

1

Abstract — This paper describes a system intended to

identify and track dynamic targets that may change appearance

while moving. The full system includes a pan and tilt unit to

ease tracking and keep the interesting target in the center of the

image. View-based Haar-like features are used for object

recognition while template matching continues to track the

object even when its view is not recognized by object

recognition system. Some of the techniques used to improve the

template matching performance are also presented. Preliminary

results are given and system performs well up to 15 frames per

second on a 320 x 240 image on an ordinary laptop computer.

I. INTRODUCTION

bject recognition using computer vision is a complex

problem. View-based strategies are receiving an

increasing attention because it has been recognized that 3D

reconstruction is difficult in practice and also because of

some psychophysical evidence for such strategies [1].

Therefore, to have a detector that can recognize an object

and track it from every possible view is still a very

demanding challenge. Furthermore, the dimension of a

database to contain all of the objects possible points of view

should be immense just for each single object, unleashing

some other problems concerned with real time processing.

This paper proposes a method for tracking fully dynamic

objects (that may rotate over any axis and, to some extent,

modify shape), based on Haar features [2] [3] that are used

as a single view identifier and complemented by template

matching to track a previously classified object. Templates

are self-updated when Haar features fail and redefined when

they succeed, allowing the object to freely move and rotate

overcoming temporary failures of the identification module.

First, the paper describes some of the ways that were used

to capture the systems attention so that a particular image

region may be processed by the identifier. Secondly, the

tracker’s implementation in a pan and tilt unit is briefly

described and finally some of the several identifying and

tracking techniques studied so far are discussed.

This work’s final objective is to identify and track objects

moving and rotating trough dynamic environments in real

time (15Hz). Dynamic environments are difficult to handle

because of the difficulties in achieving an accurate

background subtraction without depth measurements that

__

Reviewed manuscript received April 13, 2007. Authors are with the

Department of Mechanical Engineering, University of Aveiro, Portugal. E-

mails: {mriem, vsantos}@mec.ua.pt.

could be taken from stereo vision or laser. Moreover, light

conditions may change considerably. Although it is still an

ongoing work, there are some results mainly with using

Haar-like features for identification and tracking with

template matching and the implementation is following a

modular perspective that may allow particular sectors of the

task to be independently developed.

For visual tracking, a servo controlled pan & tilt unit is

used. It supports a velocity of up to 300º/sec in both axes.

Two IEEE1394 cameras are installed on the unit, though, for

now, only one camera is used.

Figure 1 – Pan and tilt unit.

The camera’s lens has a wide angle (89º) which facilitates

tracking since the object is not easily lost from the camera

view. The camera’s vertical axis is coincident with the tilt

plane, while pan movement shifts the image horizontally.

The pan and tilt uses RS232 communication protocol and

supports position, velocity and acceleration configuration.

II. ATTENTION MECHANISMS

The starting action in object tracking is, of course, to find

the object that is to be followed. For this purpose, several

methods are available, ranging from techniques that try to

find the object in the whole image, to others that focus on

some particular object characteristics. This chapter intends to

describe some simple algorithms that play the role of

attention mechanisms. Attention mechanisms are processes

that center the system’s attention into an area of visualization

based on particular, usually simple, features. These are

meant to be used when the system is searching for a known

object to track.

Simple color recognition may work as a good attention

Combining View-based Object Recognition with Template Matching

for the Identification and Tracking of Fully Dynamic Targets

M. Oliveira, V. Santos, Member, IEEE

O

2

mechanism. Ude et al. use it as signal detectors that deploy

attention on a particular image blob [1]. The object to be

followed can be physically tagged with color markers and

these will capture the system’s attention. Alternatively, the

object dominant color can be set as one worthy of attention.

Color recognition is performed in the HSV color space

which suits perfectly for color recognition since, unlike

RGB, it separates color from light intensity and saturation.

Therefore, the simplest approach might be to filter all the

pixels with Hue values between some defined limits. Using a

mask built with these conditions, the pixels with the desired

color are filtered.

