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Abstract — This paper describes a system intended to 

identify and track dynamic targets that may change appearance 

while moving. The full system includes a pan and tilt unit to 

ease tracking and keep the interesting target in the center of the 

image. View-based Haar-like features are used for object 

recognition while template matching continues to track the 

object even when its view is not recognized by object 

recognition system. Some of the techniques used to improve the 

template matching performance are also presented. Preliminary 

results are given and system performs well up to 15 frames per 

second on a 320 x 240 image on an ordinary laptop computer. 

I. INTRODUCTION 

bject recognition using computer vision is a complex 

problem. View-based strategies are receiving an 

increasing attention because it has been recognized that 3D 

reconstruction is difficult in practice and also because of 

some psychophysical evidence for such strategies [1]. 

Therefore, to have a detector that can recognize an object 

and track it from every possible view is still a very 

demanding challenge. Furthermore, the dimension of a 

database to contain all of the objects possible points of view 

should be immense just for each single object, unleashing 

some other problems concerned with real time processing. 

This paper proposes a method for tracking fully dynamic 

objects (that may rotate over any axis and, to some extent, 

modify shape), based on Haar features [2] [3] that are used 

as a single view identifier and complemented by template 

matching to track a previously classified object. Templates 

are self-updated when Haar features fail and redefined when 

they succeed, allowing the object to freely move and rotate 

overcoming temporary failures of the identification module. 

First, the paper describes some of the ways that were used 

to capture the systems attention so that a particular image 

region may be processed by the identifier. Secondly, the 

tracker’s implementation in a pan and tilt unit is briefly 

described and finally some of the several identifying and 

tracking techniques studied so far are discussed. 

This work’s final objective is to identify and track objects 

moving and rotating trough dynamic environments in real 

time (15Hz). Dynamic environments are difficult to handle 

because of the difficulties in achieving an accurate 

background subtraction without depth measurements that 
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could be taken from stereo vision or laser. Moreover, light 

conditions may change considerably. Although it is still an 

ongoing work, there are some results mainly with using 

Haar-like features for identification and tracking with 

template matching and the implementation is following a 

modular perspective that may allow particular sectors of the 

task to be independently developed. 

For visual tracking, a servo controlled pan & tilt unit is 

used. It supports a velocity of up to 300º/sec in both axes. 

Two IEEE1394 cameras are installed on the unit, though, for 

now, only one camera is used. 

 

Figure 1 – Pan and tilt unit. 

The camera’s lens has a wide angle (89º) which facilitates 

tracking since the object is not easily lost from the camera 

view. The camera’s vertical axis is coincident with the tilt 

plane, while pan movement shifts the image horizontally. 

The pan and tilt uses RS232 communication protocol and 

supports position, velocity and acceleration configuration. 

II. ATTENTION MECHANISMS 

The starting action in object tracking is, of course, to find 

the object that is to be followed. For this purpose, several 

methods are available, ranging from techniques that try to 

find the object in the whole image, to others that focus on 

some particular object characteristics. This chapter intends to 

describe some simple algorithms that play the role of 

attention mechanisms. Attention mechanisms are processes 

that center the system’s attention into an area of visualization 

based on particular, usually simple, features. These are 

meant to be used when the system is searching for a known 

object to track.   

Simple color recognition may work as a good attention 
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mechanism. Ude et al. use it as signal detectors that deploy 

attention on a particular image blob [1]. The object to be 

followed can be physically tagged with color markers and 

these will capture the system’s attention. Alternatively, the 

object dominant color can be set as one worthy of attention. 

Color recognition is performed in the HSV color space 

which suits perfectly for color recognition since, unlike 

RGB, it separates color from light intensity and saturation. 

Therefore, the simplest approach might be to filter all the 

pixels with Hue values between some defined limits. Using a 

mask built with these conditions, the pixels with the desired 

color are filtered. 
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Where srcHue is the Hue value for a given pixel and 

maskval is the value of the Boolean mask that is being built 

and indeed holds the object being segmented. The 

undeniable advantage of this method, its simplicity, is on the 

other hand contradicted by the fact that minHue and maxHue 

values have to be precisely tuned. A very restricted interval 

may discard some of the object pixels, while a large, 

undemanding interval fails to filter background noise and 

does not entirely segment the object. A balance can be 

achieved if post processing is used to attempt to extract the 

remaining background pixels with some other criteria. Upon 

the application of an additional filter to remove isolated 

pixel, this operation commonly gives satisfactory results. 

