 3-a): Log of the localization probability in each state. The time
interval between iterations is 0.075s
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Figure 3.19: Experiment 3-b): Log of the localization probability in each state. The time
interval between iterations is 0.350s
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Figure 3.20: Experiment 4: Map states, via points and executed path
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Figure 3.21: Experiment 4-a): Log of the localization probability evolution
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Chapter 4

Navigation

As described in Chapter 2, a topological map is a representation of an environment with
no metric information available, showing physical features that characterize particular
locations or places that constitute the nodes of the map and that, in the context of
this work, are named as states. The navigation procedure proposed in this work is also
developed using a topological approach and is based on the robot location at each time
instant and on the topological map, both assumed to be known for the navigation purposes.
When navigation is herein cited, it only refers to a topological path planning, while the
reference to the general problem of mobile robot navigation includes the three main issues
of, localization, navigation and mapping.

The robot estimated location is equal to the map’s state in its closest vicinity using
a probabilistic approach to decide on this proximity function. The navigation procedure
consists on finding the best way to reach a goal, a state in the topological map, given the
current robot’s state.

To reach the target state, the robot moves through other states, facing the uncer-
tainty on the world perception and on the motion commands. The localization algorithm,
described in the Chapter 3, deals with that uncertainty by a probabilistic approach to es-
timate the robot’s location on the map. The navigation has also to deal with uncertainty
and, consequently, a topological and probabilistic approach is developed to support it.

Given the localization result at each time instant, the navigation algorithm provides
the best sequence of states from the current state to the goal’s state. The robot has to
follow these sequence of states, where the sequence’s length or the states that defines the
sequence could change along time. However, if the robot fails the sequence, i.e., if the robot
reaches a state not included in the sequence, the topological navigation has to compute a
new sequence, starting at the actual robot’s state to the goal. This possible failure could
be caused by the localization (as described in previous chapter, for instance, caused by the
uncertainty in the observations) and by dynamical obstacles forcing a new trajectory. The
navigation algorithm has to be robust to deal with these situations, updating the previous
sequence to a new sequence of states.

The topological navigation is similar to the navigation adopted by human beings, that
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try to be anchored to the well known features of the environment. When we are walking
on the street and someone ask us how to reach a specific place, we describe a path as a
sequence of places where the person has to walk through. Furthermore, it is important to
describe how to obtain the best sequence of states given a map.

As referred in Section 2.1, the three main problems of mobile robot navigation are the
localization, the navigation and the mapping. Similar to the localization, the navigation
is developed assuming that the topological map is already known. Chapter 5 describes
the map building algorithm, which runs permanently, but with a low frequency when
compared to the localization or to the navigation components. However, for each time
instant when the map algorithm updates the current topological map, the localization has
to retrieve the new robot’s state. Therefore, for the new robot’s state and an updated
topological map, the navigation has to compute a new sequence of states to reach the goal.

4.1 Problem Statement

Given the robot’s state at time instant t, qt = si, retrieved by the localization algorithm,
(3.2) in Chapter 3, and assuming that the topological map is known, the navigation
determines the sequence of states from qt to the goal state, sj , so that the objective
function

P (qt+∆ = sj | ot+1, . . . , ot+∆, qt = si) (4.1)

is maximized. This corresponds to place the robot in a state sj , after a period of time ∆,
which is equivalent to have qt+∆ = sj .

Each state of the topological map is associated to a combination of features and, when
the robot is in the proximity of this state, the retrieved observations should be similar to
those features. So, each observation should be associated to a particular state. The key-
question in solving (4.1) is what the robot should observe since the current time instant t

up to t + ∆, when the final state sj is reached, or equivalently,

max
ot+1,...,ot+∆

P (qt+∆ = sj | ot+1, . . . , ot+∆, qt = si). (4.2)

If it is important to reach the goal in the minimum time interval, (4.2) has to be
minimized relative to ∆, yielding the objective function,

min
∆

{
max

ot+1,...,ot+∆

P (qt+∆ = sj | ot+1, . . . , ot+∆, qt = si)
}

. (4.3)

However, at this point, the most important issue is how to determine a sequence of
states to reach the goal, regardless of the time restriction. Consequently, in the approach
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taken in the thesis, the minimization on the ∆ parameter is disregarded and the topological
navigation resumes to solve (4.2).

To solve (4.2) it is necessary to develop some research in (4.1), since the pdf is not
known. Applying the Bayesian rules on (4.1), leads to:

P (qt+∆ = sj | ot+1, . . . , ot+∆, qt = si) =

=
P (qt+∆ = sj , qt = si, ot+1, . . . , ot+∆)

P (ot+1, . . . , ot+∆, qt = si)

=
P (qt+∆ = sj , ot+1, . . . , ot+∆ | qt = si) · P (qt = si)

P (ot+1, . . . , ot+∆, qt = si)

=
P (qt+∆ = sj , ot+1, . . . , ot+∆ | qt = si)

P (ot+1, . . . , ot+∆ | qt = si)
. (4.4)

The probability P (qt+∆ = sj , ot+1, . . . , ot+∆ | qt = si) on the numerator of (4.4) can
be decomposed in two other probabilities as derived in the sequel:

P (qt+∆ = sj , ot+1, . . . , ot+∆ | qt = si) =

=
P (qt+∆ = sj , ot+1, . . . , ot+∆, qt = si)

P (qt = si)

=
P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj , qt = si)

P (qt = si)
= P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si). (4.5)

The two probabilities in (4.5) have different meanings. The first corresponds to the
probability of acquiring a sequence of observations given the initial and final states re-
strictions, while the second represents the transition probability between the initial and
the goal states.

Replacing (4.5) in (4.4) yields,

P (qt+∆ = sj | ot+1, . . . , ot+∆, qt = si) =

=
P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si)

P (ot+1, . . . , ot+∆ | qt = si)
, (4.6)

whose the denominator can also be written as,

P (ot+1, . . . , ot+∆ | qt = si) =

=
N∑

n=1

[P (ot+1, . . . , ot+∆ | qt+∆ = sn, qt = si) · P (qt+∆ = sn | qt = si)] . (4.7)

This decomposition is similar to the one presented in (4.5), where the target goal assumes
all the possible states of the map. Replacing (4.7) in (4.6) yields,
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P (qt+∆ = sj | ot+1, . . . , ot+∆, qt = si) =

=
P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si)∑N

n=1 [P (ot+1, . . . , ot+∆ | qt+∆ = sn, qt = si) · P (qt+∆ = sn | qt = si)]
= η · P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si), (4.8)

whose the denominator corresponds to the all possible final states available in the map.
As it does not influence the maximization, it is consequently assumed as a normalization
factor, η.

As suggested in [61], (4.8) is evaluated by

P (qt+∆ = sj | ot+1, . . . , ot+∆, qt = si) =

= η ·
N∑

l∆−1=1

· · ·
N∑

l1=1

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt+(∆−1) = sl∆−1
, qt+1 = sl1 , qt = si) ·

·P (qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1 | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si).

(4.9)

The decomposition of (4.8) in (4.9) consists on ∆ − 1 sums corresponding to all the
possible combinations of states between qt+1, the current state, and qt+(∆−1). Based on
the Markov assumption referred in Chapter 3, in the first term of (4.9), the observations
are independent of qt = si, yielding

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt+(∆−1) = sl∆−1
, qt+1 = sl1). (4.10)

The second term can be decomposed in two other probabilities,

P (qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1 | qt+∆ = sj , qt = si) =

=
P (qt+(∆−1) = sl∆−1

, . . . , qt+1 = sl1 , qt+∆ = sj , qt = si)
P (qt+∆ = sj , qt = si)

=
P (qt+∆ = sj , qt+(∆−1) = sl∆−1

, . . . , qt+1 = sl1 , qt = si)
P (qt+∆ = sj , qt = si)

=
P (qt+∆ = sj , qt+(∆−1) = sl∆−1

, . . . , qt+1 = sl1 | qt = si) · P (qt = si)
P (qt+∆ = sj , qt = si)

=
P (qt+∆ = sj , qt+(∆−1) = sl∆−1

, . . . , qt+1 = sl1 | qt = si)
P (qt+∆ = sj | qt = si)

. (4.11)

Using (4.10) and (4.11) in (4.9) yields,

P (qt+∆ = sj | ot+1, . . . , ot+∆, qt = si) =

= η ·
N∑

l∆−1=1

· · ·
N∑

l1=1

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1)
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·P (qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1 | qt = si). (4.12)

The second term of (4.12) corresponds to the transition probability, or the probability of
the robot crossing a given combination of states, starting in qt = si, the initial condition
for the navigation problem. At this point, it is important to identify in (4.12) the known
parameters, as the transitions probabilities, aij and the observation pdfs, bi(ot). This
entire expression in (4.12) can also be expanded to

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si) =

=
N∑

l∆−1=1

· · ·
N∑

l1=1

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1)

·P (qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1 | qt = si)

=
N∑

l∆−1=1

· · ·
N∑

l1=1

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1)

·P (qt+∆ = sj | qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1 , qt = si) ·

·P (qt+(∆−1) = sl∆−1
| qt+(∆−2) = sl∆−2

, . . . , qt+1 = sl1 , qt = si) ·

. . .

·P (qt+2 = sl2 | qt+1 = sl1 , qt = si) ·

·P (qt+1 = sl1 | qt = si)

=
N∑

l∆−1=1

· · ·
N∑

l1=1

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1)

·P (qt+∆ = sj | qt+(∆−1) = sl∆−1
) ·

·P (qt+(∆−1) = sl∆−1
| qt+(∆−2) = sl∆−2

) ·

. . .

·P (qt+2 = sl2 | qt+1 = sl1) ·

·P (qt+1 = sl1 | qt = si). (4.13)

Replacing the transition probabilities in (4.13) by the variable aij defined in (3.3) in
Section 3.2, (4.13) results in (4.14),

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si) =

=
N∑

l∆−1=1

· · ·
N∑

l1=1

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1)

·al∆−1j · al∆−2l∆−1
· . . . · al1l2 · ail1

=
N∑

l∆−1=1

· · ·
N∑

l1=1

P (ot+1 | ot+2, . . . , ot+∆, qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1)

·P (ot+2, . . . , ot+∆ | qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1)
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·al∆−1j · al∆−2l∆−1
· . . . · al1l2 · ail1

=
N∑

l∆−1=1

· · ·
N∑

l1=1

P (ot+1 | ot+2, . . . , ot+∆, qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1)

·P (ot+2 | ot+3, . . . , qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1 , qt = si) ·

·P (ot+3 | ot+4, . . . , qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1 , qt = si) ·

. . .

·P (ot+∆ | qt+∆ = sj , qt+(∆−1) = sl∆−1
, . . . , qt+1 = sl1 , qt = si) ·

·al∆−1j · al∆−2l∆−1
· . . . · al1l2 · ail1

=
N∑

l∆−1=1

· · ·
N∑

l1=1

P (ot+1 | qt+1 = sl1) ·

·P (ot+2 | qt+2 = sl2) ·

·P (ot+3 | qt+3 = sl3) ·

. . .

·P (ot+∆ | qt+∆ = sj) ·

·al∆−1j · al∆−2l∆−1
· . . . · al1l2 · ail1 . (4.14)

The first probability in (4.12), developed in (4.14), presents the observation probability
that can be also replaced by a variable defined in Section 3.2, bi(ot), yielding

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si) =

=
N∑

l∆−1=1

· · ·
N∑

l1=1

bl1(ot+1) · bl2(ot+2) · . . . · bl∆−1
(ot+(∆−1)) · bj(ot+∆) ·

·al∆−1j · al∆−2l∆−1
· . . . · al1l2 · ail1

=
N∑

l1=1

ail1bl1(ot+1)

 N∑
l2=1

al1l2bl2(ot+2) . . .

 N∑
l∆−2=1

al∆−3l∆−2
bl∆−2

(ot+(∆−2)) N∑
l∆−1=1

al∆−2l∆−1
bl∆−1

(ot+(∆−1))
[
al∆−1jbj(ot+∆)

] . (4.15)

It is important to remember that the main problem of navigation consists on finding
the best topological path (sequence of states) from the current location to the state goal,
or, equivalently, to solve (4.2). The work developed through this section developed a way
to obtain a solution, computationally feasible, to determine the desired sequence of states.

To simplify (4.15), define β
(j)
t+∆(l∆) as,

β
(j)
t+∆(l∆) =

{
1 , l∆ = j

0 , l∆ 6= j
, (4.16)

where sj is the goal state. Therefore, the parameters al∆−1jbj(ot+∆) in (4.15) become,
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al∆−1jbj(ot+∆) =
N∑

l∆=1

al∆−1l∆bl∆(ot+∆)β(j)
t+∆(l∆). (4.17)

Replacing (4.17) in (4.15), the navigation probability (4.15) is written as:

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si) =

=
N∑

l1=1

ail1bl1(ot+1)

 N∑
l2=1

al1l2bl2(ot+2) . . .

 N∑
l∆−2=1

al∆−3l∆−2
bl∆−2

(ot+(∆−2)) N∑
l∆−1=1

al∆−2l∆−1
bl∆−1

(ot+(∆−1))

 N∑
l∆=1

al∆−1l∆bl∆(ot+∆)β(j)
t+∆(l∆)

 .

(4.18)

Replacing (4.16) in (4.18), leads to

P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si) =

=
N∑

l1=1

ail1bl1(ot+1)

 N∑
l2=1

al1l2bl2(ot+2) . . .

 N∑
l∆−2=1

al∆−3l∆−2
bl∆−2

(ot+(∆−2)) N∑
l∆−1=1

al∆−2l∆−1
bl∆−1

(ot+(∆−1))
[
β

(j)
t+(∆−1)(l∆−1)

]
=

N∑
l1=1

ail1bl1(ot+1)

 N∑
l2=1

al1l2bl2(ot+2) . . .

. . .

 N∑
l∆−2=1

al∆−3l∆−2
bl∆−2

(ot+(∆−2))β
(j)
t+(∆−2)(l∆ − 1)


= . . .

=
N∑

l1=1

ail1bl1(ot+1)β
(j)
t+1(l1)

= β
(j)
t (i), (4.19)

where β
(j)
t (i) allows a recursive evaluation, as in the common Forward-Backward algo-

rithm, i.e., similar to the algorithm referred in the Chapter 3, the parameter β in (3.26)
address the future information relative to a given time instant t.

β(n)
τ (i) =

N∑
j=1

aij · bj(oτ+1) · β(n)
τ+1(j), t ≤ τ < t + ∆, (4.20)

with the restriction that, at time instant t + ∆, the robot has to be placed in the goal
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state, sj .
Returning to the initial probability, the navigation problem is stated in (4.2), where

the probability can be rewritten as

P (qt+∆ = sj | ot+1, . . . , ot+∆, qt = si) =

=
P (ot+1, . . . , ot+∆ | qt+∆ = sj , qt = si) · P (qt+∆ = sj | qt = si)∑N

n=1 [P (ot+1, . . . , ot+∆ | qt+∆ = sn, qt = si) · P (qt+∆ = sn | qt = si)]
. (4.21)

The equality (4.21) is simplified to (4.22), where the numerator is equal to (4.19) and, by
inspection, the denominator equals

∑N
n=1 β

(n)
t (i), leading to

β
(j)
t (i)∑N

n=1 β
(n)
t (i)

. (4.22)

In summary, the topological navigation consists on computing the best sequence of
states starting in the current robot’s position si, retrieved by the localization algorithm
and ending into the goal state sj . The sequence of states is calculated, finding the sequence
of observations that maximize

max
ot+1,...,ot+∆

β
(j)
t (i)∑N

n=1 β
(n)
t (i)

, (4.23)

with the restriction referred in (4.16) and where the parameter β
(j)
t is evaluated recursively,

as shown in (4.20). These equations, (4.16) and (4.20) are rewritten for simplicity,

β
(j)
t+∆(l∆) =

{
1 , l∆ = j

0 , l∆ 6= j
, (4.24)

β(n)
τ (i) =

N∑
j=1

aij · bj(oτ+1) · β(n)
τ+1(j), t ≤ τ < t + ∆. (4.25)

The parameter β
(j)
t addresses the future observations, or equivalently, what the robot

should observe to be anchored on the states of the topological map to reach the target
goal. The past information is all enclosed in the current state retrieved by the localiza-
tion. Therefore, the parameter α, described in the previous chapter is not present in the
topological navigation procedure.

However, the result from (4.23) is a sequence of observations. The question arises, on
how to convert a sequence of observations in a sequence of states. The answer is explained
in the following section.



4.1 Problem Statement 79

4.1.1 Maximization Implementation

The navigation solution is the best sequence of observations ot+1, . . . , ot+∆ that result
from the maximization of (4.23). The sequence of observations has to be converted in a
sequence of states, that the robot has to follow to reach the main goal.

The maximization in (4.23) returns the best sequence of observations, or equivalently,
for a specific value of ∆, the navigation algorithm returns O∗

∆ = {o∗t+1, o
∗
t+2, . . . , o

∗
t+∆},

with an uncertainty equal to P (qt+∆ = sj | o∗t+1, o
∗
t+2, . . . , o

∗
t+∆, qt = si).

The observations are relative to the states, since these are identified by particular
features. Each state is defined by a single or a set of multi-dimensional Gaussian pdfs,
as explained in Section 2.2.4, each state si is mainly represented by two parameters, the
mean vector µi and the covariance matrix Ri (for a set of Gaussians, it is also necessary
a third parameter, the weight for each Gaussian). According to this assumption, each
observation o∗ is associated to the state with the nearest mean vector,

s∗i = arg min
i=1,...,N

‖o∗ − µi‖. (4.26)

For a sequence of observations

{o∗t+1, o
∗
t+2, . . . , o

∗
t+∆}

corresponds a sequence of states

{s∗t+1, s
∗
t+2, . . . , s

∗
t+∆},

where each state si is identified through (4.26). An association criteria between observa-
tions and states in (4.26) may also include the covariance matrices, as the Mahalanobis
distance as described in [102].