(min max) 1

0

Hue Hue Hue val

val

if src mask

else mask

> > ⇒ =

⇒ =
 (1)

Where srcHue is the Hue value for a given pixel and

maskval is the value of the Boolean mask that is being built

and indeed holds the object being segmented. The

undeniable advantage of this method, its simplicity, is on the

other hand contradicted by the fact that minHue and maxHue

values have to be precisely tuned. A very restricted interval

may discard some of the object pixels, while a large,

undemanding interval fails to filter background noise and

does not entirely segment the object. A balance can be

achieved if post processing is used to attempt to extract the

remaining background pixels with some other criteria. Upon

the application of an additional filter to remove isolated

pixel, this operation commonly gives satisfactory results.

Another possibility is to use pixel connectivity to separate

the image into several spots and then select the spot with the

largest amount of pixels. After some experiments, it was

found that the final solution is to find adequate values for

maxHue and minHue, perform an isolated pixel filtering and,

finally, calculate the pixels mass center. Mass center works

well because the weight of the objects pixels (being far more

than the rest) pulls it to the object center. The mass center is

calculated using the following expression:

 ()

()

()

1 1

0 0

1 1

0 0

,

,

c w l h

val

c l

c w l h

val

c l

mask l c l

n
MC x

mask l c c

n

= − = −

= =

= − = −

= =

 
× 

 
 =
 

× 
 
  

∑ ∑

∑ ∑

�

 (2)

Where MC is the vector representing the mass center’s

coordinates, l is the line, c the column and n represents the

total number of filtered pixels.

OpenCV’s functions to access image pixels (cvGet2D)

are quite slow [4] and only unrestricted pointer based access

to pixels is very fast (about 10 times faster than cvGet2D).

To avoid free pointer access and to keep software structure it

is preferable instead to use OpenCV’s built-in functions for

mass center calculation, for which a method has been

devised. Two matrices with the same size of the image are

defined, where the first, called Mline, has for each “pixel” its

corresponding line, and the second, Mcolumn, has for each

“pixel” values equal to its column, defining what is

frequently called a mesh grid.

0 0 ... 0

1 1 ... 1

...

1 1 ... 1

lineM

h h h

 
 
 =
 
 

− − −  

0 1 ... 1

0 1 ... 1

...

0 1 ... 1

column

w

w
M

w

− 
 

− =
 
 

−  

(3)

Both these matrices are constant for every image size and

are therefore created only once at the beginning of the

program. No real time computational power is spent in this

calculation. To get MC, it is simply necessary to sum the

pixels for every mesh grid, using the color mask as a

conditioner for the operation, and divide the final result by n,

the total number of pixels of the object (
val

n mask=∑∑):

 ()

()

()
val line

val column

mask M

mask M
MC x

n

 ⊗
 

⊗ 
=

∑∑
∑∑�

 (4)

Where ⊗ is the symbol for pixel multiplication. This

procedure avoids user retrieval of the original image

information (safe access), using only OpenCV’s functions,

and so, boosting the time of MC calculation when compared

to the common OpenCV’s image data retrieval functions

(8~9 times faster than cvGet2D).

Image segmentation has some operations that are far more

complex and effective. Pyramid segmentation [5] can be

used to group pixels with color similarity and divide the

image into a set of blobs. Each of these blobs represents a

group of connected pixels whose color is similar. However,

these methods are obviously more time costing and therefore

are not used. In the authors’ view, an attention mechanism

must be a simple and fast process, since it does not try to

detect complex features but only some particular attention

capturing properties.

Another possible attention mechanism is the usage of

optical flow. Optical flow techniques try to find pixels that

correspond in two sequential frames, exiting also the

possibility to match some particular features instead of all of

the image’s pixels, using a smaller amount of tracking data

[6] [7].

These mechanism have already been implemented and

tested, though the current object detection technique, Haar

features (IV.B), do not make use of them since they already

have an embedded attention cascade [2]. Nonetheless,

attention mechanisms are relevant many other object

detection techniques that require a previous background

subtraction operation.

III. TRACKING CONTROLLER

Object tracking implies following a predetermined object.

However, in this approach and for the sake of program

modularity, the tracker module does not need to know what

it is following. This approach was chosen because it ensures

total independence of the tracker module. Its inputs are the

current image coordinates (Cxy) of the object to track and the

3

desired coordinates, i.e. where the object is and where it

ought to be. Usually, the desired coordinates, named Target

(Txy) are the image’s center. However, that may not always

be the case.

