
Universidade de Aveiro Departamento de Engenharia Mecânica
2013

PROCÓPIO

SILVEIRA STEIN

NAVEGAÇÃO EM AMBIENTES DINÂMICOS

TIRANDO PARTIDO DE AGENTES MÓVEIS

NAVIGATION IN DYNAMIC ENVIRONMENTS

TAKING ADVANTAGE OF MOVING AGENTS

Universidade de Aveiro Departamento de Engenharia Mecânica
2013

PROCÓPIO

SILVEIRA STEIN

NAVEGAÇÃO EM AMBIENTES DINÂMICOS

TIRANDO PARTIDO DE AGENTES MÓVEIS

NAVIGATION IN DYNAMIC ENVIRONMENTS

TAKING ADVANTAGE OF MOVING AGENTS

Tese apresentada à Universidade de Aveiro para cumprimento dos requisi-

tos necessários à obtenção do grau de Doutor em Engenharia Mecânica,

realizada sob a orientação cient́ıfica de V́ıtor Manuel Ferreira dos Santos,

Professor Associado do Departamento de Engenharia Mecânica da Universi-

dade de Aveiro e de Anne Spalanzani, Professora Associada da Universidade

Pierre-Mendès-France e Investigadora no Instituto de Pesquisas INRIA

to my grandparents

o júri / the jury

presidente / president Prof. Doutor José Carlos da Silva Neves

professor catedrático da Universidade de Aveiro

vogais / committee Prof. Doutor Luis Merino

professor associado da Universidad Pablo de Olavide, Espanha

Prof. Doutor Lúıs Seabra Lopes

professor associado da Universidade de Aveiro

Prof. Doutor Paulo José Cerqueira Gomes da Costa

professor auxiliar da Universidade do Porto

Prof. Doutor Jorge Augusto Fernandes Ferreira

professor auxiliar da Universidade de Aveiro

Profa. Doutora Anne Spalanzani

mâıtre de conférences da Université Pierre-Mendès-France, França

(coorientadora)

Prof. Doutor V́ıtor Manuel Ferreira dos Santos

professor associado da Universidade de Aveiro

(orientador)

agradecimentos O caminho para a conclusão de uma Tese é longo e dif́ıcil. Felizmente, eu

pude contar com muitas pessoas especiais que ajudaram-me nesta jornada.

Eu gostaria de agradecer a V́ıtor Santos, pela sua ética e imensa dedicação

na orientação desta tese, e pelo seu constante apoio e motivação em tempos

dif́ıceis. Também quero agradecer a Anne Spalanzani por receber-me em

sua equipa, pela sua orientação, discussões e por ajudar-me a encontrar meu

caminho no campo da robótica social.

À Christian Laugier, por haver me convidado a um estágio no grupo de

pesquisas e-Motion, o que fez toda a diferença na minha carreira, e permitiu

uma incŕıvel experiência de vida em outro páıs.

Ao longo destes quatro anos, eu trabalhei com muitas pessoas e também

gostaria de reconhecer que elas contribúıram de uma forma ou de outra

para o meu trabalho. Um agradecimento especial aos meus colegas de

laboratório de Portugal, Miguel Oliveira, Ricardo Pascoal, Jorge Almeida,

Marco Santos e da França, Arturo Escobedo, Jorge Ŕıos, Mathias Perrolaz,

Dizan Vasquez, Chiara Troiani e Stéphanie Lefèvre, pelo agradável tempo

em que passamos juntos.

Também gostaria de agradecer aos professores Dr. Luis Merino e Dr. Do-

minique Vaufreydaz, que se disponibilizaram como relatores europeus deste

documento.

À minha mãe, pai, irmã e irmão, que sempre apoiaram minhas decisões e

com os quais sempre pude contar. E à minha faḿılia portuguesa, Ernesto e

Né, que sempre estiveram prontos à ajudar.

À minha esposa Ariana, que sempre esteve ao meu lado nesta longa jornada.

Finalmente, ao apoio financeiro da FCT e do FSE no âmbito do III

Quadro Comunitário de Apoio, que financiou esta pesquisa através da bolsa

SFRH/BD/46604/2008, e ao Projeto PAL (Personal Assisted Living) e

INRIA, que também proporcionaram suporte financeiro.

acknowledgements The path to the creation of a PhD Thesis is a long and difficult one. Fortu-

nately, I could count with many special persons that helped me along this

journey. I would like to thank V́ıtor Santos, for his work ethics and great

dedication in the supervision of this Thesis and for his constant encour-

agement and support throughout difficult times. To Anne Spalanzani for

receiving me in her team, for her supervision, insightful discussions and for

helping me to find my way in the social robotics field.

To Christian Laugier, for inviting me to join the e-Motion research group,

which made all the difference in my career, and allowed a great life experi-

ence in another country.

Throughout these four years, I have worked with many persons, and I would

like to acknowledge that they contributed in one way or another to my work.

Special thanks to my labmates, from Portugal, Miguel Oliveira, Ricardo

Pascoal, Jorge Almeida, Marco Santos and from France, Arturo Escobedo,

Jorge Ŕıos, Mathias Perrolaz, Dizan Vasquez, for all the enjoyable time

spent together.

I also would like to thank professors Dr. Luis Merino and Dr. Dominique

Vaufreydaz, that were promptly available as European reporters of this doc-

ument.

To my mother, father, sister and brother, who always supported my decisions

and with whom I could always count with. And to my Portuguese family,

Ernesto and Né, who were always ready to help.

To my wife Ariana, who always stood by my side along this journey.

Finally, to Fundação para a Ciência e Tecnologia (FCT) that financed this

reasearch with the scholarship SFRH/BD/46604/2008 and to the PAL

Project (Personal Assisted Living) and INRIA, which also provided financial

support.

palavras-chave navigation in dynamic environments, human-aware navigation, social

robotics, leader selection, leader following, machine learning

resumo Esta tese propõe uma forma diferente de navegação de robôs em ambientes

dinâmicos, onde o robô tira partido do movimento de pedestres, com o

objetivo de melhorar as suas capacidades de navegação.

A ideia principal é que, ao invés de tratar as pessoas como obstáculos dinâmi-

cos que devem ser evitados, elas devem ser tratadas como agentes especi-

ais com conhecimento avançado em navegação em ambientes dinâmicos.

Para se beneficiar do movimento de pedestres, este trabalho propõe que um

robô os selecione e siga, de modo que possa mover-se por caminhos ótimos,

desviar-se de obstáculos não detetados, melhorar a navegação em ambientes

densamente populados e aumentar a sua aceitação por outros humanos.

Para atingir estes objetivos, novos métodos são desenvolvidos na área da se-

leção de ĺıderes, onde duas técnicas são exploradas. A primeira usa métodos

de previsão de movimento, enquanto a segunda usa técnicas de aprendiza-

gem por máquina, para avaliar a qualidade de candidatos à ĺıder, onde o

treino é feito com exemplos reais. Os métodos de seleção de ĺıder são in-

tegrados com algoritmos de planeamento de movimento e experiências são

realizadas para validar as técnicas propostas.

keywords navigation in dynamic environments, human-aware navigation, social

robotics, leader selection, leader following, machine learning

abstract This thesis proposes a different form of robotic navigation in dynamic en-

vironments, where the robot takes advantage of the motion of pedestrians,

in order to improve its own navigation capabilities.

The main idea is that, instead of treating persons as dynamic obstacles that

should be avoided, they should be treated as special agents with an expert

knowledge of navigating in dynamic scenarios. To benefit from the motion

of pedestrians, this work proposes that the robot selects and follows them,

so it can move along optimal paths, deviate from undetected obstacles,

improve navigation in densely populated areas and increase its acceptance

by other humans.

To accomplish this proposition, novel approaches are developed in the area

of leader selection, where two methods are explored. The first uses motion

prediction approaches while the second uses a machine learning method, to

evaluate the leader quality of subjects, which is trained with real examples.

Finally, the leader selection methods are integrated with motion planning

algorithms and experiments are conducted in order to validate the proposed

techniques.

Contents

1 Introduction 1

1.1 Previous Approaches . 1

1.2 Motivation . 3

1.3 Proposed Approach . 4

1.4 Thesis Outline and Contributions . 5

1.5 Publications . 5

2 Robot Navigation Among Humans: a Review 7

2.1 Overview of Motion Planning . 7

2.1.1 Motion Planning in Static Environments 8

The Configuration Space . 8

Sampling Based Approaches . 9

Potential Fields . 10

2.1.2 Motion Planning in Dynamic Environments 11

Configuration-Time Space . 11

Decomposition-based Motion Planning 12

Velocity Obstacles . 13

2.1.3 Analysis . 14

2.2 Human-Aware Navigation . 15

2.2.1 Environment Comprehension . 15

Motion Prediction . 15

Social Spatial Rules . 16

2.2.2 Prediction-Based Collision Avoidance 17

The Freezing Robot Problem . 18

2.2.3 Navigation Benefiting from Human Motion 19

Preferential Paths . 19

Learning from Human Motion . 20

Interacting with Humans . 20

Leader Following . 21

i

2.2.4 Analysis . 23

3 Methods for Selecting and Following a Leader 25

3.1 Techniques for Leader Selection Based on Reasoning 25

3.1.1 Goal and Path Advertisement . 26

3.1.2 Goal and Path Prediction by Extrapolation of Current State 27

Kalman Filter . 27

Influence of Environment Structure on Prediction by Extrapolation . . . 28

3.1.3 Motion Prediction Based on Learning - Typical Paths 30

Modeling Typical Paths - A Review . 32

Growing Hidden Markov Model . 33

3.1.4 Limitations of the Reasoning-Based Technique 35

3.2 Leader Evaluation Technique Based on Learning 35

3.2.1 AdaBoost Classifier . 36

3.2.2 Features Study . 38

3.3 Contributions on Leader Selection and Following 40

3.3.1 Leader Selection Methods . 40

Reasoning-Based . 40

Learning-Based: Voting Scheme for Leader Score 42

3.3.2 Navigation and Leader Following Methods 44

Navigating Without a Leader: RiskRRT Motion Planner 46

4 Experiments on Leader Selection and Following Based on Goal and Rules 53

4.1 Experiments Integrating Real Data and Simulation 53

4.1.1 Data Acquisition . 54

4.1.2 Modeling Typical Paths with GHMM 56

4.1.3 Tests . 57

4.2 Experiments with Pedestrian Simulator . 58

4.2.1 Pedestrian Simulator - a Review . 59

4.2.2 Development of a Pedestrian Simulator 61

4.2.3 Pedestrian’s Motion Generation and Modeling 66

4.2.4 Tests . 67

4.3 Experiments with Pedestrian Simulator in Narrow Corridors 69

4.3.1 Tests . 69

4.4 Summary . 70

5 Experiments in Leader Evaluation and Following Based on Learning 73

5.1 Data Acquisition Using a Following Robot . 73

5.1.1 Features Extraction of Followed Persons 75

ii

5.1.2 Data Labeling of Leader Quality . 78

5.1.3 Labeling Methodology . 79

5.1.4 Good and Bad Leader Situations . 79

5.1.5 Combining Labels . 81

5.1.6 Resulting Dataset . 82

5.2 Training of a Leader Classifier . 84

5.2.1 Leader Classification Results . 85

5.2.2 Analysis of Contribution of Features to the Leader Evaluation 88

Importance of the Lateral Displacement and Distance 90

Relevance of Derivative Features . 90

Relevance of Velocity Features . 90

Quality of the Results . 91

5.3 Tests of Leader Classifier Integrated with Navigation 92

5.3.1 Analysis . 96

5.4 Summary . 98

6 Conclusions and Future Work 99

6.1 Leader Selection and Following Based on Reasoning 99

6.2 Leader Selection Based on Learning . 100

6.3 Comparison of Leader Selection Methods . 103

6.4 Future Work . 103

6.5 Contributions . 104

A Test Framework for Typical Paths Modeling and Prediction Using Gaussian

Process 117

B Comparison of Leader Evaluation using AdaBoost and Artificial Neural

Networks 121

B.1 Comparison of Leader Classification Results . 121

B.1.1 Performance comparison using 21 Features 122

B.1.2 Performance comparison using 13 Features 123

B.1.3 Performance comparison using 9 Features 124

B.2 Analysis . 125

iii

iv

List of Figures

1.1 Examples of service robots that must interact with humans: (a) health aid

robots, the MAid wheelchair and the GuideCane (Prassler et al., 2001; Boren-

stein and Ulrich, 1997). (b) cleaner robots: roomba and neato robotics XV-11

(iRobot, 2013; Robotics, 2013). (c) guide robots: RHINO, Minerva and Toomas

(Burgard et al., 1999; Thrun et al., 1999; Gross et al., 2009). 2

1.2 The crowded entrance of a metro station, poses a difficult situation for the

navigation of robots, but persons can easily move in such environments. Credit:

Fernando Stankuns. 3

2.1 Example of an workspace and its respective C-space, considering a rectangular

robot centered at the black dot that can only translate, the light gray areas

would result in a collision of the robot with the static objects.1 8

2.2 Example of Probabilistic RoadMap (PRM). The black dots are configurations

and the traces are the connectivity. The queried path is shown in red. 2 10

2.3 Three iteration steps of the Rapidly Exploring Random Tree (RRT) algorithm 10

2.4 The Freezing Robot Problem (FRP): the red blurs represent the growing uncer-

tainty of the position of pedestrians, which eventually covers the empty space

in front of the robot, and as a result, the motion planning algorithm cannot

find a solution. 18

2.5 a) two types of following behavior: path following and direct following (Gock-

ley et al., 2007); b) virtual targets distributed around the pedestrian being

followed, preferred targets are shown in darker colors (Hoeller et al., 2007);

c) a robot that ”follows” a pedestrian in front of him/her, showing a recovery

behavior after the human makes a turn. 22

3.1 Diagram of a Kalman Filter. 27

3.2 Prediction of path and goal by state extrapolation on a corridor. 28

3.3 Prediction of path and goal by state extrapolation on an open area. 29

v

3.4 Prediction of path and goal on a complex environment, in three different time

instants, using extrapolation of current state. Note that due to the structure

of the environment, the direction of motion of the agent does not correspond

to its intended goal. 29

3.5 (a) An artistic intervention on a crossroad in Berlin showing typical paths of

cars (Painting Reality c©IEPE); (b) a frozen lake, showing snowmobiles’ typical

paths (frozen lake in lapland c©ezioman). 30

3.6 Example of typical paths at an office environment. 31

3.7 A typical three state Hidden Markov Model (HMM), with observation proba-

bilities on the nodes and transition probabilities on the edges. 34

3.8 GHMM learning algorithm overview (adapted from Vasquez Govea et al. (2009)) 34

3.9 Two instants in the goal prediction of a dynamic object. The height of the

bars is proportional to the probability of a cell to be the final goal 35

3.10 Example of a decision stump classifier operating over the feature x1 and with

threshold θ, used as a weak learner. 38

3.11 Integration of STAGE with ROS modules used in experiments for the reasoning-

based approach. 41

3.12 Visualization of leader selection rules. The robot is represented by the blue

square and its goal by the blue crossed square. The candidates are represented

by colored circles and their goals as crossed circles, with the respective color. . 42

3.13 Integration of STAGE with ROS modules used in experiments for the learning-

based approach. 43

3.14 Example of voting scheme for leader score. 44

3.15 Diagram of the multi-mode navigation system. 45

3.16 Illustration of the path following navigation mode. 45

3.17 Illustration of the leader following navigation mode. 45

3.18 The Social Filter (SF) is modeled as a Gaussian distribution, with the risk

represented by the height of the points: (a) p-space, the personal space, which

is centered in the subject; (b) o-space, the interaction space, with the maximum

risk of disturbance located at the center of the interaction. 47

3.19 Several Risk Rapidly Exploring Random Tree (RiskRRT) plans with Social

Filter (SF) deactivated; SF activated, with humans facing each other; and SF

activated, with humans facing away from each other. 47

3.20 Experiment with the RiskRRT algorithm in a narrow corridor, where a robot

must cross with a human. 50

3.21 Experiment with the RiskRRT algorithm in a crossroad, with two pedestrians

crossing in front of the robot. The frames show a zoomed image of exploration

nodes where there is an increased risk of collisions, represented as larger circles. 51

vi

4.1 INRIA Rhône Alpes entrance hall, with labels over its typical interest points:

the doors, corridors, entrance and reception desk. 54

4.2 (a) Subjects wearing hats with markers and the overhanging camera (left bot-

tom) at INRIA’s hall. (b) Detail of the tracking system showing a three-axis

reference system drawn over each marker. 55

4.3 Images of the recorded training data and the Growing Hidden Markov Model

(GHMM) structure, the red circles represent the interest points of the scenario.