Given the sequence of states that defines a topological path, it is also necessary to
explain how the robot can follow that path. Therefore, it is necessary to establish and
implement a methodology on the robot to follow that sequence of states. The adopted
methodology requires the orientation between different states. One possible way to esti-
mate the orientation between two different states is based on the results of the localization
algorithm. The localization algorithm estimates the robot position on the topological map,
or, the current state where the robot is, as explained in the previous chapter. The robot
can stay in the same state with different poses, as illustrated in Figure 3.1. When the robot
follows a direction θd, moving from state si to state sj , it is defined that the orientation
error is θd − θ. The orientation is referred to the North-South and West-East referential,
the common information retrieved by a compass.

In Figure 4.1 the robot is located in state si, i.e., qt = si, estimated by the topological
localization algorithm, where the orientation between the two states, θij = θd is known.
Assuming that the best sequence returned by the navigation algorithm to reach the goal
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Figure 4.1: Orientation error: the robot is moving from the state s1 to state s2

state is S∗ = {s∗i , s∗j}, the robot has to follow this sequence, changing its actual metric
orientation θ to the θij . This orientation adjustment is accomplished by controlling the
velocities applied to the wheels, this corresponding to the connection between the high
level of navigation (topological navigation) with a low level or motion control. Section 4.2
describes how to implement that low level of navigation, the motion control, including the
solution to the undesirable situations created by the obstacles.

4.1.2 Computational Requirements

To evaluate the expression presented in (4.19) it is necessary (2N)∆ multiplications and
N∆ sums. Since the multiplications require more computational time, the order of the
problem is O(2∆N∆). For the maximization procedure described in (4.23), it is also
necessary to evaluate the corresponding denominator. It is similar to repeat (4.19) N

times. However, the navigation algorithm remains with the same complexity,

O(N · (2N)∆) ≈ O((2N)∆).

For the case where the maximization also concerns the dimension of ∆, where it as-
sumes integers values 1, 2, . . . , L as mentioned in (4.3), the navigation algorithms com-
plexity is equal to O(L · (2N)∆) since ∆ only assumes L different integer values imposed
in the initialization of the algorithm.
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4.2 Low Level Driving Methodology

The topological navigation algorithm returns a sequence of states, starting on the current
state and ending into the target one. Since the robot is a mobile vehicle, it is necessary to
convert the sequence of states into velocities to apply on the wheels to have the robot mov-
ing along this sequence of states. This is equivalent to change from topological navigation
(high level of abstraction) to a metric navigation (low level of abstraction), as illustrated
in Figure 4.2.

Figure 4.2: The connection between the topological navigation and the motion control

To accomplish this step it is necessary to know the states that compose the map, the
angles between them and the geometric robot’s orientation.

For the sake of clarity, it is important to underline that the map, the topological map,
composed by a set of states, is computed by the algorithm described in Chapter 5. The
direction between states is estimated as described in the previous section, by saving the
orientation assumed by the robot between the transition of two consecutive states. For
instance, the robot is in state si and following NW direction, it reaches the state sj after a
couple of iterations. So the direction between si and sj , θij , is NW. However this process
of estimation is repeated several times and the direction between states is refined with
the transitions between these two same states. The directions between states may have
more precision (for instance, between -180o and 180o with 0.5o of precision) despite of few
directions (the traditional ones: north, south, west, east, northwest, . . . ). Even when the
robot is trying to follow that direction it can reach another state, not sj . If the robot
reaches a state not contained in the sequence, the navigation algorithm returns a new
sequence given the new current state, as explained in Section 4.1.1.
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To follow a given direction, the orientation goal to reach a state, θd, it is necessary
to know the current robot’s orientation, θ. The procedure to follow θd sis equivalent to
follow a path defined by a set of landmarks, defined as landmark to landmark control, as
explained in [55], where the orientation error is given by

θe = θd − θ. (4.27)

The estimation of the robot’s orientation is possible using the robot’s kinematics and
sensors or by an appropriate sensor. The kinematics approach is similar to the pose
estimation using only the odometric. After a few velocity commands it is impossible
to estimate the robot’s orientation using the kinematics, since the associated errors are
cumulative. Using only an appropriate orientation sensor like a compass is a better choice,
but not enough given the traditional time-delay of these type of sensors. The selected
approach for orientation estimation is based on integrating both techniques through an
Extended Kalman Filter (EKF) methodology [25, 45], as described in Appendix B.3.

Given the robot’s orientation, θ, retrieved by an EKF, the next problem is to target
the robot to the desired direction, θd, equal to θij ,

θd = θij ,

which corresponds to the direction between the current state si, yielded by the topo-
logical localization estimation, and the next goal state sj , obtained from the topological
navigation.

4.3 Behavior Approach

The topological navigation approach discussed through this chapter provides a sequence of
states to reach a goal. The orientation estimated, referred in the previous section, gives the
error between the current orientation of the robot and the direction between the current
state and the next one in the sequence, as described in (4.27). It is not required any metric
information on the position of the robot in a referential, but only on the orientation.

Given the sequence of states, it is necessary to develop an approach to follow this
sequence, using the orientations between states, θij . This is similar to a path following
procedure implemented at a low level of navigation, providing the velocities for the motors.
It is important to be aware that there are unexpected situations that could occur and
that influence the performance of the planned path (sequence of states), as illustrated in
Figure 4.3. It is expected that the transition probability between two states si and sj

is low if there are known, STATIC obstacles between them. Therefore, the sequence of
states provided by the navigation algorithm is computed to avoid that si is immediately
followed by sj , given the low probability transition. However, temporary obstacles may
appear, as people walking or moving objects.
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Figure 4.3: Unexpected obstacles along the trajectory, where the target state is s6

Given the state goal and the unexpected situations it is necessary to develop a process
that controls the robot to the target avoiding the undesirable obstacles. One common
approach is using behaviors for autonomous robots, a component of an agent architecture
extensively studied in autonomous agent research [14, 84, 105].

The selected approach is oriented to the use of attractive and repulsive behaviors [34],
with the action leading the robot to the target while avoiding obstacles. Since the main
goal is to avoid obstacles (people walking, cars moving, etc) the observations are retrieving
from range sensors. Based on [21], the behavior approach used in the thesis is defined by
combining two behaviors, whose weight influence is a function of the sensors observation,
resulting on velocity commands. It is important to point out that the connection between
the topological navigation (the sequence of states to follow) and a low level navigation
(velocity control) is being accomplished exactly at this point.

4.3.1 Attractive Behavior

The selected behaviors are extracted from the work of Estela Bicho [21]. The robot
is driven according to the speed of the wheels, which are converted into angular and
translation velocities, Ω and V , as described in Appendix B.2. To follow the orientation
to a target, it is most important to evaluate the angular velocity, Ω, leaving the translation
speed, V , constant and non-zero. The translation speed can also be managed by other
type of control not important at this point, since the orientations is the main issue.

The desired direction, θd, is given by the orientation between the current state, where
the robot is and the next target state. The orientation error, θe, is the difference between
θd and θ, the orientation of the robot that is time variant (4.27). An attractive behavior
retrieves an angular velocity as a function of the orientation error. Based on [21], the
attractive behavior is described as the odd function, fa(θe),

fa(θe) = − sin(k0θe), (4.28)
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where k0 defines the slope of the function sin, as illustrated in Figure 4.4. The angular
velocity generated only by the attractive behavior results from multiplying this function
by a reference angular velocity,

Ω = fa(θe) · Ωmax. (4.29)

The point where the orientation error is equal to zero works as an attractive point
with this behavior. When the orientation error is positive, the resulted angular velocity
is negative leading θe to decrease to zero. When the orientation error is negative, the
resulted angular velocity is positive and θe converges to zero. It is important to underline
that when the direction error to the target is higher than 90o, the attractive behavior must
be also high to drive the robot to the goal. When this occurs, Ω should be equal to Ωmax,
the maximum angular velocity.

−180 −90 0 90 180

−1

−0.5

0

0.5

1

Attractive behavior

f a(θ
e)

Orientation error

Figure 4.4: Attractive behavior

4.3.2 Repulsive Behavior - Obstacle Avoidance

To avoid unexpected or dynamic obstacles along the robot path a repulsive behavior,
dependent on the obstacle’s orientation, is implemented. To estimate the orientation of the
nearest obstacle, θo (see Figure 4.5), the sensors available on the robot are used together
with a selected approached described in [27]. The angle θo is given by the difference
between the robot’s orientation and the orientation of the nearest point of the obstacle to
the robot.

A repulsive behavior retrieves an angular velocity that depends on θo, where the sign
of Ω is equal to the sign of θo. In [21], a collision avoidance implementation is based on a
repulsive behavior, described as the odd function, fr(θo),
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Figure 4.5: Unexpected obstacles along the trajectory

fr(θo) = k1θoe
−k2θ2

o , (4.30)

where k1 corresponds to the normalization of fr, i.e., the maximum value of |f | is 1,
which occurs when the derivative of fr is equal to zero, or k1 =

√
2k2 · e, as illustrated

in Figure 4.6. The parameter k2 is relative to the function slope, or the point where the
maximum value of the derivative of fr is reached. The maximum value of fr is determined
when the derivative of fr is zero, or, when the orientation to the obstacle is equal to ±1√

2k2
.

The angular velocity is determined similarly as in the attractive behavior, multiplying fr

by the maximum velocity, i.e.,

Ω = fr(θo) · Ωmax. (4.31)

In this behavior, the situation where the orientation to the obstacle is zero acts as
a repulsive point. When the orientation is positive, the resulted angular velocity is also
positive, increasing the orientation to the obstacle. When the orientation is negative, the
resulted angular velocity is also negative, driving the robot away to the obstacle.

Figure 4.7 illustrates some repulsive behaviors for different values of k2. For high values
of k2, the robot turns faster when it is in the vicinity of the obstacle.

The repulsive behavior may lead the robot to a different state not included in the
sequence retrieved by the navigation procedure. When this occurs, the topological local-
ization algorithm identifies the new current state and the topological navigation computes
a new sequence of states to reach the goal.

4.3.3 Combining Behaviors

The repulsive behavior emerges when the robot is in vicinity of an obstacle. For a non-
holonomic robot, the distance to an obstacle is more important when the robot’s orien-
tation and the angle θo are close to each other, as explained by [96]. For instance, for
the robot of the Rescue Project (the ATRV-Jr is a robot with differential wheels), it is
more important to avoid an obstacle in front or aside it, since it has a differential drive
kinematics.
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Figure 4.6: Repulsive behavior

To combine both behaviors it is necessary to measure the distance to the nearest
obstacle. Since θo is defined as the orientation of the nearest point of the obstacle to
the robot, it is also possible to measure that distance, do, as explained in [27]. If do is
high meaning that the obstacle is far, the attractive behavior should decide the angular
velocity, otherwise, the repulsive behavior becomes more important.

The two behaviors are mixed based on a simple strategy, similar to the Fuzzy Logic
approach described in [33]. The function g(do), dependent on the distance to the obstacle,

g(do) =
1
2

+
1
π

arctan[k3(do − k4)], (4.32)

combines both behaviors according to the value of do. The resulted behavior, a weighted
combination of both behaviors, fw(do, θo, θe), is given by,

fw(do, θo, θe) = fa(θe) · g(do) + fr(θo) · (1− g(do)). (4.33)

When the distance to the obstacle is equal to k4 the attractive and repulsive behaviors
have the same importance (both equal to 0.5). The value of k3 influences not only the
slope of the curve, but also the safe distance to the obstacle. In the example illustrated
in Figure 4.8, with k4 = 4 and k3 = 2, when the distance to the obstacle is above 1m
the weight of the attractive behavior is less then 0.05, while the weight of the repulsive
behavior is approximately 0.95. The attractive behavior can become exactly 1 with a
different function g(do).

The angular velocity is now defined by combining both behaviors,

Ω = fw(do, θo, θe) · Ωmax. (4.34)
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Figure 4.7: Repulsive behavior for different values of k2
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Figure 4.8: Combining the attractive and repulsive behaviors

In summary, the resulted behavior, fw, depends on three variables and results from
gathering the two components: fa(θe) · g(do) and fr(θo) · (1− g(do)). To simplify the visu-
alization, these two components are illustrated individually in Figure 4.9 and Figure 4.10.
Figure 4.9 illustrates the attractive component, or fa(θe) ·g(do), with a small weight when
the robot is close to an obstacle.

The repulsive behavior becomes more important when the robot is near to the obstacle.
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Figure 4.9: The attractive component of the driving behavior

4.4 Simulation Results

The navigation algorithm was tested including the topological localization described in
Chapter 3 and the low level motion control methodology described in previous section.
The test-bed map is the same displayed in Figure 3.8, defined by a set of states, but
including a set of obstacles, as illustrated in Figure 4.11. The topological map, or the set
of states, were computed without the obstacles, which were introduced a posteriori.

The first simulation depicted in Figure 4.12 is retrieved by imposing a set of state
goals that the robot has to reach, starting at state s1. The first goal is s5. The navigation
algorithm returns the sequence of states s1 → s2 → s6 → s5. Even with the obstacles, the
sequence of states remains unchanged during the path. When the state s5 is reached a
new goal is defined, s2. At this stage, the navigation algorithm has to update the sequence
a few times, since the robot is among obstacles. The experience is repeated to reach new
goals, s6 and s4, starting always from the last goal. It is assumed that the robot is always
in the area covered by the map. If the robot tries to leave the map, which is measured
by the localization as an equal distribution at all states (ambiguity), the map should be
updated with new states.

The next results are retrieved to test the length of the sequence states computed by
the navigation algorithm. If the length of a sequence, defined as ∆ (the number of states)
introduced in Section 4.3, is constant, the navigation algorithm returns a sequence with
the same length, each time it changes the previous sequence. As an example, for ∆ = 4 the
best sequence of states from s1 to s5 is s1 → s2 → s6 → s5. If the topological localization
estimates the robot location as being state s2 (or one of the other states of the sequence),
the sequence is reduced starting in the current state. For instance, it the current state is
s2, the sequence becomes s2 → s6 → s5. If the localization returns other state not covered
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Figure 4.10: The repulsive component of the driving behavior
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Figure 4.11: The map presented in Figure 3.8 compounded by obstacles

by the sequence, the navigation has to update to a new sequence, always starting with the
same length ∆. This strategies seems absurd, since the robot may never reach the goal,
but is useful for moving the robot always linked to several states. It is similar to a blind
person moving in a corridor, who tries to search the walls and moving along these walls.
When ∆ is variable, for each time that the navigation algorithm returns a sequence, the
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Figure 4.12: Example of a navigation algorithm, starting from state s1 to reach s5, s2, s6

and s4 at this order

length may assume a different value, as explained in the Section 4.1.1.
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Figure 4.13: Resulted trajectories with ∆ constant
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Figure 4.14: Resulted trajectories with ∆ variable

To repeatedly test the navigation algorithm, we define a set of goals (around 50) that
the robot has to follow at a specified order. The navigation was updating the sequence
based on the localization results. Figure 4.13 depicts an example of the robot motion with
∆ = 4. The resulted trajectories describe a complex mesh, which is similar to a Voronoi
diagram. In Figure 4.14, the parameter ∆ is not constant. At this experiment, the robot
reached the goals faster, with direct paths. When ∆ is variable the navigation algorithm
assumes a conquer profile, since the robot tries to leave the known area often.

When ∆ is constant, as exemplified in Figure 4.13, the navigation starts returning
always a sequence of 4 states. Even if the current state and the target state are closer (in
the simulation the metric distance is available for experimental purposes), the navigation
returns a sequence of 4 states. This situation, leads the robot following a long trajectory
but with high certainty to be localized in each state. If the ∆ is variable, the navigation
commonly returns sequences of 2 states, the current and the target, as depicted in the
Figure 4.14. However, the robot leaves the area covered by the current map more often,
which, in a real situation with the localization, navigation and mapping implemented,
requires a map update with a high frequency.
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Chapter 5

Map Building

The previous chapters, the Topological Localization and Navigation, were addressed as-
suming that the topological map is known. This chapter discusses how to build and update
a topological map, a representation of an environment with no metric information avail-
able. The map shows physical features that characterize particular locations or places that
constitute the nodes of the map denoted as states. The features that characterize each
state are represented by Gaussian pdfs. The main goal of this chapter is to determine
the number of states and the parameters of the Gaussian pdf that define each state. The
states can be represented by different type of features, where the extraction and selection
procedures are also topics discussed in this chapter.

5.1 Problem Statement

In the present work, a topological map is built to support the navigation of a mobile robot.
To perform a symbolic representation of the environment the robot perceives it with its
on-board sensors and the acquired data is processed aiming at extracting the most relevant
features of the environment. The built topological map provides the essential information
for the navigation process.

The robot perception is condensed in observations, ot, that represent the information
obtained from the processing of the raw data acquired at each time instant t. For a time
interval, T , the result is a sequence of observations, OT . An observation is a vector where
each component is related with a different feature, vj . For instance, a feature defined as
“Color” might have the values “red”, “green” or “blue”. This characterization using colors
is translated in numerical values, similarly as the colors can be written in RGB format.

The notation used to characterize the observations is the following:

• ot = [ot(v1)ot(v2) . . . ot(vM )]T is a M -dimensional observation vector referred to time
instant t, extracted from the rawdata rt,

• ot(vj) is the value of the attribute vj extracted from the rawdata rt,

93
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• ot(vj) = ∅ states that the observation of the attribute vj , at time instant t, is not
achieved,

• Ot = {ot0 , ot1 , . . . , ot} is an observation sequence from t0 to t.

The different components of the observations reflect that the robot is able to perceive
a diversity of attributes of the environment. These different types of perception have
to be recorded in each state of the map. According to the uncertainty of the sensor
measurements, each state sj is represented by a Gaussian pdf, characterized by a mean
vector µj and a covariance matrix, Rj , of dimension [M ×M ],

sj ∼ N (oi − µj , Rj).