Figure 2 – Pan & Tilt controller schematics and controller implementation.

Figure 2 illustrates a schematic of the perception unit. The

pan error (Perror) is given by:

error x x

P C T= − (5)

While the tilt error (Terror) is defined as:

error y y

T C T= − (6)

Two independent trackers, one for each image axis, i.e.

one for pan control and one for tilt control, are implemented.

Note that the philosophy of the whole implementation is not

to use vision for exact metric measurements, but conversely,

to use it for some kind of fuzzy control using only

correlations between pixel distances. Therefore, there is no

need to calculate the world coordinates that correspond to

Cxy or to Txy. Without possessing this information, it is hard

to specify the desired angles to pan/tilt based only on the

object image coordinates. These angles have to be specified

to the hardware unit. To solve this problem, fixed angle

values are set. That is, if the object is on the right side of the

image, the pan position’s value (Pposition) is a predetermined

one that pans the cameras entirely to the right, while the

opposite occurs when the object is on the left.

(0) 200º

200º

error position

position

if P P

else P

> ⇒ =

⇒ = −
 (7)

The controller is actually a speed controller (in practice,

position only reports the signal of the speed value). Pan

speed is controlled based on a PID controller that accounts

for Perror magnitude, its past history and future trends

whereas its signal is neglected.

1

0

n n
N

error errorn n

speed p error i error d

n

P P
P K P K P K

t

−

=

−
= + +

∆
∑ (8)

Where Kp, Ki and Kd are the proportional, integral and

derivative constants respectively, n is the iteration index, N

the max amount of iterations to account for, and ∆t

corresponds to the time that has elapsed between iterations n

and n-1. Pan acceleration may also be controlled by a PID

controller but for now it is set as a constant high value with

acceptable results so far.

IV. VIEW-BASED OBJECT RECOGNITION

A. Template Matching

Template matching is one of the simplest forms of

identification. A template is a matrix that is tested on an

image by finding some measure of similarity between the

template and the image’s pixel values. The template is tested

in all possible image locations so, if the image has H × W

pixels and the template h × w, then the matrix that results

from the template matching operation [5] should have size:

 () ()1 1H h W w− + × − + (9)

These so-called measures of similarity can be

mathematically expressed in several ways.

Using the minimum square differences, the best possible

match is obtained for the smallest R (smallest difference

between image and template).

 []
1 1

2

0 0

(,) (', ') (,)
w h

x y

R x y T x y I x x y y
− −

′ ′= =

′ ′= − + +∑∑ (10)

Where R is the resulting value, T the value of the template

and I the value of the image, x’ and y’ the template’s line and

column coordinates respectively, while x and y are the

images line and column coordinates.

Another method is the correlation technique:

 []
1 1

0 0

(,) (', ') (,)
w h

x y

R x y T x y I x x y y
− −

′ ′= =

′ ′= ⋅ + +∑∑ (11)

In this case, the best match is achieved where R is higher

(higher correlation). Template matching is a computationally

demanding operation since the template is tested on every

possible location on the image. However, using OpenCV’s

template matching function, and Intel Performance

Primitives (IPP), one can do these operations in real time.

B. Haar Features

Haar features were first proposed by Viola et al. [2] as an

alternative method for face detection. The general idea is to

describe an object as a cascade of simple feature classifiers.

Positive and negative set of example images are analyzed by

a machine learning algorithm (Adaboost), that builds up a

tree of features selecting, at each stage, the feature that best

separates positive from negative examples. Lienhart et al.

proposed to extend the features by utilizing also 45º rotated

filters and have successfully optimized the classifier’s

performance [3]. Also, Haar features can be used not only

for face detection [8].

For experimental purposes, we have decided to try to

follow the rear of a small model of a car, whose color is very

similar to the background in the laboratory and therefore the

contrast between the object and the background is low. The

4

main idea would be to track the car rear area to, for example,

later fetch its target plate while in free motion.

Figure 3 – Object to follow. Object is identified only when signaled area is

viewed.