Another possibility is to use pixel connectivity to separate 

the image into several spots and then select the spot with the 

largest amount of pixels. After some experiments, it was 

found that the final solution is to find adequate values for 

maxHue and minHue, perform an isolated pixel filtering and, 

finally, calculate the pixels mass center. Mass center works 

well because the weight of the objects pixels (being far more 

than the rest) pulls it to the object center. The mass center is 

calculated using the following expression: 
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Where MC is the vector representing the mass center’s 

coordinates, l is the line, c the column and n represents the 

total number of filtered pixels. 

OpenCV’s functions to access image pixels (cvGet2D) 

are quite slow [4] and only unrestricted pointer based access 

to pixels is very fast (about 10 times faster than cvGet2D). 

To avoid free pointer access and to keep software structure it 

is preferable instead to use OpenCV’s built-in functions for 

mass center calculation, for which a method has been 

devised. Two matrices with the same size of the image are 

defined, where the first, called Mline, has for each “pixel” its 

corresponding line, and the second, Mcolumn, has for each 

“pixel” values equal to its column, defining what is 

frequently called a mesh grid. 
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Both these matrices are constant for every image size and 

are therefore created only once at the beginning of the 

program. No real time computational power is spent in this 

calculation. To get MC, it is simply necessary to sum the 

pixels for every mesh grid, using the color mask as a 

conditioner for the operation, and divide the final result by n, 

the total number of pixels of the object (
val

n mask=∑∑ ): 
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Where ⊗  is the symbol for pixel multiplication. This 

procedure avoids user retrieval of the original image 

information (safe access), using only OpenCV’s functions, 

and so, boosting the time of MC calculation when compared 

to the common OpenCV’s image data retrieval functions 

(8~9 times faster than cvGet2D).  

Image segmentation has some operations that are far more 

complex and effective. Pyramid segmentation [5] can be 

used to group pixels with color similarity and divide the 

image into a set of blobs. Each of these blobs represents a 

group of connected pixels whose color is similar. However, 

these methods are obviously more time costing and therefore 

are not used. In the authors’ view, an attention mechanism 

must be a simple and fast process, since it does not try to 

detect complex features but only some particular attention 

capturing properties. 

Another possible attention mechanism is the usage of 

optical flow. Optical flow techniques try to find pixels that 

correspond in two sequential frames, exiting also the 

possibility to match some particular features instead of all of 

the image’s pixels, using a smaller amount of tracking data 

[6] [7].  

These mechanism have already been implemented and 

tested, though the current object detection technique, Haar 

features (IV.B), do not make use of them since they already 

have an embedded attention cascade [2]. Nonetheless, 

attention mechanisms are relevant many other object 

detection techniques that require a previous background 

subtraction operation.  

III. TRACKING CONTROLLER 

Object tracking implies following a predetermined object. 

However, in this approach and for the sake of program 

modularity, the tracker module does not need to know what 

it is following. This approach was chosen because it ensures 

total independence of the tracker module. Its inputs are the 

current image coordinates (Cxy) of the object to track and the 
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desired coordinates, i.e. where the object is and where it 

ought to be. Usually, the desired coordinates, named Target 

(Txy) are the image’s center. However, that may not always 

be the case. 

 

Figure 2 – Pan & Tilt controller schematics and controller implementation. 

Figure 2 illustrates a schematic of the perception unit. The 

pan error (Perror) is given by: 

 
error x x

P C T= −  (5) 

While the tilt error (Terror) is defined as: 

 
error y y

T C T= −  (6) 

Two independent trackers, one for each image axis, i.e. 

one for pan control and one for tilt control, are implemented. 

Note that the philosophy of the whole implementation is not 

to use vision for exact metric measurements, but conversely, 

to use it for some kind of fuzzy control using only 

correlations between pixel distances. Therefore, there is no 

need to calculate the world coordinates that correspond to 

Cxy or to Txy. Without possessing this information, it is hard 

to specify the desired angles to pan/tilt based only on the 

object image coordinates. These angles have to be specified 

to the hardware unit. To solve this problem, fixed angle 

values are set. That is, if the object is on the right side of the 

image, the pan position’s value (Pposition) is a predetermined 

one that pans the cameras entirely to the right, while the 

opposite occurs when the object is on the left. 
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The controller is actually a speed controller (in practice, 

position only reports the signal of the speed value). Pan 

speed is controlled based on a PID controller that accounts 

for Perror magnitude, its past history and future trends 

whereas its signal is neglected. 
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Where Kp, Ki and Kd are the proportional, integral and 

derivative constants respectively, n is the iteration index, N 

the max amount of iterations to account for, and ∆t 

corresponds to the time that has elapsed between iterations n 

and n-1. Pan acceleration may also be controlled by a PID 

controller but for now it is set as a constant high value with 

acceptable results so far. 