A map is composed by a set of states si and, consequently, is represented by a set of
Gaussian pdfs, each one represented by its mean and covariance matrix, as shown in (5.1),
with N being the number of states,

S = {s1, . . . , sN} ∼ {N (µ1, R1), . . . ,N (µN , RN )}. (5.1)

The Figure 5.1 shows an example of a map, where each state si is symbolically rep-
resented by the plot of the values of its mean vector, µi, whose components express the
different types of features. In this example, each state is characterized by 5 features.
The representation in Figure 5.1 does not provide any information on the state spatial
distribution. The bindings represented by the grey arrowed lines express the probability
transitions between states. In the proposed framework, these transitions result from a
Hidden Markov Model approach described in [118].

Figure 5.1: An example of a topological representation, where each state is characterized
by 5 features
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With this map characterization, the mapping procedure estimates the states, the mean
vectors and the covariance matrices in (5.1) that maximize the probability of all observa-
tions given the environment model, i.e., that maximize the likelihood function p(Ot|S),

Ŝ = arg max
S

p(Ot | S). (5.2)

The p(Ot | S) can be decomposed in a product of individual p(oi | S), based on the
Markov Models, yielding

p(Ot | S) = p(ot0 , ot0+1, . . . ot | S)

= p(ot | S) · p(ot0 , . . . , ot−1 | S)

= p(ot | S) · p(ot−1 | S) · . . . · p(ot0 | S)

=
t∏

i=1

p(oi | S) (5.3)

or, equivalently, its logarithmic representation,

L(S) = log p(Ot | S) =
t∑

i=1

log p(oi | S). (5.4)

Given that S is a set of states, any observation oi extracted from rawdata is a measure-
ment of the state sk with a probability ck, for k = 1, . . . , N . Therefore, the pdf p(oi | S)
in (5.4) can be written as a combination of all the pdfs p(oi | sk), k = 1, . . . , N weighted
by the probability ck, i.e.,

L(S) =
t∑

i=1

log

(
N∑

k=1

ck · p(oi | sk)

)
. (5.5)

The map estimate the set of states, Ŝ, the argument that maximizes the likelihood
function L(S),

Ŝ = arg max
S

L(S). (5.6)

The main issue at this point is to determine the states (defined by Gaussians pdfs)
and the probabilities ck, k = 1, . . . , N , introduced in (5.5).

5.2 Maximization Criteria

The maximization of the likelihood function L(S) in (5.5) is a hard problem to solve. A
way to overcome the associated computational burden is by replacing the function L(S)
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by the expectation of the likelihood given a previous estimation of the model, Sold, i.e.,

F (S) = E
{

L(S) | Sold
}

= E
{

log p(Ot | S) | Sold
}

= E

{
t∑

i=1

log p(oi | S) | Sold

}
= E

{
(log p(o1 | S) + . . . + log p(ot | S)) | Sold

}
(5.7)

this corresponding to the use of the Estimation and Maximization algorithm [93, 111, 113].
Given a previous estimate of the model, Sold, it is assumed that it is possible to

evaluate the probability that the observation oi belongs to the state sj , herein denoted by
wij . Accordingly, log p(oi | S) in (5.4) can be written as log(cj ·p(oi | sj)) with probability
wij . Therefore, the likelihood function (5.7) becomes

F (S) =
N∑

j=1

t∑
i=1

wij log(cj · p(oi | sj))

=
N∑

j=1

t∑
i=1

wij log(cj · N (oi − µj , Rj))

=
N∑

j=1

t∑
i=1

wij

[
log cj − log

(
(2π)

M
2

√
|Rj |

)
− 1

2
(oi − µj)T R−1

j (oi − µj)
]

.

(5.8)

The likelihood function L(S) is replaced by F (S) and the map, or the set of states, S,
is the argument that maximizes F (S),

Ŝ = arg max
S

F (S). (5.9)

This maximization may be accomplished using the Expectation-Maximization Algo-
rithm described in the following section.

5.2.1 Expectation-Maximization (EM) Algorithm

The Expectation-Maximization Algorithm described in [98] is implemented in three steps,
the initialization, the expectation and the maximization. The expectation updates the
values of wij given a previous estimation of the map, Sold. The maximization determines
a new map based on the updated wij .
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Expectation Step

The probability wij in (5.8) is evaluated using the values of the previous map estimation,
Sold,

wij = η · cold
j · N (oi − µold

j , Rold
j ), (5.10)

where η is a normalization factor.
This corresponds to the Expectation step of EM algorithm, as described in [98].

Maximization Step

The next step of the EM algorithm is the maximization of (5.8). The selected approach
for the maximization is based on the Lagrangean of the likelihood function F (S),

Q(S) = F (S) + λ(
N∑

j=1

cj − 1),

where λ, the Lagrange Multiplier, is introduced to estimate the ci.
The equations:

∂

∂µj
Q = 0,

∂

∂Rj
Q = 0,

∂

∂cj
Q = 0

provide the values for µj , Rj and cj parameters leading to

µj =
1∑t

i=1 wij

t∑
i=1

wijoi, (5.11)

Rj =
1∑t

i=1 wij

t∑
i=1

wij(oi − µj)(oi − µj)T , (5.12)

cj =
1
λ

t∑
i=1

wij . (5.13)

The constraint
∑N

j=1 cj = 1 (total probability for all possible states of the model) leads
to

N∑
j=1

(
1
λ

t∑
i=1

wij

)
= 1,

which corresponds to λ = t, a normalization in time and, consequently, (5.13) becomes

cj =
1
t

t∑
i=1

wij .

After the maximization process in one step, the algorithm returns to the expectation
step with the values of (5.11) - (5.13). This procedure repeats until all the wij parameters
have stabilized.
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Initialization and Stopping Criteria

The EM algorithm is initialized with

cj =
1
N

, µj , Rj = random ∀j = 1, . . . , N

that are used in the first expectation step. The parameters µ and R are generated by a
uniform pdf, assuming values in an interval bounded by the physical constraints of the
sensors.

The EM algorithm, as an iterative procedure, also requires a stopping criteria. This
algorithm belongs to the class of unsupervised learning algorithms and, consequently,
the only variable that expresses the representation accuracy is the parameter wij . As
mentioned above, wij is the probability that the observation oi belongs to the state sj

and, according to the maximization step of EM, wij stabilizes after some iterations. The
parameter wij is considered stabilized when the difference between a couple of successive
iterations is less or equal to a given threshold, for all the observations oi. It is important
to retain that the iterations of EM occur between successive observations, as illustrated
in Figure 5.2.

o
t-1

o
t

o
t+1

t-1 t t+1
Map update

k=1, 2, 3, 4, ...

Map update

k=1, 2, 3, 4, ...

time

Figure 5.2: Expectation-Maximization iterations

Moreover, to evaluate the stabilization of wij , it is necessary to record the value of wij

in each iteration k, wij(k), as depicted in Figure 5.2. The differences between a sequence
of L iterations is evaluated for a single state sj , as:

δj =
t∑

i=1

L∑
l=1

|wij(k)− wij(k − l)|. (5.14)

To evaluate the overall stabilization of the algorithm it is necessary to define the conver-
gence for all the states,

δ =
N∑

j=1

δj . (5.15)

When δ in (5.15) is lower than a given threshold ∆δ, it is considered that the EM algorithm
has stabilized. The value of ∆δ is defined according the oscillations accepted during the
stabilization of the algorithm, i.e., when an observation becomes part of a different state.
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After stabilization, it is necessary to analyze the quality of the representation obtained
by the algorithm. A good representation, sj , for the observation oi, corresponds to a
high value of wij . Moreover, a good representation for all the observations oi, i = 1, . . . , t,
reducing the number of outliers, requires high values wij for all the states sj . However, a
good representation may not occur, this resulting from the existence of spurious states or
even from a small number of states for the representation.

5.2.2 Dynamic EM

According to the previous subsection the initial number of states, N , which is constant
during the EM algorithm, does not necessarily guarantees a good representation of the
environment. Even if a good representation is achieved at a given time instant, a possible
update of the number of states might be required as the robot is always acquiring new
measurements. Consequently, it is strictly necessary to re-evaluate the number of states
after the stabilization of the EM algorithm. The loop procedure for this re-evaluation is
represented in Figure 5.3.

EM # States
evaluator

Figure 5.3: Evaluation of the number of states

The evaluation of the number of states is explained in the sequel and represented in
Figure 5.4. Starting with an initial estimate of the number of states, the EM algorithm is
applied iteratively. As represented in Figure 5.4, when δ < ∆δ the EM algorithm converges
to an environment representation. The next step assesses the quality of each state to find
possible superfluous states or the requirements of each states. To implement this analysis,
it is necessary to evaluate the amount of observations represented by each state, sj . A
natural way to formalize this analysis is consider the entropy of state sj , Hj , as referred
in [74],

Hj (wij) =
t∑

i=1

wij log(wij). (5.16)

The parameter Hj quantifies the accuracy of the representation for state sj . For high
values of the entropy (the entropy, H, assumes negative values) the state represent several
observations, while for low values of H some observations are represented by more than
one state. If Hj is less or equal than a given threshold, Hmin, the j-th state is removed
and the number of states is decreased by one. If Hj > Hmin for all j = 1, . . . , N , the
set of observations requires a new state to improve the representation. Accordingly, the
number of states is increased by one and the new state is initialized by a mean vector µ
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and a covariance matrix R as described in Section 5.2.3. The EM algorithm runs again
and when the stabilization is reached for this new number of states, a new evaluation
takes place, along the steps in Figure 5.4, to check if the new state improved (or not) the
representation.

EM

N=N+1

δ<∆ δ  ?

∃H
j
<H

min  ?

yes

no

no

yes

N=N-1
 (the state      is removed)sj

Figure 5.4: Evaluation of the number of states

Low values for Hmin lead to a large number of states, that could yield states with
similar parameters. Additionally, the parameter ∆δ defines the level of oscillations of the
algorithm state estimates for a constant value of i.

As represented in Figure 5.4, the algorithm is always trying to adjust the number
of states to update the model. Therefore it is prepared for changes in the environment,
adding new states and/or removing useless states. Nevertheless, without any changes in
the environment, the algorithm converges and the number of states oscillates around a
particular value. Whenever these oscillations are above a threshold during a given time
interval the algorithm stops.

5.2.3 Initializations in the Dynamic EM

In the previous subsection, when the number of states increases, the new state has to be
initialized, i.e., the values of the mean vector and the covariance matrix of the associated
Gaussian pdf have to be established. According to the amount of the observations ac-
quired since the time instant t0 and the iterative nature of the EM algorithm, it is strictly
necessary to optimize the initialization procedure to reduce time consumption of the con-
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vergence. The initialization step establishes the values µ and R for the new state. There
are two possible ways to accomplish this:

• Random combinations of the current states: when more than one state is
identified, it is possible to generate the mean of the new state as a combination of
the means of two or more of the current states. The selected states ssel1 , ssel2 , . . . ,

sselNsel
(Nsel = 2, 3, . . . N − 1) are randomly selected with uniform distribution and

the initialization follows,

µN+1 =
1

Nsel

Nsel∑
j=1

µselj , RN+1 =
1

Nsel

Nsel∑
j=1

Rselj (5.17)

• Random values: the mean value of the new state is randomly generated with
different types of probability density functions (the covariance matrix is generated
in the same way as explained on the initialization of the EM):

– Uniform: each observation is represented by a vector of features, where each
component (representing a different type of feature) assumes values of an in-
terval (for instance, the feature “free-area” assumes values between 0 and a
maximum range and the initialization generates a value inside this interval
with an uniform pdf).

– With the 1 − P (O | S) with which the initialization generates news states to
cover observations disregarded by the current representation.

The mapping algorithm builds a representation of the environment based on a topo-
logical approach, where each state is represented by a Gaussian. The algorithm is perma-
nently improving the environment representation, updating the Gaussians and the number
of states according to the entropy. The overall algorithm is illustrated in Figure 5.5, where
the observation’s buffer increases along time and the mapping algorithm, with several iter-
ations, updates the number of states and their parameters between successive observations.

5.3 Simulation Results

The mapping algorithm was tested supported on simulated observed features. The feature
selection and feature extraction procedures are covered in Section 5.4 and, consequently,
the observed features have to be simulated to test only the performance of the mapping al-
gorithm. To generate the observations, we created 6 Gaussians pdfs to generate 6 different
sets of observed features, as depicted in Figure 5.6. Each observation is defined as a vector
of two elements, representing a Feature A and a Feature B. The generated observations
are mixed and introduced into the mapping algorithm. It is possible to understand the
correspondence between the observations in Figure 5.7-a) (intentionally colored to simplify
the perception) and the Gaussian pdfs, i.e., the samples generated by Gaussians pdfs of
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EM # States
Evaluator

Topologic Map

t-1                                t                              t+1                          time

o b s e r v a t i o n s

......
EM # States

Evaluator EM # States
Evaluator

Figure 5.5: Brief illustration of the mapping algorithm

the Figure 5.6. However, in the perspective of the algorithm, there is no distinction, as
shown in Figure 5.7-b) where no color distinction was introduced.

It is assumed that each state is represented by a single Gaussian. The mapping al-
gorithm is initialized with 2 states, which means 2 Gaussian pdfs, where the means and
covariance matrices are initialized by random values (uniform distribution).

After few iterations, the mapping algorithm retrieves the best topological representa-
tion with two states. When the convergence is achieved, the number of states is increased
by one, as illustrated in Figure 5.9-a) and the algorithm stabilizes at a new representation,
with three states at this iteration. When new states are created, some of them could not
satisfy the minimum entropy, Hmin and, consequently, they are removed and initialized
with a new state, as illustrated by some peaks (decreasing the number of states, which
requires a re-stabilization between 10-15 iterations) in Figure 5.9-b). This justify the im-
portance of the initialization procedure, which defines the rate of convergence. If a new
state appears in a region (in the referential where the axis are the types of features) well
represented by the current states, it is natural that the new state never reaches a high
level of entropy.

The simulation experiment leads to a topological map composed by 6 states (there are
7 states, but the State 5 is removed given the level of entropy), as shown in Figure 5.8,
whose parameters are described in Table 5.1. The Gaussians are represented with different
colors to illustrate the features covered by each state. The simulation does not contain
metric information and therefore the plots are only along the types of features. Since
the observed features are 2D dimension it is possible to illustrate the topological map.
However, when the dimension is larger, it is only possible to make projection on 2D or 3D
axis, as exemplified in Figure 5.8-b), or by symbolic representations as in Figure 5.10, with
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a) b) c)

d) e) f)

Figure 5.6: The 6 sets of observations generated by the 6 different Gaussians pdf

the Gaussian parameters described in Table 5.1. The Figure 5.10 also includes the lines
that represent the connection or the direction between states. As explained in Chapter 4,
the directions between states are acquired during a learning phase, where the robot’s
orientation is recorded when it changes between two states.

state 1 state 2 state 3 state 4 state 5 state 6

µj
0.9517
3.5260

3.4447
1.7646

2.3192
1.2264

0.5385
3.0846

1.0182
1.0147

2.4205
3.6809

Rj
0.1174 0.0157
0.0157 0.0218

0.5837 0.0962
0.0962 0.8647

0.0455 0.0023
0.0023 0.0531

0.1564 0.0515
0.0515 0.8831

0.0097 0.0141
0.0141 0.3549

0.0062 0.0129
0.0129 0.6779

Table 5.1: The estimated Gaussians

In this experiment, the topological mapping algorithm was tested using a single Gaus-
sian for each state. As described previously, in the topological map the probability that
the observed feature oi belongs to the state sj is expressed by wij . Applying a threshold
criteria, the observed feature oi is assumed to belong to the state sj if wij has the max-
imum value for that state. However, it is possible to describe the same state with more
than one Gaussian. To achieve this goal, we should apply the same map algorithm only
to the observations associated to this state. This can be assumed as a topological map
where each state contains a sub-topological map.

In this simulation experience, it is assumed that no initial map is available at the be-
ginning and, consequently, the mapping algorithm was initialized with two Gaussians. The
algorithm would be initialized with an a priori map if available. In both cases, the acqui-
sition of new features leads to a map improvement through the mapping algorithm, which
could result in adjustments on the current states (tuning of the Gaussians parameters) or
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a) b)

Figure 5.7: All the observations are mixed: a) colored for visualization and b) as introduced
into the mapping algorithm

a) b)

Figure 5.8: Simulation result, generating 6 states (6 Gaussians) with 2 different types of
features, from different point of view a) 3D representation b) top view

even in adding/removing one or more states.
In summary, the procedure to build a topological map is based on a clustering proce-

dure applied on the observed features that classify them as states, modeled by Gaussian
pdfs. But a question arises: how does the mapping algorithm depend on the types of
features? Different scenarios require different type features. This is the topic of the next
section.

5.4 Features

One application of mobile robots is to carry out tasks in unstructured environments often
without or with a reduced a priori knowledge of the scene map. To accomplish this type
of mission, mobile robots have to adapt, recognize, localize and navigate simultaneously,
while moving towards the desired target goal.
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a)

b)

Figure 5.9: Mapping algorithm evolution, a) for each state and b) the number of states of
the topological map

If no environment representation is available, mobile robots have to build it based on
the observations acquired by on-board sensors. Large scenarios, as those in outdoor envi-
ronments, rides to a large amount of information to store, including that required to build
the map, but also the localization and navigation algorithms. Topological representations,
as the ones considered in the thesis, are based on landmarks characterized by features.
Therefore, a feature extraction procedure, reducing the data acquired by the sensors but
retaining the crucial information, is required. Features have to support the topological
navigation of mobile robots in different scenarios but not every type of feature is essential
to represent a particular scenario, this requiring a feature selection criteria.
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State 1

State 2 State 3

State 6 State 5

State 4

Figure 5.10: The symbolic representation of the topological map

In natural scenes, there are several features: corners, distinctive features such as
buildings, streetlamps, placard, vertex and lines junctions, colors, textures, vertical edges
[13, 39, 58, 59, 70, 109]. The key question is how to determine the best set of features in
an outdoor scene, aiming at producing a topological map that supports the navigation of
a mobile robot.

