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1 INTRODUCTION 

Automatic navigation in real roads is an old aspiration of 

road drivers, and of the automotive industry in general, 

because of the large importance it can one day reach in what 

concerns security. Indeed, annually, all over the world, many 

casualties occur on the road due to accidents and are often 

caused by driver distraction or lack of responsiveness in 

demanding driving conditions (traffic, weather, individual 

focusing on the driving tasks, etc.). 

The future of automatic navigation in roads will 

necessarily require advanced and robust perception of the 

road and traffic entourage, which can be very complex due to 

the huge variety of subjects and conditions (roads, vehicles, 

illumination and weather, etc.). Roads and vehicles are 

among the most relevant subjects in that framework 

therefore, they represent a must when starting to develop 

systems for automatic navigation on the road detection. 

While the authors have been questing for autonomous 

navigation in road-like tracks in a parallel research activity 

[1][2] this paper focuses specifically on one method for 

automatic car detection. The technique uses Haar-like 

features, and cascade classifiers are “trained” to match cars 

in real roads. A paper regarding the detection of a single 

object using Haar features was already published by the 

authors [3]. The paper introduces briefly the Haar-like 

features concept, then describes the cascades used specially 

for cars, and before the conclusion presents extensive results 

on untrained road images under varied circumstances. 

 

 
 

2 HAAR-LIKE FEATURES 

Haar-like features were proposed by Viola and Jones [4] 

as an alternative method for face detection. The general idea 

was to describe an object as a cascade of simple feature 

classifiers organized into several stages. This is a very fast 

method, performing face detection as effectively as any other 

methods. As stated in [4], in the CMU+MIT reference test 

set, the method performed 15 times faster than the Baluja-

Kanade detector and about 600 times faster than the 

Schneiderman-Kanade detector. 

The classification of images is based on the value of 

simple basic features. Features are used instead of simple 

raw pixel values generally because they can act to encode 

ad-hoc domain knowledge but also, in this particular case, 

because they are much faster to process.  

 
Figure 1. Basic set of Haar features used by [4] (left), and 

extended set applied by [5] (right). Taken from [5]. 

Later on, Lienhart and Maydt proposed to extend the pool 

of basic features by utilizing also 45º rotated features thus 

“significantly enhancing the expressional power of the 
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Abstract: This paper describes a computer vision based system designed for the detection of cars in real world 

environments. The system uses the Haar-like features method firstly introduced by Viola and Jones which is 

known for its fast processing and good detection rates. The process requires representative data sets to be used 

for training and validation including positive (presence of objects to detect) and negative (absence of objects to 

detect) image samples. Therefore, several example images of cars were hand labeled for training and 

performance calculation purposes. Preliminary results show that the method can be very effective to detect cars at 

fast rates and show generalization capabilities. Despite some occasional false detections, because this method is 

quite fast, it can act as a primordial filter of promising regions of the image, where more effective yet time 

demanding tests can later be employed. 
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learning system and consequently improving the 

performance of the object detection system” [5]. The 

features that were proposed by Viola and Jones (the basic 

set) and latter by Lienhart and Maydt (extended set) are 

shown in Figure 1. It is important to emphasize that the 

features of Figure 1 are mere prototypes. They are scaled 

independently in horizontal and vertical directions in order 

to get an over complete set of features (the 24x24 window 

proposed in [4] the amount of possible features is around 

180000). The result of the application of each feature to a 

particular image region is given by the sum of the pixels that 

lie within the black rectangles of the feature subtracted by 

the sum of the ones overlapping the white rectangles. The 

rectangles are defined by their top left coordinates ,x y , their 

width w  and height h . The sum of the pixels that lie within 

the rectangle 
i

r  is represented by ( )RecSum
i

r . 
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The values of ,
i

N W  and of 
i

r  are arbitrarily chosen. In 

the case of [5], it has been defined that 2N =  and that black 

rectangles ( )0
r  have negative weight 

i
W  and white ( )1

r  

have positive weights. Furthermore, the relationship between 

weights is given by the difference of area occupied by the 

black and white rectangles.  

