

1

Abstract — This paper presents a set of algorithms and

techniques based exclusively on artificial vision to provide

robust and efficient real-time perception for a mobile robot to

follow a road-like track, including several obstacles, in the

context of a mobile robot competition concerned with

Autonomous Driving. The paper shows how a set of basic image

processing methods and elementary vision techniques can be

arranged and combined to provide competitive results on the

challenging task of autonomous navigation. The methods were

applied on a robot that obtained the first place in the national

competition of Robot Autonomous Driving in 2006.

I. INTRODUCTION

HE Portuguese Robotics Open (Festival Nacional de

Robótica) is a mobile robot competition introduced in

2001 where one of the challenges for the robots is to

navigate autonomously on a road-like track [1][2][3]. The

task complexity is increased by the presence of a zebra

crossing area and a mid-road dashed line plus traffic lights to

regulate and interfere in the navigation sequences. Further

on, there is a tunnel which affects light conditions and, above

all in matters of difficulty, the presence of unknown

obstacles in the form of boxes covering about half of the

road and a road maintenance area which completely reshapes

the road using alternative delimiters which must be

respected.

Parking area with
an unknown

obstacle

Unknown
obstacle

Tunnel

Road
maintenance area

Zebra crossing and
traffic light panel

Figure 1 - Autonomous Driving competition area.

There are essentially three main paradigms to perform

autonomous navigation along the road-like track: odometric,

Reviewed Manuscript received April 13, 2007.

Authors are with the Department of Mechanical Engineering, University

of Aveiro, Portugal. E-mails: {mriem, vsantos}@mec.ua.pt.

inertial or global referencing methods; line-following

techniques; or, finally, following the track itself instead of

lines.

Odometric and inertial methods require a model of the

environment and is not easily extensible to general cases,

besides the fact of cumulative unbounded errors due to

proprioceptive sensors. Line-following techniques are quite

common and still used nowadays [4] [5], and could do the

job, but on this problem, in several parts of the track, the

lines are absent or are in excessive number, forcing

frequently the navigation to be done in open loop control,

making the approach prone to failure and not efficient. For

these reasons, the authors decided to use track-based

navigation, in the idea pioneered by several authors, namely

D. Pomerleau [6], but using simple on-the-fly processing

tools for robustness, and very little previous knowledge of

the environment.

Now that the navigation paradigm was decided,

overcoming the entire set of challenges could be done with

the assumption of one of two possible approaches: single

frame and non-contextual processing, or a time dependent

analysis including predictive filters and similar stochastic

tools. This latter alternative based on statistical processing of

data, based on models, either for the perception or the

environment features, was at first not considered primordial

because there was the expectation that a deterministic single-

frame processing would be possible. This expectation was

later verified and the alternative approach was then

discarded.

Obviously, the algorithm has to be fast enough for real

time navigation and at least the system must desirably be

able to process 10 to 15 frames per second, since at 3 meters

per second this would imply one frame being processed

every 20 cm of traveled distance by the robot. As will be

shown, this was perfectly achieved and the overall navigation

algorithm, including vision processing, turned out to be quite

robust practically without any fatal failures during the

competitions.

II. HARDWARE AND COMPUTATIONAL SYSTEM

For the sake of easier comprehension of the overall

navigation and processing system, a brief description of the

entire set-up is now given.

The robot, named Atlas 4, is fairly 1 meter long per 65 cm

wide, possesses traction wheels coupled with a mechanical

differential gear, and uses an Ackerman steering system.

A Vision-based Solution for the Navigation of a Mobile Robot in a

Road-like Environment

M. Oliveira, V. Santos, Member, IEEE

T

2

Two wide-angle cameras (89º field view each) plus a third

one dedicated to traffic light processing fulfil the vision

hardware, and are Firewire (IEEE1394) compliant. The low

level control is achieved by a distributed system based on

PIC microcontrollers which interface motors and other

accessory peripherals, and there is a central system based on

a laptop running Linux with the adequate drivers for Firewire

image acquisition, and using the OpenCV open source

library for image processing. Atlas 4 (Figure 2) is a revised

version of Atlas 3, which has participated in the 2005 edition

of the Portuguese Robotics Open.

Figure 2 –The Atlas IV robot.