In this section we address the problem of feature extraction and selection to build a
topological map. Given a set of rawdata acquired by the on-board sensors, the thesis
describes how to obtain the features used in the mapping algorithm that supports the
localization and navigation of a mobile robot in outdoor environments [119]. The main
goal of this section is the choice of the best features, according to a statistical criteria,
that fits on the scenario representation. Our approach uses the data acquired by different
types of sensors, namely range sensors, inertial sensors, and a standard camera installed
on top of the mobile robot. The main features are extracted from the rawdata acquired
by the camera, since this sensor acquires more relevant information.

5.4.1 Related Work

To obtain a topological representation from a real environment, it is necessary to perform
a feature extraction procedure from on-board sensor data (e.g., vision camera, laser range
finder). Some works deal with this issue.

Santos-Victor et al. [104], proposed a vision-based navigation which takes into account
special spatial representations and visual geometries. The navigation problem is based on
the decomposition of sub-goals, identified by recognizable landmarks.

Ulrich et al. [115], presented an appearance-based place recognition system for topo-
logical localization. This work focuses on color images to distinguish the places. Hähnel
et al. [52], discusses the problem of creating maps in dynamic environments, using a
technique to identify dynamic objects.

Zhou et al. [130], proposes structural features for content-based image retrieval (CBIR),
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especially edge/structure features extracted from edge maps. They describe a new algo-
rithm to extract edges. Experiments show that the features can catch salient edge/structure
information and improve the retrieval performance.

The Principal Component Analysis (PCA) obtains a feature set and provides a math-
ematical model that quantifies the loss of information contained in the images [56]. It
supplies a linear representation of the original data using the least number of components
with the minimum mean-square error. PCA has been successfully used in several robotic
applications to find linear features from intensity data. It can also be applied on laser
range data [124, 125]. Thrun [110], presents a method to learn what features/landmarks
are best suited for localization, using neural networks. Vlassis et al. [122], proposes a
method for an appearance based modeling of the environment, using linear image features
extracted using PCA.

This section addresses some of the issues described in the reviewed literature, resumed
in [117]. In particular, we take the best characteristics of different types of features (e.g.,
vertical edges, color histograms, PCA) and propose the choice of the best features for
mapping based on a statistical criteria.

5.4.2 Feature Extraction

A feature extraction procedure corresponds to the projection of a high-dimensional data
space onto a low dimensional subspace leading, in most cases, to a loss of information.
Any feature extraction method must satisfy the following properties [122]:

• Robustness to small displacements or small scenario changes,

• Invariant to lighting conditions,

• Robustness to partial occlusion,

• Fast computation,

• Capacity to compress the images as much as possible while retaining pertinent in-
formation.

Different feature types can be used to solve the mobile robot localization problem, in
particular geometrical features (lines, corners, edges, shapes), color, textures and whatever
can be identified as a landmark. Given the huge amount of information acquired by the
sensors as rawdata but also the requirement to support localization it is necessary to choose
the best features to represent a landmark and to carry out a feature selection procedure.

An important goal to support robot navigation is to achieve a good and optimized
representation of features to improve the performance of the matching required in the
mapping procedure, as described in [119].

The notation used for feature extraction and selection within the mapping procedure
is:
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• rt is the rawdata acquired by the sensors at time instant t, considered as a vector of
dimension D,

• ot is a M -dimensional feature vector extracted at time instant t. It results from a
data processing on rt,

• FE(rt) is a nonlinear function to extract features from the rawdata rt,

• oa
t is the type of feature a, extracted from rt at time instant t,

• Ot is the observation sequence up to the time instant t, i.e. {o1, o2, . . . , ot}.

According to the previous notation we herein state, for the sake of clarification, that
whenever we refer observation, ot, we are considering the features extracted from rawdata
rt. The rawdata rt integrates all the sensor information available. The feature vector, ot,
is extracted at each time instant t from the rawdata rt by a nonlinear function FE,

ot = FE(rt),

where
FE : IRD −→ IRM .

Feature extraction has an underlined sensor fusion procedure, since the input variable,
rt, may contain information from different sensors (e.g., intensity and range data). The
extraction function FE reduces the amount of data, retaining only the essential informa-
tion of sensor data. For that reason, FE−1(ot) ⊃ rt, which means that different rawdata
vectors could lead to the same feature. When this happens, it is important to identify
if the features were extracted in the same place to avoid ambiguities, or in places where
the distinction among them is not important. The performance of FE is addressed in
Section 5.4.3, where the best features, o∗, which are time independent, are chosen.

The features can be extracted from the rawdata acquired by any type of sensors,
including range sensors or inertial sensors. However, the most important features are re-
trieved by intensity sensors as a vision camera, given the complexity of the environment
and the limitations of the other sensors namely the range sensors. The following subsec-
tions describe some important algorithms to extract the essential information from images.
The selected algorithms are relevant to test the feature extraction procedure in different
scenarios to build a topological map that supports the localization and navigation.

Edges and Hough-Transform

Most of the relevant features in outdoor environments are the vertical edges, which identify
important structures as buildings or trees. This subsection describes the procedure to
select the most important vertical edges in the image.

As described in [40, 65] the image dependencies due to lighting source and illumi-
nance, mainly in outdoor environments, require a color image normalization procedure.
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This drawback points towards the use of edge-based features to support environment rep-
resentation and robot navigation [71, 83, 122, 130].

To extract edges from an image a specific filter (e.g., Sobel, Prewitt, Roberts, Gaussian,
or other) is applied, where the original image and the identified edges are illustrated in
Figure 5.11. In outdoor environments, where the scenario is unstructured, it is important
to detect the vertical ones. Moreover, the edges present noisy information and therefore
it is necessary to remove or, at least, reduce the superfluous data, applying the Hough
Transform (HT) to the edges [49, 129]. This technique yields an histogram of straight
lines for different directions, as shown in Figure 5.12-a), where the darkness corresponds
to the amount of pixels that belong to a specific line. The Figure 5.12-b), shows the most
relevant edges on the image, corresponding to the points represented in Figure 5.12-a).

A straight line is defined by (ϕ, θ), x cos θ+y sin θ = ϕ, where (x, y) are the coordinates
of an image pixel and (ϕ, θ) the distance and the inclination of each edge in the image.
To select only the vertical or near to vertical edges, the directions are chosen around 0
(between 0 and 5 degrees) and 180 degrees (between 175 and 180 degrees), as exemplified
in Figure 5.13-a). The kedges straight lines with the larger number of pixels (high level
on the histogram) are selected and considered as the edges’ features extracted from the
image. The image in Figure 5.13-b) shows the result. To reduce the dependence of ϕi

from the sensor’s orientation (the image is acquired by a non-omni-directional camera),
rather than considering ϕi to characterize the edge, we consider the distance between two
consecutive straight lines, i.e., di = ϕi+1 − ϕi, yielding

oEdges
t = FE(rt) =

[
d1 d2 · · · dkedges

θ1 θ2 · · · θkedges

]
. (5.18)

a) b)

Figure 5.11: Example of edge detection: a) original image and b) the most important
edges

In [49] it is focused the relevance of the geometric forms of the images (square or
rectangular), which underlines the importance of vertical and/or horizontal edges in the
image.



110 Chapter 5. Map Building

r (degrees)

di
st

an
ce

 (
pi

xe
ls

)

0 45 90 135 180

−200

−150

−100

−50

0

50

100

150

200

r (degrees)

di
st

an
ce

 (
pi

xe
ls

)

0 45 90 135 180

−200

−150

−100

−50

0

50

100

150

200

a) b)

Figure 5.12: Example of straight-lines detection: a) the Hough Transform of all edges and
b) the most important straight-lines edgesr (degrees)
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Figure 5.13: Example of vertical edges detection: a) the Hough Transform of vertical edges
and b) the most important vertical edges

Histogram Parameterizations

Even with the inherent light and geometric bindings, the color is an important source of
information. Applying a normalization procedure, as suggested by [40], or simply, using
the HSV colormap in spite of RGB, color histogram are important features. However, his-
tograms provide large amount of information that could be parameterized as exemplified
in Figure 5.14. We tested the parameterization of Hue and Saturation histograms using
polynomials and a sum of Gaussian pdf functions. A parameterization using a polynomial
function of order n requires n+1 parameters (a0, a1, . . . , an), while a parameterization by
a sum of n Gaussians, N (µ, σ), requires 3n parameters (weights, means and variances).
The parameterization error is evaluated by the square error of the original and the pa-
rameterized histograms. We carried out experimental tests with a large amount of images
acquired in different places of outdoor environments. The corresponding Gaussian param-
eterization errors are lower when the number of parameters are equal or larger than 6, as
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shown in Table 5.2.
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Figure 5.14: Example of histograms parameterization using 9 parameters: a) by a poly-
nomial of order 8 and b) by 3 Gaussians

] of par- Gaussians Polynomials
ameters H color S color H color S color

3 3214 1087 2401 1284
6 2010 830 2200 960
9 1537 534 2035 681
12 714 478 1871 539

Table 5.2: Parameterization error using Gaussian and polynomial functions

According to the presented experimental results, the Gaussian parameterization yields
better histogram representations for the considered outdoor scenarios, when the number
of parameter, kHist, is higher than 3. Consequently, in our work, the features extracted are
the Gaussian parameterization, i.e., the weights ci, means µi and variances σi, represented
by,
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oHist
t = FE(rt) =



 c1 c2 · · · ckHist

µ1 µ2 · · · µkHist

σ2
1 σ2

2 · · · σ2
kHist


Hue c1 c2 · · · ckHist

µ1 µ2 · · · µkHist

σ2
1 σ2

2 · · · σ2
kHist


Sat.


(5.19)

where Hue and Sat. correspond to the Hue and Saturation components. The features
extracted from the Parzen windows [94], return similar results and are computationally
faster, which addresses a future work.

2D Histogram and Image Segmentation

Based on histograms it is possible to identify regions on the image with similar colors.
We performed the bi-directional histogram along Hue-Saturation colors, as illustrated in
Figure 5.15 and selected the k2Dhist most significant colors (Hue, Saturation). For each
significant color, the smallest boundary-box that fits all the pixels with the same color
define a region. The features extracted from each boundary-box are the width and height,
the amount of pixels and the color, i.e.,

o2Dhist
t = FE(rt) = [box1 box2 · · · boxk2Dhist

]

=


width1 width2 · · · widthk2Dhist

height1 height2 · · · heightk2Dhist

pixels1 pixels2 · · · pixelsk2Dhist

color1 color2 · · · colork2Dhist

 . (5.20)

The position of the boundary-box on the image is not recorded, since it is much
dependent on the point of view [59].

PCA and ICA

A common approach to extract the essential information from images is the Principal
Component Analysis (PCA) [56]. A similar technique where the components are orthogo-
nal is the Independent Component Analysis (ICA) [123]. Both techniques extract a base,
B = {B1, B2, . . . , Bkcomp}, from a training set of images, where the features correspond to
the projection of the images in that base. We will refer each Bi as a component of the
base. The number of images that define the base, kcomp, is chosen according to the quality
of reconstruction of each image and must be related with the diversity of the scenario. In
this subsection, the selection of kcomp is disregarded.

Given the size of the images, Wachtler [123] proposes an implementation optimization
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Figure 5.15: Example of regions extraction: a) the bi-directional histogram (Hue and
Saturation Colors) and b) the selected regions

dividing the images into sub-images. This is useful, since the original images present com-
mon areas (e.g., the ground, the sky), as illustrated in Figures 5.16 and 5.19. Therefore,
each sub-image may represent a specific type of feature, i.e., a sub-image representing only
the sky or only the ground or only trees. As a result, the performance of the representation
given a new base of images increases significantly, when compared with the dimensions
of the training set (e.g., 4 times if each image is sub-divided in 4 sub-images). This fact
is shown in Table 5.3 and explained later in this subsection. The Figure 5.18 exemplifies
a PCA-base of a set of images, where each image is subdivided into 16, as illustrated in
Figure 5.19-c).

PCA ICA
] of com- 1 4 16 1 4 16
ponents (no division) (sub-images) (sub-images) (no division) (sub-images) (sub-images)

5 6.6 7.3 6.1 11.5 12.2 8.9
10 1.7 5.7 5.1 2.3 11.0 8.7
15 0 4.4 4.5 0 10.4 8.5
20 0 3.2 4.1 0 8.9 8.3
25 0 2.0 3.8 0 8.0 8.1

Table 5.3: Error of the image reconstruction using PCA and ICA

The projection of the training set into each base B provides different energy distribu-
tion. The PCA results condense the energy into the first components (usually the first
2 retain more than 90%), as exemplified in Figure 5.17, using the first 25 principal com-
ponents of the base evaluated from the training set with the 12×16 images obtained by
sub-dividing in 16 each of the 12 images of Figure 5.16.

The features used for the mapping procedure are the projection of the acquired images,
rt, on the base, B, or equivalently:
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oPCA
t = FE(rt) =

[
< rt, B1 > · · · < rt, Bkcomp >

]
. (5.21)

The features oICA
t are similarly extracted if the basis results from the ICA procedure.

Both techniques, PCA and ICA, can be applied to the images in RGB or HSV format.
However, Hue and Saturation are the most important as explained in Section 5.4.2.

Figure 5.16: A training set of images

The relationship between the basis, the number of components and the number of
sub-images is non linear, as exemplified by the results in Table 5.3. This table presents
the image reconstruction error using PCA and ICA, with 5, 10, 15, 20, 25 components.
The columns correspond to the sub-divisions of the images (1-no division, 4,16-divides the
image into 4 and 16 sub-images respectively, as illustrated in Figure 5.19) with a training
set of 12 images, which is used to reconstruct each test image. For example, using this
base (12 images) with no division, the reconstruction error is low when the number of
components is close to 12. Using the same base with images divided into 4 sub-images
(equivalent to 12 multiplied by 4), the reconstruction error is low when the number of
components is close to 48. The error is an average for all pixels (each pixel changes
between 0 and 255).

When the number of components in the basis increases, the error decreases. For
instance, the reconstruction error is zero when the number of components is larger than 12
since the training set has 12 images. However, the reconstruction using 5 or 10 components
and images divided into 4 sub-images provides an error larger than the one obtained with
images divided into 16 or not divided. For a basis with more than 10 components the
error decreases. This situation occurs because when the original images are divided into
16, the sub-images coincide with the ground, the sky or the buildings.
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Figure 5.17: L2 norms of the basis functions using a) PCA and b) ICA

Figure 5.18: The first 25 principal components of the base shown in Figure 5.16, when
each original image is divided in 16 sub-images

5.4.3 Feature Selection

As soon as features are extracted it is necessary to select the ones that will be used for
mapping, this requiring a selection criteria. The quality of a feature for mapping purposes
has to be analyzed along two different perspectives: time/space and correlation with other
features as illustrated in the following example (see Figure 5.20). Consider that there are
two types of features: “colors” and “geometric forms”, and that the mobile robot navigates
along three distinct places. If all the places are identified by the same color, the feature
“color” is useless, regardless of the “geometric” information. If the two first places are
“red” (the same value for the feature “color”) and the third place is “blue”, the feature
“color” can identify some places, but the ambiguity still remains. In this case, if the
geometric form is the same for the “red” places, but different for the “blue” place, the two
features are redundant, i.e., the correlation between features is too high.

The feature quality explained before is based on a concept of features correlation that

a) b) c)

Figure 5.19: a) The entire image, b) image divided into 4 sub-images and c) divided into
16
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Figure 5.20: Four different situations in a scenario with different combination of features:
a) two different geometric forms b) two rooms are represented by squares and c) geometric
forms and colors and d) mixed

is formalized in the sequel.
Let the set of extracted features be given by

O = {OEdges, OHist, O2Dhist, OPCA, OICA}, (5.22)

where Oa corresponds to the features of type a extracted from n + 1 vectors of rawdata,

Oa = {oa
t0 , o

a
t1 , . . . , o

a
tn} (5.23)

with a ∈ {Edges,Hist, 2Dhist, PCA, ICA}.
Define µoa , µob as

µoi =
1

n + 1

tn∑
t=t0

oi
t, i = a, b,

where a and b are different type of features.
Let M be the Da ×Db matrix,

M =
1

n + 1

tn∑
t=t0

[oa
t − µoa ]

[
ob
t − µob

]T
(5.24)

with Da and Db such that oa
t ∈ IRDa and ob

t ∈ IRDb .
The correlation between two different types of features, oa and ob, with a 6= b, is

evaluated as

corr(oa, ob) ∝
Da∑
i=1

Db∑
j=1

|Mij | , (5.25)

where M corresponds to the matrix defined in (5.24), with generic element Mij given by,



5.5 Mapping Initialization 117

Mij =
1

n + 1

tlc∑
t=t0

[oa
t (i)− µoa(i)]

[
ob
t(j)− µob(j)

]T
. (5.26)

For the map construction, the algorithm uses the lc lowest correlated features as they
convey the highest degree of environment information achieved with the lowest number of
features. The dimension of lc is selected according to the desired accuracy of the mapping.

The feature selection is important to avoid ambiguities between states, as illustrated in
Chapter 6. The number of states is not only defined by the type of features but also by the
length of the feature’s vector. As described previously, the feature representation evolves
several variables. For instance, the histograms can be represented by kHist Gaussian pdfs.
The value of kHist defines not only the histogram parameterization but also the topological
representation. Large values of kHist (or k2Dhist, kEdges, kPCA, kICA for other types of
features) leads to an increase in the number of states. However, the correlation between
features remains unchanged.

In outdoor environments, people walking or moving objects are quite often present.
These dynamic obstacles provide some observations, which results in noise filtered by the
mapping algorithm and avoided in the navigation using the obstacle avoidance behavior.
However, more important are the changes in the scenario, which require new feature
selection. The feature selection procedure must be performed periodically to adjust the
best features. When a specific feature is considered by the feature selection as useless, it
has to be removed from the topological map. Thus, the mapping algorithm adjust the
states according to the available features. If a new type of feature is added, the mapping
algorithm adjust the states with a new element in the features vector.

The experimental results including the extracted features and the feature selection
performance are presented and described in the Chapter 6.