 ( ) ( )0 0 1 1
W Area r W Area r− ⋅ = ⋅  (2) 

Assuming
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1W = − , one can obtain:  
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Consequently, for example for feature (2a) of Figure 1, 

with a height 2h =  and width 6w =  the outcome of the 

feature application to a rectangular region positioned at ,x y  

would be: 
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In order to compute the value of each feature very rapidly, 

an intermediate image representation is calculated. This 

representation is called integral image or Summed Area 

Table (SAT). The value of the integral image at coordinates 

( ,x y ), is given by the sum of all the pixels in the image that 

are above and to the left of ( ,x y ):  

 ( ) ( )
' , '

, ', '
x x y y

SAT x y I x y
≤ ≤

= ∑  (5) 

Where ( , )I x y′ ′  is the value of the image’s pixel at 

coordinates ( ,x y ). The value of any RecSum( , , , )x y w h  can 

be obtained by simply four lookups at the SAT.  
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This procedure is shown on Figure 2. 
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Figure 2. Fast RecSum( )ir calculation. 

Viola and Jones [4] set up a framework to combine several 

features into a cascade, i.e. a sequence of tests on the image 

or on particular regions of interest, organized into several 

stages, each based on the results of one or more different 

Haar features. For an object to be recognized, it must pass 

through all of the stages of the cascade. The cascade is built 

by supplying a set of positive and negative examples to the 

training algorithm. The used algorithm is called Adaboost, 

known for its high performance in what concerns 

generalization speed [4]. At each stage of the cascade, the 

machine learning algorithm selects the feature or a 

combination of features that best separate negative from 

positive examples, by tuning the threshold classification 

function. There is a trade off relationship between the 

number of stages in a cascade and features in each stage and 

the amount of time it takes to process the cascade. Viola and 

Jones define, for each stage, a target for the minimum 

reduction in false positives and a maximum decrease in 

detection. The mentioned rates are obtained by using a 

validation set made up of the positive and negative 

examples. In order to improve the time performance of the 

algorithm, the same authors have also presented the notion of 

attentional cascade. The idea consists of using the first stages 

of the cascade to effectively discard most of the regions of 

the image that have no objects. This is done by adjusting the 

classifier’s threshold so that the false negative is close to 

zero. By discarding many candidate regions early in the 

cascade, Viola and Jones significantly improve the method’s 

performance. In fact, it makes a lot of sense that the 

detection system is able to quickly discard obvious negative 

regions of an image using valuable time to better test much 
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more promising regions by submitting them to higher level 

stages of the cascade that yield more complex features. 

It has already been said that Haar-like features were 

especially applied to perform face detection. However, the 

framework is all-purpose. Some other approaches have 

successfully used it for pedestrian detection [6]. 

 

3 A GENERALIZED CASCADE FOR CAR DETECTION  

The next attempt was to train a generalized cascade for the 

detection of car’s rears, i.e. to train a Haar cascade that 

would detect not a particular car model, but an 

indiscriminate car’s rear detector. Haar features are first 

trained to obtain a representation to be used latter for real 

time object detection. For this purpose several image 

collections were acquired. They will be described in the 

subsequent chapters. 

3.1 Training Datasets Description 

For training purposes, two image datasets were borrowed 

from the internet and a third was made by the authors. This 

chapter will describe in detail each set, indicating the number 

of images per set, their properties and locations where they 

were taken. Table 1 sums up the training sets information. 

Training datasets will, henceforth, be named as TDS 

followed by their respective number. 

Table 1. Training datasets description. 

Name Nº Img Resolution Location Authors 

TDS 1 1556 variable California unknown 

TDS 2 126 896x592 California Weber 

TDS 3 1004 752x512 Portugal Oliveira, Santos 

 

California Institute of Technology dataset is composed of 

1156 images in png format, though many are very similar 

(Figure 3). Image resolution is variable. This dataset is used 

for training and will henceforth be named training dataset 1 

(TDS1). 

    

    
Figure 3. Samples from of California Institute of Technology 

dataset. 

Markus Weber’s dataset is not as broad, bearing only 126 

images. The resolution is 896x592 pixels, jpg format and the 

images were taken in the California Institute of Technology’s 

parking lots. Some examples are on Figure 4. This will be 

named training dataset 2 (TDS2). 

  

Figure 4. Car dataset taken by Markus Weber, California 

Institute of Technology. 