III. IMAGE ACQUISITION AND MERGING

For road navigation, the robot uses two cameras with the

purpose of obtaining a very wide angle image. Cameras are

not tightly registered so, in order to merge the images from

the cameras, image transformations have to be accounted for.

Furthermore, since the cameras possess wide angle lenses a

considerable amount of distortion occurs. At first glimpse,

the full modeling of both the lenses parameters and the

perspective transformations would be expected in order to

obtain a perfect (geometrically accurate) merging of the

information. However, the authors have come to the

conclusion that these calibration procedures were fairly

demanding and could be easily lost due to unstable camera

physical fixations and other hardware issues. Based on this

observation, a different approach was attempted where a

rough image merging would be enough. In fact, image

merging is required to be accurate only if precise geometrical

features are to be extracted from the combined image. That

is not the case on this road navigation problem. The rough

image combination suits well if the subsequent road filters

are only minimally affected by it. Figure 3 shows the original

images obtained on each camera.

Figure 3 - Separate left and right images as given by the cameras.

Since only a rough combination of both images was

required, a manual calibration of the distortion parameters is

performed for each camera in order to combine them; this

procedure is executed offline, therefore without any effect on

the efficiency of the navigation algorithm. An interactive

application was then developed to allow this manual

calibration and its interface is shown in Figure 4.

Figure 4 - Interface of the application for manual image calibration,

It should be noted that this method is entirely empiric,

since for more rigorous combinations a more precise

perspective transformation should also be taken into account.

IV. FILTERING ROAD IMAGES

A. Basic Image Filters

Several simple image processing techniques and filters are

applied to each frame. All of them aim to obtain an image

that is suited for the retrieval of navigation relevant

information. Furthermore, with these filters, the navigation

output is expected to be less prone to errors, hence

improving the reliability of the whole process.

It is the user’s initial responsibility to manually achieve

the best possible match between both images, including

tuning the image overlapping in the horizontal direction. The

overlapping corresponds to the amount of columns that are

merged (a simple mean) on both images.

Figure 5 - RGB threshold of merged images in the offline user interface.

The application used to manually configure the image

3

merging also allows adjusting a threshold value for the

processing that will follow (Figure 5). A fixed threshold was

found to be enough as opposed to dynamic threshold.

1) Image Threshold

For faster processing, and considering that no relevant

information is lost, a single channel of the RGB input image

is selected, and any of the three channels yields similar

results for this kind of images. Alternatively, the RGB image

can be converted to grayscale, but either way, the resulting

image should have only one channel for the remainder

processing. As mentioned, this operation’s input parameter,

the threshold limit, is usually tuned offline so that none of

the road border lines looses connectivity, even if this implies

some spurious white spots remaining present in the image.

This “poor tuning” is not critical since subsequent

processes will be able to filter the spurious spots requiring

only that the road border line connectivity is not lost. In

Figure 7 (binary version of Figure 6) many spurious white

spots, both inside and outside the road, were not eliminated

but the road line connectivity remains solid.

Figure 6 - A view of the road in RGB.

Figure 7 - Binary version of image in Figure 6

2) Filter for isolated points

A filter for the removal of isolated pixels or very small

spots is also applied to the binary image. This kind of

operation is quite common in image processing and a simple

3x3 kernel like the following can be used.

1 1 1

1 8 1

1 1 1

ipt
K

− − −
 = − −
 − − −

 (1)

The result of the convolution of the image with Kipt is a

mask that is used to erase the pixels whose result of

convolution was equal to 8.

B. Advanced Road Filter

The Advanced Road Filter is not a filter in the usual sense

but rather a predefined sequence of simple image operations,

most of them of Boolean nature and hence computationally

efficient. This methodology is the core of the whole

navigation process but, to be applied, some conditions or

characteristics in the input image must be met or imposed.

1) Border line connectivity

The most important condition is that the road border lines

must always be connected. If the condition is not met for one

of the lines, the process will rely on the other line, although

with a lower robustness. If by any chance, in one occasional

frame, none of the lines is connected, the process takes no

decisions and uses the previous frame’s decision, but in the

unlikely possibility of this to happen it will certainly be

temporary.