5.5 Mapping Initialization

The contents of this chapter is divided in two main parts: the mapping algorithm (using the
Dynamic EM) and the feature extraction and selection. The Dynamic EM is described
before the discussion of the type of features. As in previous chapters, the topics are
purposely sorted to simplify the presentation. Therefore, this sequence requires some
assumptions. For instance, to explain the localization it was assumed that the map is
already known. The same assumption was taken in the navigation algorithm. In both
situations, the topological map is defined by states and by specific information to link all
the states. This information is not only the orientation to travel between two states si

and sj , θij , but also the transition probabilities, aij . These two different variables have to
be estimated also in the mapping procedure, after knowing the states.

At this point of the thesis presentation, all the main procedures of topological nav-
igation are known, i.e., the localization, the navigation and the mapping. Therefore, it
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is important to understand how the entire process is implemented, in particular how it
starts when the robot is switch on in an experience.

If no map is available, then it is not expected to assume an initial map (the assumption
in the Chapters 3 and 4 was only for presentation purposes). Hence, the localization and
navigation can not be implemented at a topological level. In this situation when there
is no a priori knowledge, known as a cold initialization (technical definition commonly
used in GPS, when a device is switched on without an initial position), it is important to
structure the initialization. As illustrated in Figure 2.3, the first block to be implemented
is the map building. However, the map algorithm requires the identification of the best
features to represent the environment. This identification has to be done during a learning
phase where the robot moves around. A motion random algorithm is implemented in the
robot, since the environment is unknown. For instance, the robot is driven randomly
during a period of time, while a large amount of rawdata is acquired by the sensors and
converted into all possible features. Using a considerable amount of features, it is possible
to evaluate the best type of features to build a topological representation. Using only the
best features for the current scenario, a map is built. After this learning phase, the set of
best features is updated if necessary. To start the localization and topological navigation,
a topological map with a minimum contents is required. The threshold that corresponds
to a map that has enough resolution/definition to start supporting the localization and
the navigation procedures may be defined using the entropy, or defined by a user. This
particular topic is not covered in the thesis.

With a minimum topological map but without the linkage information, i.e., the ori-
entation to travel between states, θij , and the transition probabilities, aij , only the local-
ization can be addressed. Since the localization requires the knowledge of the parameters
aij , they are initially considered as having a uniform distribution. During the localization
the parameters aij and the orientations θij are updated according to the methodologies
described in Chapter 4. The topological map can be updated by the mapping algorithm
simultaneously with the localization algorithm. The orientation between two states, θij ,
is very important, to follow with the navigation procedure. During the map update pro-
cedure, the feature selection can also be accomplished. Even, if using only some types of
features, all the rawdata acquired by the different sensors installed on the robot are saved
to periodically evaluate the best features.

If, at least, a minimum map is already available, covering part of the environment (it
is assumed that the best features and the linkage information are known), the initializa-
tion starts with some information. At this stage, all the three main blocks, localization,
navigation and mapping, can be addressed simultaneously at different rates, as illustrated
in Figure 2.3.

In summary, each time that the robot is switched on, it starts from zero (without a
map) or with a previous map, which will be updated again and again during robot motion.
The topological map is refined along several trajectories followed by the robot in the
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environment. Simultaneously with the map building, the localization and the navigation
can be addressed with different priorities. If the robot has traveled several trajectories,
covering most of the possible positions in the environment (including different points of
view of the scenario), it is suitable to reduce the number of times that the mapping
algorithm is accomplished. The map building algorithm is a process with the highest time
consumption and, with a good representation, the localization and the navigation become
the main goals to accomplish the mission.
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Chapter 6

Experimental Results

The thesis addresses the problem of mobile robot navigation in outdoor environments
based on a topological approach, dealing with three main issues: environment represen-
tation, localization and navigation. Along the thesis, simulation results were presented,
mainly for illustration and for understanding the issues involved in the problem, in partic-
ular for the localization in Section 3.4 and for the navigation in Section 4.4. In both cases,
it was assumed that the map was already known. In Section 5.3, and using simulated
features, the mapping algorithm results and its evolution is illustrated. The simulated
experiments were carried out individually, to illustrate each problem at a time.

This chapter presents a set of experiments in real environments, combining simulta-
neously the problems of mapping, localization and navigation addressed along the thesis.
The experimental results were obtained using the mobile robot ATRV-Jr displayed in Fig-
ure B.1 and described with more detail in Appendix B. The world robot’s perception
is grounded on features extracted from the sensing rawdata, acquired by different types
of sensors (laser scanner, a ring of 17 ultrasound sensors, GPS, gyroscope, pan&tilt vi-
sion camera). The mapping algorithm retrieves the topological map based on the world
robot’s perception, one of the most important tasks along the thesis. Given the high level
of abstraction using the topological representation, the map building algorithm is strictly
dependent on the type of features, as previously referred in Section 5.4. The previous
chapters presented simulation results. Therefore, the experimental results presented in
this chapter are carried with real data, from witch the features are extracted to build a
topological map.

The experiments presented in this chapter were carried out indoor and outdoor en-
vironments. At the indoor environments the experiments deal with features extracted
from range sensors. The mapping algorithm was tested based on these features and,
consequently, the localization and navigation algorithms were tested using the resulted
map. The influence on the topological representation of having trajectories followed in
reverse direction, i.e., similar trajectories yielding different observations, is discussed. At
the outdoor environments, obtained in different scenarios (IST campus of Alameda, Lis-
bon and Palácio de Cristal, Oporto) mapping was supported in image information. It is

121
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also depicted the potentiality of the information extracted from a gyroscope to retrieve a
topological representation of the environment.

6.1 Indoor Results

This section presents a topological map of a traditional indoor environment, which is of
office type. The same environment could be represented by different topological maps,
if different features were selected to represent it. Some of these maps, efficient for robot
navigation, are also understandable for humans. Hence, the type of features used in the
first experimental results are the same as humans use to distinguish the same scenario.

To avoid complex features at this stage, the experiments are conducted using only
range sensors: the laser range scanner and the ring of ultrasound sensors installed on the
mobile robot. The type of features were based on free-area measured by the laser and
the ultrasound sensors. The free-area could be characterized by the mean, the variance
or other combinations of the free-area along different directions measured by the sensors.
As an example, the laser range scanner installed at the ATRV-Jr (Sick LMS 200) acquire
the distances to an object between 0o and 180o with 0.5o of increment, while the ring of
ultrasound sensors measure free-space along 17 different directions.

The vector of chosen features is described in (6.1), where the first two elements corre-
spond to the sample mean of the values measured by the laser and ultrasound sensors and
the third component is the variance of the measurements acquired in a 180o laser scan. In
(6.1) the parameters N and M , corresponding to the samples acquired by the laser and
to the number of ultrasound sensors, take the values N = 181 and M = 17.

ot ≡ ft(rt) =

 E[freearea laser]
E[freearea sonars]
V ar[freearea laser]

 =


1
N

∑N
i=1 rlaser

t (i)
1
M

∑M
i=1 rsonar

t (i)
1
N

∑N
j=1(r

laser
t (i)− 1

N

∑N
i=1 rlaser

t (i))2


(6.1)

The selected indoor scenario to test the mapping algorithm, is a traditional office type
indoor environment, with a corridor and rooms. The robot moved from a large room (a
laboratory) to a corridor. The laboratory is a common place containing chairs, tables and
people walking and is larger than the corridor, as illustrated in Figure 6.1.

The mapping algorithm, supported on the Dynamic EM described in Section 5.2.2, was
tested using the observed features in (6.1) acquired during the travel from the middle of the
room to the corridor. The selected features do not contain metric information of the robot’s
position. The range rawdata recorded during the trajectory is displayed in Figure 6.2-a)
using the odometry only for illustration and to simplify the data visualization. With
no map at the beginning, the navigation algorithm was applied using only the obstacle
behavior, following a free direction.
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Figure 6.1: An indoor scenario, defined by a corridor and a large room

a) b)

Figure 6.2: a) the raw range laser and ultrasound sensor measurements acquired in the
environment and b) the states that compose the topological map

Setting low accuracy to the mapping algorithm, the result is a topological map with
three states, corresponding to the room and the corridor, as expected, and an additional
state that corresponds to the transition between them, defined as an entrance. Figure 6.2-
b) represents the measurements of the laser and ultrasound sensors with three different
colors, corresponding to each state. The ellipses plotted in Figure 6.2-b) are only for
understanding the different states that compose the topological map and have no statistical
meaning. The odometry was only used to record the location where each measurement
was acquired and to display the places corresponding to each state. A place corresponds
to a physical location where the robot acquires measurements.

The states were distinguished based on the differences detected on the free-area, which
is represented by Gaussian pdfs, i.e., by its mean vectors and covariance matrices, as
shown in Table 6.1.

The state corresponding to the room, and herein denoted as lab, results with a large
free-area measured by the laser (0.7472) and ultrasound sensors (0.9353) and with high
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variance (0.9590), which corresponds to the noise created by thinner objects as tables,
chairs or even people. The corridor has a free-area not so large, but with a low variance
(0.7968), when compared with the other states. The entrance, is still defined by high
variance (0.9713), but the values of the free-area are different from the laser (0.6732)
to the ultrasound sensors (0.2880). This is explained by the position of the ultrasound
sensors. The laser scanner measures only the free-area in front of the robot (180o in
front), while the ring of 17 ultrasound sensors measures the free-area values around the
robot covering 360o around the robot.

While free-area translates the amount of free space measured by range sensors, the
variance of free-area gives an idea of the noise. However, the ultrasound sensors may
retrieve wrong measurements give the electronics limitations. The ultrasound sensors
return acceptable values when the target object is in a small incidence angle. Even under
this condition, the measurements may be wrong given the type of the object. Therefore,
places as the entrance (with different walls) may be identified with large variance, since
two near ultrasound sensors may retrieve completely different measurements.

Another important issue of ultrasound sensors lies on their position, since they cover
360o while the laser only covers 180o. The used features are the mean of the free-area,
which are dependent to the point of view. When the robot is in the entrance, the free-area
around the robot is even smaller then in the corridor.

corridor entrance lab
µ R µ R µ R

0.4228 0.0029 0.0072 0.0012 0.6732 0.0158 0.0080 0.0022 0.7472 0.0224 0.0003 0.0062
0.3362 0.0072 0.0188 0.0036 0.2880 0.0080 0.0065 0.0006 0.9353 0.0003 0.0005 0.0000
0.7968 0.0012 0.0036 0.0032 0.9713 0.0022 0.0006 0.0011 0.9590 0.0062 0.0000 0.0027

Table 6.1: The Gaussian parameters of the topological map presented in Figure 6.1

At this point, topological maps based on multi-dimensional Gaussians (or, on a sum of
multi-dimensional Gaussians) can only be represented by plots if the vector’s size is less or
equal to 3, as exemplified in Figure 6.3 (mean and variance of free-area measured by laser
and mean of free-area measured by ultrasound sensors). The different states, corridor,
entrance and laboratory are painted using different colormap, “HSV”, “Pink” and “Hot”,
respectively.

When the feature vector’s size is greater than 3, the states of topological maps can be
represented by tables containing the means and the covariance matrices. In the present
case, since only three types of features are used, it is possible to plot the topological map
as a set of ellipsoids, where the referential axis correspond to the three type of features,
as illustrated in Figure 6.4. The ellipsoid is a symbolic representation of the probability
that an observation belongs to a particular state. Each ellipsoid, centered in the mean,
is plotted with a value of probability 95%, illustrating the principal combinations of the
features. It is important to stress that some states present some intersections (the example
in Figure 6.4-b), between state 2, the entrance and state 3, the lab), i.e., using only 2 types
of features it is quiet difficult to distinguish all the states.



6.1 Indoor Results 125

Figure 6.3: The states of the topological map are represented in a 3D space, where the
axis correspond to the free-area measured by the laser and ultrasound sensors and the
variance

It is also possible to plot the topological map along only two type of features, projecting
along the axis of the third feature.

a) b) c)

Figure 6.4: The projection of the topological map into the axis, combining 2 different type
of features

In Figure 6.4-a), it is visible the importance of Feature 2, the free-area measured
by the ultrasound sensors, to identify the lab and the entrance. The corridor is not
understandable with only the Features 1 and 2, i.e., the free-area is not enough to identify
that state. In Figure 6.4-b), it is difficult to distinguish all the states, with the ambiguity
being large between the lab and the free-area entrance if using only the free-area and the
free-area variance measured by the laser. The corridor is well identified by the Features 2
and 3, as shown in Figure 6.4-c).

The topological map presented in Figure 6.2-b), resulted from an experience carried in
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an indoor environment. It does not contain metric information neither features extracted
from a vision camera. The metric information is only used for plotting the rawdata to
illustrate the scenario. During the experience, the images were grabbed simultaneously
with the laser and ultrasound sensors data. The camera is mounted on the top of the robot
pointing in the front direction (see Figure B.1). After the topological map construction,
the images were classified according to each state (obtained exclusively based on range
data). This classification is shown in Figure 6.5.

The image acquired at time instant t is put in correspondence with the state where
the information extracted from the range-sensors belongs. The images are displayed, for
increasing values of t, along rows from left to right and from top to bottom. By inspecting
Figure 6.5, it is reasonable to accept that the images are properly clustered, except two
images in State 1 which, according to human reasoning, should belong to State 1. This
occurs when the robot acquires some free-area that corresponds to another state.

a) b) c)

Figure 6.5: The images associated to the a) State 1 (corresponding to the corridor), b)
State 2 (corresponding to the entrance) and c) State 3 (corresponding to the lab)

The images were clustered according to each state, based only on range sensor data
and no vision information. The resulting clustered is acceptable and understandable by a
human to classify and distinguish the three states. By inspection, the third state, the lab,
may be also decomposed in two possible new states. For instance, one state when the robot
is observing other robots (the first half of images in Figure 6.5-a)) and another state when
it observes the door (the second half). However, for the topological map to exhibit this
more refined environment characterization, more information than the rawdata extracted
from solely the range-sensors should have been available, as discussed in Section 5.4.

At this point, it is important to evaluate how the localization algorithm deals with the
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Figure 6.6: Localization results based on the topological map shown in Figure 6.2

retrieved topological map. For this indoor environment, the first experiment was obtained
just activating the navigation procedure, to follow the trajectory lab→entrance→corridor
(State 3→State 2→State 1). The resulted trajectory is similar to the one the robot followed
to compute the topological map. As shown in Figure 6.6, the localization estimates the
robot position in terms of states, dealing with the uncertainty. The localization results
present some uncertainty at the beginning between the lab and the entrance. This situation
occurs again in the transition between the entrance and the corridor, mainly caused by the
noise on the sonars. Now a question arises: what happens if the robot follows the same
trajectory but in opposite direction and using the previously obtained topological map?

It is imposed a trajectory, illustrated in Figure 6.7, where the robot had to follow the
sequence lab→entrance→corridor→entrance→lab (State 3→State 2→ State 1→State 2→
→State 3). Note that the first part of this trajectory (defined in terms of states), coincides
with the previous one. The localization results are similar to the previous experiment,
during the first 3 states, as shown in Figure 6.8, but when the robot comes back to the lab
(the robot has to reverse direction at iteration 190) the uncertainty in the localization is
large between the lab and the entrance. This is caused by the laser, which covers only 180o

in front. The robot may be placed at the same position but with a different orientation
retrieving different rawdata and consequently, different features. In this case, when the
robot rotates 180o it automatically observes the State 3, the lab.

6.2 Outdoor Results

The next experience was targeted to test the topological representation of outdoor sce-
narios using features extracted from intensity color images, acquired by the image camera
mounted on the mobile robot. The topological approach is oriented towards outdoors, large
and unstructured environments. The proposed scenario is the Campus of IST (Instituto
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Figure 6.7: The trajectory followed by the robot
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Figure 6.8: Localization results based on the topological map shown in Figure 6.2, with a
different trajectory

Superior Técnico) at Lisbon - Alameda illustrated in Figure 6.9. The robot acquired the
vision rawdata, while it was navigating around the Central Building and simultaneously
computing the topological map.

Since no map was available at the beginning, the navigation algorithm during the
initial mapping acquisition phase was proposed to guide the robot to follow some via-
points (defined by latitude and longitude coordinates), using the behaviors defined in
Section 4.3 and an orientation estimation obtained through a procedure described in Ap-
pendix B.2. The algorithm to estimate the current robot’s metric location, is based on
Extended Kalman Filter, knowing the kinematics, the sensors’ model and the respective
measurements (GPS and compass). The main goal of this behavior guidance procedure is
to have no tele-operation and to let the robot moving with no human intervention, to test
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mainly the mapping algorithm.

Figure 6.9: Outdoor scenario at the IST Lisbon campus (Alameda)

The robot moved along a distance of approximately 400 meters and acquired vision
images during 1586 iterations. The images were converted in features using the procedures
described in Section 5.4.2. The trajectory is illustrated in Figure 6.10-a). It is important
to underline that the features reduce the size allocated to record all the rawdata but retain
the essential information. As illustrated in Table 6.2 that represents the compression from
rawdata to features, the edges and histograms (with colors or 2D), reduce significantly
the space required from an hard-disk, while PCA and ICA, still using images (even with
reduced dimensions), retain more information.