(a) Recorded trajectories of subject’s moving among interest points. (b) Re-

sulting GHMM structure, showing states as nodes and transitions as edges. (c)

Superposition of the training data set and the learned structure. 56

4.4 Leader selection and following using the goal similarity criteria, predicted by a

GHMM. The robot is represented by the light gray rectangle and its goal by a

X. Three leader candidates are represented by circles with letters R, G and B.

The predicted goals are the triangles with the corresponding letters. 57

4.5 Experiment of a leader guiding the robot avoid two incoming persons. The

robot is represented by the light gray rectangle and its goal by a X. Three leader

candidates are represented by circles with letters R, G and B. The predicted

goals are the triangles with the corresponding letters. 58

4.6 (a) The lane formation phenomena. (b) The oscillatory motion direction in

narrow passages. The different colors of the blobs represent their motion direc-

tion, while their size represents their velocity (larger is faster). Adapted from

Helbing and Molnar (1995). 60

4.7 Images of boids moving together, resulting in life-like patterns of groups of

animals. (From Reynolds (1987)) . 60

4.8 Workflow and description of the forces used in the pedestrian simulator. . . . 62

4.9 Lane formation phenomena: in densely populated environments, crossing groups

of people naturally arrange themselves into crossing lanes, which result in a

more efficient navigation. 64

4.10 A robot using a simplistic motion algorithm moves in a straight line disregard-

ing the moving agents. In order to avoid collisions, the agents move away from

the robot. 65

4.11 Performance of the A* motion planner in a densely populated dynamic envi-

ronment. 66

4.12 Performance of the RiskRRT motion planner in a densely populated dynamic

environment. The left column shows the navigation without the predicted

states of the agents, for the sake of clarity. In the right column, where the

predictions are depicted, it is possible to see that they cover all the space in

front of the robot, and the planner cannot find a solution. 67

vii

4.13 (a)Visualization of the file loaded by the trajectory generation program. The

nodes represent checkpoints the virtual agents must pass, with a given orienta-

tion and velocity. (b) The resulting GHMM structure that models the typical

paths of the generated agents. 68

4.14 The robot is represented as the blue rectangle and the leader candidates as

light blue squares. The first figure shows the predicted typical path and goal

for each evaluated candidate. The candidate at the bottom is chosen as it is

predicted to move to the same destination as the robot. 68

4.15 Multi-mode navigation, the robot is represented by the black rectangle, while

the leader candidate as the orange circle. Both have the same destination at

the right end of the corridor. The green square means leader path following

mode is active, while the green circle means the direct leader following mode

is active. 69

4.16 A robot is able to navigate in a difficult situation, along a populated corridor,

by selecting and following a leader. In this way the robot becomes part of a

group of pedestrians, and benefits from their motion interactions. 71

5.1 The robot used for data acquisition when following pedestrians. 74

5.2 Two images of the same instant, captured by the camera and the laser range

finder installed over the robotic platform. (a) Image from a wide-angle cam-

era. (b) Representation of the laser measurements, showing the three tracked

subjects and their orientation as the green vectors. The robot is represented

as a black rectangle. 74

5.3 Setup of modules used for data acquisiton. 75

5.4 Images of leaders inviting the robot to follow them, in both situation, they were

unaware of what was the objective of the robot, but noticed they were being

followed by it. (a) A man makes hand gestures inviting the robot to follow him

as if it were a dog. (b) The rightmost woman makes head gestures and tries to

communicate with the robot, asking it to follow her: ”C’mon, c’mon...” 76

5.5 Setup of modules used for data extraction. 76

5.6 Graphical representation of the features extracted during the following pro-

cedure. The robot is represented as the blue square while the human being

followed as the red circle. 78

5.7 Diagram of the data labeling process. 79

5.8 Good leader behavior, although the robot is noticed, the leaders kept moving

without changing their behaviors . 80

5.9 Bad leader: the person notices the robot and moves aside, giving room for the

robot to pass. 80

viii

5.10 Bad leader: the subject marked with a white circle moves to fast compared to

the robot’s speed and gets too far from it. 80

5.11 Bad leader: the person stops moving. 81

5.12 Comparison between each evaluator’s label (beginning of gray region) and final

label (vertical red line). The labels are plotted over the features extracted from

a person being followed. a) test 1 - leader stopped; b) test 2 - leader too far. . 82

5.13 Example of cropping an experiment to eliminate the initial and final transients,

the gray area highlights the extracted region. 83

5.14 Feature contribution ratio using the complete training dataset, number of

weak learners: 670, features used: 21. 85

5.15 Feature contribution ratio using the stripped training dataset, without the

not moving (nm) and the opposite direction (od) situations, number of weak

learners: 472, features used: 21 . 85

5.16 Classification error when training with the complete training dataset, in-

cluding the not moving (nm) and the opposite direction (od) situations 86

5.17 Classification error when training with the stripped training dataset, with-

out the not moving (nm) and the opposite direction (od) situations 86

5.18 Feature contribution ratio using the complete training dataset, number of

weak learners: 758, features used: 13 . 87

5.19 Feature contribution ratio using the stripped training dataset, number of

weak learners: 517, features used: 13 . 87

5.20 Classification error, complete training dataset, 13 features 88

5.21 Classification error, stripped training dataset, 13 features 88

5.22 Feature contribution ratio using the complete training dataset, number of

weak learners: 1044, features used: 9 . 89

5.23 Feature contribution ratio using the stripped training dataset, number of

weak learners: 731, features used: 9 . 89

5.24 Classification error, complete training dataset, 9 features 89

5.25 Classification error, stripped training dataset, 9 features 89

5.26 Details on a leader following tests showing how the entities are represented. . . 92

5.27 Robot following of a good leader, using the learning-based classification frame-

work. 93

5.28 Robot following of a leader that is moving too fast, increasing the distance

from the robot. 94

5.29 Robot following a group of leaders that splits, and some subjects stop moving,

the classification system readily selects a new subject that is more suited to be

a leader. 96

ix

5.30 Robot following a leader that moves aside to an area that it cannot navigate.

The classification algorithm fails to detect the subject as a bad leader. 97

A.1 Small scale robot used to generate real trajectories for the typical paths mod-

elling with Gaussian Process (GP). 118

A.2 Schema of the implemented setup. The image of the arena is acquired and

passed to a module that performs detection and tracking, based on the robot’s

position and orientation, control commands are computed and sent via a wire-

less link. 118

A.3 Resulting trajectories of an experiment. 119

A.4 Two clusters of recorded trajectories used for the GP training, grouped accord-

ing to common start and finish regions. 119

A.5 The resulting GP for each of the clusters. The black solid line represents the

mean function of the GP, which can be seen as the resulting typical path, while

the gray area is the GP’s covariance function, drawn with 95% of confidence. . 120

A.6 Given a trajectory observation, represented in dark green, two GP models are

evaluated to find the best match. In this case the GP number 1 is the winner

and can be used for the prediction of the future path likely to be traveled by

the observed object. 120

B.1 Performance of an Artificial Neural Network (ANN) trained with 21 features. . 122

B.2 Comparison between AdaBoost and ANN classification error, using 21 features. 122

B.3 Performance of an ANN trained with 13 features. 123

B.4 Comparison between AdaBoost and ANN classification error, using 13 features. 123

B.5 Performance of an ANN trained with 9 features. 124

B.6 Comparison between AdaBoost and ANN classification error, using 9 features. 124

x

Acronyms

ANN Artificial Neural Network

CBR Case Based Reasoning

CCA Cooperative Collision Avoidance

DW Dynamic Window

FRP Freezing Robot Problem

GP Gaussian Process

GHMM Growing Hidden Markov Model

GNG Growing Neural Gas

GPRF Gaussian Process Regression Flow

HMM Hidden Markov Model

HRI Human Robot Interaction

IGP Interacting Gaussian Processes

IRL Inverse Reinforcement Learning

KF Kalman Filter

NLVO Non-Linear Velocity Obstacle

PCA Principal Component Analysis

PMP Partial Motion Planning

PRM Probabilistic RoadMap

PVO Probabilistic Velocity Obstacles

ROS Robot Operating System

xi

RiskRRT Risk Rapidly Exploring Random Tree

RRT Rapidly Exploring Random Tree

RVO Reciprocal Velocity Obstacle

SF Social Filter

SFM Social Forces Model

SVM Support Vector Machine

VO Velocity Obstacle

xii

Chapter 1

Introduction

Among several challenging issues in the robotics field, one of the key problems, still subject

of intense investigation, is how to create motion plans for robots that share space with humans,

in dynamic environments. This is a relevant problem, as robots are already part of our life.

An important group of robots are the ones that provide everyday services to humans, also

called service robots, because they are able to directly interact with humans and therefore

have a high potential of directly improving our quality of life.

Examples of service robots are floor sweeping robots, that help on household tasks, as

iRobot Roomba and Neato Robotics XV-12, interactive museum and exposition tour guide

robots (Rhino, Minerva, Enon), avatars robots (TOURBOT) and also robots that help im-

paired persons (nursebot, wheelchairs). Some of these robots can be seen in Figure 1.1.

As service robots share the same environment with humans, they must face a difficult

task, which is how to navigate in those environments, because the state of the environment

is constantly changing and humans move and interact according to complex social rules.

Besides that, in populated environments, the dynamism of the agents pose several difficult

issues for robotic motion planning: sensor measurements are likely to be accurate only for

short time periods; static features, that could guide a navigation algorithm, might not be

detected; moving agents may move in unexpected ways; and algorithms have to be fast

enough to provide solutions on-line.

1.1 Previous Approaches

The most relevant developments in this area approached the problem of navigation in

dynamic environments with predictive models. In these models, the motion of agents and

objects are observed and, according to different techniques, their future states are predicted.

Within these approaches, everything that moves in those environments is normally regarded as

moving obstacles to the robot movement and, therefore, should be avoided, since moving

entities may be constantly interfering with planned trajectories. So the motion planning

1

(a)

(b)

(c)

Figure 1.1: Examples of service robots that must interact with humans: (a) health aid robots,
the MAid wheelchair and the GuideCane (Prassler et al., 2001; Borenstein and Ulrich, 1997).
(b) cleaner robots: roomba and neato robotics XV-11 (iRobot, 2013; Robotics, 2013). (c)
guide robots: RHINO, Minerva and Toomas (Burgard et al., 1999; Thrun et al., 1999; Gross
et al., 2009).

algorithms create plans where, based on predictions, the robot will avoid all the moving

”obstacles”.

Besides that, very few approaches actually take into account the reaction that the robot’s

motion may cause in other moving agents (Snape et al., 2009; van den Berg et al., 2008a;

Kluge and Prassler, 2004; Abe and Yoshiki, 2001). This means that most techniques assume

that either the moving objects are passive and will not change their trajectories or that agents

share the same algorithm, so they will avoid collision in the same way as the robot will.

Even in the cases where the reaction of others are taken into account, the agents try

to independently reach their goal, treating other moving agents as adversaries. These types

of approaches can be seen as egocentric solutions to the dynamic environment navigation

problem: the robot has an objective that has to be accomplished and creates a plan, and

everything that interferes with that plan are obstacles that should be avoided, and no benefit

can come from them.

2

Figure 1.2: The crowded entrance of a metro station, poses a difficult situation for the naviga-
tion of robots, but persons can easily move in such environments. Credit: Fernando Stankuns.

1.2 Motivation

The motivation of this Thesis is the hypothesis that it is possible to take advantage

from the motion of moving agents, in dynamic environments, in order to improve

the robot navigation in such environments. This idea comes from the fact that pedes-

trians move in efficient ways (Helbing et al., 2000; Mombaur et al., 2009; Alexander, 1984),

and are able to move in very complex situations, with minimal effort.

So if a robot is able to properly select a person to guide it, the robot will be able to benefit

from the high level reasoning and social skills of the person being followed. When we observe

an environment occupied by humans, it is inevitable to take notice of the myriad of different

motions performed and trajectories traveled by persons. Even so, humans manage to safely

move in such environments to reach their destination, in a seamless manner, and with many

interactions with the other persons that are present.

In this sense, it can be assumed that humans often engage in group navigation, similar

to swarms. For example, when a large group of commuters enter a metro station, it is often

difficult for some of them to have a clear view from the wall, stairs or signs, or any feature

that could help someone find his/her way in that environment, as shown in Figure 1.2.

But normally, what can be observed in those situations is that persons do not move

individually, but rather as members of a larger group. Even if the goal of such group of

people is not the same, the involved agents profit from the motion of each other until they

are not useful anymore, either because there is more space to move individually or due to a

distinct objective. This group navigation is closely linked to studies of animal behavior, as

swarm intelligence:

3

Inside a group of animals like a flock or a school, or an insect society, multiple

simple direct or indirect interactions between animals lead the whole group to

adopt a specific spatial (and/or temporal) configuration (...) such kinds of systems

are commonly called “Collective Intelligence” (CI) Systems or “Swarm Intelligence

Systems”. (De Schutter et al., 2001)

When pedestrians are moving, they are constantly informing themselves based on the

motion of others. Individuals may take detours, start or stop to move, and even run based

solely on how people around them move. This is important, as it can prevent accidents

and also save time, as every single individual does not need to see an obstruction to adapt

his/her path to avoid it. They are also constantly dealing with large amounts of high-level

information and reacting to it, while pursuing an objective, effectively providing indirect

information about their surroundings.

1.3 Proposed Approach

According to these observations, this Thesis proposes a conceptual shift, treating the so

called moving obstacles as intelligent moving agents. Instead of seeing them as perturbations,

as undesired obstacles, they should be seen as guides, that can provide very useful information

about their surroundings. Pedestrians can anticipate collisions and are able to make complex

decisions and interaction with others, so it is possible to take advantage of this expertise to

enhance the robot’s navigation capabilities in dynamic environments.

Two forms of exploring the motion of dynamic agents are proposed: taking advantage of

the navigation and interaction capabilities of humans by following them; and benefiting from

optimally generated paths that were traveled by humans, moving along them.

The prevailing concept in this work is that the main problem to be addressed here is not

the motion planning itself, but rather the identification of agents in the environment that can

be used as leaders. In this way the robot will be able to take advantage of those agents’

navigation expertise. To be able to accomplish this idea, the following steps are proposed:

1. obtain information about the environment and the state of agents, as their velocity,

distance, and other;

2. use this information to decide if, among several candidates, a subject can be used as a

guide to the robot;

3. decide which type of behavior the robot should adopt to benefit from the motion of a

chosen leader, as engaging in path following or direct following of a leader.

4

1.4 Thesis Outline and Contributions

The organization of this thesis starts with a review, in Chapter 2, about robot navigation

among humans, beginning with a study of the evolution of motion planning algorithms in

general and then following to the specificities of human aware navigation. This study allows

a better comprehension about the current techniques used in this area and their limitations.

Then, Chapter 3 covers the methods proposed for leader selection and how those tech-

niques can be integrated with navigation strategies. It is divided in three parts. The first part

describes how existing motion prediction techniques can be used for leader selection, based on

the prediction of a candidate’s goal. The second part presents a different selection method,

based on learning. It describes how an AdaBoost algorithm can be used to implement a

learning framework for leader classification, based on human experience, and also describes

a methodology for the evaluation of the most relevant features used in that classification

process. Finally, the last part of this chapter describes two different strategies for leader

selection, using a set of rules for the reasoning-based approach and a voting scheme for the

learning-based one. After this, a multi-mode navigation framework is presented, showing how

the leader selection methods can be integrated with navigation strategies.

In Chapter 4 several tests are performed, using the reasoning-based approach for leader

selection and following. It starts with experiments where real data is used to replicate the

motion of humans in a virtual environment, and a virtual robot selects leaders using a proba-

bilistic prediction of candidate’s goals. To account for the reaction of agent’s to the presence of

the robot, a simple pedestrian simulator is created and used in experiments of leader selection

and following, using a multi-mode navigation system.