Approximately 1400 hand labeled images of the car’s

back were used as the positive set. Images were reduced to a

size of 25x12. Identification’s performance is very effective

concerning scale variations (where variations of up to 400%

of the training image size are successfully handled)

However, when the object is shown at a slightly different

angle (+/- 10º around any axis) than the one used for

training, the detection are not sufficient.

V. DYNAMIC OBJECT TRACKING

This chapter describes how the previously mentioned

modules, i.e. attention mechanisms, view-based object

recognition and tracking, are used and integrated. Figure 4

shows the global architecture of the program, explaining the

interaction between modules.

Figure 4 – A solution to integrate the proposed algorithms.

When an object is identified, a new tracking template is

defined. Defining a template implies defining its size

location and pixels intensity. Currently, due to real time

demands, a grayscale template is used. When the identifier

fails, the template tracking module is activated. This module

executes template matching using the previously stored

tracking template and the current frame. Afterwards, the new

template’s content is updated. The implementation of a car’s

rear identifier using Haar-like features has already been

mentioned in chapter IV.B. Its performance is quite stable

when the car is presented in the desired view. Whenever a

match occurs in the identifier module, its output holds

information about the target window, i.e. a rectangle whose

position, width and height are defined by the identifier

module.

Figure 5 – Haar-like features based identifier. Template’s position, size and

content are updated.

The template’s size, position and content are stored with

the values provided by the identifier. If, in the next iteration,

the identification module is unsuccessful, the new frame is

scanned for the best possible match with the previously

defined template using a template matching operation.

A. Template Tracking Update

The problem of how to update the template is also a

difficult one to attend to. Kaneko et al. [9] have goaled the

problem very well: “There is a trade-off relationship between

accumulated errors and errors caused by image

deformations. If templates are updated frequently, the

accumulated errors become large. Conversely, if a template

is not updated for a long time, a fatal large error occurs as a

result of an image deformation.” Kaneko et al. approach the

problem in a much more complex way, defining inclusively

an advanced template update criterion.

Figure 6 – Template matching when identification module fails.

A very simple way of updating templates is executed:

5

either the last defined template (N=1), or a simple average

between the last N templates, work as the way to define

tracking templates.

0

1

1N

n

n

T T
N=

= ×∑ (12)

B. Template Matching Results Window

The results of template matching operation, which will be

called TMR from now on, is a matrix like the one presented

in Figure 7, taken shortly after the template definition of

Figure 6.

Figure 7 – TMR. Best match for white regions.

As expected, the upper right corner of the frame (brightest

part of TMR) is positioned on top of the car. In TMR,

brightest points correspond to better matches (since the

correlation technique was being used). In Figure 8, TMR is

overlapped to its corresponding frame for a better

comprehension of the process.

Figure 8 – Frame and template matching results.

As mentioned earlier, the size of TMR is equal to the size

of the image subtracted by the size of the template.

C. Gaussian Conditioning

Figure 7 displays the results of the application of template

matching to a frame. In that case, the highest probability

point corresponds to the exact position of the car. However,

since the template matching is done with grayscale images

(for faster processing) and also because the car’s color was

selected (intentionally) very close to the background color,

the template matching sometimes fails, warping to a

completely different zone of the image. In the real world

there is no warping and biological perception takes

advantage of this fact. Of course that frame by frame

analysis, as is the case, is always a discrete process and

warping might occur due to low sampling frequency.

However, assuming that the frame rate is high enough, it can

be fairly trusted that an object early positioned at some

coordinates will have, in the following iteration, a higher

probability of being in the neighborhood of those

coordinates than of having warped to some distant place.

In order to embed this “common sense” into our system,

we have decided to use a 2D Gaussian probability function

centered on the last templates position to build a matrix with

the same size as TMR that will be referred to as GM. The

matrix is calculated as follows:

2 2

2
2

2

1
(,)

2

u v

G u v e
σ

πσ

 +
−  
 = (13)

Where (,)G u v is the function’s value for every u (line)

and v (column) and σ is the standard deviation expressing

how “wide” the Gaussian is defined. In order to use the

proper GM, the probability distribution needs to be centered

on the object’s previous iteration Tp.

Figure 9 – Using the Gaussian filter overlapped onto a frame.