IV. VIEW-BASED OBJECT RECOGNITION 

A. Template Matching 

Template matching is one of the simplest forms of 

identification. A template is a matrix that is tested on an 

image by finding some measure of similarity between the 

template and the image’s pixel values. The template is tested 

in all possible image locations so, if the image has H × W 

pixels and the template h × w, then the matrix that results 

from the template matching operation [5] should have size: 

 ( ) ( )1 1H h W w− + × − +  (9) 

These so-called measures of similarity can be 

mathematically expressed in several ways. 

Using the minimum square differences, the best possible 

match is obtained for the smallest R (smallest difference 

between image and template). 
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Where R is the resulting value, T the value of the template 

and I the value of the image, x’ and y’ the template’s line and 

column coordinates respectively, while x and y are the 

images line and column coordinates. 

Another method is the correlation technique: 
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In this case, the best match is achieved where R is higher 

(higher correlation). Template matching is a computationally 

demanding operation since the template is tested on every 

possible location on the image. However, using OpenCV’s 

template matching function, and Intel Performance 

Primitives (IPP), one can do these operations in real time.  

B. Haar Features 

Haar features were first proposed by Viola et al. [2] as an 

alternative method for face detection. The general idea is to 

describe an object as a cascade of simple feature classifiers. 

Positive and negative set of example images are analyzed by  

a machine learning algorithm (Adaboost), that builds up a 

tree of features selecting, at each stage, the feature that best 

separates positive from negative examples. Lienhart et al. 

proposed to extend the features by utilizing also 45º rotated 

filters and have successfully optimized the classifier’s 

performance [3]. Also, Haar features can be used not only 

for face detection [8]. 

For experimental purposes, we have decided to try to 

follow the rear of a small model of a car, whose color is very 

similar to the background in the laboratory and therefore the 

contrast between the object and the background is low. The 
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main idea would be to track the car rear area to, for example, 

later fetch its target plate while in free motion. 

 

Figure 3 – Object to follow. Object is identified only when signaled area is 

viewed. 

Approximately 1400 hand labeled images of the car’s 

back were used as the positive set. Images were reduced to a 

size of 25x12. Identification’s performance is very effective 

concerning scale variations (where variations of up to 400% 

of the training image size are successfully handled) 

However, when the object is shown at a slightly different 

angle (+/- 10º around any axis) than the one used for 

training, the detection are not sufficient. 

V. DYNAMIC OBJECT TRACKING 

This chapter describes how the previously mentioned 

modules, i.e. attention mechanisms, view-based object 

recognition and tracking, are used and integrated. Figure 4 

shows the global architecture of the program, explaining the 

interaction between modules.  

 

Figure 4 – A solution to integrate the proposed algorithms. 

When an object is identified, a new tracking template is 

defined. Defining a template implies defining its size 

location and pixels intensity. Currently, due to real time 

demands, a grayscale template is used. When the identifier 

fails, the template tracking module is activated. This module 

executes template matching using the previously stored 

tracking template and the current frame. Afterwards, the new 

template’s content is updated. The implementation of a car’s 

rear identifier using Haar-like features has already been 

mentioned in chapter IV.B. Its performance is quite stable 

when the car is presented in the desired view. Whenever a 

match occurs in the identifier module, its output holds 

information about the target window, i.e. a rectangle whose 

position, width and height are defined by the identifier 

module. 

 

Figure 5 – Haar-like features based identifier. Template’s position, size and 

content are updated. 

The template’s size, position and content are stored with 

the values provided by the identifier. If, in the next iteration, 

the identification module is unsuccessful, the new frame is 

scanned for the best possible match with the previously 

defined template using a template matching operation. 

A. Template Tracking Update 

The problem of how to update the template is also a 

difficult one to attend to. Kaneko et al. [9] have goaled the 

problem very well: “There is a trade-off relationship between 

accumulated errors and errors caused by image 

deformations. If templates are updated frequently, the 

accumulated errors become large. Conversely, if a template 

is not updated for a long time, a fatal large error occurs as a 

result of an image deformation.” Kaneko et al. approach the 

problem in a much more complex way, defining inclusively 

an advanced template update criterion.  

 

Figure 6 – Template matching when identification module fails. 

A very simple way of updating templates is executed: 
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either the last defined template (N=1), or a simple average 

between the last N templates, work as the way to define 

tracking templates. 
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B. Template Matching Results Window 

The results of template matching operation, which will be 

called TMR from now on, is a matrix like the one presented 

in Figure 7, taken shortly after the template definition of 

Figure 6. 