Chapter 5 presents the experiments of leader evaluation using a supervised learning frame-

work. The first part covers the acquisition and labeling of the training dataset. After that,

it is conducted an evaluation of the performance of the AdaBoost classification algorithm,

trained with different sets of features, and a study of the contribution of different features

to the leader evaluation process. The last part of this Chapter shows the experiments of the

integration of the classification system with navigation strategies, where real data is used to

recreate the motion of agents in a virtual environment.

Finally, Chapter 6 presents the conclusions and the open issues, to be addressed in future

works.

1.5 Publications

• Vasquez, D., Stein, P., Rios-Martinez, J., Escobedo, A., Spalanzani, A., and Laugier,

C. (2012). Human aware navigation for assistive robotics. In International Symposium

on Experimental Robotics (ISER).

5

• Stein, P., Spalanzani, A., Laugier, C., and Santos, V. (2012). Leader selection and

following in dynamic environments. In 2012 12th International Conference on Control

Automation Robotics Vision (ICARCV), pages 124–129.

• Stein, P., Spalanzani, A., Santos, V., and Laugier, C. (2012). Robot navigation tak-

ing advantage of moving agents. In IROS 2012 Workshop on Assistance and Service

Robotics in a Human Environment.

• Stein, P., Santos, V., Spalanzani, A., and Laugier, C. (2013). Navigating in populated

environments by following a leader. In International Symposium on Robot and Human

Interactive Communication (RO-MAN).

• Stein, P., Santos, V., Spalanzani, A., and Laugier, C. (2013). Learning-Based Leader

Classification. to appear in IROS 2013 Workshop on Assistance and Service Robotics

in a Human Environment.

6

Chapter 2

Robot Navigation Among Humans:

a Review

This Chapter will conduct a review of developments, in different areas, that are important

to the work developed in this Thesis. Initially, an overview on the evolution of motion planning

algorithms is given, to understand how the developments arrived to the current state and

which are their limitations.

The second part of this state of the art is related to different aspects of navigation among

humans, which are essential to the development of the proposed work. Initially a revision

on works related to the comprehension of populated environments is conducted, regarding

motion prediction and proxemic rules.

Following that, algorithms developed for robot navigation in human environments using

motion prediction are presented, also showing their limitations. The last part of this chapter

covers a review on previous works that explored different aspects of human motion and human-

robot interactions.

2.1 Overview of Motion Planning

Motion planning techniques are a crucial and active field of study for the robotics commu-

nity. For robots to be able to move from one configuration to another, it is expected that they

accomplish their movement without collision and in an efficient and safe manner. In different

types of robots, ranging from mobile robotic platforms, robotic arms and even virtual robots

in video-games, good motion planning is an essential tool for the autonomy and automation

of any robot.

In more formal words, the motion planning problem in robotics consists of generating a

trajectory that links the initial configuration to a goal configuration and that can be traversed

by the robot safely and without collisions.

This section will give an overview about the evolution of motion planning algorithms,

7

Figure 2.1: Example of an workspace and its respective C-space, considering a rectangular
robot centered at the black dot that can only translate, the light gray areas would result in
a collision of the robot with the static objects.1

showing how previous approaches tackled the problem. It will become clear that the motion

planning problem has been divided into simpler problems, and difficulties of real world were

incrementally incorporated in more complex algorithms.

2.1.1 Motion Planning in Static Environments

The simplest case of motion planning for robots is when the environment structure and

restrictions do not change with time, in which case it is called a static environment. This is

the case in many industrial applications, where the area of actuation of robots is generally

protected, and everything on the surroundings is static and generally closed to humans, due

to hazardous conditions.

As this is where the motion planning field for robotics has started, several algorithms

designed to create motion plans in static environments have been proposed. Due to the

intensive work in this field, nowadays it can be considered as a well studied and solved

problem (Latombe, 1991; LaValle, 2006).

The Configuration Space

One initial approach to address the motion planning problem consisted in formulating

it as a geometric problem on a special workspace, where all the possible configurations of

the robot and obstacles are represented. Such space is called the configuration space, or C-

space (Lozano-Perez, 1983). One example of this representation is shown in Figure 2.1, where

objects are projected on a 2D plane and inflated according to the robot’s shape, to represent

forbidden configurations.

Using such representation, the motion planning problem is simplified into exploring feasible

configurations in the space (construction phase) and finding a sequence of points in the

C-space that link the initial configuration to the goal configuration (query phase).

1Adapted from the Wikimedia Commons file File:Motion planning workspace 1 configuration space 2.svg
http://commons.wikimedia.org/wiki/File:Motion_planning_workspace_1_configuration_space_2.svg

8

The query phase is usually conducted by graph search algorithms, as the Dijkstra’s

shortest path (Dijkstra, 1959) or its variation, the A∗ (Hart et al., 1968).

Different approaches can also be used in the construction phase. One method is called

the roadmap and it consists in the creation of a graph that represents feasible robot configu-

rations, and its connections, in the free regions of the C-space (Cfree). The roadmap can be

understood as a general guide to link different configurations. Among the techniques that

can be used to create roadmaps are the Visibility Graph and the Voronoi Diagram. Once it

is created, the motion planning algorithm queries this representation to find a path that will

take the robot from a start to a goal configuration in the Cfree space.

Another method that can be used in the construction phase is called Cell Decompo-

sition. It consists in decomposing the Cfree space into cells. Then a graph representing the

connection between adjacent cells is built, called connectivity graph, which is searched in the

motion planning phase to find a connection between the start and goal configuration of the

robot.

Sampling Based Approaches

As the complexity and dimension of the problem increases, it becomes more difficult to

create a representation of the problem in the C space, and it may not be possible to find an

analytical solution.

In such cases, a different approach is required. Instead of trying to create a representation

of a complex C space and analytically finding a collision-free connectivity, configurations of

the robot in the C space are randomly sampled and then tested for collisions. If a sampled

configuration is collision-free, then it is added as a node of a roadmap.

Subsequently, the algorithm tries to find a connection between the new roadmap node and

nodes that had been previously tested. This process repeats until a roadmap that satisfies

some criteria is created, and then the motion planning algorithm can query the roadmap for

paths solutions, in the same way of previous techniques. Figure 2.2 shows an example of

randomly sampled nodes (black dots) in the C space, with queried path shown in red. A well

known example of such algorithm is the PRM method (Kavraki et al., 1996).

Another example of an algorithm that does not require a previously built roadmap is the

RRT (LaValle and Kuffner Jr, 2001). Similar to the PRM approach, here configurations are

again randomly sampled from the Cfree space. The difference is that instead of creating a

roadmap that will guide the search between any two configurations, here the construction is

aimed at providing a link between two specific configurations (initial and goal).

The RRT algorithm is as follows. The initial robot configuration is inserted as the root

of the tree T . Then a configuration is randomly sampled from the Cfree space and the tree

2Adapted from the Wikimedia Commons file File:Motion planning configuration space road map path.svg
http://en.wikipedia.org/wiki/File:Motion_planning_configuration_space_road_map_path.svg

9

Figure 2.2: Example of PRM. The black dots are configurations and the traces are the
connectivity. The queried path is shown in red. 2

is searched for the closest neighbor xk of that configuration. A motion control uk that brings

the node xk closest to the sampled configuration is chosen and a new node xk+1 = f(uk, xk)

is inserted into the tree.

The process repeats until there is a connection between the tree root (the robot initial

configuration) and the desired final configuration. Figure 2.3 illustrates this process. The

robot is represented by the dark rectangle in the bottom of the images and its goal is the red

circle. The images show three iteration steps of the tree construction, which expands until a

feasible path to the goal configuration is found, represented by the red line.

Figure 2.3: Three iteration steps of the RRT algorithm

In order to improve efficiency, there can be a bias toward the goal during the sample

phase, which results in a bias in the direction of the tree’s growth. Another method is to

create two trees, one starting at the robot’s initial configuration and the other at the robot’s

goal configuration, and grow both of them, until a connection between them is found.

Potential Fields

The Potential Field method (Khatib, 1986; Brooks, 1986; Koren and Borenstein, 1991)

is an approach that does not fall into the previous categories. This method do not require

the problem to be formulated using C approach nor require a preprocessing phase, where a

roadmap is created.

10

In this algorithm, artificial forces are created in the environment. The robot’s goal pro-

duces and attractive force while obstacles produce a repulsive force. The resultant of the sum

of these different forces is the force that will drive the robot along the environment, making

it avoid obstacles while heading to its goal. The main advantage of this technique is that it

is very fast and computer efficient, but it suffers from drawbacks, as the robot can get stuck

in a local minima.

2.1.2 Motion Planning in Dynamic Environments

Although the motion planning algorithms achieved very good results in static environ-

ments, robots implementing these algorithms would suffer from several restrictions to be used

in real scenarios. So the next, and natural, step was to incorporate dynamic features into

the problem. This better represents real life situations that robots will find, as they move

out from the factory floor, in environments where interaction with persons or other moving

entities are often required.

Dynamic Environments, however, pose several added difficulties to the motion planning

problem. The dynamics of the robot must be taken into account, and there are limitations

due to the sensors range and uncertainty in measurements, that must be reflected on the

motion plan. Besides it, a motion plan must incorporate time restrictions, meaning the robot

will require a certain amount of time to accomplish a task. For example, when crossing a

road, the robot must do it fast enough to avoid incoming cars.

To address these restrictions, first approaches tried to adapt existing algorithms developed

to be used in static environments to dynamic ones. As the computer power grew, it was

expected that if robots could perform the classic sense/plan/act loop very quickly, it would

be able to solve problems in dynamic environments, by planning and replanning fast enough.

However, this approach could only be applied in situations where the velocity of other

entities were slow compared to the robot’s. In other situations, this approach would fail.

Take the previous example of a robot crossing a road: if the algorithm assumes the world as

static (take a snapshot), it could consider an incoming car as a static object and plan a path

crossing the road. If the robot moved slowly, the car could hit it. But if the time dimension

is explicitly taken into account in the problem, representing the car’s and the robot’s future

positions, better solutions can be obtained.

Configuration-Time Space

Among initial developments that focused on a solution for the dynamic collision avoid-

ance, one approach is to add the time as another dimension to the C-space, creating the

configuration-time space, or CT -space. In this case, if we consider a two-dimension C-space

in the static case with obstacles represented with 2D shapes, in the dynamic environment

the elements will appear as 3D volumes that sweep along the time axis. It is important to

11

emphasize that this approach requires the motion of the moving objects to be fully known. If

this is not the case, the motion of the objects must be predicted, resulting in a more complex

problem.

The same family of algorithms used in the static motion planning problem can be applied

here. However they require some restrictions regarding the robot dynamics, as it is not

possible to travel back in time or move instantaneously from one configuration to another,

so the velocity of the robot must be bounded. To solve the problem of finding a solution in

the CT -space, new approaches were developed. In Reif and Sharir (1985), a visibility graph

is created in the CT -space, while Erdmann and Lozano-Pérez (1987) discretized the time

dimension into a sequence of slices and solved the path planning problem for each of these

slices and Fujimura and Samet (1989) solved this problem using cell-decomposition.

In the case that the motion of objects in the scene is unknown a priori, an option is to

predict the movement of the dynamic entity and create a plan that will avoid a possible future

collision. In Miura et al. (1999) and Miura and Shirai (2000), the authors develop a method

that takes into account the predicted motion of dynamic objects. It uses a probabilistic

approach to take into account the uncertainties related to the path, velocity and observations

of the dynamic object, resulting in improved behavior of the robot. Another example can

be found in Zhu (1991), where a HMM is used to model and predict the motion of dynamic

objects in order to generate a collision-free local motion plan for the robot.

Decomposition-based Motion Planning

It is also possible to find proposals that decompose the motion planning problem: planning

a path that would avoid static objects using the previously mentioned techniques and then

changing velocities along this path to avoid dynamic objects. Collisions are tested along the

precomputed path as the robot speeds up or down to avoid them. This method is implemented

in Kant and Zucker (1986) and improved in Fraichard and Laugier (1993), where not only one

path is computed, but several adjacent paths, so the algorithm would provide a solution even

if a dynamic object stopped over a precomputed path. The authors also take into account

the kinematics constraints of the robot in this stage, which is called the path-planning phase.

The second stage is the trajectory planning, where the motion of the robot along adjacent

paths is computed in order to avoid dynamic objects and comply with kinematic constraints.

This method gives room to a different classification of motion planning algorithms, ac-

cording to their scope of application: global motion planners and local motion planners (or

local collision avoidance) algorithms (Brock and Khatib, 1999; Myers et al., 2005):

• global motion planning: here, all the information about the environment is assumed

to be known, and the whole planning is done offline (takes place before the maneuvers

start). The advantages of this approach is that an optimal and complete path can

12

be computed, but it is unsuited for dynamic collision avoidance, as seen before, since

information about the environment can change and then a re-planning is required.

• local motion planning: the objective is to provide a solution as fast as possible, with

only a partial information about the robot’s surroundings. The algorithms are usually

reactive, work online and are not computer intensive, but they provide suboptimal

solutions and may result in the robot being stuck in local minima.

With the fusion of these two categories of algorithms, it is possible to overcome their

individual limitations and sum their strengths. First, a complete path to the goal is planned

in an initial step and then the robot reacts to new measurements and unpredicted obstacles

along the path, as new information becomes available to the planner (Krogh and Thorpe, 1986;

Choi and Latombe, 1991; Quinlan and Khatib, 1993; Brock and Khatib, 1999; Stachniss and

Burgard, 2002).

In this way, if an unexpected object blocks the robot’s path or if the object’s motion

does not coincide with the predictions, the robot can avoid a collision reacting to the new

information, temporarily moving away from the original path, and later resuming to follow

its original motion plan.

Due to separation of the problem of motion planning between local and global, when

addressing the problem of motion planning in dynamic environment, more emphasis was

given to collision avoidance on a local frame. The main reason was that planning on the

global frame could still be performed using the classic motion planning techniques developed

for static environments, specially when the motion of objects was unknown and difficult to

incorporate on the problem.

Velocity Obstacles

Different from previous algorithms, the Velocity Obstacle (VO) algorithm (Fiorini and

Shiller, 1993, 1998) uses velocity information instead of position and time to compute pos-

sible collisions and generate motion commands to an agent. This implementation maps the

environment into the robot velocity space, and calculates all relative velocities that would

lead to a collision, this set of velocities is called the VO. Then collision avoidance can be

easily performed, if a velocity outside the VO is chosen as the robot desired velocity.

For the velocity choice, several simple heuristics can be used, as the highest avoidance

velocity along the line of the goal, the maximum avoidance velocity within an angle from the

line of the goal or an avoidance velocity that minimizes the risk according to the perceived

obstacle.

To handle more complex trajectories, another variation of the VO was developed by Shiller

et al. (2001), called Non-Linear Velocity Obstacle (NLVO), which was used in Large et al.

(2002) and Large et al. (2004). This approach overcomes a drawback of the original VO imple-

13

mentation, that represents obstacles’ motions at a constant speed and in straight trajectories.

According to Large et al. (2005), the VO can be considered as a first order approximation of

NLVO at a given time. This approach has the advantage of giving a better representation of

the objects true trajectory and therefore require less adjustments of velocities of the robot,

when trying to avoid them.

It is important to have in mind that in a realistic environment, the dynamic agents do not

move in a completely passive fashion. They will react to the motion of the robot as well as to

the motion of other agents. So, in order to develop an effective local motion planner algorithm,

the capability of other agents to take active maneuvers to avoid collisions must be taken into

account when performing self maneuvers. This is a key aspect, that was incorporated in

variations of the original VO algorithm (Abe and Yoshiki, 2001; Kluge and Prassler, 2004;

van den Berg et al., 2008a; Snape et al., 2009).

In a technique named the Cooperative Collision Avoidance (CCA) (Abe and Yoshiki,

2001), the authors developed a system where agents cooperate to avoid collision with each

other. This is accomplished assuming all the agents involved use the same algorithm to choose

their respective velocities, but this is impractical in real world situations.