2) Virtual horizon selection

A virtual horizontal line, henceforth simply called

“horizon”, is drawn in the source image at a height so that at

least one of the road border lines always touches it. The

horizon line index placement can be performed at a fixed

height coordinate or computed dynamically. This last option

was attempted in several ways although the results were no

better when compared to its simpler counterpart. The tools

developed to dynamically select the horizon’s coordinate

were mostly based on an iterative process where a line would

be drawn, the fill operations executed, and the results

compared to some type of evaluation criteria. However,

given that the fill operations are quite computationally

demanding in the whole navigation process, performing them

iteratively is of no major advantage.

3) Inner seed point

A predetermined point called inner seed point is placed

always inside the road in a position that corresponds to a

black pixel. The first premise is actually not hard to ensure

since that a high height value combined with a column value

close to half of the image width usually satisfies this

condition. In what regards the black pixel condition, a simple

search routine around the preferred inner seed point

coordinates solves the problem. The importance of this

condition is due to the fact that the flood fill operations will

start here and so it is important to be sure that the inner seed

point connects most of the blacked area inside the road.

Further tests can be done to ensure this. Two or more seed

points can be used in a parallel process that unifies once the

flood fill is completed. The unification is done with a mere

Boolean AND between the flood fill results.

4) Sequence of operations

Once all of the above conditions are met, the actual

process can now be applied.

4

Figure 8 - The original merged image and its binary version.

The image is made binary (Figure 8) using a threshold

value obeying the criteria defined in section IV.A.1).

Then, the horizon line is artificially inserted in the binary

image (Figure 9). This covers the top of the road ensuring

that there is a delimited area in the image that actually

corresponds to the road. All the pixels above the image

horizon are erased (set to black). The erased information will

have no influence on the navigation. However, erasing the

pixels will help some subsequent operations.

Figure 9 - Placement of Horizon.

Now, the first fill can be performed (Figure 10). The

image is filled using the inner seed point as the start of the

process. It is important to obtain the filled area as the next

work image.

Figure 10 - Inner road fill.

A new horizon line is drawn on the new image (Figure

11). This second horizon line should be inserted in the same

place where the first was. Its purpose is to cover the top of

the previous image, but still allow the subsequent fill

operation to propagate to the lower part of the image (under

the horizon). In order to do this, the line’s length is two

pixels shorter than the image’s width. The line is centered on

the image and so two “connection channels” remain at

columns with coordinate 0 and image width.

With a new horizon set, the last fill operation is executed.

Any point above the horizon can be used as seed point since

the area was previously erased. If one uses the negative of

the filled area image, its white pixels correspond exactly to

the road bellow the horizon.

Figure 11 - Outer road fill.

The advantage of the process is that with the resulting

information one can think in terms of forbidden/allowed

space. The resultant image holds important information for

the navigation process since it describes which pixels are

inside the road and which are not. Furthermore, the pixels on

the edge of the road may easily report the curvature of the

road. The area of the road can also be easily calculated, if

needed.

V. ROAD INFORMATION COMPRESSION

The previously presented road filter obtains information

about the road’s features that are more trustworthy than the

ones in the original image. There are several ways of using

this information. In the present case, and considering some

particular road and robot characteristics such as the

maximum useful distance to perceive (arbitrarily set at about

2 meters) and the maximum road curvature (which is known

before hand and never very hard to comply to), it was

decided to compress the information from one image with N

pixels to just 4 point coordinates. N can be given by.

 []
Im ImWidth Height

width width height

Merge age Merge age

N Limg Rimg OV Limg H = + − × −
������������� �������

 (2)

Where Limg represents the left side image, Rimg the right

side, OV is the preset overlap between original images and H

the defined horizon column value. These points, two on each

side, approximate the road to a trapezium that we call “box”.

A. Road Area Search – Box Analysis

To build the box, four points have to be found. The points

are called top right (TR), top left (TL), low right (LR) and

5

low left (LL). The search algorithm is very simple. Starting

from preset coordinates for each point, a white pixel is

searched from the outside to the inside of the road and to the

bottom or to the top of the image for top and low points

respectively. When found, its line and column coordinates

are stored in the corresponding points and the search is

finished.

Figure 12 - Box Points Search.

Notice that both ,LL TL and ,LR TR slopes define very

well the road limits, without relevant loss of information.

Sometimes, however, some of these points cannot be found

and in that case the point is invalidated.