Feature extraction yields data compression as represented in Table 6.2 for a set of 1586
images (JPG) for each different experiment. The storage space required for the images
is approximately 20 Mbytes while only 1 Mbytes are required for all features mentioned
above. The edges, histograms and 2Dhist yield higher compression than PCA or ICA,
since the two last features require a base of images.

edges histograms 2Dhist PCA ICA
98.83% 98.94% 99.11% 85.80% 85.80%

Table 6.2: Compression from observations to features

At this point, it is necessary to evaluate the resulted topological map, the quality of
the information retained by the feature extraction procedure and the selection of the best
features to represent the scenario. In outdoor environments the best features are extracted
from images, given the other sensors limitations in outdoor environments, as the range
sensors. However, the data acquired by the other sensors installed on the robot (range
sensors, GPS or inertial sensors) is also stored. The data acquired by the range sensors,
mainly from the laser range scanner (since ultrasound sensors have a small range for large
outdoor environments), is presented in Figure 6.10-b), using pose estimation by GPS and
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Kalman Filtering, described in Appendix B.3, only to illustrate the robot’s position in the
scenario. The Central Building of IST is located in the center of the image in Figure 6.10-
b), surrounded by trees, cars, people walking and other buildings. We point out that in
this experience we only used features extracted from the vision camera. However, it would
have been possible to extract features from laser range data or even from inertial sensors.
The resulted topological map using histograms (of colors or hist2D) and PCA is presented
in Figure 6.10-c). These features were selected according to the human perception: a
scenario commonly identified by colors and specific images (as buildings, trees, grass). At
this point, the experience could be accomplished with other type of features, just to justify
that is necessary a feature selection procedure.

a) b) c)

Figure 6.10: The resulted topological map: a) the followed trajectory, b) the laser mea-
surements acquired in the environment and c) the 6 states that compose the topological
map using histograms an PCA

The states 1, 2 and 5 are well defined, while states 3 and 4 present a high intersection
in the metric space, i.e., there is an uncertainty between two states that can represent the
same physical area. The quality of the information included on features is not enough to
create a state between states 3 and 4, leading to an ambiguity between these two states.
As referred in Section 5.4.3, increasing the number of features does not necessarily imply
an information improvement to represent what is observed. Consequently, it is necessary
to evaluate the quality of features and to choose the low correlated.

As described in Section 5.4.3, one possible way to find the best features is to measure
the correlation between features and to choose the lowest correlated ones. To access the
performance of this procedure, experiments were carried out in three different scenarios:

• Scenario 1 - a combination of buildings, trees, cars, walking people and diversity of
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light conditions,

• Scenario 2 - a garden surrounded by trees and grass, and

• Scenario 3 - a parking place (a relatively structured area) mainly with cars and
buildings.

The different scenarios are illustrated in Figure 6.11. All these scenarios have similar
spots, like trees, cars, buildings and people walking. These spots are placed differently in
each scenario, which leads to different correlation between the features.

a) b) c)

Figure 6.11: A preview of the three scenarios a) Scenario 1 - the IST central area (around
the Central Building), b) Scenario 2 - a garden and c) Scenario 3 - a parking place (scenario
3)

The features used for the correlation analysis (described in Section 5.4) are vertical
edges, the Hue/Saturation-colors histograms parameterization (using 3 Gaussians pdf), 2D
histograms (the first 4 boundary-boxes), the PCA (images subdivided in 14 sub-images
and building a base with 15 components) and ICA.

As expected, the correlation differs between experiences and features, as shown in
Table 6.3. The edges have low correlation with other features in Scenarios 1 and 3, since
the buildings contain mainly vertical edges (independent of the colors), while in Scenario 2,
the trees and the waved terrain provides rough edges. The correlation between PCA and
ICA is high, mainly in Scenario 1 and Scenario 3, since the basis of PCA and the basis
of ICA present similar images. In Scenario 2, the correlation between PCA and ICA is
not so high given the irregularity of the ground and given the fact that the sky is never
observed. These facts are some of the most important principal components of the basis
in Scenario 1 and Scenario 3. In Scenario 2, the features 2Dhist and histograms are still
correlated, which could be caused by the correlation between PCA and ICA. This fact
occurs since the boxes of similar colors coincides with some image components. According
to these results, histograms and PCA or edges and ICA are the less correlated features
in Scenario 2 or Scenario 3. Histograms and ICA is also a good combination for the last
scenario.

From the results presented in Table 6.3, the edges and ICA, histograms and ICA or
edges and histograms are the lowest correlated features to build a map in Scenario 1. The
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Scenario 1 Scenario 2 Scenario 3
edges & histograms 0.049 0.513 0.265

edges & 2Dhist 0.194 0.442 0.226
edges & PCA 0.189 0.474 0.409
edges & ICA 0.013 0.288 0.074

histograms & 2Dhist 0.138 0.381 0.569
histograms & PCA 0.237 0.236 0.110
histograms & ICA 0.033 0.298 0.108

2Dhist & PCA 0.213 0.472 0.296
2Dhist & ICA 0.058 0.315 0.093
PCA & ICA 0.832 0.452 0.861

Table 6.3: Features correlation in the three different scenarios

histograms and ICA or histograms and PCA, but not the three simultaneously (since PCA
and ICA are high correlated) should be used to build a map in Scenario 2.

Based on the results obtained from the feature selection, the histograms and edges
were adopted as one of the best features combination for Scenario 1. As suggested in
Chapter 4, one of the procedures to estimate the orientation between two states is given
by the states, when the orientation is also a property. So, the orientation was also included
on the features: histograms, edges and orientation.

a) b)

Figure 6.12: The Topological map compiled by the algorithm using the selected features
(histograms and edges): a) the Laser and ultrasound sensors measurements acquired in
the environment and b) the states identified by ellipses
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The same rawdata, acquired in the previous experience around the central building of
IST campus, was used to extract the selected features (histograms and edges). The map-
ping algorithm computed a new topological map, as illustrated in Figure 6.12, containing
six states. The ambiguity of the previous experiment (using the features histograms and
PCA) was removed, since the topological map identified a new state (State 5) according to
the selected features (histograms and edges). The states resulted from both experiments
are not exactly related, i.e. the State 1 of the first experiment is not related with the State
1 of the second experiment with different types of features. However, there is a slighter
relation between some states. For instance, the State 1 in Figure 6.10-c) and the State 2
in Figure 6.12 are not the same, but these states result from the observations acquired in
similar places.

The topological map improvement is illustrated in Figure 6.13 in 9 different places along
the trajectory. The interval between two successive images is around 170 acquisitions. In
the first image, there are still poor information for a topological representation, resulting
on two states. As soon as more information is acquired, the mapping algorithm updates
the representation, as illustrated in images of Figure 6.13. The first state includes the
two old states and a new one is created. After the second image, it is visible that the
state represented by the blue color is completely defined. The following image shows that
a third state is imminent. After 850 acquisitions (two more images in Figure 6.13), the
topological map has 4 different states. In the 6th and 7th image, an uncertainty between
the two last states (illustrated by the cyan and yellow colors) are visible. Additional 170
acquisitions are required to clarify the existence of two other states, removing the previous
ambiguity. The last image corresponds to the topological map after 1500 acquisitions, also
shown in Figure 6.12.

The Figure 6.14 displays vision images representing each state of the topological map.
The first three states are mainly defined by vertical edges (these edges are defined by
buildings). The last three states, also have vertical edges, but are mainly characterized
by the color segmentation. It is notable, the difference between State 5 and its neighbor
states (4 and 6), by a higher temperature color, which explains how the histogram colors
remove the ambiguity in Figure 6.10.

Using the topological map constructed from the last experience represented in Fig-
ure 6.12, the localization algorithm described in Chapter 3 was tested. It is assumed that
the map remains the same and that there is no significant changes requiring a map update.
To localize the robot in the topological map it is also necessary to acquire and extract the
same type of features used in the mapping algorithm. The robot followed a similar path
around the central building while acquiring the rawdata and extracting the features.
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Figure 6.13: The topological map improvement illustrated in 9 different places along the
trajectory, with an interval of 170 acquisitions
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State 1 State 2 State 3

State 4 State 5 State 6

Figure 6.14: Each state of the topological map is illustrated by a randomly selected image

The experimental results, following the principles explained in Section 3.4, are pre-
sented in Figure 6.15, with the probabilities of the robot to be localized in each state,
given the observed features along time. The localization results present some uncertainty
between states 2 and 3 in the beginning of the trajectory, quickly solved after few iter-
ations remaining in State 2 during more than 200 iterations. The following State is 3
and there is a period of uncertainty between states 3 and 4, lately solved to the last one.
This is also verified in Figure 6.15, when the mapping algorithm shows a small oscillation
between states 3 and 4, visible by the blue and red colors. This situation reflects not only
the feature selection issue, but also the consequence of moving objects (for instance, cars
and people walking). The presence of obstacles forces the robot to change its orientation,
observing the features of State 3.

The localization algorithm results present less uncertainty in states 5, 6 and 1. The
peaks in the localization probabilities occur when the robot is deviated by the navigation
behavior to avoid a detected obstacle. An example occurs close to the iteration 800 between
states 5 and 6, as shown in Figure 6.15. Therefore, the robot changes its orientation,
observing some features of the previous and/or the next state. When this occurs, the
localization updates the robot position in the topological map and the navigation also
updates a new sequence of states and commands. The target goal remains the same,
so the navigation algorithm returns a new sequence ending in the same goal state. The
difference lies on the first states of the sequence, since the robot had been repulsed by
temporary obstacles.

Along the path and based on the localization results on the topological map, it is also
possible to estimate the transition probability between states used in the Markov Model,
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Figure 6.15: The localization evolution on the topological map, i.e., the probability of the
robot be placed in each state

as described in Subsection 3.2. The results of the transition estimated probabilities are
shown in Table 6.4. This is a rough estimation, given the few number of tests. For a better
estimation it is necessary several experiments in the same scenario. The robot has a high
probability to remain in the current state, for every state of the topological map. If the
robot moves to another state, it is more probable to jump to the next or to the previous
state. However in State 1 it is also probable to jump to the State 3, or from the State 6
to the State 3, given their proximity in the features space, i.e., the states present similar
Gaussians. The noise present in the State 3 is similar to the last experience, caused by
the moving obstacles.

aij 1 2 3 4 5 6
1 0.9906 0.0031 0.0032 0 0 0.0031
2 0.0042 0.9541 0.0417 0 0 0
3 0.0028 0.0249 0.9282 0.0276 0.0055 0.0110
4 0 0 0.0397 0.9495 0.0072 0.0036
5 0 0 0.0056 0.0167 0.9556 0.0221
6 0.0057 0 0.0142 0.0047 0.0189 0.9575

Table 6.4: Transition estimated probabilities between states

It is also possible to estimate the orientation between states, θij , as explained in Sec-
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tion 4.2. The estimated values are shown in Table 6.5. The predominance of signal minus
results from the selected orientations computed by the navigation behaviors, given the
obstacles and the target orientations being clockwise. For instance, when the robot is
localized in the state si and the next goal is the state sj , its current orientation must be
increased (or decrease, according to the signal) by θij . The robot should rotate clockwise
for negative values of θij . There are two situations, where the directions are not correct,
from state 5 to state 3 and from the state 4 to the state 3, also a consequence of the same
issue explained above. However, the orientations are a good approximation when looking
to the topological map illustrated in Figure 6.12-b).

θij 1 2 3 4 5 6
1 -37o -45 - - 50o

2 -120o -20o - - -
3 -129o -78o -64o -86o -88o

4 - - -9o -24o -28
5 - - -15o -103o -5o

6 -105o - -40o 170o 150o

Table 6.5: The orientation angles between states

Since it is possible to determine the orientation as a feature, it is important to test if it
is possible to compute a topological map using only orientation information returned by a
gyroscope. The first experiment was obtained at the garden of Palácio de Cristal in Porto,
where the robot followed a predefined trajectory (no navigation at this level), climbing a
ramp (near 100 meters at a positive inclination) and after rotating 150o and driving along
a horizontal surface during 40 meters. The information recorded by the gyroscope: the
angles Roll, Pitch and Yaw, as illustrated in Figure 6.16, define the vector of features.
The information acquired during 1000 iterations is plotted in Figure 6.17.

roll

x

y

z

pitch

yaw

0

Figure 6.16: The three angles along the referential axes

The resulted topological map is defined by two states, where the values are shown in
Table 6.6. The Pitch and Yaw are the features that best identify each state, as expected
given the results shown in Figure 6.18. The State 1, which is characterized by the observa-
tions acquired until the iteration 500, presents an inclination of 4o while State 2 is close to
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Figure 6.17: Experiment 1 - The gyroscope information recorded during the trajectory

horizontal. The states are illustrated in Figure 6.20. It is visible few peaks around iteration
350 given the type of the terrain. The presence of small rocks on the ground implies some
noise on the roll and pitch measurements. At iteration 830, a temporary obstacle forced
the robot changing its orientation, which is reflected on the yaw measurements. The peak
is increased only in the plot of Figure 6.17 given the boundaries of the orientation, i.e.,
when the orientation assumes an absolute value higher than 180o, it is subtracted 360o

inverting the signal. For instance, an orientation equals to 193o is converted to -167o; an
orientation equals to -212o is converted to 148o.

State 1 State 2

Figure 6.18: The state values of the resulted topological map using gyroscope features in
the first experience carried out at Palácio de Cristal

The second experience carried out at Palácio de Cristal, was performed in the same type
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State 1 State 2
µ R µ R

Roll -0.7353 0.0001 0.0000 0.0010 0.6516 0.0003 0.0001 0.0003
Pitch 0.4396 0.0000 0.0002 0.0033 3.5980 0.0001 0.0001 0.0000
Yaw 258.0 0.0010 0.0033 3.0710 -11.016 0.0003 0.0000 0.0039

Table 6.6: The state values of the resulted topological map using gyroscope features

of environment. The results show that is still possible to identify different states at different
terrains using only, and again, the gyroscope data. The robot followed a trajectory with
two types of terrain, one covered by sand and another with concrete pavement. This fact is
understandable by the measurements present in Figure 6.19, even with some noise. There
is a ramp with a significant slope (around -16o), as shown in Figure 6.19-Pitch, between
iterations 450 and 750. The noise is higher in the last iterations (over 750).
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Figure 6.19: Experiment 2 - The gyroscope information recorded during the trajectory

Therefore, the resulted topological map is defined by 4 states. The State 1 is defined
mainly by its slope (around -16o) and the State 4 as an horizontal terrain. There are two
other states that define when the robot enters and leaves the ramp. They are identified
by the Yaw and the Pitch, which translates the characteristics of the terrain, since State 3
includes sand, which provides the noise as previously described.

6.3 Conclusions

This chapter illustrated how it is possible to implement a topological navigation on mobile
robots in different environments, indoors or outdoors scenarios, using different types of
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State 1 State 2

State 3 State 4

Figure 6.20: Images illustrating the 4 states of the resulted topological map using features
extracted from inertial sensors in the second experience carried out at Palácio de Cristal

State 1 State 2
µ R µ R

Roll 0 0.9 0.3 1.1 0 1.8 -2.5 -2.0
Pitch -16 0.3 3.0 1.8 -6 -2.5 3.9 -14
Yaw 300 1.1 1.8 0 286 -2.0 -14 65

State 3 State 4
µ R µ R

Roll 2 2.2 1.1 -0.7 1 1.3 -0.7 23
Pitch -3 1.1 7.4 9.8 0 -0.7 6.5 -52
Yaw 247 -0.7 9.7 28 216 23 -52 125

Table 6.7: The state values of the resulted topological map using gyroscope features

features and including the components of mapping, localization and navigation.
The experimental results obtained in an indoors scenario illustrated that is possible

to build a topological map using only range sensors, identifying three states, room, cor-
ridor and entrance, in the human perception. However, as the localization experiments
demonstrated, the resulted topological representation depends on the orientation assumed
by the robot when following a path. This issue is caused by the type of sensors that limits
the angle of view, even with the most appropriated features. The localization is able to
determine the robot’s position in the topological map even when the robot follows a dif-
ferent path from the one(s) used for mapping. Nevertheless, if the robot follows a similar
trajectory, but in a reverse order, the localization presents a large level of uncertainty, as
illustrated in the experiment carried out indoor environment, illustrated in Figure 6.8.

The same issue occurs in outdoor environment, at the IST Lisbon campus (Alameda).
When the mobile robot moves from State 3 to State 4, illustrated in Figure 6.15, it has
to change temporarily its orientation given moving obstacles. Thus, the robot observes
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features corresponding to another state, producing some noise in the localization results.
This handicap may not be interpreted as an algorithm limitation, since it is caused by the
properties and positioning of the hardware that supports the robot’s perception. Given
the orientation dependence caused by the type of sensors, the topological representation
may result in two or more different maps according to the followed direction. For instance,
following the same road in different directions, may result in different observations, given
the sensors limitation. Even improving the types of features (as the histograms colors or
vertical edges as described in the previous chapter) this fact of orientation dependence
persists. It is important to remember that the field of view of the camera or range sensors
(except the ultrasound sensors) is reduced to less than 120o.

The precision of the topological representation depends not only on the type of features,
but also on the amount of information retrieved by features. A large number of features
may increase the number of states if the environment is characterized by a diversity of
information. However, each feature could be represent by different parameters, that define
the precision of the selected feature. The amount of parameters, in the thesis identified as
k (for instance, khist defines the number of parameters to represent the histograms), also
determines the computation cost of the mapping algorithm. For a large value of k, the
application in real time is bouncing, even if the mapping algorithm is running at a low
rate when compared to the localization or navigation, as represented in Figure 2.3.

The transition probabilities between states, aij , completely dependent of the localiza-
tion efficiency, are refined when the algorithm runs several times in the same scenario.
The same occurs with the orientation between states, θij . However, the navigation is
able to overcome the problem, when the orientation is not correct moving the robot to an
undesired state not covered by the current sequence of states to reach the goal. In this
situation, the navigation calculates a new sequence of states to overcome the situation,
adjusting θij to a new value.

Therefore, there are still open issues as the algorithm optimizations (select the appro-
priate values for several threshold values), improve the initializations, or even increase the
types of features. These main open issues are discussed in the next chapter.
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Chapter 7

Conclusions and Future Directions

7.1 Summary

The thesis addresses the problem of mobile robot navigation in unstructured outdoor sce-
narios and proposes methodologies based on a topological approach that accomplishes
a scenario representation at a high level of abstraction. Based on a topological repre-
sentation, the localization and the navigation problems are solved at the same level of
abstraction.

The thesis starts from a motivation based on some cutting edges of the nature. There
are millions of species with fantastic navigation capabilities, that retrieve from the sur-
rounding environment the essential for motion, like ants, honeybees, migratory birds, etc.
This motivation aims the three main problems of robot navigation: Localization, Navi-
gation and Map Building. The thesis explains the importance of addressing these three
problems simultaneously, all of them at a topological level.