A third dataset was made by the authors during a car travel 

in Portugal (from Algarve to Aveiro) and nearly 2 hours of 

footage was captured. Resolution was 752 x 512 pixels. Over 

1000 images were extracted from the film. Positive examples 

were separated and cars were also hand labeled (Figure 5). 

No rescaling was performed. This will be referred to as 

training dataset 3 (TDS3). 

 

Figure 5. Authors’ own car dataset from Portuguese roads. 

Some of the images were taken during adverse weather 

conditions, such as rain. Some examples are present on 

Figure 6. These images are also included in TDS3. 

    
Figure 6. Authors’ own car dataset with poor weather 

conditions. 

3.2 Performance Datasets Description 

For the purpose of testing, three separate datasets are 

used. The first dataset was built by Brad Philip and Paul 

Updike (Figure 7).  

Figure 7. Car dataset taken by Brad Philip and Paul Updike, 

California Institute of Technology. 

It was taken on the freeways of southern California. It is 

composed of 530 images in jpeg format. Resolution is 

constant at 320x240 pixels. Images are quite similar to TDS1 

but are not included in it. This test dataset will be employed 

to measure the performance of the cascades and will be 



 

 

 

4 

mentioned as performance dataset 1 (PDS1). 

Performance dataset 2 (PDS2) is taken from the footage 

that provided images for TDS3. The images are not the same 

although they are similar. PDS2 consists of 105 images, 

756x512 pixels of resolution, saved in png format. No 

demanding weather conditions, city environment or gas 

stations images were included. The idea was to use a 

simplified version of the footage. Finally, performance 

dataset 3 (PDS3) is an extension of PDS2 obtained by 

including all kinds of images: poor weather, city, gas 

stations, bridges etc. (Figure 8). 

 
Figure 8. Complex images in PDS3. 

PDS3 is a much harder set. It consists of 232 images with 

the same resolution and format as the ones of PDS2. 

Table 2. Performance datasets description. 

Name Nº Img Resolution Location Authors 

PDS 1 530 320x240 California Philip, Updike 

PDS 2 105 752x512 Portugal Oliveira, Santos 

PDS 3 232 752x512 Portugal Oliveira, Santos 

3.3 Cascades Description 

Having ensured a wide variety of examples, hand labeling 

was performed over all images both in training and 

performance sets. A semi-automatic hand labeling 

application was developed to ease the process by enabling 

fast mouse selection. It also generates a text file were the 

ROI or ROIs (i.e. the regions were the car or cars can be 

found) is/are defined for every image. Intel Open Source 

Computer Vision Library (Opencv) [7] provides a tool that 

creates samples by clipping the defined ROIs from TDS 

images, converting them to grayscale, rescaling them to 

window size, and inserting them into a random background 

image. The background image pool, or negative set, has not 

yet been described. A negative set consists of a set of images 

where no objects (cars) exist. They haven’t been mentioned 

since they are impaired with their respective TDS, i.e., every 

TDS also has a set of negative examples, usually road 

images where no cars are present. 

Table 3. Cascades Description. 

Name 
Win 

Size 

Train. 

Set(s) 

T. Samples 

(pos/neg) 

Nº 

Stages 
Features Set 

C1 30x20 1 + 2 unknown 20 BASIC 

C2 60x40 1 + 2 1282 / 754 20 BASIC 

C3 30x20 3 unknown 20 BASIC 

C4 30x20 3 unknown 20 ALL 

C5 60x40 3 unknown 20 BASIC 

C6 30x20 1 + 2 + 3 1556 / 915 20 BASIC 

C7 30x20 1 + 2 + 3 1556 / 915 20 ALL 

C8 20x12 1 + 2 + 3 1556 / 915 30 ALL 

Table 3 summarizes the setup used for several cascades 

trained using different combinations of TDS, number of 

stages, features pool, i.e., BASIC for Viola Jones features 

collection and ALL meaning Lienhart and Maydt extended 

set as well as the number of positive and negative samples 

generated after the dataset (T. Samples). Also, several 

window sizes were attempted. Cascades will henceforth be 

named by C followed by their respective number. 