A similar approach is proposed in van den Berg et al. (2008a) and Snape et al. (2009),

where it is assumed that the involved agents perform similar avoidance maneuvers, and that

agents implicitly share responsibility when taking avoidance maneuvers. By doing so, they

prevent oscillations that result from the assumption that other agents are completely passive,

a problem found in the original VO implementation.

Finally in Kluge and Prassler (2004), the authors implement an approach called reflective

navigation based on the idea that the mobile robot should reflect on the intentions of other

dynamic agents, in order improve its navigation, as humans do. Also, to address the problems

related to the uncertainty in predictions and measurements, they introduce the Probabilistic

Velocity Obstacles (PVO), a probabilistic variation of the original VO algorithm.

2.1.3 Analysis

This section provides a study of the evolution of motion planning techniques, so it is

possible to better comprehend what are the limitations of the existing approaches.

Along this section, it becomes clear that anticipation is a keyword when it comes to motion

planning in dynamic environments. Among the different cases and approaches, the lack of

information and poor predictions will lead the motion planning algorithms to create plans

that are short-lived and that will result in suboptimal trajectories traveled by the robot. It

is also evident that a general solution is still out of grasp.

Fortunately, improved results can be expected narrowing the area of application of the

intended algorithms and robots. The requirements for an autonomous car are quite different

from those for a health-care robot, for example. Throughout this Thesis, the focus will be

14

centered on robots that share the environment with humans, and the following section will

discuss the peculiarities and previous work on this area.

2.2 Human-Aware Navigation

When robots share an environment with humans, the classical navigation techniques must

be modified to take into account requirements associated with human behavior. Persons must

be treated different from obstacles, and rather as agents that can react to situations and inter-

act with the robots. This means that robots must respect their social conventions, guarantee

the comfort of surrounding persons, and maintain legibility, so humans can understand the

robot’s intentions (Kruse et al., 2013).

It is also important to notice that in recent years, a myriad of different robots that share

their environments with humans were developed. Examples of these are the tour-guide robots

RHINO and MINERVA (Thrun et al., 1999), sweeping floor robots as the iRobot Roomba,

robots that aid humans with disabilities as the GuideCane (Borenstein and Ulrich, 1997) and

MAid (Prassler et al., 2001), fetch and carry robots as Cero (Severinson-Eklundh et al., 2003),

and also robots specifically designed for human-robot interactions as the Robovie (Ishiguro

et al., 2001), among others.

This large range of fields illustrates how ubiquitous robots have come to be among us. As

a consequence, the study of human-aware navigation is an active topic of research, involving

different fields as, human perception, cognitive models and motion planning. However, this

is still a challenging task due to the following reasons:

• Humans have very little restrictions to their movements, they may, for example, abruptly

stop and change direction, without previous warning, and in an holonomic way;

• Persons abide to social rules, dependent on their culture and context. It is expected that

robots behave in a similar fashion, respecting social configurations, in order to improve

their acceptance by humans;

• The robot must also be safe, meaning it cannot risk injuring humans or creating dan-

gerous situations to other robots and machines.

2.2.1 Environment Comprehension

Motion Prediction

Humans have a large freedom of motion, being able to change their direction and speed in

fractions of seconds. Nevertheless, the prediction of the motion of humans is used in several

human-aware navigation algorithms, as they may benefit from that information when creating

motion plans for the robot. Besides that, motion prediction can also enhance people tracking

15

algorithms, as the motion model of pedestrians can be used to improve the quality of the

tracking. According to Kruse et al. (2013), motion prediction can be separated in two groups:

• prediction based on reasoning. According to the current robot state and the envi-

ronment, different methods can use distinct levels of reasoning to determine the future

motion of agents. Examples are linear extrapolation of the current velocity and ori-

entation; stochastic predictions, where the likelihood of transitions are empirically set;

and potential fields, that assumes the agents will avoid static obstacles while heading

toward a destination (Tadokoro et al., 1995; Hoeller et al., 2007).

• prediction based on learning. The environment is first observed for the typical

motion patterns of persons, and these patterns are stored. Then this information

is used in a learning framework that will perform predictions assuming the motion

patterns are likely to be repeated. Techniques that are used in this method are Ar-

tificial Neural Network (ANN), Gaussian Process (GP), the Growing Hidden Markov

Model (GHMM), and others (Makris and Ellis, 2002; Tay and Laugier, 2007; Ellis et al.,

2009; Vasquez Govea et al., 2009).

Although predictions based on reasoning are simple, they may need more computer re-

sources than the learning based approach, where most of the processing is done offline. Besides

that, the former method may fail to produce good results in more complex environments, while

the latter is able to learn special situations and is also able to improve its performance over

time.

Social Spatial Rules

The seminal work in this area was conducted by Edward T. Hall in his very influential

work, The Hidden Dimension Hall (1966), where he coined the term proxemics. This concept

can be understood as the study on the spatial separation among individuals, and the cultural

concepts of space. It is also an study on how humans utilize their space, how they maintain

separation between other humans, and how they builds the structures around them.

Although the original study had a far reaching scope, the robotics community borrowed

some insights from this seminal work to create rules in motion planning that would respect

and maintain comfort of humans while navigating among them. To improve the acceptance of

robots, the main focus was given to the Personal Space, which is the region around a person

that may cause discomfort if invaded. But equally important is the space related to the

interaction among humans, that should also be respected by the robot (Ciolek and Kendon,

1980).

Works on this area concentrated on two main lines. The first concerns the metrics involved

in proxemics, where real experiments are conducted and persons are interviewed in an attempt

16

to learn how the presence of the robot affects the comfort of the persons (Huettenrauch et al.,

2006; Walters et al., 2009; Takayama and Pantofaru, 2009). These experiments are conducted

with different groups of people (young, old, familiar with robots), different robots (small, tall,

robot-like, human-like) and also distinct situations (angles and velocity of approach, gaze

direction, etc.). The main findings point in the direction that the proxemics distances are not

fixed, but vary according to the culture, the age, context and others.

The second line of research on this field relates to how the agent’s proxemics, position and

orientation can be modeled and integrated into motion planning algorithms. These issues

are addressed in the work of Sisbot et al. (2007), Rios-Martinez et al. (2011) and Vasquez

et al. (2012), where the notions of respecting the Personal Space and interactions zones are

incorporated in a motion planning algorithm as a risk of disturbance. While in Luber et al.

(2012), instead of using proxemic models for navigation, motion prototypes are learned that

reproduce the motion behavior of walking persons, which respect the social space of others.

2.2.2 Prediction-Based Collision Avoidance

As shown before, the prediction of the motion of the moving objects may be used when

the complete environment information is unknown, in order to improve the global and local

motion planning in dynamic environments. So it is interesting to detect and track moving

agents so the motion planning algorithm can avoid future collisions or risky situations.

Many methods use predictions about the agents motion in order to compute motion plans

that avoid future collisions in a dynamic environment. One example of such work has been

conducted by Bennewitz et al. (2003, 2005), where the typical movement of pedestrians are

taken into account and modeled using HMMs. During the path planning phase, the algorithm

incorporates a probabilistic belief of likely pedestrian trajectories to minimize chances of

collision. The planning is performed on a grid, where the cost of traversing a cell on is

proportional to the probability of it being occupied by a pedestrian at a given time.

In environments with higher dynamics and time restriction, a different approach is imple-

mented. On Fulgenzi et al. (2008) the typical motion pattern of pedestrians are modeled as

GPs and on Fulgenzi et al. (2009) as HMMs. The path planning algorithm is implemented

with a variation of the RRT algorithm, called RiskRRT, which introduces probability uncer-

tainty into the problem formulation and allows new information to be integrated online.

The evaluation of tree nodes takes into account a probabilistic measure of the risk associ-

ated with traversing the generated paths. To compute such risk, several factors are taken into

account, as distance (longer paths are riskier, as uncertainty increases), and the probability

of a pedestrian to be moving along a typical pattern (which increases the risk for navigation).

The result is that areas with a high density of typical patterns are associated with a higher

collision risk and are normally avoided by the planner. On these techniques, the online navi-

gation restriction is addressed with a Partial Motion Planning (PMP) architecture (Petti and

17

Fraichard, 2005), yielding the best partial solution for a given time limit.

The Freezing Robot Problem

Motion Planning algorithms that rely on motion prediction, suffer from a recurrent prob-

lem, known as the FRP (Trautman and Krause, 2010), illustrated in Figure 2.4. The problem

is that, when making motion predictions, the uncertainty of the agents’ position grows with

time. The increasing uncertainty, allied to densely populated environments, eventually covers

all the open space in front of the robot. Due to this, the motion planning algorithms are

unable to compute a feasible plan and as a result, the robot gets stuck, or frozen, even if a

solution exists.

Figure 2.4: The Freezing Robot Problem (FRP): the red blurs represent the growing uncer-
tainty of the position of pedestrians, which eventually covers the empty space in front of the
robot, and as a result, the motion planning algorithm cannot find a solution.

Some techniques implemented to address this problem artificially increase the belief in

prediction, in an attempt to find a path through moving agents, but the authors show that

the FRP still occurs if the environment is crowded enough.

The origin of this problem, nevertheless, is not taking into account that the pedestrians in

an environment will react and change their motion due to the presence of the robot, which the

authors call joint collision avoidance, where participants adapt their motion to each other.

Examples of works that do take that into account can be found in crowd simulators (Helbing

and Molnar, 1995; Helbing et al., 2000, 2002) and with reciprocal velocity obstacles (van den

Berg et al., 2008a, 2011).

To address the FRP, the authors developed the Interacting Gaussian Processes (IGP),

which is a method for describing probabilistic interactions among multiple moving agents.

This tool is used for navigation purposes, modeling the interactions among the crowd agents

and between the robot and the crowd, so the robot can successfully merge with crowds and

navigate cluttered environments. In another work, Yu and Wang (2012) address the FRP by

implementing a learning framework that learns policies of navigation in dynamic environment

from human examples. However training and validation are performed in a very simplistic

environment.

18

2.2.3 Navigation Benefiting from Human Motion

Different methods of robot navigation can benefit in distinct ways from the motion of

humans. As seen in the previous section, methods that predict the future position of humans

can be used to create motion plans that avoid collisions in the future and are valid for a longer

period of time.

But the benefits of human motion go beyond collision avoidance approaches. They can also

be used to actually bias the robot motion plan toward areas commonly traveled by humans,

benefiting from their high-level planning capacity. The behavior of humans in an area can

also provide cues to help service robots to identify potential ”clients” in order to assist them,

as helping lost persons in a mall or inviting them to try a product. It is also possible to learn

how humans behave when moving in populated environments and apply those findings in

navigation algorithms, so the robot can behave in the same fashion as humans. The following

subsections will give some examples of works in the mentioned fields.

Preferential Paths

Human locomotion is very informative, and assumed to be optimal (Helbing et al., 2000;

Mombaur et al., 2009; Alexander, 1984). In this sense, it may benefit the robot to reuse the

motion patterns of humans to guide their search of a motion plan. Among the advantages

of traveling along paths usually taken by humans, are the avoidance of obstacles difficult to

detect and better navigation among groups of people.

An example can be found in the work of Sehestedt et al. (2010). Instead of using the

pedestrians’ motion predictions to avoid future collisions only, the motion patterns can also

be used as preferential roadmaps for an A∗ search algorithm. By adjusting two weight factors,

the behavior of the motion planning algorithm can be changed, so the robot can follow or

avoid common paths on the environment. The weights also control the choice of high or low

density paths, where density means how often that path is traveled by humans, so the robot

can move along more or less populated paths.

In a similar work, O’Callaghan et al. (2011) use Gaussian Process (GP) to learn a map that

stores information about the direction usually traveled by humans, with each map is associated

with different destinations. Using these maps, the robot can follow the same patterns and

move as people would do in such environment, effectively avoiding static obstacles, even if

undetected by the robot’s sensors. This idea is shared with Murphy and Corke (2012), where

the authors build a map that has a reduced navigation cost in the areas traveled by humans,

for later path planning. These maps are built online, while the robot is following humans.

19

Learning from Human Motion

Learning and imitating motion behaviors of people can bring benefits in terms of naviga-

tion efficiency for the robot. Besides that, the robot’s motion can became more predictable,

improving acceptance by pedestrians (Kruse et al., 2012).

In order to learn how humans move from an initial to a goal configuration, Mombaur

et al. (2009) uses inverse optimal control to determine what is the optimization criteria that

humans use for locomotion. The technique is applied over a real dataset where humans were

asked to move from an initial position and orientation until reaching a marked position on the

floor. Then the authors proceeded in creating a model, based on the optimization criteria,

that best represents the real motion behavior of humans.

Regarding the human preferences and the way they interact with each other while moving,

Henry et al. (2010) use Inverse Reinforcement Learning (IRL) in an attempt to understand

how humans decide to switch among different behaviors such as “desire to move with the

flow”, “avoidance of high-density areas”, “preference for walking on the right/left side” and

“desire to reach goal quickly”.

The IRL is used to learn from demonstrations of typical paths (traces) of persons in

crowded environments. A realistic crowd simulator is used in order to generate those motion

patterns that contain information about the velocity and density of surrounding pedestrians.

By using the IRL, the algorithm is capable of learning the weights associated with the

possible actions in the environment. The planner then uses the A∗ search algorithm to

compute the best path to the goal given the learned costs of actions and the dynamic features

of the environment. The authors validate their approach on experiments, as they show that

the robot prefers to move together with the crowd flow, even if that is not the shortest path to

the desired goal. The reason is that the IRL algorithm learned that in crowded environments,

moving with the flow has a lower cost than moving independently.

Interacting with Humans

Human motion provides cues about the intentions of the subjects. In the situations where

robots have been designed to actively interact with humans, with the intention of providing

services, this cues can be used to decide when and where to approach a person.

In a shopping center, for example, if a person is constantly looking at several store windows,

he/she may be considered a potential client and a robot may start an interaction with that

person. While if someone is moving fast and in the middle of a corridor, for example, it is

very likely that this person is not interested in shopping and the robot would not profit in

interacting with them. Within this scope, the movement of persons, as well as their local

behavior in a shopping center is studied by Kanda et al. (2008).

On the same line, Tranberg Hansen et al. (2009) implements a Case Based Reasoning

(CBR) framework that takes as input the position and orientation of a person to evaluate if

20

an encounter between a human and a robot is likely to result in an interaction. Based on

the predicted outcome of an encounter, a human aware algorithm changes the potential field

surrounding a person to reflect the willingness of the human to interact (or not) with the

robot, so it can approach them.

Leader Following

One interesting way of demonstrating the capabilities of any robot is to follow someone

or something. It is usually an attractive experiment, as it demonstrates in practice sev-

eral aspects that define a robot, as sensing the environment, taking decisions and moving

autonomously.

Leader following is also a relevant topic of research, as it is useful in many human-robot

interactions and activities. Studies that have been conducted on how to follow humans address

different aspects of the problem, and they can be roughly divided in: how to position the robot

w.r.t. the leader; what motion technique is used; how to track leaders; and the purpose of

following a leader.

Following Position Normally a virtual target is created that represents the ideal position

that the robot should maintain with respect to the person being followed. In Gockley et al.

(2007) a study is conducted with two types of virtual targets, one that is the position of

the leader and the other is the leader path (a sequence of virtual points). In both cases

the robot maintains a minimum distance from the person (Figure 2.5a). In experiments,

external evaluators found that the direct leader following results in a more natural, human-

like behavior.

In Hoeller et al. (2007), the goal position for the algorithm is a virtual target that is created

by partitioning the area close to the leader in three categories: beside, slightly behind/beside

and behind. The preferred category is slightly behind and beside the leader, as the leader is

still in the field of view of the robot but its front is unobstructed (Figure 2.5b). The algorithm

changes the virtual target among these three categories on-the-fly, according to the situation,

as an obstruction, for example.

A more distinct technique of virtual point positioning is proposed by Ho et al. (2012),

where a robot ”follows” a human leader while actually in front of him/her (Figure 2.5c).

The argument of the authors is that it is easier for humans to access or deliver items to a

robot in front of them, as in a supermarket, for example. This is a difficult task, because

the robot must anticipate the human motion and quickly correct its position. To be able to

accomplish this task, an understanding of the human walking behavior is required, as well

as the prediction of his/her motion. The authors give special importance to the change of

orientation in human walk, as it is during this phase that the biggest effort is required from

the robot to keep in front of the human leader.