B. Calculating the GoTo Points - GPT

All navigation decisions are based or deduced from the

box analysis information. The next step is now to calculate

points to where the robot should head. We call these points

GoTo points (GTP). Several GTPs are created based on

several different criteria. Also, different GTPs need the

validity of distinct box points in order to be calculated. An

overview of the procedure to calculate GTPs is shown in

Figure 13.

Figure 13 - GoTo points calculation procedure.

The first GTP is the Top GoTo point (Tgtp). To be

calculated, it requires the validity of both top points in the

box analysis. It is obtained by finding the coordinates in the

middle of the line that unites TL and TR.

2

gtp

TR TL
T

+
=

��� ���

����

 (3)

The Tgtp point, when defined, is the preferred one. It

ensures smooth navigation by aiming the steer towards the

end of the vision field. By using LR and LL box points, a

similar low GTP (Lgtp) can be calculated.

Sometimes, however, these pairs of box points are not

valid. Due to this, some other GTPs are calculated. These are

less accurate than the ones mentioned before, but on the

other hand they don’t need as much information. It is the

case of both left GoTo points BLgtp in which only TL and LL

are used.

()
2

x

gtp

y

RW y
LL

BL

LL

α

+ × =

������

 (4)

where RW(y) is the typical road width as a function of the

selected line. It is found by using a lookup table that was

built during calibration and α is the difference between the

typical left road line angle obtained during calibration and

the angle formed by ,TL LL and the horizontal line.

 tan
y y

x x

TL LL

TL LL
α β

−
= −

−
 (5)

where β is the typical left road line angle, also obtained

during calibration procedures. Of course, the same

calculation can be made to find BRgtp on the other side of the

road.

In the worst case scenario, only LL box point is valid (or

LR, but the calculation is the same). The only information

available is the point’s coordinates. Therefore, a similar

calculation is made to find the single left GoTo point SLgtp,

but no angle can be used in the process.

()
2

x

gtp

y

RW y
LL

SL

LL

+ =

������

 (6)

In all of the previously mentioned points, the goal is,

despite having different approaches, to try to head for the

center of the road. Sometimes this might not be the desired

behavior. It is interesting to try to drive in the middle of the

right or left lane. Following this reasoning, a new set of

points can be created where the image road width is not

divided by 2 but by 4. With this approach, a new set of

points is defined in order to attempt to drive on each one of

the lanes. In the application at hand, following one of the

lanes is a behavior rarely used. Thus, only the simplest

GTPs are calculated for this mode, the lane single left and

right GoTo points.

()
4

x

gtp

y

RW y
LL

LaneSL

LL

+ =

�������������

 (7)

All these points are mere possibilities of where the

direction should steer to. They are all calculated whenever

6

possible. Hence, there is a parallelization of the process of

navigation at this point that will be united further ahead.

Figure 14 - GoTo points calculation.

C. GTP validation tests

The calculation of the GTPs as exposed in section V.B,

especially regarding the Tgtp and Lgtp, might sometimes be

inadequate. For this reason some validation tests are

performed to check the validity of the points.

1) Line stepping test

Because the Tgtp’s height value is low (it’s close to the top

of the image), this implies that heading towards this point

might sometimes cut trough curves or obstacles that are

closer (because the steer planning aims very far). Figure 15

shows a view of the road with an obstacle very close to the

robot. The obstacle is white and so, is handled by the

advanced road filter as a mere increase in the thickness of the

line, therefore being considered as an area outside of the

road (Figure 16).

Figure 15 - Obstacle on the road.

Since the obstacle is very close to the robot, heading

towards the end of the road might disregard the object’s

presence and possibly cause the robot to bump into the

obstacle. This situation must be detected and the Tgtp

invalidated. Once again, a less accurate geometrical criterion

suits adequately. Since both cameras are at the same distance

to the robot’s longitudinal axis, it can be assumed that its

position in the image is at the bottom (line) and middle

column of the image. This point is called present point (PP).

Two points are obtained by shifting the column coordinate of

PP left and right. The amount to shift can be obtained as a

relation between the calibrated road width RW, and the robot

width to road width ratio, this last is also measured

experimentally:

 ()x yShift PP RW PP r= × × (8)

Where r represents the robot width to road width ratio.