Since these three main problems are based on an environment representation, the
other possibilities besides the topological representation are discussed, namely geometric
and hybrid maps.

The topological representation relies on a set of nodes that represent the states, charac-
terized by a set of relevant features modeled by mathematical functions (e.g., n-dimensional
Gaussian pdfs, where the dimension corresponds to the number of different features). This
type of representation corresponds to a high level of abstraction, covering large physical
areas, which is implemented as a hierarchical level of representation, according to the
required resolution. The associated to the high level of abstraction, not yet covered by
researchers on robotics, justify the topological representation as the selected approach for
the first steps of the target application that motivated the thesis: search and rescue like
operations. These type of operations usually take place in completely unstructured envi-
ronments, with a high level of complexity yielding a difficult problem of robot navigation.
The thesis developed important steps towards mobile robot navigation in outdoors, highly
unstructured environments and implemented indoor and outdoor structured scenarios,
motivated by a long-term goal of autonomous operation in situations of real catastrophes.

143
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To build the topological map, it is necessary to estimate the mean vectors and the
covariance matrices that define the Gaussian pdfs that characterize each state of the map.
The adopted algorithm is a modified and revised version of EM, Dynamic Expectation
and Maximization algorithm, which adjusts the number of states and the parameters
that define the mathematical functions (in particular the sum of n-dimensional Gaussian
pdfs). It is possible to establish the precision of the mapping algorithm by adjusting
some parameters of the Dynamic EM. However, the parameters represent features, (for
instance, khist defines the number of parameters that represent the histograms) and also
determine the computation cost of the mapping algorithm. For instance, in one of the
outdoor experiences, at IST campus of Alameda, the PCA features becomes difficult to
implement in real time, since PCA uses image processing. Therefore, features with large
dimension, increases not only the amount of information but also the computational cost.

The approach to accomplish the topological representation uses different types of fea-
tures, represented by vectors. The quality of the topological representation depends on the
type of features used in each scenario. The feature selection is based on a covariance ma-
trix retrieved during a testing phase to evaluate the best features for a particular scenario.
In the thesis, the used features are extracted from the rawdata acquired by range, inertial
and vision sensors. The type of features and the corresponding procedure to extract that
information is defined at the initialization of the mapping algorithm.

The connection between states is also necessary in the topological representation. The
linkage between two different states si and sj , is represented by the transition probability
between these states, aij and by the orientation to switch from one state to the other,
θij . While aij has a probability information with a major influence in the localization, the
angle θij provides physical information to drive the robot between states, i.e., is useful for
the navigation procedure.

The transition probabilities between states, aij , and the corresponding orientations,
θij , are estimated based on the localization results and, consequently, are dependent on the
localization efficiency. The values of aij and θij are refined when the algorithm runs several
times in the same scenario. However, the navigation is able to overcome the problem of
wrong values of θij (given the localization uncertainty, the robot can move to an undesired
state not covered by the current sequence of states to reach the goal). When this occurs,
the navigation calculates a new sequence of states, adjusting θij to a new value.

The localization and the navigation problems are addressed based on the topological
map, a set of states, S, represented by Gaussian pdfs and the corresponding connections,
aij and θij . Given the type of representation, the localization and navigation problems
are also addressed with a topological approach.

The mathematical support for localization and for navigation has to deal with the
uncertainty included in the world, the perception of the world (observations and/or con-
sequently on features) and also on the motion. This justifies a probabilistic approach, a
fundamental issue in the thesis.
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The localization problem is addressed by a changed version of the Forward-Backward
(FB) algorithm and Markov Models to estimate the current robot’s state in the topological
map. The localization algorithm minimizes the uncertainty given the observed features.
The changes introduced in the FB algorithm, consists on sampling the time in intervals and
recording the observations acquired during each interval in a buffer of observations. These
intervals or buffer of observations retains the most relevant information for the localization
algorithm at each time instant. The FB algorithm estimates the robot’s location in each
time instant using the past and the future information acquired during a time interval,
where the current time instant is integrated.

The navigation algorithm retrieves the best path to reach a goal in the topological map
with the best certainty. The linkage between the high level of abstraction, the topological
navigation, and a motion control to follow the resulted sequence of states, is produced at
this stage. The motion control is based on a sum of behaviors, an attractive behavior to
the state goal and a repulsive behavior to avoid obstacles or not desired directions.

The experimental results are divided in two categories, indoors and outdoors. The
experiments accomplished indoors are based in simple features extracted from range sen-
sors to test mainly the map building algorithm. The resulted states have some meaning
for the human perception: the room, the corridor and the entrance of the experience in a
laboratory. These results are illustrated using the images acquired during the experiments.

The approach explanation, the algorithms description and the experimental results
obtained by the implementation illustrate a different type of SLAM, the topological SLAM,
where the three main problems are addressed simultaneously, at different rates and all
based on a topological framework. Furthermore, it is necessary to underline the novelties
and the limitations that are present. The main contributions and novelties of the thesis
are,

• The topological map, a type of representation with a high level of abstraction,

• A different type of SLAM, a topological SLAM,

• The Dynamic Expectation and Maximization algorithm for map building,

• The probabilistic approach for localization and navigation with a revisited Forward-
Backward algorithm and

• The feature extraction and selection methodologies.

7.2 Evaluation of the Approach

As described and illustrated in the thesis, it is possible to develop a topological approach
for the navigation at a high level of abstraction and implemented in simple outdoor environ-
ments. The experiments were accomplished outdoors, even though in not so unstructured
environments as in disaster scenarios. For more complex environments, as the scenarios
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caused by disasters, different features may be necessary, retaining more heterogeneous
information. Vertical edges provided by the buildings or the PCA components illustrat-
ing the sky, trees, ground, different characteristics may not be so common in disaster
areas and may not be present. The features as colors and histograms are more acceptable
for these types of scenarios, but also temperature, radio-frequencies, images acquired by
different types of cameras (for example, infra-red cameras or UV cameras), are essential
information for these situations in unstructured scenarios.

As seen, the feature extraction is an important topic of the topological approach, since
it reduces drastically the amount of storage space required by the rawdata. The features
retain the essential information, parameterized by some Gaussian pdfs. It is possible to
navigate in large environments in real time, but without a sharp representation of the
scenario.

It is important the advantage of this topological approach, since it represents the
possibility of, hierarchically, represent the environment. It means that the scenario may
be represented by a topological map with a low resolution and therefore, with each state
incorporating another topological map or even a geometric map, becoming an hybrid map.

With a simple topological map or with a hierarchical representation, it is important
to underline the necessity of the linkage between the high level of navigation based on
the topological representation and a motion control or hardware control. This linkage
is implemented in the navigation algorithm by a behavior approach that converts the
sequence of states in velocities. To accomplish this goal, the orientation between states,
θij , that is recorded in the topological map, is necessary. Not only the angles θij but also
the other variables (as aij) require an initialization procedure.

The experiments illustrate a limitation of the selected approach of the thesis. When
a similar path is followed by the robot but in a reverse order, the topological localiza-
tion usually presents different results, in a situation when the mapping algorithm was
intentionally disabled to test the localization in both directions. When the mapping was
disabled and the robot followed the same path but in a different direction, the localization
presented some uncertainty in the results, which underlines the necessity in this situation
of running the mapping algorithm to update the current map. This illustrates the de-
pendence of the robot on the type of features or mainly the different points of view of
the scenario. It is expected that a topological map using the features extracted from the
rawdata acquired by a sensor with a view angle equals to 45o has more states than if using
a sensor with a large angle of view, at least equal to 180o. The experiments accomplished
outdoors test the feature selection efficiency, disregarding the most correlated features. In
the same experiments it was possible to estimate the connections between states, the tran-
sition probabilities between states, aij , and the corresponding orientations, θij . However,
these values should be refined with several rounds in the same scenario. Other outdoor
experiments illustrate how it is possible to build a topological representation in an outdoor
scenario, but with a sensor that retrieves a poor amount of information, as a gyroscope.
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The initialization is a very important topic in the topological approach. When the
mobile robot is switched on and it starts from zero, i.e., no a priori map is available and
the best features are still unknown, it is not expected to accomplish a mission at once, as
a Search and Rescue (SaR) like operation. It requires a learning phase, to perceive the
best types of features to represent the scenario, while building the map. If the mapping
algorithm starts from zero, there is no initial map (number of states, best or less correlated
features unknown) and the procedure requires more computational time. Otherwise, start-
ing from an initial topological map, even a reduced one, the performance increases when
the algorithm has only to update the current map and to adjust the previous parameters.

Starting from zero, with the best features still unknown, is similar to a “cold initial-
ization” (commonly used in GPS frameworks: when the receiver is switched on and the
position of satellites is unknown), without a map for the localization and navigation pro-
cedures. Consequently, during an initial phase, defined as the learning phase, the mobile
robot moves in random directions. After a period of time, a map is available based on the
best features selected. This period of time can be long and considered as a drawback of
the topological approach. Therefore, different types of initializations may be addressed as
a possible field of future research, as described in the following subsection.

If an initial map is available, even if incomplete, the localization estimates the robot’s
position in that map and, consequently, the navigation has to compute the best sequence of
states to reach the main goal. However, during the robot motion, the mapping algorithm
continues updating the representation (number of states, the respective Gaussian pdfs and
the connections between states). The efficiency of an initial map depends on the type of
used features. As an example, some states obtained in the experience made in the Campus
of IST at Alameda strongly depend on the features characterized by the position of the sun.
The State 5 in Figure 6.14 is defined by the yellow color, based on the position of the Sun.
If the experience had been accomplished at a different time of the day, for instance, during
the morning, the edges would be the same but the histograms would be different. This
issue imposes a feature optimization. But even with some features strongly robust to these
conditions, the ambiguities still remain, i.e., some features are not completely invariant
to the light conditions. It would be difficult to use the same topological representation to
navigate in a scenario at day or at night, or even during the sunrise/sunset. This situation
bears to a possibility where the time information is also gathered as a particular feature
to choose the appropriate representation. For example, a specific topological map during
the day and another topological map during the night.

The algorithms that implement the topological approach for mobile robot navigation
are tested using a real robot of the Rescue Project (described with more detail in Ap-
pendix A), the terrestrial vehicle ATRV-Jr (see Appendix B). However, the navigation in
outdoor environments is not the only long-term goal of the referred project. The capability
of cooperation is also a target, where a map is shared by all the robots integrated in the
mission.
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Robot 1 Robot 2
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Figure 7.1: The topological approach with two robots

The topological approach described in the thesis aims the capability to provide a map
useful for the joint operation of several robots, as illustrated in Figure 7.1. Each robot
can be equipped with different types of sensors, extracting from the environment only
the information that can be perceived by that robot. From the point of view of the team,
large amount of rawdata is acquired in different places. All this information is converted in
features (by each computer installed in the robots or in a central unit) and, consequently,
the mapping algorithm provides a topological map, shared as a broadcast. The number
of robots may change along time. Each robot, using the same map (or the part of the
map that it can understand given the installed sensors) and integrating the acquired
observations, accomplishes the localization and the navigation procedure. A map built
based on the features acquired by robots in different places is similar to a map computed
by a single robot moving through these states and retrieving similar features. However,
the connection between states may differ for different types of robots. For instance, two
different robots, one terrestrial and other aerial (as in the Rescue Project) leads to different
transition probabilities aij . A physical obstacle for the terrestrial robot, which results in a
low aij , could not apply for the aerial robot, but the set of states have common information.
The process to estimate the connections between states can be the same for all robots.

Hence, the topological approach can be implemented in a team of robots, if each robot is
equipped with a traditional computer (without particular specifications). In spite of a com-
puter, robots may be equipped with a motion controller, sensors and transmitter/receiver
that communicate with a central unit that supports the computational process.

Besides the advantages of the topological approach it presets limitations, opening fu-
ture directions of research as described in the next subsection.
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7.3 Perspective of Further Research

The topological approach on mobile robot navigation addresses several areas of research.
This challenging application is supported by mathematical models to solve the three main
issues of environment representation, localization and navigation. Most of the topics
include open issues, in particular

• The precision of a topological map, including hybrid maps,

• The linkage between states (not necessarily by the orientations θij),

• The initialization and the adjustment of some threshold values,

• Different types of features including new types of sensors (providing features inde-
pendent to the light conditions and to the robot’s orientation),

• New feature selection methodologies and,

• Develop the topological approach using a team of robots on a cooperative navigation.

A topological map, when defined as a set of states, is represented by mathematical
functions. In the thesis, the mathematical functions are multi-dimensional Gaussian pdfs.
The performance of the representation and the efficiency of the mapping algorithm should
be tested if the states are represented by different types of mathematical functions, not
Gaussians. The algorithms used in the localization and the navigation problems can also
be different. The problem of localization consists on finding the current robot’s state
given the observed features. The selected algorithm may follow a probabilistic approach,
but different from the Forward-Backward algorithm. This also applies to the navigation,
where a different algorithm may be used to select the best sequence of states.

The connection between the states of the topological map may not include the ori-
entations, but be represented by commands. For instance, to switch between states, the
connection information may assume values in a set of motion commands, as “move for-
ward”, “move left” or “maintain the current direction”. The motion is achieved by a set
of predefined instructions to control the robot’s actuators. As in the adopted approach
explained in the thesis, the connections between states have to be learned as the state
transitions probabilities.

A future direction of work has to evaluate the localization and navigation performance
with topological maps at different resolutions/precisions, mainly when configured with
other maps available in each state, i.e., an hybrid representation. The resolution/precision
defines mainly the amount of states, which is important in the initialization and, conse-
quently, in the implementation performance.

Certainly, the most relevant and open issue is related with features. The resolution
and the precision of a topological map is intrinsically related with the type of features. To
select the appropriate features for representing a specific environment, it is necessary to
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know the available features to test. The approach adopted in the thesis does not provide
a procedure to discover types of features directly from the acquired rawdata.

In the thesis, the types of features are selected according to the target scenario. The
features database (to know which features to explore) remains as an open issue, since there
are certainly more features then free-area, edges, histograms or PCA and ICA. One of
the most prominent area is the feature extraction, which covers promising research topics,
mainly on vision. It is possible to extract large amount of relevant information from image
rawdata. There are other types of features not covered in the thesis, as textures. Most
of the research developed on texture extraction relies on Gabor Filters and/or Nonlinear
Operator [47, 67]. In spite of the types of filters or methodologies to extract the features,
there are also open issues on the way to represent the features. As described through the
thesis, the features are represented as vectors, where the dimension corresponds to the
precision of each feature. It is important to develop a tuning criteria for the dimension
of each feature (e.g., optimize the appropriate number of edges, kedges, or the number of
Gaussians to parameterize the histograms, khistograms, or the number of boundary-boxes,
k2Dhist). The features’ precision reflects that non correlated or weakly correlated features
are not necessarily essential, if they carry poor information.

Extracting more information from the robot’s perception requires a possible hardware
improvement, installing new sensors on the mobile robot, as suggested by [24, 58, 69,
122]. Even the best types of features extracted from image data acquired by the camera
installed on the ATRV-Jr are deeply dependent on the robot’s orientation. Because of
this situation the mapping procedure builds different states based on the observations
acquired at the same physical place, but with different orientations. This situation should
not be taken as a drawback as explained before, since the localization and the navigation
algorithms also return possible solutions based on the current topological map. However,
the resulted topological map may not suit the requirements, mainly when dealing with
human perception/operation. For instance, a room is also a room independent on the
observed direction.

One possible choice to avoid this situation is based on a panoramic camera, as the
one suggested in 0-360.com [7] illustrated in Figure 7.2-a), with an image example in
Figure 7.2-b ). For several image acquisitions at different orientations, it is possible to
apply a transformation (shifting the images along the horizontal axes), resulting in the
same image. This assumption requires an horizontal/quite-horizontal robot’s placement.

The features extracted from the range sensors installed on the robot provide poor
information, mainly in outdoor environments, even with the Sick Laser. This situation
occurs since the sensor is installed horizontally on the robot and the measurements ac-
quired at successive iterations are highly correlated, since the robot motion reflects its
non-holonomy. If installing a similar range sensor transversally to the robot’s movement,
it would deeply increase the amount of acquired information, as suggested by [51] on the
Pioneer 2 AT platform equipped with two laser range scanners.



7.3 Perspective of Further Research 151

a) b)

Figure 7.2: Perspective of adding an omni-directional camera on the top of the ATRV-Jr,
a) the commercial model presented in 0-360.com and b) the resulted panoramic view

a) b)

c)

Figure 7.3: Perspective of adding new sensors to enlarge the features information: a) an
extra laser mounted on the top of the robot, perpendicular to the movement, acquiring
data containing b) trees and cables or c) a building
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The Figure 7.3-a) illustrates a possible implementation of a second Sick laser targeting
to vertical scanning. The Figure 7.3-b) and -c) illustrate two different scenarios, where
trees and cables (in the first image) and a building and cars (in the second image) are
perceptible. The improvement on the type of sensors opens new directions of research
about feature extraction.

The topological approach presented in the thesis performs a high level of abstraction,
for any type of mobile robot equipped with any set of sensors. Even tested with a particular
wheeled robot, ATRV-Jr, the resulted topological map could be shared by other robots
since equipped with similar sensors, or different sensors capable to return the same features,
to perceive and understand the essential information of the topological map.