 

4 PERFORMANCE TESTS AND RESULTS 

Opencv [7] provides a tool for cascade performance 

testing. The tool applies the cascade to all test images and 

compares the algorithm’s outcome to the report generated by 

hand labeling. Hit (HR) and false detection (or false alarm) 

(FDR) rates are generated based on this comparison. In order 

to assume a given detection as the one described in the 

report, some tolerances are assumed. Tolerances are related 

to the disparities in position and size from the current 

detection and the one manually generated for comparison 

For every detection made, a search in the corresponding PDS 

is executed to see if the detection is true or false. In order to 

allow for easy performance comparison, the tolerances 

employed are the default values of the mentioned tool. PDS1 

was tested with several cascades and several scaling factors 

scaling factor, sf , which is a Haar detection parameter that 

indicates how much the reference window should be scaled 

up. HRs are quite good (some above 95%) though FDRs are 

quite high (Table 4). 

Table 4. Performance results for PDS1. 

Name sf Hits Missed 
False 

Detect. 
HR FDR 

1.05 508 18 400 0,966 0,760 
C1 

1.9 370 156 263 0,703 0,500 

1.05 501 25 444 0,952 0,844 

1.5 501 25 193 0,952 0,367 C2 

2.9 311 215 500 0,591 0,951 

1.05 440 86 4840 0,837 9,202 
C3 

1.9 436 90 1529 0,829 2,907 

1.05 449 77 2676 0,854 5,087 

1,9 495 31 953 0,941 1,812 C5 

2,9 397 129 874 0,755 1,662 

C6 1.05 442 84 5799 0,840 11,025 

1.05 429 97 3385 0,816 6,435 

1,9 396 130 925 0,753 1,759 C7 

2,9 193 333 868 0,367 1,650 

 

There is a trade-off relationship between HR and FDR. 

Detecting a given feature with a HR of 100%, would 

obviously raise the FDR. The results here shown present the 

HR and FDRs of the complete cascades, i.e. the cascades 

with all the stages included. The tables show the results for 

the maximum achieved HR, and the FDR associated with 

them. It is important to bear in mind that, though the FDRs 
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presented in Table 4, Table 5 and Table 6 may seem quite 

high, the charts on Figure 9, Figure 11 and Figure 13 provide 

a much better view of the HR versus the FDR relationship. A 

close analysis of those figures clearly shows that a small loss 

in the HR would imply a large reduction of the FDR. Also, 

some techniques that may considerably reduce the FDRs are 

discussed ahead. 

The cascades that best perform would be 
1.05

1
sf

C
=

 and 

1.5
2

sf
C

=
. The ROC curves for both are presented at Figure 9. 

Performance comparison between C1 1.05 and C2 1.5 tested on PDS1
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Figure 9. ROC of the best performing cascades on PDS1. 

Figure 9 shows that cascade 
1.05

2
sf

C
=

 performs better 

than
1.05

1
sf

C
=

. Cascade 
1.5

2
sf

C
=

 can achieve the same HR as 

1.05
1

sf
C

=
 at a lower cost, i.e., lower FDR. Analyzing Figure 9 

one could assume the optimum point to be 0.92HR � and 

0.18FDR � . This would imply that 92% of all cars were 

detected yielding only 18 false detections per every 100 

truthful ones. Some examples of 
1.5

2
sf

C
=

 detections can be 

seen on Figure 10. 

Figure 10. Examples of detections made by 
1.5

2
sf

C
=

on 

PDS1.  

Regarding PDS2, fewer tests were executed. Table 5 clearly 

shows a much higher FDR’s average score. 

Table 5. Performance results for PDS2. 

Name sf Hits Missed 
False 

Detect. 
HR FDR 

C4 1.05 116 28 2150 0,806 14,931 

C5 1.05 79 65 1213 0,549 8,424 

C6 1.05 84 60 1081 0,583 7,507 

 

While 
1.05

4
sf

C
=

 yields the best HR, it also has a FDR of 

14, i.e. for every detection that should be made, 14 false 

detections occur. This number may appear high if the 

cascade is used for actual detection but may loose relevance 

if the cascade is to be used as a simple attention mechanism 

or if further validation tests are to be implemented. 

Performance comparison between C4 1.05, C5 1.05 and C6 1.05 tested on 

PDS2
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Figure 11. ROC of the cascades that best performed on 

PDS2. 

On Figure 11, the optimum point of cascade 
1.05

4
sf

C
=

 

presents values of 0.78HR �  and 0.75FDR � . Tests with 

PDS2 were not entirely satisfactory in what concerns FDRs. 