21

Figure 2.5: a) two types of following behavior: path following and direct following (Gockley
et al., 2007); b) virtual targets distributed around the pedestrian being followed, preferred
targets are shown in darker colors (Hoeller et al., 2007); c) a robot that ”follows” a pedestrian
in front of him/her, showing a recovery behavior after the human makes a turn.

Motion Techniques In the case of simple uncluttered environment, with cooperative lead-

ers, the leader following algorithm can be implemented using tools as simple as a proportional

controller (Sidenbladh et al., 1999) or the potential field approach (Müller et al., 2008).

With more complex situations, more refined techniques are used, as variations of the RRT

algorithm. In Hoeller et al. (2007), the Expansive-Spaces Trees method is used, which is a

type of RRT where nodes present in more sparsely sampled areas are more likely to be chosen

for extension. In other work, Miura et al. (2010) implements a RRT where the tree nodes

are checked for collision with dynamic agents, assuming their velocity and orientation are

constant. In this work, two methods of node evaluation are combined in order to find the

best path on the tree. The first method is the simplest and tries to minimize the distance

to the target as well as the change of orientation required by the robot. The second method

implements a more complex evaluation, which also takes into account the dynamics of the

robot.

Tracking The most common sensors used for tracking are cameras and laser range finders.

In the work of Miura et al. (2010), the tracking system acquires images with a stereo camera

and combines a depth template matching with a Support Vector Machine (SVM) to reject

false positives. Then a Kalman Filter (KF) is used to cope with occlusion of the tracked

person.

A camera is also used in Sidenbladh et al. (1999), where the leader is detected by skin

color segmentation and a proportional controller is used to command the robot in order to

keep the head of the leader on the central portion of the image frame.

Gockley et al. (2007) uses a laser range finder and measurements are segmented and

tracked using a particle filter. Although not directly related to leader following, but impor-

tant in this subject anyhow, are the works of Arras et al. (2008), that uses machine learning

22

to detect legs in laser scans and of Almeida (2010), that also uses laser scans to track generic

moving target, implementing clustering of scan points and using a KF to cope with obstruc-

tions.

Purpose Different purposes guide the studies in the field of leader following. In some cases,

the objective is to improve the person following, by creating efficient controllers or developing

methods for robust tracking. But other works focus on different purposes, as to improve the

acceptance of the robot by human counterparts (Gockley et al., 2007).

Acting similar to humans has proven to be a key aspect regarding robot acceptance, and

with this purpose, Müller et al. (2008) develop a planning algorithm that selects and follows

a leader that moves towards the robot’s goal. The argument of this approach is that when

robots attempt to avoid regions near pedestrians, usually the resulting behavior of the robot is

very unnatural when compared to the motion of humans in the environment. So, the preferred

behavior in this algorithm is to move together with groups of humans, instead of searching a

path that is risk free or that provides the shortest trajectory.

This is the only work on this review that actually employs a refined method of leader

selection, instead of having a person to actively present him/herself as a leader or having a

leader chosen by others.

Concerned with the social impacts of a robot in urban spaces, Svenstrup et al. (2009)

conducts a pilot study of a robot following random people in a shopping mall that is also

a transport station hub. The intention of the work was to evaluate if social robots can add

value to urban spaces, so a series of questions were asked to the persons that were followed.

The results show that about 92% of the persons were positive toward the robots and 67%

did not feel discomfort when they were followed by the robot (neutral or good), while 10% did

not feel good and 23% did not answer to that question. It is interesting to note that among

several questions, this was by far the one with the highest percentage of persons not giving

an answer. As the authors do not elaborate on this, it is difficult to understand the reason of

this outlier.

2.2.4 Analysis

Human-aware navigation have added difficulties, compared to simple dynamic motion

planning, as several constraints must be considered, as comfort, safety and the respect of

social rules.

To be able to address these restrictions, it is necessary an understanding of the robot

surroundings and rules of social interactions. The motion prediction of pedestrians can be

used to provide extended information about future position of subjects, as well as the motion

patterns that exists in specific environments. While the study and modeling of social rules

allow them to be taken into account by motion planning algorithms.

23

This information about the robot’s surroundings can be used by motion planning algo-

rithms to avoid future collisions with humans when creating a motion plan while respecting

their social conventions. But it is also possible to benefit from that information in other ways,

as moving along preferential paths and learning from human examples of interactions.

Other advantages of following a human leader is that humans naturally abide to the

proxemic rules, and are capable of understanding very complex interactions that should be

respected. Therefore when a robot follows a human leader, this person will not only help

the robot to navigate in difficult environments, but will also help the robot to respect the

personal spaces and social rules of other persons in the environment. This results in another

advantage that following the motion of leaders can bring to the robot.

The main contribution of this thesis, compared to previous developed works in the area of

human following, is a different objective and distinct means to accomplish it. In many works,

the objective is to study following behaviors and techniques (Hoeller et al., 2007; Sidenbladh

et al., 1999), or the leader following is implemented to improve, or study, the acceptance of

robots by humans (Gockley et al., 2007; Müller et al., 2008; Svenstrup et al., 2009). This is

an important difference and contribution of this thesis, as it proposes to engage in following

behavior with the purpose of enhancing the motion capabilities of the robots, as avoiding

collision with other agents or escaping frozen situations. Besides that, the lack of research

in the topic of how to choose a leader led to the development of leader selection techniques,

which is another important contribution of this thesis and will be presented in the following

chapter.

24

Chapter 3

Methods for Selecting and

Following a Leader

In this work it is proposed that when a robot follows a leader it may benefit from high

level information and from decisions provided by the subject being followed. As a result, the

robot may be able to navigate through difficult scenarios and even avoid obstacles that could

not be detected by its sensors alone.

But in order to take advantage of following a leader, one must first be selected. Considering

that the robot finds itself in a populated environment, each person can be seen as a leader

candidate for the robot to follow. This brings us to one of the key problems addressed by this

Thesis, which is how to choose a leader among several candidates.

This chapter will describe two techniques that were developed in order to perform the

leader selection, and that can be separated into two categories. The first will be based on

reasoning, with a set of rules being used to decide on a leader candidate. And the second will

be based on learning from examples of human experience. The last section of this chapter

presents the integration of these two different leader selection techniques in a multi-mode

navigation framework, that implements different algorithms, according to the environment

condition.

3.1 Techniques for Leader Selection Based on Reasoning

For this selection method, the current and future state of the humans surrounding the

robot are taken into account. The decision is based on observations and assumptions of the

characteristics of a good leader. In the method proposed here, a good candidate will be any

person that has a goal or will follow a path similar to the robot’s one. If a person has the

same destination as the robot (goal similarity), this subject can be considered as a strong

leader candidate, because the robot can follow him/her all the way to its destination.

But even if the goals of a candidate and of the robot are not the same, they may follow

25

similar paths to reach their destinations (path similarity). For example, if the robot wants

to reach a door in the middle of a corridor and it predicts that a subject will move all along

that corridor, this person can be followed until the robot reaches its goal, as both paths are

likely to be close to each other.

To determine if a candidate has a similar goal or path to the robot’s, the subject’s motion

must be predicted. This is not a straight forward task, as humans do not normally advertise

their intentions and destination, and can suddenly stop or change direction, without previous

warning. Once candidates are pre-selected, based on their goal and/or path similarity, then

other criteria are used to select the best among several candidates as their distance from the

robot, their velocity and others, which are discussed in section 3.3.

The following subsections will present existing methods that can be used in the prediction

of the path and probable destination of leader candidates, and how they can be used for leader

selection purposes.

3.1.1 Goal and Path Advertisement

In this case, the candidates advertise their planned path and intended goal to other agents

in the system. Although this is not common to occur, we already have the technology nec-

essary to advertise our intentions or navigation plan. One example is the software Waze,

described as a community-based traffic and navigation app, where users can contribute about

road traffic, accidents, and others, while also sharing their position and destination with

friends 1.

Thinking about vehicles, most of them now come equipped with GPS receivers that are

used to create routes to guide the driver based on his/her position and intended destination.

As humans, we are also beginning to use intensively smartphones that also feature GPS

receivers. Such devices can be used to guide the user in the same way as performed with a

vehicle’s driver. In both cases, the goal, plan and current position of a user can be made

available to others, and a robot could use that information in order to select a leader, as in

the case of similar goals, for example.

Some airports also provide smartphone apps that show the boarding gate to users and

other flight information to them. This information can be distributed, so a robot in those

airports would be able to select leaders, or at least enhance the prediction of candidates’

destination, based on the boarding gates of individuals.

Many of the technologies described here are still not available, and would have to address

several privacy issues before becoming functional. Nevertheless the proposed techniques would

certainly be useful in enhancing the motion and goal prediction of persons.

1http://www.waze.com/

26

3.1.2 Goal and Path Prediction by Extrapolation of Current State

Another method of motion prediction is performing an extrapolation of the candidate’s

current state (speed and orientation) into the future. This method assumes that the moving

subject will maintain his/her direction and speed in the short-term. Eventually, when looking

to the future predictions, the subject will reach a wall or the end of a scenario, and that region

can be considered as his/her predicted goal.

In order to accomplish this, several assumptions and simplifications must be made. For

example, assuming the environment does not play a role on one’s path and that every possible

position on the environment’s limits are equality likely to be visited. Despite these simplifica-

tions, goal and path prediction based on extrapolation is very fast and usually good enough

for short-term predictions.

Kalman Filter

As simple linear extrapolations are subject to high levels of noise, the predicted veloc-

ity and orientation may suffer from a high variance and error. To mitigate these errors, a

Kalman Filter (KF) can be applied to the measured data, so the outcome of the predicted

path and future positions may be less affected by noise and short-term fluctuations on the

measurements.

The KF has two distinct steps, and its workflow can be seen in Figure 3.1. One is the

prediction step, where the current state variables are estimated based on the previous state.

The second is the update step, where new (and noisy) measurements are used to update

the estimates of the prediction step. The resulting state is an average weight according to

the filter’s model and the certainty of the measurements, which balances the contribution of

each of the two steps. If measurements suffer from a large uncertainty, and therefore a large

covariance, more weight is given to the prediction step, while if the measurements have a low

covariance, more weight is given to the update step.

Figure 3.1: Diagram of a Kalman Filter.

27

As the filter also has an internal model of the target, it can provide information on

subjects even in the case of obstructions and lack of measurements. In that situation only

the prediction step is used, until a new measurement is available. The same concept can be

used to make future predictions, by running the filter without measurement updates in order

to identify the possible path and destination of a subject.

Among the advantages of this method is that it does not require a previous knowledge of

the environment, it is simple and well suited for short-term predictions. However, it is not

practical to use this approach for medium and long-term predictions, as the further predictions

are in the future, the higher the uncertainty associated to it will be.

Influence of Environment Structure on Prediction by Extrapolation

The approach of goal and path prediction based on the current state of a subject work

well in some types of environments, as corridors and unobstructed rooms. In a corridor,

pedestrians do not have much freedom and must move along it, until reaching their objective.

Figure 3.2 illustrates this situation.

Figure 3.2: Prediction of path and goal by state extrapolation on a corridor.

In the image a person moves from left to right and has the middle bottom door as desti-

nation. The blurred blobs represent the position prediction in time steps k+1, k+2, ..., k+8.

Larger blobs represent the growing uncertainty of future predictions. Based on the extrapola-

tion of the pedestrian state at time k, the goal of the subject would be erroneously predicted

at the right-end of the corridor. However the predicted paths do coincide with the actual

path until time step k + 4, so the robot can benefit from that candidate until he/she stops.

In unobstructed rooms, the users will naturally head toward their objectives, as there is

no obstacle or constraint impeding a straight motion from their position to their goals, so it is

acceptable to assume that their goals are directly linked to their motion direction. This can be

seen in Figure 3.3, where the extrapolation of the current state leads to a goal prediction very

close to the desired subject destination (upper right door). It can be seen that the prediction

has a high level of correspondence with the actual path and goal of the pedestrian.

Another limitation arises in more complex scenarios, because in those environments, pedes-

trians will move in a more complex fashion, conditioned by the environment structure. Due

28

Figure 3.3: Prediction of path and goal by state extrapolation on an open area.

Figure 3.4: Prediction of path and goal on a complex environment, in three different time in-
stants, using extrapolation of current state. Note that due to the structure of the environment,
the direction of motion of the agent does not correspond to its intended goal.

to this complexity, predictions based only on the subject’s current state will perform poorly,

as shown in Figure 3.4.

In this Figure, three images illustrate different instants of a pedestrian moving along an

office room. The dotted line shows the true path of the robot. Note that due to the structure

of the environment and the position of walls, doors and the desk, the subject has to travel

along a S-shaped path.

Due to this pattern, the motion prediction algorithm fails to provide a correct solution

on the first and second instants. Only on the last image, the algorithm produces an accurate

result. This illustrates that linear extrapolation is not well suited to be used in complex

environments, providing correct predictions only on short-term.

29

3.1.3 Motion Prediction Based on Learning - Typical Paths

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I?

I took the one less traveled by,

And that has made all the difference.

(Robert Frost, 1916, page 9)

(a) (b)

Figure 3.5: (a) An artistic intervention on a crossroad in Berlin showing typical paths of cars
(Painting Reality c©IEPE); (b) a frozen lake, showing snowmobiles’ typical paths (frozen lake
in lapland c©ezioman).

In order to overcome the limitations of motion prediction using linear extrapolation, a

different approach, based on learning, can be used. The learning-based method relies on

the fact that when observing a populated region, it is possible to notice that moving agents

do not move at random. Instead of that, their motion is related with points of interest on

the environment (doors, stairs, tables, food, water), with optimal trajectories between those

points and with rules of allowed motions (as traffic rules for cars, or dynamic constraints),

which result in well defined motion patterns, that can be represented by typical paths Helbing

et al. (2001), Tay and Laugier (2007).

Definition A typical path is a representation of groups of paths that are similar and con-

nect the same interest points in an environment.

The typical paths can be used to train a motion prediction algorithm, so it learns how

agents are likely to move in a given environment, improving its motion prediction capabilities.

Figure 3.5 shows a visualization of the motion patterns created by vehicles in two situations.

On the left, paint was dropped at the crossroad entrances, marking the path traveled by

30

Figure 3.6: Example of typical paths at an office environment.

cars. The right image shows snowmobile tracks on a frozen lake, note that the tracks are not

spread, but concentrated in common patterns, forming typical paths.

Figure 3.5a also helps to understand how learning typical paths can improve motion

prediction algorithms. Suppose that one wants to predict the motion of a car coming from the

right edge of the image. Although the vehicle can theoretically move to any part of the road,

the blue paint shows that previous vehicles coming from that area either moved straight or

turned right. So, it is reasonable to assume that there is a high likelihood that a new vehicle

coming from that area will follow those patterns.

Another example can be seen in Figure 3.6, where there are eight typical paths that link

interest points in a room (two office doors, a reception table and the entrance/exit). They

represent the group of similar paths traveled by employees going to work and coming back

from one of the two office doors, and also the path taken by persons that only reach the

reception desk and then leave the room. Although individual paths ought to be unique, they

can all be grouped together according to the interest points they connect.

There are two major advantages in using typical paths together with a learning framework,

in order to perform motion prediction of pedestrians. First, they are able to encompass

the complexity and structure of buildings in the model, improving the accuracy of motion

prediction. Second, the learning framework can incorporate probabilistic techniques, which

allows a measure of confidence when performing predictions of a goal and path. This is

important, as predictions that suffer from a large uncertainty can be treated differently from

ones with high levels of confidence.

Data used to create typical paths model can be collected from different sources: robot’s

sensors; surveillance cameras; an array of lasers and others. It is important to notice that the

data collection process only needs to be conducted in a limited period of time, in order to

31

gather the most common motion patterns. Once a model is learned, it will remain constant

as long as the environment structure or functionalities of interest points remains unchanged.

A new table or a broken elevator, for example, would change the typical paths, requiring an

update of the model.

Next subsection will conduct a review on the different methods for typical paths modeling.