In the frame of the Rescue Project, to achieve cooperative navigation in outdoor envi-
ronments, it is necessary to test the topological approach with different types of features
in real scenarios. The features have to be extracted by appropriate sensors (for example,
panoramic cameras, infra-red sensors), that better perceive the scenarios in real situations
of disasters. The rawdata does not necessary come from a single robot. Stressing the
importance of cooperative navigation, it is possible to extract these relevant features from
several and heterogeneous robots (for instance, terrestrial, aerial, legged, wheeled, etc).
The information is collected and sent to a central unit that retrieves a topological repre-
sentation and localization of each robot, returning the motion commands for each robot
according to its target goal. The operation can be simultaneously supervised by a human
operator, providing tele-operation if necessary. The retrieved map can be shared by these
robots, where it is used only the appropriate information from the map for navigation,
concerning to the target applications.
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Related Research: The Rescue

Project

The Rescue Project – Cooperative Navigation for Rescue Robots (POCTI/1999/SRI/33293),
was a multi-disciplinary joint venture to face the challenging applications of mobile robot
navigation, addressing different issues such as scenario mapping, multi-robot (coopera-
tive) navigation, (multi-robot) task planning and coordination. Three research groups
(Intelligent Systems, Computer Vision and Mobile Robotics) of the Instituto de Sistemas
e Robótica at Instituto Superior Técnico (ISR/IST), Lisboa, joined their research efforts
on outdoors search and rescue robots under this project.

The main goal of the project was to provide integrated solutions for the design of
teams of cooperative robots operating in outdoor environments. The scientific challenge
in the short and mid-terms periods were on perception and representation issues, as well
as cooperative navigation, and, in the mid to long-term, on task modeling, planning and
coordination of multi-robot systems. The reference scenario for the project referred to a
long-term goal of developing robotic teams to help humans in search and rescue missions.
At a first stage, the project was based on two robots, a land and an aerial (blimp) robot.
Simplifying assumptions include daylight operation and good meteorological conditions
(weak winds and no rain).

The following is a list of problems that were addressed and, at least, partially solved
during the Rescue Project lifetime:

• Definition of a functional architecture suitable for the integration of the subsystems
composing the robotic team, oriented towards Search and Rescue (SAR) applica-
tions.

• Choice of the appropriate sensors and sensor fusion methodologies.

• Issues concerning topological navigation, world-model-based and sensor-based nav-
igation within unstructured environments, as well as their extension to cooperative
navigation.
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• Task coordination, including the appropriate integration of the functional subsys-
tems and resources management during the execution of a given robotic task.

The scientific advances made on the enabling disciplines (Computer Vision, Robot
Navigation, Hybrid/Discrete Event Systems and Artificial Intelligence) during the project
lifetime should be extendable to other outdoors applications, such as environmental mon-
itoring and surveillance, satellite formations or planetary exploration and also to a team
with a larger number of robots.

A.1 The Reference Scenario for the Rescue Project

A reference scenario for the Rescue Project was set up with two main goals: it should refer
to a reasonably realistic situation, and it should be rich enough to accommodate all the
research topics of interest for the involved groups. The robots used in the projects are one
aerial blimp/zeppelin and one land outdoors robot. The aerial robot will perform several
tasks, such as making a vision-based topological map of the destroyed site. The map will
include information on the relevance of each of the mapped locations concerning the degree
of destruction, presence of victims, etc, as well as on the difficulty of traversing regions be-
tween them, due to the presence of debris or obstructed paths. The map will be stored as
a graph and will be used to choose the best path for the land robot to reach a goal location
(e.g., one with a larger number of victims). It can also be used to help the aerial robot
navigation. Issues of representation arise here, as the views of the land and aerial robots
are different, even when they refer to the region associated to the same node of the topo-
logical graph. The land robot will use several sensors (GPS, inertial, vision, laser scanner,
ultrasound sensors) to navigate towards the goal, handling the details associated to the
path (e.g., debris, trees, people on the way, etc). This will extend the scope of the research
to metric navigation. Nevertheless, the topological map obtained by the aerial robot can
also be used as the initial iteration of a topological mapping algorithm based on coopera-
tive information from the aerial and land robots. While the land robot moves towards the
goal location, the aerial robot should follow it using a formation control algorithm, so as
to keep a reliable communication link and to serve as a relay for information that the land
robot may need to send to distant stations. Considering a long-term goal as a completely
autonomous robot or teams of heterogeneous robots in a real scenario of catastrophes, the
project requires a software architecture capable of handling real-time distributed control
and supervision systems, as well as a functional architecture to integrate all the required
subsystems (and their corresponding functions) consistently, i.e., so as the whole system
is designed to get the maximum performance. The software architecture, currently in its
implementation stage (designed for two robots), is based on a multi-thread and distributed
blackboard approach. The different threads handle sensor data acquisition and processing,
communications, behavior execution and behavior switching. Raw and processed data go
to the distributed blackboard, a distributed shared memory organized in classes of vari-
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ables corresponding to the different sensor classes. Some variable values are kept locally at
the robot that acquired and processed the data. Others are broadcasted (or sent individu-
ally) to the teammates. Some transducers have an associated set of virtual sensors, each of
them implemented by a separate agent. A typical example is the vision transducer, with
associated virtual sensors aiming at localizing the object, determining the object speed
and classifying the objects. The functional architecture includes the following subsystems:
task planning (to handle task/behavior allocation, intra-team communications and forma-
tion topology, when a formation is required), task coordination (to handle the decisions on
which behaviors to select at every time step, so as to optimize the performance in terms
of time taken, reliability, cost, utility or other factors - requiring performance feedback
from each subsystem) and behaviors (referring to one single agent and involving relations
among more than one teammate). Behaviors are built as finite state automata, where arcs
are associated to conditions of detected events and most states correspond to dynamic
control systems implementing navigation functions, parameterized according to the task
at hand (e.g., move until a given posture is reached, track an object or a teammate). Note
that behaviors are implemented using alternative approaches (e.g., based on Petri nets or
production rules), with relative advantages concerning the representational power but a
potentially reduced debugging power. However, the software architecture is open enough
to host these alternative models.

The navigation functions are the key practical developments expected during this
project. They will be based on a multi-sensor system (GPS, compass, odometry, laser
scanner, ultrasound sensors, vision and inertial navigation system composed of rate-gyros
and accelerometers) for the land robot, an ATRV-Jr. The navigation of the blimp will
be mostly vision based. Both the blimp and the ATRV-Jr navigation systems will mix
metric and topological navigation. The current work concerning metric navigation under
the project builds on existing closed loop solutions which use the GPS as a reference and
odometry plus accelerometers as feedback sensors for position estimates, the compass as a
reference and the rate-gyros as feedback sensors for orientation estimates (roll, pitch and
yaw). The novelty here is on handling particular problems of outdoor environments, such
as very poor odometry and frequent loss of GPS information due to trees or buildings. The
amount of useful information must be increased by more than one robot, where a network
of communicating sensors assembled on the team robots can take advantage of their space
diversity to provide information to each of the team robots which they might miss if oper-
ating alone (e.g., one of the robots does not have GPS available but one of its teammates
does and can also estimate their relative postures). All this work will necessarily require
sensor models, which cannot be obtained before outdoor runs, during which data from all
navigation sensors is registered, are performed. The recorded data can subsequently be
subject to statistical analysis in order to build the sensor models.



156 Appendix A

A.2 e-Links and Multimedia

A web page has been created for the project, which URL is

http://rescue.isr.ist.utl.pt/.

An animation illustrating the scenario above was developed to better explain the reference
scenario to project, is available at MPEG format at:

http://rescue.isr.ist.utl.pt/videos/rescue_web.mpeg.

The members of the project are mentioned in

http://rescue.isr.ist.utl.pt/members.php.

and respective publications.

http://rescue.isr.ist.utl.pt/publications.php.

There is also a web page that addresses the development in topological navigation in
outdoor environments, concerning the topic of the thesis and the relevant research carried
on the land vehicle, the ATRV-Jr,

http://lrm.isr.ist.utl.pt/rescue/.

http://rescue.isr.ist.utl.pt/
http://rescue.isr.ist.utl.pt/videos/rescue_web.mpeg
http://rescue.isr.ist.utl.pt/members.php
http://rescue.isr.ist.utl.pt/publications.php
 http://lrm.isr.ist.utl.pt/rescue/
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iRobot ATRV-Jr

B.1 Technical Specifications

Figure B.1: Mobile Robot ATRV-Jr with a Sick Laser LMS and a Pan and Tilt camera
Sony EVI-D31

The ATRV-Jr is the land robot used in the Rescue Project, equipped with 4-wheel
differential drive, with 2 high torque 24V DC servo motors, capable of achieving linear
speeds up to 1 m/s and turning speeds up to 120 deg/s. With a 25 kg of payload, it
weights 50 Kg plus 5 kg with external sensors and is capable of overcoming 45 degrees
slopes. Its 2 lead acid, 672 Watt/hr batteries provide an autonomy of 3 to 5 hours,
depending on the motion conditions. The on-board computer is a Pentium III running
at 800 MHz. Communications with other robots and external computers are ensured by
either a 100/10 Mbps Ethernet board or IEEE 802.11b Wireless radio Ethernet. The robot
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includes an odometry system and Linux-based management software and libraries.
The ATRV-Jr is equipped with several navigation sensors:

• Computerized navigation compass,

• Global Position System (GPS) receiver (12-channel), Garmin GPS-35,

• Inertial Navigation System (DMU), including rate-gyros,

• 17 ultrasound sensors (5 forward facing, 10 side facing and 2 rear facing),

• 2D Laser Range scanner Sick LMS and

• Pan and Tilt camera Sony EVI-D31 12x optical zoom.

The compass and GPS are installed on the top of the vehicle to reduce electric in-
terference. The video camera is also installed on the top of the vehicle to perform the
best field of view. The range sensors are horizontally installed for information acquisition
around the robot. The DMU is hidden, inside the vehicle, near the motor and batteries.
All the sensors are connected to the robot on-board computer by RS232. The Figure B.2
illustrates the mobile robot and its equipment, through different side views.

a) b) c) d)

Figure B.2: Different views of ATRV-Jr: a) from left to right, the compass, camera and
GPS, the blue object is the laser sensor and a ring of ultrasound sensors, b) the computer
and the laser sensor, c) the DMU and d) the motors and batteries

B.2 Robot and Sensors Model

The mobile robot is a non-holonomic vehicle, equivalent to a 4-wheel differential drive.
The nominal radius of each wheel is rw = 10cm and the length of the axis between wheels
is d = 40cm, as illustrated in Figure B.3. The radius of wheels varies with the payload
installed on the robot, air pressure, temperature and soil, but rw, the nominal value is
assumed as constant.
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Figure B.3: ATRV-Jr model, a) the velocities and b) the position and orientation

The angular velocities of right and left wheels, given by ΩR and ΩL, are the only
variables that can be controlled. The linear and angular velocities of the robot, V (t) and
Ω(t) respectively, relative to the central point of the robot body are given by

V (t) =
rw

2
(ΩL(t) + ΩR(t)) (B.1)

Ω(t) =
rw

d
(ΩL(t)− ΩR(t)). (B.2)

The pose of the vehicle, x = [x y θ], relative to the world referential (see Figure B.3-b)
evolves in time according to

ẋ(t) = f(x(t), V (t),Ω(t)). (B.3)

Based on (B.1) and (B.2), the robot kinematics (B.3) can be expressed as
ẋ(t) = V (t) · cos θ(t)
ẏ(t) = V (t) · sin θ(t)
θ̇(t) = Ω(t)

. (B.4)

For the implementation of dead-reckoning, a discrete version of the kinematics (B.4) is
required. Considering a uniform sampling interval T and assuming that in the interval
[KT, (k + 1)T [ the robot follows a line segment with translation velocity V (k) followed by
a rotation of Ω(k), an approximate discrete kinematics is given by

x(k + 1) = x(k) + T · V (k) · cos θ(k)
y(k + 1) = y(k) + T · V (k) · sin θ(k)
θ(k + 1) = θ(k) + T · Ω(k)

. (B.5)

This approximation is equivalent to
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 x(k + 1)
y(k + 1)
θ(k + 1)

 =

 x(k)
y(k)
θ(k)

+

 V (k) · cos θ(kT ) · T
V (k) · sin θ(kT ) · T
Ω(k) · T

 , (B.6)

where the values of V (k) and Ω(k) are given by the odometry and it was assumed that

x(k + 1) = x(t)|t=(k+1)T . (B.7)

Given the errors introduced by the wheels slippage, irregularity of the floor, sampling,
encoders precision, the radius of wheels, there is an uncertainty associated to the odom-
etry, where the velocities estimation are V̂ (k) and Ω̂(k), respectively. The uncertainty
is modeled as ηQ, herein considered as a white Gaussian noise, with a covariance matrix
E[ηQηT

Q] = Q, i.e., the considered discrete kinematics model is

x(k + 1) = f(x(k), V̂ (k), Ω̂(k)) + ηQ. (B.8)

The value of Q was estimated from several experiments, with the component relative
to the orientation presenting a high variance.

The observations that will feed a pose estimation methodology are given by two sensors:
the GPS sensor (based on UTM/UPS Universal Transverse Mercator/Universal Polar
Stereographic 24 satellites [75], as illustrated in Figure B.4) and the compass.

Figure B.4: GPS basics, Latitude, Longitude and Altitude

The distance followed by the robot between two GPS acquisitions is estimated by the
differences between latitude and longitude values acquired. Since the Earth planet is nearly
spherical, the distance is given by multiplying the difference in latitude and longitude by
the radius of the planet, rE = 6378 kilometers. Let lat(k) and long(k) be the latitude and
longitude of the robot at time instant k provided by GPS. The distance between k and
k + 1 along the latitude and longitude is given by

rE · (lat(k + 1)− lat(k))
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and
rE · (long(k + 1)− long(k)),

respectively. However, the vehicle position corresponds to the x and y values in a local
referential. It is important to link this referential with longitude and latitude. Since the
latitude is measured along the meridian line, as depicted in Figure B.5, and the orientation,
which is gathered by the compass (having better precision than GPS), the x-axis is along
latitude (to the north) and y-axis is along longitude, but with a reverse signal. However,
the true north, retrieved by the compass, and the magnetic north, retrieved by the GPS,
are not the same, which requires the correction given by

long(k)← long(k) ∗ cos(lat(k)).

Figure B.5: World referential

The observation is equivalent to the robot’s pose, i.e.,

z(k) =

 x(k)
y(k)
θ(k)

 . (B.9)

While the orientation is directly obtained by the compass measurements, the position
along x-axis and y-axis requires a transformation of the GPS values, or equivalently x(k)

y(k)
θ(k)

←
 x(k − 1) + rE(lat(k)− lat(k − 1))

y(k − 1) + rE(long(k)− long(k − 1))
θcompass(k)

+ ηR. (B.10)

There is also an uncertainty associated to the sensors and, consequently, the (B.9) is
rewritten as follows

z(k) = g(x(k)) + ηR, (B.11)

where g(x(k)) is equal to the identity and ηR is an uncertainty associated to the observa-
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tion, herein considered as a white Gaussian noise. The covariance matrix E[ηRηT
R] = R is

estimated based on the technical specifications presented in the manuals of the GPS and
the compass. Using the observation vector, z, the next step is how to estimate the robot’s
pose.

B.3 Pose Estimation using Extended-Kalman Filtering

The robot’s pose gives the position and the orientation of the robot in a metric referential.
The metric estimated position is exclusively to plot the rawdata acquired by the sensors for
display of the topological results presented through the thesis. The information retrieved
by the GPS is not enough, since it is necessary to travel distances larger than 5 meters
to acquire different measurements. Moreover, the orientation is also necessary to estimate
the angle transition between two states, θij .

The pose estimation is accomplished using the Kalman-Bucy Filtering approach. The
kinematics resulted in (B.6) represents a non-linear system, which requires an Extended-
Kalman Filtering (EKF) [63]. First, it is necessary to linearize the system, using F (k)
and H(k) (the Hessian is obviously the identity, given the linearity of g), by

F (k) = ∇f |x(k) =
[

∂f
∂x

∂f
∂y

∂f
∂θ

]∣∣∣
x(k)

=

 1 0 −V · sin θ(k) · T
0 1 V · cos θ(k) · T
0 0 1


∣∣∣∣∣∣∣
x(k)

(B.12)

H(k) = ∇g|x(k) =
[

∂g
∂x

∂g
∂y

∂g
∂θ

]∣∣∣
x(k)

=

 1 0 0
0 1 0
0 0 1

 (B.13)

Prediction Step

x̂(k + 1 | k) = f(x̂(k | k))

ẑ(k + 1 | k) = g(x̂(k | k)) (B.14)

Filtering Step

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + K(k + 1) [z(k + 1)− ẑ(k + 1 | k)]

K(k + 1) = P (k + 1 | k)HT
[
HP (k + 1 | k)HT + R

]−1

P (k + 1 | k) = F (k)P (k | k)F T (k) + Q

P (k + 1 | k + 1) = P (k + 1 | k) [I −K(k + 1)H]

(B.15)
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Smoothing Step

x̂(k | T) = x̂(k | k) + G(k) [x̂(k + 1 | T)− x̂(k + 1 | k)] , k ≤ T

G(k) = P (k | k)F T (k)P−1(k + 1 | k)

P (k | T ) = P (k | k) + G(k) [P (k + 1 | T )− P (k + 1 | k)]G−1(k)

(B.16)

Initialization Step
x̂(0 | 0) = 0̄

P (0 | 0) = P0 = αI, α ∈ R+
(B.17)

The algorithm based on EKF to estimate the robot’s pose, illustrated in Figure B.6, is
briefly resumed by the following steps:

1. Kalman Filter Initialization

2. Prediction at iteration k + 1: x̂(k + 1 | k)

3. If no observation jump to (4)

(a) Filter at iteration k + 1: x̂(k + 1 | k + 1)

(b) Smoothing from the iteration of the last observation to k

4. k ← k + 1

x(0|0)

k=0                k=1  k=2  k=3  k=4  k=5                     k=6

time (kT)

x(1|0)

x(2|1)

x(3|2)

x(4|3)

x(5|4)

x(6|5)

x(2|2)
x(6|6)

x(1|2)

x(3|6)

x(4|6)

x(5|6)

(black) - prediction
(blue ) - filtering (observation available)
(red ) - smoothing

Figure B.6: Extended Kalman Filter illustration

The smoothing step of the EKF algorithm is useful to reduce the peaks caused when
acquiring new measurements of GPS. The smoothing step is applied some iterations back-
wards. The number of iterations is equivalent to three different acquisitions of GPS.
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