These points are referred to as low line stepping points

LLST. These roughly represent the robot’s width as if it was

seeing himself positioned at height equal to PP’s height. The

same is done using the Tgtp as shift origin, obtaining the top

line stepping points TLST.

Figure 16 - Line stepping test.

The criterion used to validate Tgtp is simple. Lines

left left
LLST TLTS and

right right
LLST TLTS (thick lines in Figure

16) must not cross through any black region, since that,

because of the advanced road filter, the whole area inside the

road is painted in white. If this condition is not met, Tgtp is

invalidated. Figure 16 is generated automatically from the

navigation program; on the right side, just below the horizon,

one can see the result of the application of this test to the left

and the right line. The test on the left is 1, which means that

no line stepping occurs on the left. The result for the right

side, on the other hand, indicates that line stepping will exist

and therefore Tgpt was discarded.

2) Anomalous road width

Another test checks the variation of the road width at line

coordinates Tgtpx and Lgtpx, and compares it to the typical road

width for those coordinates.

()

x x

gtpx

TR TL
arw

RW T

−
= (9)

The value of arw is equal to 1 if the widths are equal and

is less than 1 when the road width is smaller than typical, and

vice versa. The criterion is that arw must lay between some

preset variation of the typical road width.

Figure 17 - View of a junction.

Figure 17 shows a view of a junction. In this case, the road

width considerably exceeds the typical value. Hence, it is not

7

reliable. Accordingly, points that are based on the image

road width (and not on the typical road width), i.e. that are

based on the difference from the left and right box points

column coordinates, must be discarded.

Figure 18 - Junction handling.

When the same happens for a confined road width, those

points are also invalidated and the navigation algorithm

detects it and also communicates it to the user for debug

purposes (Figure 18).

D. Calculation of the Drive Angle for each GTP

For each calculated and validated GTP, an angle of

heading is found. This angle’s calculation is actually very

simple since it is merely translated by the angle between line

that unites PP and the GTP in question and the vertical axis.

 tan
2

y y

GTPi

x x

GTPi PP
DA

GTPi PP

π −
= −

−
 (10)

E. Decision making process

As was mentioned in section V.B, the navigation process

finds several GTPs and all of them are plausible possibilities

depending on the context or even the desired navigation

behavior. “Context” means the multitude of state flags that

are computed for each road image. For example, in normal

conditions, SLgtp has priority over LaneSLgtp. This can be

easily understood by the assertion that a behavior that tries to

center the robot in the road is preferred to the one that

attempts a middle lane placement. However, when an

obstacle is present on the road, and a confined road width

flag is raised, as in Figure 15 and Figure 16, the opposite

might be true. In other words, if an obstacle is blocking the

right lane, then, for safety reasons, the LaneSLgtp has priority

until the obstacle is overcome (or until a predefined amount

of time elapses). The decision making process handles all the

possibilities and elects the optimum behavior (GTP). It’s a

large function of nested if-else decision making, but the

advantage is that, for achieving a complete different

navigational behavior, one has to change only this part of the

code.

Another important behavioral decision is whether to go

right or left when a road junction appears, i.e., an excessive

road width is detected (Figure 17 and Figure 18). The

decision is dependent on the priority of SLgtp in relation to

SRgtp. If the first has precedence over the second, the robot

will go left. This is usually decided by upper levels of the

navigation algorithm.

VI. PATTERN RECOGNITION

A. Detection of the Zebra Crossing Area

Because of the advanced road filter, it is very easy to

extract the pixels that are inside the road. This can be used

with different functionalities. In our case, the zebra crossing

areas (henceforth named simply “cross” or “cross area”)

needs to be detected by the vision system.

Figure 19 - A view of the cross.

Figure 19 illustrates a crossing area, which, due to the

rough image merging, possesses a highly adulterated

geometry.

Figure 20 First fill for the cross view image.

Figure 20 shows the threshold and horizon placement

stage of the advanced road filter view of the cross, while

Figure 21 represents the final output.

Figure 21 - Second fill for the cross view image.

The inner road spots can be obtained by performing a

logical AND operation between the images in Figure 20 and

Figure 21. The result can be seen in Figure 22.

8

Figure 22 - Inner road spots including the cross area.