However, this is a very difficult set and some additional 

procedures could have been implemented to ease the FDR 

and also, in some cases, improve the HR.  

 
Figure 12. PDS2’s apparent problems. 

First of all, the images from PDS3 could be clipped 

without loss of reliable extrapolation of the algorithm’s 

performance (Figure 12). The upper and the lower parts of 

these images contain no information on the road (sky/rear 

mirror and car interior panel). This clipping operation would 

lower considerably the FDR since many of these false 

detections are in these areas of the images. Also, many of the 

detections are very close to each other. An algorithm for 

merging overlapping detections (or a fine tune of the 

performance calculation tolerances mentioned at the 

beginning of this chapter) could be easily implemented thus 

decreasing even more the FDR. In the case of Figure 12, one 

would go from a situation with 15 false detections to none, if 

these procedures were implemented, which would 

dramatically lower the FDR. Taking the previous 

considerations into account, it seemed interesting to test 
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some cascades on PDS3, even knowing that it is even more 

demanding than PDS2. The results are outlined on Table 6 

Table 6. Performance results for PDS3. 

Name sf Hits Missed 
False 

Detect. 
HR FDR 

C1 1.5 78 249 156 0,239 0,477 

C2 1.5 89 238 612 0,272 1,872 

C3 1.5 269 58 1510 0,823 4,618 

1,05 256 71 4837 0,783 14,792 
C4 

1.5 204 123 2028 0,624 6,202 

1.5 158 169 1252 0,483 3,829 
C5 

1.05 79 65 1213 0,549 8,424 

C6 1.5 158 169 1457 0,483 4,456 

C7 1.5 115 212 1649 0,352 5,043 

1.05 295 32 4119 0,902 12,596 

1,9 30 297 43 0,092 0,131 C8 

2,9 189 138 837 0,578 2,560 

 

In this particularly difficult dataset, most of the cascades 

present a low HR. However, cascades
1.5

3
sf

C
=

, 
1.05

4
sf

C
=

 and 

particularly 
1.05

8
sf

C
=

 have acceptable HRs. Of course that 

the FDRs are considerable, but there is the conviction that 

these rates can be substantially reduced by means of the 

already mentioned clipping and merging techniques.  

Performance of C4 1.05 tested on PDS3
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Figure 13. ROC curve of

1.05
4

sf
C

=
 tested on PDS3. 

Performance data was not extracted from 
1.5

3
sf

C
=

 neither 

from 
1.05

8
sf

C
=

 and so Figure 13 presents only the results 

of
1.05

4
sf

C
=

. The optimum point of detection performance for 

cascade 
1.05

4
sf

C
=

would, nonetheless, yield acceptable 

0.72HR �  and 1FDR � . Bearing in mind that FDRs could 

be overstated and that PDS3 is a set of high complexity, 

including images in the rain, city and other tricky obstacles, 

the HR of 
1.05

8
sf

C
=

 is quite acceptable (Figure 14). 

 

5 CONCLUSIONS AND FUTURE WORK 

This paper presented a method based on Haar-like features 

designed for the detection of cars in real roads. Three TDS 

were used for the training of the cascades. Also, three 

different PDS were employed for performance testing. The 

best achieved results show [ 0.92HR � ; 0.18FDR � ]; 

[ 0.78HR � ; 0.75FDR � ] and [ 0.72HR � ; 1FDR � ] 

respectively for PDS 1, 2 and 3. 

   

   
Figure 14.Some detections of PDS3. 

Some methods for decreasing the FDRs were suggested 

and will be further explored in the future. Most of the 

cascades were tested against all PDSs, which may provide 

relevant information regarding the influence of variables 

such as window size, training sample size and variability, 

usage of rotated Haar features and others on the cascade 

performance.  

In the case of PDS1,
1.5

2
sf

C
=

performed better than 
1.05

1
sf

C
=

, 

which seems to corroborate the idea that a larger detection 

window may best describe an object (review Table 3). 

Regarding PDS2, 
1.05

4
sf

C
=

 is more efficient than both 

1.05
5

sf
C

=
 and

1.05
6

sf
C

=
. The increase in performance may be 

due to the usage of both simple and rotated Haar features. 

The processing of the cascades is quite fast, which enables 

the future implementation of this method in a real time 

system. 
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