Finally, to condition TMR with GM, it is necessary to

multiply (pixel multiplication) TMR by GM. The output is

that pixels that are far from the previous Tp reduce their

probability (right on Figure 10).

Figure 10 –Gaussian mask (left) and final probability map (right).

D. Fast Gaussian Computation

The Gaussian function calculation is not fast to compute.

Doing this in all iterations (for every Tp) would considerably

decrease the frame rate and an alternative method had to be

developed. As a part of the program initialization processes,

an extended Gaussian matrix (EGM) is calculated. To

6

calculate EMG minimum size, note that, by absurd, the

smallest template one can use is of size 1×1.

Therefore, recovering chapter’s IV.A template matching

results matrix size equation, the biggest size that the template

match results matrix can have is W×H, i.e., the image’s size.

The EGM is a Gaussian 2D function represented in an image

of size (2W)×(2H), with the function centered in the center

of the image. For every given Tp and TMR size, a specific

sub-window of the EGM can be used without having to

recalculate the probability values. Its upper left corner’s

coordinates are given by:

 2

2

height

height px

upperleft

width

width py

TMR
EGM T

EGM
TMR

EGM T

 
− − 

 =
 

− −  

 (14)

while its size is equal to the size of TMR. Using this

technique, the Gaussian matrix’s calculation is limited to the

definition of a particular region of interest of the EGM,

therefore saving precious computation time.

Figure 12 – Selecting a sub-window of the EGM.

VI. RESULTS AND CONCLUSIONS

This paper proposes a method for combining view-based

identification algorithms with template matching trackers.

Up to now, we are able to follow the test object even when it

rotates and moves along the laboratory. Figure 11 shows a

sequence of frames and the tracking results. In frame A, Haar

detection succeeds and a new template is generated. In the

following frames, the car’s rear view disappears due to depth

rotation. Object identification is no longer possible. At this

point, tracking with template matching begins and the object

continues to be followed even though, by frame D, it has

rotated approximately 90 degrees. In frame I a new template

was generated due to a Haar detection event. Therefore the

template at frame I has a different size of the one in frame H.

All of Figure 4’s modules are processed at a rate of 15Hz.

Further work will scatter trough all of the modules. New

object recognition methods will be implemented, namely

Gabor filters [1]. Template tracking can be improved by

doing sparse feature tracking. Conditioning matrices similar

to the Gaussian ones may be utilized to further improve the

tracker’s performance. We are also planning to use more

objects and to attempt to train a generalized cascade for the

detection of cars.

VII. REFERENCES

[1] A. Ude, C. Gaskett, G. Cheng, 2004, Support Vector Machines and

Gabor Kernels for Object Recognition on a Humanoid with Active

Foveated Vision, Proceedings of 2004 IEEEIRSI International

Conference on Intelligent Robots and Systems, Sendai Japan.

[2] P. Viola, M. Jones 2001. Rapid Object Detection using a Boosted

Cascade of Simple Features, Conference on Computer Vision and

Pattern Recognition 2001.

[3] R. Lienhart and J. Maydt. An Extended Set of Haar-like Features for

Rapid Object Detection. IEEE ICIP 2002, Vol. 1, pp. 900-903, Sep.

2002.

[4] OpenCV version 0.9.7 FAQ, Included into OpenCV distribution.

[5] OpenCV version 0.9.7 cxcore and cvaux documentation, Included

into OpenCV distribution.

[6] J. Bouget. Pyramidal Implementation of the Lucas Kanade Feature

Tracker Description of the Algorithm. Included into OpenCV

distribution.

[7] D. Stavens, Introduction to OpenCV, Stanford Artificial Intelligence

Lab. Found at http://robots.stanford.edu/cs223b05/schedule.html.

[8] G. Monteiro, P. Peixoto, U. Nunes, 2006. Vision-based Pedestrian

Detection using Haar-like Features. Encontro Científico, Festival

Nacional de Robótica 2006.

[9] T. Kaneko, O. Hori. Template Update Criterion for Template

Matching of Image Sequences, 16th International Conference on

Pattern Recognition (ICPR'02) - Volume 2, 2002.

Figure 11 –Haar detection (green window in A and I frames) fails at frame B, but tracking continues despite the objects movement and rotation.