Modeling Typical Paths - A Review

The knowledge that humans move following motion patterns, or typical paths, have been

used to improve algorithms in many different fields of research. Examples are tracking of

persons, detection of unusual behaviors, in the surveillance field, and aiding architectonic

projects, to improve access and exit designs. Several methods exist for modeling the typical

paths, as interpolated knots, splines, sub-goals, and probabilistic approaches, and they can

be roughly divided in two groups: geometric and stochastic modeling.

Geometric Approaches A simple approach for typical path modeling is presented in

Makris and Ellis (2002), where they are modeled as a sequence of knots and linear inter-

polations associated with entry and exit points, a method that is fast and computer efficient,

but have restriction in more complex scenes. For a better representation of the human motion

path in complex environments, Baiget et al. (2008) cluster the most common entry and exit

points and then uses concatenation of simple splines (B-splines) for an improved representa-

tion of the typical paths.

Geometric methods are fast and efficient approaches for modeling typical paths. However,

they do not incorporate probabilistic information, which is important when the objective is

to model the motion of humans and its uncertainties, as it is inherently a stochastic process.

Stochastic Approaches The uncertainties associated with human motion can be incor-

porated into typical paths models using stochastic approaches. Although more computer

intensive then their geometric counterparts, they provide a more accurate description of the

motion patterns and their predictions.

In Johnson and Hogg (1996), a neural network is implemented in order to learn from

sequences of images and to create a model of the distribution of typical trajectories. Within

this work the model is used for surveillance purposes and to detect anomalous behaviors.

The use of Gaussian Process (GP) also allows uncertainties to be incorporated on the

model, better representing the human motion (Tay and Laugier, 2007; Ellis et al., 2009). Still

using GP as a tool, Kim et al. (2011) create a 3D spatio-temporal flow field using Gaussian

Process Regression, modeled as a dense flow field. This approach allows prediction of the

path taken and also the detection of anomalous behaviors. The model incorporates not only

the position but also the dynamics of the objects that moved on the scene, as accelerations,

32

which improves the detection of different trajectories over the same path. It generates a

continuous vector field, called Gaussian Process Regression Flow (GPRF), which provides a

representation of motion tendencies.

In Tipaldi and Arras (2011), the time dimension is also incorporated on the model and

the authors create a spatio-temporal model called spatial affordance maps, which is based on

previous space and time information about subjects, and then used to generate paths that

maximize the probability of finding certain persons.

On a more recent work, Ikeda et al. (2012) model the typical paths taken by pedestrians

using a concept borrowed from human sciences, called sub-goals. These are points that are

associated with the environment structure and architecture and transition probabilities are

associated with them. According to that work, in any environment pedestrians move along a

sequence of those points.

Finally, Vasquez Govea et al. (2009) developed an approach called Growing Hidden Markov

Model (GHMM). The main advantage of this technique is that the learning and prediction

phases are on-line concurrent processes, resulting in a learn and predict paradigm. This is the

technique chosen to be used on this work, as it was already integrated on a broader experi-

mental framework developed at INRIA. The next Subsection will give a detailed description

of this method.

Growing Hidden Markov Model

One form of representing typical paths is by means of discrete state-space models. In such

models, time is represented as a discrete variable and the motion of a subject is represented

as several discrete states. A common representation is the Hidden Markov Model (HMM),

where each node represent a state and the transition probability among them, P (St|St−1),
are represented by edges. A characteristic of the HMM is that the states are not directly

observable, but rather inferred according to an observation probability P (Ot|St). Figure 3.7

shows a typical representation of a HMM.

In order to create a HMM, two learning phases are necessary. One is the structure learning,

which consists of determining the number of nodes and the edges that connect them. The other

is the parameter learning, where the probability of the prior, transitions and observations are

computed. Once the learning phase has been performed, the result is a static HMM, which

can be used for predictions, but will not adapt to new information. This condition may bring

some limitations to the model, as it is not able to incorporate new observations to its structure

or probability parameters.

To tackle these limitations, Vasquez Govea et al. (2009) developed a technique called

Growing Hidden Markov Model (GHMM). It implements an approach where the learning and

prediction phases are on-line concurrent processes, resulting in a learn and predict paradigm.

The structure of the GHMMs are the same as the regular HMMs, with the difference that, as

33

Figure 3.7: A typical three state HMM, with observation probabilities on the nodes and
transition probabilities on the edges.

Figure 3.8: GHMM learning algorithm overview (adapted from Vasquez Govea et al. (2009))

new observations sequences are incorporated into the model, the transition structure and the

number of states can change, updating the model (Figure 3.8).

The GHMM algorithm consists of the use of the Growing Neural Gas (GNG) algorithm

Fritzke et al. (1995), to estimate the model structure as well as the transition probabilities

of a Hidden Markov Model (HMM). As the algorithm is adaptive, it is capable of creating or

removing states to cope with new observations.

Each goal in the scenario has a different HMM associated to it, representing the path taken

to reach such goal. As the intention of modeling a typical path is to compare the robot’s goal

with a predicted subject’s goal, the GHMM inherently provides an elegant solution to that

problem.

Clustering of the paths is not necessary, as the model is capable to adapt its state space

topology according to the observations. In this way, similar trajectories will automatically be

represented by the same sequence of states, which in its turn can change, according to the

more frequent observations.

When using the GHMM for the prediction purposes, it is possible to ”ask” the algorithm

what is the estimated current state and future states of the observed dynamic object, as

well as the prediction of its goal. The output of the algorithm is a probabilistic value over

a discrete grid, as can be seen in Figure 3.9. In both images, the red bars represent the

probability for each of the grid’s cell to be the agent’s destination, where the agent position

is represented by the three orthogonal axis. On the left image, it is possible to see two groups

34

Figure 3.9: Two instants in the goal prediction of a dynamic object. The height of the bars
is proportional to the probability of a cell to be the final goal

of bars, which represent two regions on the map that are likely to be the agent’s goal. As the

agent continues its motion, the goal prediction converges, as shown by the single region with

red bars on the right image.

3.1.4 Limitations of the Reasoning-Based Technique

Although the reasoning-based approach provides a solution to the task of leader selection,

it suffers from some limitations. One of them is that it relies on future predictions, that may

be inaccurate. Another restriction is that the robot must know the map of the environment, in

order to compute its own plan, that will be compared to the predictions of leader candidates.

Due to these limitations, such methods are not suited to situations where the robot must

navigate through an unexplored environment.

Besides that, even in known environments, the presented technique may have some draw-

backs. In the situation where several candidates have a common predicted goal, which matches

the robot’s own goal, there is no clear way to chose one single leader among the several can-

didates. This technique also does not take into account the reactions of the leaders to the

presence of the robot: in a situation where the robot is following a leader that experiences

discomfort in being followed by a machine, and becomes annoyed by that. This leader may

start moving faster in an attempt of avoiding the robot, for example. If the leader selection is

based only on goal or path similarity, the robot may continue to follow this person, increasing

the discomfort experienced by the leader.

3.2 Leader Evaluation Technique Based on Learning

As it has been shown so far, a key issue that this work addresses is how to choose a leader

among several candidates. With this objective, an innovative technique has been devised,

that creates a learning-based approach for leader selection, based on human experience.

35

The idea to use this approach comes from the fact that humans often encounter themselves

in the situation where they engage in leader following behaviors and group formation, usually

without much thought or reasoning. In this sense, it is interesting to try to understand

what are the underlying criteria used by persons to engage and disengage in leader following

behavior, so this can also be applied in the design of robots.

It is important to have in mind that, although robots can benefit from following humans,

this cannot be done by the expense of their comfort. Disturbing persons while following

them, violates a crucial requirement for robots existing among humans, which is to respect

their social conventions. The developed method also proposes to address this issue, as the

data used for training will be labeled by persons, whom can easily perceive cues associated

with discomfort in other persons, as looking backwards, moving faster or moving out of the

way.

It is expected that this approach bring benefits to the leader selection problem, as:

• the robot does not need to create a plan or make predictions about the candidate’s

intentions, being able to explore unknown environments while following someone;

• it is possible to provide individual scores for leader candidates, allowing a better basis

for the decision of who to follow;

• a bad leader can be associated with situations of discomfort experienced by the subjects

being followed, so the algorithm can stop following a leader, improving its acceptance.

Although numerous works have been conducted regarding the robot-human interactions

and proxemics (Gockley et al., 2007; Takayama and Pantofaru, 2009; Walters et al., 2009),

they are normally focused on how the humans react and feel regarding an approaching robot.

However there is a lack of study on what happens when the human is also moving and being

followed by a robot. In this sense, this work also launches the basis of such study, by proposing

a methodology for data acquisition in this area.

Besides the objective of classifying a good or bad leader candidate, it is also important

to understand what are the measurements, or features, that are relevant to that classifi-

cation (distance, velocity, etc.). Because of this, the machine learning algorithm chosen is

the AdaBoost, as this algorithm inherently selects the features that contribute the most to

the classification process. This choice addresses two issues at once: the leader classification

problem and the study of what are the features that are most important to that process.

Next section will provide more details on this algorithm and how the information of features

contribution can be obtained.

3.2.1 AdaBoost Classifier

Boosting is the name of a category of supervised machine learning ensemble algorithm,

where several weak classifiers (or weak learners), or rule-of-thumbs, are combined in order

36

to create a more accurate predictor, or strong classifier. In such category of classifiers, two

important issues arise:

• how to choose or modify the training set to train weak classifiers;

• how to combine the weak classifiers.

The adaptive Boosting (or AdaBoost), developed by Freund and Schapire (1997) is a varia-

tion of the basic Boosting algorithm which addresses these issues, and its pseudocode is shown

in Algorithm 1. As the input, the algorithm receives a training set tsn = {(x1, y1), ..., (xn, yn)}
containing a vector of features xi ∈ X and its respective labels yi ∈ {−1,+1}.

Algorithm 1 Adaptive Boosting (AdaBoost)

1: D1(i) = 1/n . initialize weights
2: for t = 1→ T do
3: ht ← TrainWeakClassifier(Dt) . find a classifier ht that minimizes the error εt

4: εt =
n∑

i:ht(xi) 6=yi
Dt(i) . computes the weighted classifier error εt

5: αt = 1
2 ln

1−εt
εt

. computes αt
6: for i = 1→ n do
7: Dt+1(i) = Dtexp(−αiyiht(xi))

n∑
i=1

Dtexp(−αiyiht(xi))
. update and normalize weights of training set

8: end for

9: return H(x) = sign
T∑
t=1

αtht(x) . return the strong classifier H

10: end for

As an enhancement over the original Boosting algorithm, the AdaBoost maintains a set

of weights on the training set, that are updated after each iteration, where Dt(i) is the weight

of a sample set i on iteration t. As the algorithm runs, the weight of each sample of the

training is modified, with more weight given to misclassified examples and decreasing the

weight of correctly classified ones. As a result, in the next iteration, the algorithm will give

more emphasis in making a correct classification of previously misclassified samples.

When initializing, the algorithm gives the same weight to all tsn samples. The next step is

to compute a weak classifier hn taking into account the weight distribution of the training set.

The best weak classifier is the one that minimizes the error εt, which is the weighted sum of

misclassifications. The restrictions in the choice of the weak learner is that ht(x) ∈ {−1,+1}
and that its error rate is better than chance (smaller than 0.5).

It is interesting to choose a weak learner that is fast to be trained, as usually a large number

of them is required. Examples of weak learners are decision trees, multi-layer perceptron

and radial basis function. In this thesis, the decision stumps are used, which is a one-level

decision tree, making predictions based on a single threshold over a single feature. Figure

3.10 illustrates a decision stump that operates over a dataset that contains two features, x1

37

and x2. In the image, the classifier is operating only over the feature x1 and the classification

is based only on the threshold θ. If the sample value is above this level, it is classified as +1

and if below, the class is −1.

Figure 3.10: Example of a decision stump classifier operating over the feature x1 and with
threshold θ, used as a weak learner.

In the algorithm workflow, the next step is the computation of the confidence parameter

α, an important factor that is responsible for the adaptive capability of the algorithm and

is computed based on the error εt. This parameter is used in the update of the weights

distribution Dt, where:

−αiyiht(xi) =

{
< 0, yi = ht(xi)

> 0, yi 6= ht(xi)
(3.1)

So if a training sample is correctly classified (yi = ht(xi)), its weight is reduced, whereas

if the classification fails, the weight of sample i is increased. The new weight distribution will

now affect the choice of the weak classifier on the next iteration, favoring one that manages

to correctly classify the difficult cases.

For each training sample, the weight update is computed based on αt and then normalized.

Finally, once all the iterations were computed, or if an error threshold has been reached, the

algorithm returns the final strong classifier H. The result is a combined ensemble of weak

classifier weighted by the factors αt, which can be seen as a measure of the contribution of

each one of the weak classifiers, producing a signal weighted linear combination of them.

Among the advantages of the AdaBoost algorithm is the exponential convergence of the

training error to zero and good generalization properties, besides the capacity of the algorithm

to perform feature selection.

3.2.2 Features Study

It is interesting to hypothesize on which features are the most important in a classifi-

cation problem, for further investigation and understanding of the underlying phenomenas.

38

This work is a practical example of this, since learning and understanding what matters in

following-leading engagements is essential to the development of a more refined theory on

human-following behaviors for robots.

In classification problem, determining which features should be used during learning is

not a straight-forward task, as usually it is not known, beforehand, which features are the

most relevant for separating classes.

One form of addressing this issue is by creating an extensive list of features, to guarantee

that at least some of them are relevant to the problem in question. But this may result in

a very large number of feature, elevating computer costs required for training, with many of

them being redundant or irrelevant.

Several methods exist that perform the reduction of the features space, in order to obtain

more efficient classifiers. When the dimension of the feature vector is small, a brute force

method can be used, where all the possible combinations of features are tested and the best

combination is selected.

However, as the dimension of the feature vector grows, an automatic selection approach is

required. By using the Principal Component Analysis (PCA) method, features are combined

to produce new sets of uncorrelated features, or principal components. For an example, if

two features are highly correlated, they can be combined in a new single feature that has

a low correlation with the remaining. However, in the current work, this method is not

interesting, as the new combined features will have no real-world meaning, not contributing

to the comprehension of the human-following problem.

According to Susnjak (2009), AdaBoost has a feature selection built into it when using

decision stumps as weak learners. As in each iteration, a weak classifier is associated with only

one feature, the contribution parameter αt and error εt are measurements of the importance

of the feature used in a weak learner for the classification problem. This provides a form of

quantitative evaluation that can be used as a criteria for feature selection.

As a result of feature selection, a reduction of the number of features used can benefit the

time spent for training and predicting classes, which is an important requirement in on-line

systems. Besides that, and more relevant to this work, is the possibility to draw conclusions

about why some features are more important than others, as this can help the understanding

of the criteria used by humans in following behaviors.

According to Tsuchiya and Fujiyoshi (2006) and Drauschke (2008), the contribution of

each feature in the general classification problem can be measured by summing the number

of times each feature is used, weighted by the αt of the weak classifier that uses the feature

in question. Differently from the aforementioned works, here, this value will be normalized

by the sum of all αt, to obtain the ratio of the contribution of each feature.

CR(fi) =

∑T
t=1 |αt|δ[F (ht)− fi]∑T

t=1 |αt|
where δ[n] =

{
0, n = 0

1, n 6= 0
(3.2)

39

Where CR(fi) is the contribution ratio of feature fi ∈ {1, 2, 3, ..., i}, αt is the confidence

parameter and F (ht) is a function that returns the identification (number) of the feature

chosen by the weak learner ht. Finally, δ is the Kronecker delta, which outputs 1 in the case

the weak learner ht was created using feature fi and 0 otherwise. As a result, C(fi) will be

the weighted sum of the number of times that the feature of interest fi has been used by a

weak learner. And this will be the measurement used to evaluate features contribution.

3.3 Contributions on Leader Selection and Following

So far it has been discussed how existing techniques can be changed and used to qualify a

candidate to became a leader for the robot. In this section, it will be discussed how use that

information to perform leader selection and following.

The contributions presented here are a rule based system for leader selection based on

reasoning, and a voting scheme for leader selection based on learning. Another development

is how these methods are then integrated in a navigation system that can take advantage

from leaders, when the situation is adequate.