The resulting image possesses various spots which are

separated based on their connectivity and are tested

separately, for they are all cross feature candidates. For the

actual test on each spot, the minimum area rectangle is

calculated and its height to width ratio is compared to that of

the actual cross (measured experimentally). Close values

raise the flag that indicates the presence of the cross. This

procedure, especially the segmentation part, is still

computationally demanding, and therefore the road image is

sliced horizontally (represented in the lower left part of

Figure 23). The amount of white pixels in each slice is

evaluated, and the algorithm only tests the spots that appear

on the slice that has the biggest amount of white pixels.

Some time can be saved by using this guessing method prior

to the segmentation of the spots.

Figure 23 - Cross detection.

B. Traffic Lights Analysis

In the competition, the robot has to stop at the zebra

crossing and recognize the signs displayed in the traffic

lights panel. For this purpose, a third camera was installed on

the robot.

Figure 24 - Possible signs displayed by the traffic lights.

Figure 24 shows the possible signs that mean, stop, go left

at junction, go forward at junction, last lap and park,

respectively from left to right. Up until the 2005 competition,

the traffic light was a custom-built equipment that displayed

the signs trough the control of an array of LED’s (Figure 25).

Figure 25 - Traffic lights in 2005(left) and algorithm output (right).

The recognition was achieved using a conversion to the

HSV color space followed by the use of separate filters on

each channel. This technique allowed color recognition.

Complementarily, some very simple procedure of shape

analysis was performed to detect the sign orientation [7].

This technique lost reliability for the 2006 edition, when

the traffic lights were then displayed on a flat screen

monitor. The monitor’s brand and model was not available

and so the variation of brightness, contrast, etc, were

impossible to predict. Additionally, due to the variation in

lighting conditions, a new method was attempted. Highly

efficient, Open Source computer Vision (Opencv) and Intel

Performance Primitives (IPP) based, template matching is

then performed on the image. No scaling or rotation is taken

into account, although most of the times the results are quite

satisfactory. Real time template matching (10Hz to 15Hz

doing template matching plus navigation) is achieved.

Figure 26 - Traffic lights in 2006 (left) and used templates (right).

Due to the fact that the zebra cross is detected before

reaching it, template matching can be executed before the

robot stops at the zebra. This enabled to use traffic lights

recognition at distance and in motion; therefore, if the sign

was not ordering a stop, the robot would not stop to perform

recognition, it would simply keep up its speed and dash

trough the zebra without slowing down.

C. Open loop backwards maneuvering

The robot uses Ackerman system and its size compared to

the road is considerable and also its maximum steering is

limited. Obviously, it is not a holonomic robot. Because of

this, some of the elected GTPs steer angle that results from

the navigation algorithm exceeds the physical limits of the

car. When a steer angle above the maximum possible is

requested, an open loop backwards maneuvering is

performed. A special routine is launched that steers to a

preset angle on the opposite quadrant of the one requested by

the navigation. The robot’s speed is then set to reverse for a

preset duration, after which a new frame is processed. If the

9

new steer angle, got from the new image frame, is feasible,

the general navigation is resumed, otherwise the reverse

procedure continues. The outcome of this is that, whenever

the robot finds out that it has to steer more than physically

allowed, it drives backwards with opposite steer to gain

clearance to move forward. Usually, after this maneuver the

new steer angle is not as aggressive as earlier and the robot

can overcome obstacles.

This routine has worked for various situations, from

obstacle avoidance to road realignment proving itself to be a

very reliable way to reorient the robot when it found itself in

a situation where is maximal curving ability would not solve

the problem.

VII. RESULTS

The presented techniques have performed quite

satisfactorily and led the robot to be the best performing in

all challenges, and won the first prize in the 2006 edition.

Very little prior knowledge of the road is given (only the

expected width and maximal curvature), no model of the

road and no odometry is used; all this reinforces the

performance of the used techniques. The entire set of the

described algorithms is processed for every road frame, at a

rate of about 15 Hz on a common laptop running Linux.

The robot navigates quite fast and its speed is sometimes

limited by the hardware, i.e. maximum steering and speed,

instead of by software restrictions. It is also possible to use

the same procedure for all road situations: normal

navigation, obstacle contouring, confined road width,

junction presence, zebra cross insight, and others. This

means that no exception procedures are programmed for

these special cases. Several navigation behaviors are also

easily achieved just by changing the decision making process

priorities without touching the core of the navigation code.