 

Figure 7 – TMR. Best match for white regions. 

As expected, the upper right corner of the frame (brightest 

part of TMR) is positioned on top of the car. In TMR, 

brightest points correspond to better matches (since the 

correlation technique was being used). In Figure 8, TMR is 

overlapped to its corresponding frame for a better 

comprehension of the process. 

 

Figure 8 – Frame and template matching results. 

As mentioned earlier, the size of TMR is equal to the size 

of the image subtracted by the size of the template. 

C. Gaussian Conditioning 

Figure 7 displays the results of the application of template 

matching to a frame. In that case, the highest probability 

point corresponds to the exact position of the car. However, 

since the template matching is done with grayscale images 

(for faster processing) and also because the car’s color was 

selected (intentionally) very close to the background color, 

the template matching sometimes fails, warping to a 

completely different zone of the image. In the real world 

there is no warping and biological perception takes 

advantage of this fact. Of course that frame by frame 

analysis, as is the case, is always a discrete process and 

warping might occur due to low sampling frequency. 

However, assuming that the frame rate is high enough, it can 

be fairly trusted that an object early positioned at some 

coordinates will have, in the following iteration, a higher 

probability of being in the neighborhood of those 

coordinates than of having warped to some distant place. 

In order to embed this “common sense” into our system, 

we have decided to use a 2D Gaussian probability function 

centered on the last templates position to build a matrix with 

the same size as TMR that will be referred to as GM. The 

matrix is calculated as follows: 
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Where ( , )G u v is the function’s value for every u (line) 

and v (column) and σ is the standard deviation expressing 

how “wide” the Gaussian is defined. In order to use the 

proper GM, the probability distribution needs to be centered 

on the object’s previous iteration Tp.  

 

Figure 9 – Using the Gaussian filter overlapped onto a frame. 

Finally, to condition TMR with GM, it is necessary to 

multiply (pixel multiplication) TMR by GM. The output is 

that pixels that are far from the previous Tp reduce their 

probability (right on Figure 10). 

 

Figure 10 –Gaussian mask (left) and final probability map (right). 

D. Fast Gaussian Computation 

The Gaussian function calculation is not fast to compute. 

Doing this in all iterations (for every Tp) would considerably 

decrease the frame rate and an alternative method had to be 

developed. As a part of the program initialization processes, 

an extended Gaussian matrix (EGM) is calculated. To 



 

 

 

6 

calculate EMG minimum size, note that, by absurd, the 

smallest template one can use is of size 1×1. 

Therefore, recovering chapter’s IV.A template matching 

results matrix size equation, the biggest size that the template 

match results matrix can have is W×H, i.e., the image’s size. 

The EGM is a Gaussian 2D function represented in an image 

of size (2W)×(2H), with the function centered in the center 

of the image. For every given Tp and TMR size, a specific 

sub-window of the EGM can be used without having to 

recalculate the probability values. Its upper left corner’s 

coordinates are given by: 

 2
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while its size is equal to the size of TMR. Using this 

technique, the Gaussian matrix’s calculation is limited to the 

definition of a particular region of interest of the EGM, 

therefore saving precious computation time. 

 

Figure 12 – Selecting a sub-window of the EGM. 

VI. RESULTS AND CONCLUSIONS 

This paper proposes a method for combining view-based 

identification algorithms with template matching trackers. 

Up to now, we are able to follow the test object even when it 

rotates and moves along the laboratory. Figure 11 shows a 

sequence of frames and the tracking results. In frame A, Haar 

detection succeeds and a new template is generated. In the 

following frames, the car’s rear view disappears due to depth 

rotation. Object identification is no longer possible. At this 

point, tracking with template matching begins and the object 

continues to be followed even though, by frame D, it has 

rotated approximately 90 degrees. In frame I a new template 

was generated due to a Haar detection event. Therefore the 

template at frame I has a different size of the one in frame H.  

All of Figure 4’s modules are processed at a rate of 15Hz. 

Further work will scatter trough all of the modules. New 

object recognition methods will be implemented, namely 

Gabor filters [1]. Template tracking can be improved by 

doing sparse feature tracking. Conditioning matrices similar 

to the Gaussian ones may be utilized to further improve the 

tracker’s performance. We are also planning to use more 

objects and to attempt to train a generalized cascade for the 

detection of cars. 
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Figure 11 –Haar detection (green window in A and I frames) fails at frame B, but tracking continues despite the objects movement and rotation. 