The system setup was built using the Robot Operating System (ROS) Quigley et al. (2009)

architecture. This implements a modular system, where several modules run separately and

communicate by means of TCP/IP connections. Such architecture gives a series of advantages,

mainly due to its flexibility, allowing modules to be easily incorporated or subtracted from

the system. Another great advantage is the standardization of messages format, an unified

form of recording the data and also several tools for aiding data processing and visualization.

To simulate the robots and agents, the STAGE multiple-robot simulator Vaughan (2008)

was used, which is capable of simulating several robots that move and sense in a 2D envi-

ronment. This environment has been integrated with ROS, where all the motion planning

algorithms and the heuristics of leader decision were developed.

3.3.1 Leader Selection Methods

This section presents the methods used for leader selection and following in the two types

of experiments conducted. In the reasoning-based experiments, the choice of the leader is

based on the prediction of the subjects’ future state and on a set of rules. While on the

learning-base experiments, a classifier together with a voting system give a score for each

candidate, and the one with the higher score is selected as a leader.

Reasoning-Based

The workflow of the reasonig-based approach is shown in Figure 3.11, where it can be seen

that STAGE publishes the state of the robot and of the agents to the other ROS modules, and

receives motion commands that produce a change on those states. The pedestrian simulator

40

module, that will be described in Section 4.2.2, is responsible for generating the behavior of

a group of pedestrians.

Figure 3.11: Integration of STAGE with ROS modules used in experiments for the reasoning-
based approach.

The goal and path predictors group can implement different algorithms, for the prediction

of the goal and path of the simulated agents, and that information is passed to the leader

management module. This module also receives information about the robot’s state, the

agent’s state, the desired destination of the robot and a precomputed path to that goal.

Based on that information, this module will decide if the robot should engage (or dis-

engage) in a leader following behavior, and send the selected leader identification and the

selected following mode to the motion planners group. Finally, one of the modules inside that

group will generate a motion plan either to the robot’s final destination or for it to engage in a

follow-the-leader behavior, according to the following mode chosen by the leader management

module.

To decide which, among several leader candidates, is the best one and should be followed

by the robot, a number of rules have been defined, which are illustrated in Figure 3.12, and

are described below:

• First there is the goal similarity rule, that states that a good candidate must go to

a place near the robot intended destination. In the image, the orange candidate is

promptly discarded as a leader candidate, as its goal falls out of the goal similarity

threshold.

• Second, the leader candidate must be moving, so any subject with velocity inferior to

0.5m/s is not considered.

41

Figure 3.12: Visualization of leader selection rules. The robot is represented by the blue
square and its goal by the blue crossed square. The candidates are represented by colored
circles and their goals as crossed circles, with the respective color.

• Next, there is the candidate proximity rule, created to guarantee that only subjects

close enough for the robot to profit from their motion would be chosen. Again using

Figure 3.12 as reference, the yellow candidate would be eliminated according to this

rule.

• Finally, the candidate must be closer to the robot’s goal, then the robot itself. This is

to make sure that the leader is in front, or at least beside the robot, because otherwise

the robot would have to turn around to follow a leader. This rule is represented as the

shaded semicircle centered on the robot. This would eliminate the dark red candidate,

as it is behind the robot.

• Among the remaining candidates, the one that is closer to the robot would be chosen

as leader, which is, in this case, the green one.

These conditions are constantly being evaluated, which allows the robot to switch leaders

during the motion execution. For example, if a leader stops, or if a candidate appears between

the robot and the leader, the robot can adapt to that situation. The following experiments

will test these rules, as well as the multi-mode navigation, explained in section 3.3.

Learning-Based: Voting Scheme for Leader Score

The developed framework uses real data acquired from previous experiments and imple-

ments a simulated robot that will classify and eventually follow subjects that had their motion

recorded. In this way, the simulated robot will extract and classify features from real data,

but in a virtual world. The advantages of this proposal is that the data used is not simulated,

but real, and measurements are taken with respect to the virtual robot position, so they are

always different from the features used in the training of the classifier. The workflow of this

framework is presented in Figure 3.13.

42

Figure 3.13: Integration of STAGE with ROS modules used in experiments for the learning-
based approach.

Differently from the previous case, here there is no simulation of pedestrians, as this data

is only played back from recorded experiments. The STAGE simulator is only used to simulate

the robot position and motion in the virtual world. A leader classification module receives

information about the state of the agents (from the playback) and of the robot (from STAGE),

and then extracts features and classifies each subject.

This information is passed to the leader management module that will select the best

leader, if any, and informs the motion planning group according to the situation. In the case

a leader is found, the robot may engage in a following behavior.

The classifier presented in section 3.2 performs classification only on instantaneous fea-

tures. In each instant it produces a binary output meaning that a candidate is a good or bad

leader. But that behavior is undesirable for online applications, because when a robot follows

somenone, it cannot constantly switch between two modes (following navigation/stand-alone

navigation). So a type of hysteresis is desired, where past events have influence on the decision

of the leader choice.

To address this situation, a voting scheme has been created, that results in a score for each

leader candidate, effectively taking into account the past classifications. This is implemented

in the leader management module. This new layer of processing produces more stable classi-

fications of leader candidates, so they can be used by a navigation algorithm. In this voting

scheme, an instantaneous classification of a subject as a good leader counts as a positive vote

with the value 0.01 and a classification of a bad leader casts a vote with the value −0.5. The

maximum value of a candidate’s score is 1 and the minimum −0.1, while the threshold for

considering a candidate a possible leader is any score above 0.

All these values had been empirically configured, so, in the form that this voting scheme is

implemented, it takes several instantaneous classifications of a good leader to raise a subject’s

score. So only a constant, long term, good behavior will make someone a good leader. While,

43

in the other hand, even a reduced number of bad leader classifications can highly penalize

subject’s score, as shown in Figure 3.14. The meaning of this is that the robot will slowly

gain confidence in following someone, but if this subject exhibits a behavior that does not

correspond to a good leader, the robot will quickly distrust this person.

Figure 3.14: Example of voting scheme for leader score.

To consider a subject as a possible leader, his/her score should be higher than 0. In the

case that more than one candidate is present, the algorithm would normally give different

scores for each subject, and the leader would be the one with the highest score. This system

allows the algorithm to automatically switch among leaders and follow the best leader in a

scenario.

3.3.2 Navigation and Leader Following Methods

The developed system consists on a multi-mode navigation framework, that can use three

different navigation strategies according to the situation. When no suitable leader is found,

the solo mode is active, and the robot uses a motion planning algorithm suited for navigation

in dynamic environments called RiskRRT. In the case a leader is found, using one of the

previously mentioned techniques, the navigation framework can activate one of the two modes:

path follow or leader follow.

The activation of one mode or another is based on a distance threshold, empirically set at

4m. Figure 3.15 illustrates how the algorithm switches among the three navigation modes.

In the case of the path follow mode, the path traveled by the leader is recorded and

sampled according to a fixed time step. These samples are then used as subgoals to the

Dijkstra’s shortest path algorithm, so the robot can follow the leader’s path, as illustrated in

Figure 3.16.

In this way, even if not very close to the leader, the robot can avoid obstacles that it is

not able to detect, as spilled coffee or holes on the floor, and benefit from the space created

by the leader motion.

While on the leader follow mode, the robot should follow the leader directly. In this case,

two independent proportional controllers are used to control the distance and the heading of

44

Figure 3.15: Diagram of the multi-mode navigation system.

Figure 3.16: Illustration of the path following navigation mode.

the robot towards a leader, as shown in Figure 3.17.

Figure 3.17: Illustration of the leader following navigation mode.

The velocity commands of a differential wheeled robot are computed with the following

equations:

vθ = herror ∗Kθ (3.3)

vlin = (d− dref) ∗Klin (3.4)

45

Where vθ is the angular velocity and vlin the linear velocity of the robot. dref is set at 2m,

which is a distance that respects the social space of the person being followed (Hall, 1966).

In the case that d < dref , vlin is set to 0. This following mode is considered more natural,

according to Gockley et al. (2007), and due to the closeness of the robot to the leader, it can

also benefit from his/her motion and avoid undetected obstacles.

Navigating Without a Leader: RiskRRT Motion Planner

The motion planner used when the solo mode is active is the RiskRRT motion planner,

developed by Fulgenzi et al. (2008, 2009). This algorithm has been developed explicitly to

be used in dynamic environments, and is based on the classic RRT algorithm (LaValle and

Kuffner Jr, 2001). The difference being that it uses the notion of the risk of collisions with

moving agents to compute the best motion plan. It combines a part dedicated to perception (of

static objects and moving agents) with another part for planning trajectories, with navigation

and planning performed in parallel.

During the execution of the algorithm, the configuration-time space is searched randomly,

and a tree T is grown from the initial configuration until a feasible path to the goal configura-

tion is found. The algorithm randomly chooses a configuration P in the C-space and extends

an existing node of its current search tree towards that point. To speed up the exploration

towards the final goal, once every 100 times, the goal itself is chosen as P .

The node chosen for extension is the one where the resulting partial path has the lowest

risk of collision with moving agents. The likelihood of each partial path can be expressed as

the multiplication of the independent probability of collision with static (Pcs) and dynamic

components (Pcd), where qN is the candidate node, for a partial path:

Lπ(qN) =

N∏
n=0

(1− Pcs(qN)) ·
N∏
n=0

(1− Pcd(qN)) (3.5)

The prediction approach for forecasting the position of moving obstacles in the near future

can be performed using different approaches, as for example GPs or GHMMs. With the

information of probable occupied positions in the future, the algorithm can anticipate the

behavior of the agents.

After the tree expansion phase, the motion plan is computed taking into account the

sequence of nodes that minimizes the risk of collision with other agents while at the same

time bringing the robot closer to its goal. Here, the risk of collision can be seen in this case

as a measure of the feasibility of a path, with the maximum accepted risk specified as a

threshold.

In more recent developments, Rios-Martinez et al. (2011) created a technique called Social

Filter (SF), which consists of modeling the interactions among humans (o-space) and also their

personal spaces (p-space) as risks of disturbances, represented by Gaussian distributions as

46

shown in Figure 3.18.

(a) (b)

Figure 3.18: The SF is modeled as a Gaussian distribution, with the risk represented by the
height of the points: (a) p-space, the personal space, which is centered in the subject; (b)
o-space, the interaction space, with the maximum risk of disturbance located at the center of
the interaction.

By integrating such technique with the RiskRRT algorithm, the authors develop an ap-

proach that is able to respect social conventions. This is accomplished due to the increased

risk of nodes generated close to humans and close to social interaction regions, and as a result,

the robot can behave in a socially acceptable way. With this enhancement, the risk function

becomes a measure of safety and also of human friendly navigation. The effects of the SF on

the RiskRRT motion planning is shown in Figure 3.19.

Figure 3.19: Several RiskRRT plans with Social Filter (SF) deactivated; SF activated, with
humans facing each other; and SF activated, with humans facing away from each other.

The pseudocode of the RiskRRT is described in Algorithm 2, which runs a loop until the

robot reaches its goal.

When the algorithm starts, it enters a loop waiting for a goal to be received. Once that

occurs, a RiskRRT object is initialized with information about the current robot state, the

received goal, an agents structure, the map and the current time. A flag is changed to signal

that the algorithm has been initialized.

In the next loop, with the RiskRRT object already initialized, a verification if the robot

has reached its goal is conducted. If this condition is not satisfied, the current robot state is

retrieved and a function retrieves the prediction of motion of the agents in the scene. Then

RiskRRT tree is updated with the most up-to-date information about the robot’s state, the

agents, the map and the current time. In this step, the root of the tree is updated according

47

Algorithm 2 Risk-RRT

1: procedure RiskRRT
2: if newGoalAvailable then
3: robotState← read()
4: goal← read()
5: agents← clear()
6: map← read()
7: t← clock()
8: riskrrt.initialize(robotState, goal, agents,map, t)
9: goalRetrieved = true

10: else if goalRetrieved then
11: goalReached← isInGoal(robotState, goal)
12: if !goalReached then
13: robotState← read()
14: t← clock()
15: map← read()
16: agents← predict()
17: riskrrt.update(robotState, goal, agents,map, t)
18: while timeToGrow do
19: riskrrt.grow(agents,map, t)
20: end while
21: riskrrt.checkCollision()
22: riskrrt.findBestPath()
23: riskrrt.publishPath()
24: else
25: riskrrt.finish()
26: break
27: end if
28: else
29: wait goal
30: end if
31: end procedure

to the robot’s position, and nodes that are no longer accessible are eliminated.

After that, the algorithm enters another loop where it will expand the tree branches

during a certain amount of time. Once that time has elapsed, the RiskRRT object performs a

collision check, then computes the best path that minimizes the risk of collision and publishes

that path for the motion executer. The execution and the planning are two parallel processes.

While the robot follows a computed trajectory, the motion planner is already entering a new

loop. This process continues until the condition of the robot reaching its goal is satisfied.

Figures 3.20 and 3.21 show experiments conducted with the RiskRRT algorithm. In

these cases, the prediction is based on the linear extrapolation of the agents’ current state,

represented by a sequence of colored squares. Each square represents the estimated position

(state) of the human in the future, in a given time-step. The distinct colors represent the

48

amount of time that the agent is expected to take to reach each state. The colored circles

are the exploration nodes of the tree built by the RiskRRT algorithm, and they are coded in

the same fashion as the colored squares. Each node represents a possible configuration for

the robot and its color is the time the robot will spend to reach each configuration. The size

of the circles is a representation of the risk associated with each configuration, so they are

bigger when circles and squares of the same color are close to each other.

In Figure 3.20 a robotic wheelchair and a simulated human have opposite goals and must

pass-by each other in a narrow corridor to reach their destinations. The RiskRRT algorithm

plans based on the predicted path that will be taken by the human in the scene.

As can be seen in the images, when the colors of the squares and of the circles coincide,

the circles grow in size. The reason is that both human and robot are expected to reach

those states in approximately the same time, so they will be close to each other, producing

an increased risk of collision, represented by the larger circles.

The RiskRRT algorithm will always choose the sequence of nodes that have the smaller

associated risk, to avoid potential collision and interference with humans. In the example of

Figure 3.20, it automatically chooses one of the sides of the corridor to pass by the simulated

agent. In its turn, the agent’s motion is governed by the pedestrian simulator described in

section 4.2.2, so it will react to the presence of the robot once close enough to it, slightly

moving to the free side of the corridor.

In the experiment of Figure 3.21, the robot must move along a crossing, where two humans

pass in front of its way. The RiskRRT algorithm creates a motion plan (red line) to the goal

(blue arrow) that leads the robot to pass by the back of the first person, and then moves

slower, along a straighter path, to pass after the second person. With this strategy, the

algorithm minimizes the risk of collision and the discomfort caused by the robot for the two

pedestrians. Frames at the right of the figure show a zoomed image of the future robot

positions (increased circles) when close to the predicted position of pedestrians (squares) in

the same instant (same color), which translates as an increased risk of collision of discomfort

for the persons.

49

Figure 3.20: Experiment with the RiskRRT algorithm in a narrow corridor, where a robot
must cross with a human.

50

Figure 3.21: Experiment with the RiskRRT algorithm in a crossroad, with two pedestrians
crossing in front of the robot. The frames show a zoomed image of exploration nodes where
there is an increased risk of collisions, represented as larger circles.

51

52

Chapter 4

Experiments on Leader Selection

and Following Based on Goal and

Rules

This chapter describes the experiments conducted within two aspects of this research: how

to select leaders and how to follow them. Here, the destination goal of the subjects is used

as a criteria to filter only the candidates that will move to a destination close to the robot’s

goal, as discussed in Section 3.1. Then, the filtered candidates must satisfy a set of rules, that

will result in a leader selection.

Three types of experiments were developed here. In the first, it is demonstrated the use

of the GHMM method for leader selection based only on goal prediction, where real data

is used train the GHMM and to replicate real agent’s behavior in a simulated environment.

Following this, the use of a trajectory generator, together with a pedestrian simulator, allows

to extend the applications of the GHMM to a virtual world, where the robot identifies and

follow a leader among moving agents. Finally, the last experiment merges the rule-based leader

selection with the multi-mode navigation framework described in subsection 3.3.2, using the

pedestrian simulator to create realistic experiments.