Extra redundancy to light conditions change and

disturbance in the road’s normal conditions is guaranteed by

the advanced road filter. A great data reduction is performed

through the box analysis, from a full image to only 4 points,

without a significant loss on the road correct interpretation,

and thus dropping the time demanded to process each frame.

Zebra cross detection is usually very accurate. The same

can be said for traffic lights detection trough template

matching, which have worked inclusively at the distance.

The philosophy of the whole algorithm is simple, which

avoids complex calibration procedures. Exceptional cases

such as the tunnel traversing or the road maintenance area

have been solved within the global approach. In detail we

can say the following: tunnel borders are white, therefore

they simply are thicker road delimiters, and can be dealt with

the very same algorithm. The maintenance area is delimited

by orange and white stripes; segmenting the orange parts

allowed the definition of new road delimiters and the same

algorithm was then performed.

Open loop backwards maneuvering proved to be

surprisingly effective, especially if one takes into account its

simplicity. Finally, parking on the parking area was done in a

short term open loop, except for the case when an obstacle

was placed in one of the two possible places. There, simple

vision techniques of area pixel counting in the image were

used and worked effectively throughout the contest.

VIII. PERSPECTIVES AND FINAL REMARKS

The results obtained in the competition may suggest that

the methods described could be attempted for the navigation

in a real road. Naturally, several new issues would have to be

attended, but the main idea might remain. One issue deals

with the road border line connectivity that can be a problem

in some real roads. However, future work could exploit

techniques to fuse or join these fragmented lines in order to

reconstruct the road boundaries. Another idea to explore is to

try different camera positions, or to use a pan and tilt servo

controlled unit that would provide the capability for active

perception for, among others, cope with dynamic obstacles

moving in the same space.

 The bottom line of this work is that the methods used

do not depend on metric distances, since only pixel counting

is used. In consequence, the overall process is much simpler,

does not depend on complex calibration procedures, and

discards the need of accurate yet expensive cameras. The

simplicity of the process also eases real time processing, and

no odometry or time dependant methods are implemented.

These facts lead the authors to think that the method may

work on other scenarios of autonomous road following.

IX. REFERENCES

[1] L. Almeida, J. Azevedo, C. Cardeira, P. Fonseca, P. Lima, F. Ribeiro,

V. Santos, Festival Nacional de Robótica – ROBOTICA2001,

Robótica, nº 45, 2º Trim. 2001, pp. 60-64 (ISSN: 0874-9019)

[2] Almeida, L., Azevedo, J. , Cardeira, C., Costa, P., Fonseca, P. Lima,

P., Ribeiro, F., Santos, V., 2000. Mobile Robot Competitions:

Fostering Advances in Research, Development and Education in

Robotics. Proc. of the 4th Portuguese Conference on Automatic

Control, CONTROLO2000, 4-6 October 2000, Guimarães, Portugal,

pp. 592-597

[3] P. Afonso, J. Azevedo, C. Cardeira, B. Cunha, P. Lima, V. Santos,

2006. Challenges and Solutions in an Autonomous Driving Mobile

Robot Competition, Proc. of the 7th Portuguese Conference on

Automatic Control, CONTROLO2006, Lisboa.

[4] G. Beccari, S. Caselli, F. Zanichelli, A. Calafiore, 1997, Vision-based

Line Tracking and Navigation in a Structured Environment, IEEE

International Symposium on Computational Intelligence in Robotics

and Automation (CIRA '97).

[5] Hai-Bo Zhang, Kui Yuan, Shu-Qi Mei, Quing-Rui Zhou, 2004,

Visual Navigation of an Automated Guided Vehicle Based on Path

Recognition, Proceedings of the Third International Conference on

Machine Learning and cybernetics, Shangai, 26-29 August 2004.

[6] D. A. Pomerleau, 1993. Neural Network Perception for Mobile Robot

Guidance, Kluwer Academic Publishers.

[7] R. Cancela, M. Neta, M. Oliveira, V. Santos, 2005. ATLAS III: Um

Robô com Visão Orientado para Provas em Condução Autónoma,

Robótica, nº 62, pp. 4-11, (ISSN: 0874-9019).