4.1 Experiments Integrating Real Data and Simulation

These experiments will use the GHMM method to model and predict the typical paths

and goal of pedestrians. After this step, a virtual test scenario is created, containing a virtual

robot and ”semi-real” agents, which are actually recorded data from real persons, played back

in the virtual world. Although their motion replicates the real way a person would move,

they will not be able to react to the presence of the robot. The virtual robot uses a modified

version of the RiskRRT algorithm to navigate and follow the semi-real leaders.

53

Figure 4.1: INRIA Rhône Alpes entrance hall, with labels over its typical interest points: the
doors, corridors, entrance and reception desk.

4.1.1 Data Acquisition

In order to train a GHMM model, real data with the typical trajectories of an environment

was logged. Humans are able to detect series of cues that may help them infer the goal of a

subject, as the gaze, head and body posture, velocity and others. Based on the information

they can gather from someone, and based on previous knowledge of the human behavior and

of the scenario, they are able to predict, at some extent, the destination of a persons.

This task is more complicated when relying on sensors attached to a robot and on the

interpretation of the measurements. Although there is a growing number of algorithms that

can detect body and head orientation, as well as gaze direction, some still lack robustness or

are developed for indoor applications only.

In the current experiment, only the velocity and orientation (regarding the motion, and

not the body’s pose) of tracked subjects will be used for the leader selection algorithm. These

were chosen as they can easily be acquired by different types of sensors, as cameras or laser

scanners, which provide robust measurements, that are easier to obtain in dynamic scenarios,

as in Arras et al. (2008), for example.

The system tracked persons that walked along the main hall of INRIA Rhône Alpes

building (Fig. 4.1). This area is an interesting choice as it is the place of passage of a large

portion of the building’s employees, besides offering a set of interest points, as the reception

desk, the building’s entrance and the two doors that provides access to the restricted area

where offices are located.

In order to provide a robust and fast deployment tracker system, the position and ori-

entation of the subjects in the environment were obtained using the ARToolKit augmented

reality system (Kato et al., 2000). During this experiment, fiducial markers were worn as hats

by subjects, as shown in Figure 4.2 and the images were obtained by an overhanging camera

54

Figure 4.2: (a) Subjects wearing hats with markers and the overhanging camera (left bottom)
at INRIA’s hall. (b) Detail of the tracking system showing a three-axis reference system
drawn over each marker.

fitted with a wide angular lens. This choice of lens allowed a large field of view, but it also

produced large distortions on the borders of the images. As the tracking system searched

only for squared shaped markers, a calibration process was performed, using the checkboard

technique, in order to correct the distortions in the acquired image.

Such approach may seem strange, as it requires participants to be conscious about the

experiments they are taking part in. And other methods would have seemed more appropriate,

as using laser scanners to perform detection, for example. However, this setup was developed

to also serve other researchers and one of the requirements was the detection of the subject’s

orientation even when they were not moving, which was easily provided by the implemented

system.

Among the advantages of such system are the low cost involved (a single camera), the large

coverage area, even with the presence of obstructions and the ease of deployment. However

such system also suffered some disadvantages, as the large influence of light on the markers

detection, the necessity of calibrating the position of the camera with several degrees of

freedom (due to its tripod support) with respect to the scenario’s map and also the large

distortions on the borders of the image.

During tests, volunteers were asked to move naturally among interest points in the envi-

ronment, as the entrance of the hall and the two doors. Figure 4.3a shows a sample of these

trajectories, with the interest points represented as red circles. Each participant received a

script of the interest points they were allowed to visit, but they were free to choose when and

which one to visit. The objective was that all the interest points were visited and to distribute

the task among the participants. The paths traveled by the experiment’s participants were

processed by the tracking system, which extracted the tracks generated by them as a sequence

of points, resulting in a total of 107 tracks of different sizes.

55

(a) (b)

(c)

Figure 4.3: Images of the recorded training data and the GHMM structure, the red circles rep-
resent the interest points of the scenario. (a) Recorded trajectories of subject’s moving among
interest points. (b) Resulting GHMM structure, showing states as nodes and transitions as
edges. (c) Superposition of the training data set and the learned structure.

4.1.2 Modeling Typical Paths with GHMM

These vectors are then presented to the GHMM algorithm which processes each track and

computes the best number of nodes and transitions that represent the received information.

As new tracks are processed, the algorithm decides if new states are required to represent

the new information or if existing states are sufficient for the representation. It also adapts

the connections among nodes and the transition probabilities. Ideally, the algorithm would

generate several different HMMs, each one linking a start point to a destination, according

to the samples presented. Figure 4.3b shows the resulting GHMM structure, with different

colors representing the individual HMM that links a start point to a goal. Figure 4.3c presents

a superposition of the training trajectories and the generated structure of the GHMM.

It is important to notice that the GHMM algorithm requires manual settings of some

parameters, as the minimum distance to insert new nodes, the observation interval, the grid

discretization and others. So, these parameters have to be empirically set, according to the

56

requirements of each problem. A fine discretization of the map, for example, would bring

more accurate predictions at the expense of a higher computational load.

4.1.3 Tests

A robot was simulated using STAGE (Vaughan, 2008), while the scenario agents represent

real data recorded from the motion of humans, in the INRIA’s entrance hall (Figure 4.1). Both

in Figures 4.4 and 4.5, the robot is represented as a light gray rectangle. The obstacles are

colored dark gray and encompass walls, desks and sofas.

The circles represent persons and the triangles are their respective predicted goals. They

have a letter associated to identify their colors (Red, Green and Blue). The robot goal is

marked with a cross, located at the lower left of the test area. Finally, the dots represent the

RiskRRT exploration nodes and the solid line is the path chosen by the algorithm.

In the first test, shown in Figure 4.4, three humans start to move just in front of the robot,

each moving toward a different goal. After some iterations, as the subjects start to move in

the scenario, the prediction algorithm gives a goal estimation for two of them (red and green).

Based on that estimations, the leader following algorithm makes the choice to follow the red

subject, as its predicted goal is similar to the robot’s.

Figure 4.4: Leader selection and following using the goal similarity criteria, predicted by a
GHMM. The robot is represented by the light gray rectangle and its goal by a X. Three
leader candidates are represented by circles with letters R, G and B. The predicted goals are
the triangles with the corresponding letters.

57

The objective of the second test is to evaluate the benefits of following a leader in order

to avoid agents moving in the opposite direction and is shown in Fig. 4.5. The way the robot

selects and follows a leader occurs in the same fashion as in the previous test. The robot goal

is again in the left bottom corner of the image, but here there are now two humans that move

from the door to the stairs, in the opposite direction of the robot’s desired trajectory.

After the leader is chosen, the robot starts to follow him/her. As the leader approaches

the two humans moving in the opposite direction, they naturally give room for him/her to

pass. The robot benefits from this space and is able to continue to move without the need to

take evasive measures to avoid the two incoming persons.

Figure 4.5: Experiment of a leader guiding the robot avoid two incoming persons. The robot
is represented by the light gray rectangle and its goal by a X. Three leader candidates are
represented by circles with letters R, G and B. The predicted goals are the triangles with the
corresponding letters.

4.2 Experiments with Pedestrian Simulator

As in the previous section, these experiments will use the GHMM algorithm to learn and

predict the typical goals of subjects in a scenario. The difference is that the motion of the

subjects in the experiments is created using a pedestrian simulator framework.

The advantage of this approach is that different configurations of scenarios can be tested,

but most important, the pedestrian simulator allows the reactiveness of humans to be taken

into account during the experiments.

The reaction of persons due to the presence of the robot is an important situation that is

often neglected in studies of robot motion among humans. It is relatively easy to find works

58

where the robot is the sole responsible for all the avoidance maneuvers while humans behave,

or are expected to, blindly follow their original path.

Obviously, this does not coincide with reality. In the real world, pedestrians are constantly

adapting their motion to the environment structure and to the presence of objects and other

humans. As a consequence, realistic experiments in human environments must be conducted

on the real world or by means of a simulator that replicates the pedestrians’ behavior.

4.2.1 Pedestrian Simulator - a Review

Pedestrians simulation has application in many different areas as architecture, video-

games, computer animation, biology, physics, and others. In buildings, the simulated motion

patterns of groups of people can provide insights for the architectural project, for example, to

guarantee a smooth flow of persons and where easy exit access is essential in the case of panic

situations. In many video-games that simulate humans, a realistic behavior from them will

improve the players experience. While in the movie industry, the audience expects a realistic

behavior of groups of animated characters, which would be very difficult to accomplish without

the use of a simulator, when hundreds or thousands of individuals are present.

The Social Forces Model A seminal work on this field can be found in Helbing and Molnar

(1995), where the typical formations that pedestrians engage in, and their usual behavior, are

successfully simulated. In order to accomplish this task, the authors implement the so called

Social Forces Model (SFM). According to this model, the motion of pedestrians is affected

by the sum of forces exerted by different sources.

The simulations using the SFM could successfully replicate behaviors found in real situ-

ations, such as, the formation of lanes, the oscillatory changes of motion direction

at narrow passages (shown in Figure 4.6) and the emergence of temporary round-about

traffic in intersections. This simulator also provided interesting insights in the behavior

of pedestrians, as new situations and structures could be tested without the need of physi-

cally implementing them, which would be difficult and dangerous with hundreds of persons

involved.

On following works (Helbing et al., 2000, 2002), the authors explore the SFM within simu-

lations of panic situations. The authors conclude that pedestrians behavior in such situations

can be considered irrational, as they are more harmful than the pedestrians’ behavior in

normal situations. Structural improvements that would optimize pedestrian flow on panic

situations are suggested in the conclusion.

Collective Behavior The keystone work in the field of distributed behavior has been con-

ducted by Reynolds (1987), where the initial objective was to replicate the emergent collective

behavior from groups of animals, as bird flocks and fish schools. The generic simulated indi-

59

(a)

(b)

Figure 4.6: (a) The lane formation phenomena. (b) The oscillatory motion direction in narrow
passages. The different colors of the blobs represent their motion direction, while their size
represents their velocity (larger is faster). Adapted from Helbing and Molnar (1995).

Figure 4.7: Images of boids moving together, resulting in life-like patterns of groups of
animals. (From Reynolds (1987))

viduals were called boids. The flocking behavior is accomplished with three rules: separation,

maintaining a certain distance from other individuals; alignment: orient itself towards the av-

erage orientation of surrounding individuals; cohesion: moving towards the average position

of surrounding individuals.

This flocking model is further developed into a more complex simulator, aimed at ani-

mation and games, where simple rules can be combined to allow characters to navigate in a

life-like manner (Reynolds, 1999).

Concepts from Robotics In more recent developments, some works borrow concepts from

the robotics field, as motion planning theories (Treuille et al., 2006). The authors create

a simulation framework where global navigation and moving agents are integrated using a

dynamic potential field, without the need of explicit collision avoidance. Another example

60

can be found in van den Berg et al. (2008b), where authors implement a technique that works

particularly well in crowded scenarios, as agents do not repel each other, contrary to the case

in several works based on the social-forces models. In this implementation, on the global

frame, a roadmap is built to guide the agents, while in the local frame the VO method is

extended so each agent selects a velocity that brings it closer to the goal while avoiding other

agents.

In the work of Shiomi et al. (2012), the authors recognize the importance of using a

pedestrian simulator to perform realistic experiments of robots among humans. To create an

efficient simulator, they incorporate the most common Human Robot Interaction (HRI) that

occurred in experiments with a real robot in a shopping mall (regarding humans): approach

to stop, stop to observe, slow down and collision avoidance only.

Summary Although crowd simulations provide very efficient solutions to the problem of

navigating in populated spaces, they cannot be readily applied to robot motion planning.

The main reason is that in a simulator the states of all agents is known all the time, which is

unpractical to a real robot application where only portions of the environment are observable

and there is always some degree of uncertainty associated with any real measurement.

So in this Thesis, a pedestrian simulator will be developed with the sole purpose of provid-

ing a realistic framework for the evaluation of the developed techniques. The most important

characteristics pursued are the capability of agents to react to the presence of each other and

to the presence of the robot, and also the lane formation phenomena, where opposing groups

of people end up forming lines, that facilitate their passage.

4.2.2 Development of a Pedestrian Simulator

In order to perform realistic experiments, a pedestrian simulator has been developed, that

replicates the reactive behavior of pedestrians. This means that even if a robot is standing

still, people moving in its direction should actively avoid it.

The developed pedestrian simulator is based on the SFM, which has been extensively

validated in several works as a simple and efficient way of replicating pedestrian dynamics

(Helbing and Molnar, 1995; Helbing et al., 2000, 2001).

In this model, the resulting velocity and orientation of the robot is the resultant of the

action of two types of forces: an attraction force that pulls the agents toward their destination,

and also in the direction of other points of interest, as street performers or shop windows;

and repulsive forces caused by other pedestrians and by objects, as walls and obstacles.

In the current work, instead of using the resultant force as the acceleration applied to

each agent’s current velocity, it was used directly as the velocity command for those agents.

The reason to use this approach was that it produced less oscillations in the motion of the

simulated agents. This was possible only due to the high frequency of the forces computation

61

loop in the main program. For the sake of consistency, however, the same nomenclature and

units from the original implementation were maintained.

Only the attraction force towards the agent’s goal has been implemented here, together

with the repulsion force exerted by other agents and by walls and static obstacles. This system

has been developed using the ROS framework, where STAGE provides information about a

virtual world, and a pedestrian simulator module computes the resulting ”force”. This is

transformed in velocity commands which are sent back to STAGE, so the virtual agents will

behave as pedestrians, as shown in Figure 4.8.

Figure 4.8: Workflow and description of the forces used in the pedestrian simulator.

Following the original notation, with minor modifications, these forces are described below:

• every agent α wants to reach its destination goal r0α as directly and as fast as possible.

The desired direction of travel is computed based on the agent’s position rα(t) and

represented as ~eα(t). So a constant force F 0
α(rα) is applied to the agent in the direction

of its desired goal and modulated according to the agent’s preferred velocity vα:

~F 0
α(rα) = vα~eα (4.1)

• the motion of each pedestrian is also affected by the presence of other pedestrians. In

the case where a two pedestrians get too close to each other, their discomfort increases,

as they invade each other’s personal space. To simulate the tendency of keeping some

distance from each other, a repulsion force Fαβ(~rαβ) between agents α and β is imple-

mented, where ~rαβ is the distance between the two agents:

~Fαβ(~rαβ) = Vαβe
−~rαβ/σ (4.2)

Here Vαβ = 10m2/s2 and σ = 0.3m. Both these values were set empirically and differ

from the values from Helbing and Molnar (1995), to reduce the number of collision

among agents. The motion of pedestrians will also be affected by the presence of the

robot in scenario. As the robot is a strange entity among groups of people, it is expected

62

that persons keep a larger distance from it than from other persons. To model this, the

repulsion force produced by the robot is 50% stronger then the repulsion force among

agents.

• finally, the walls and static objects also influence the motion of the pedestrians, as they

must adapt to the environment structure. Pedestrians tend to become uncomfortable

when too close to the walls, for example, as they have their freedom restricted and

also can get hurt. In this way, walls and objects’ border B produce a repulsive force

FαB(~rαB), with ~rαB being the distance between the agent’s position rα and the closest

border portion rαB, according to the equation

~FαB(~rαB) = UαBe
−‖~rαB‖/R (4.3)

With UαB = 10m2/s2 and R = 0.2, which are values obtained from the original paper,

which provided good results in the simulations.

• to account for situations where dead-locks could happen, due to symmetrical generated

forces, as agents with opposing goals facing each other, a fluctuation term ~ξ ∈ [−0.5, 0.5]

was randomly generated and also incorporated into the model.

The resulting equation has the form

~Fα(t) = ~F 0
α +

∑
β

~Fαβ +
∑
B

~FαB + fluctuations (4.4)

In summary, according to this model, there is a constant force that pulls the agent towards

its goal and two repulsive forces that decrease exponentially, one according to the distance to

the other agents, and the other according to the distance between the agent and the borders

of walls and obstacles.

The result is a very useful tool to perform experiments that explore the reaction of groups

of people in populated environments, providing a realistic validation framework. It can be

shown that even if the robot navigates following a straight line in the presence of people, it

will likely succeed because, as in real life, pedestrians will adapt their motion to avoid the

incoming robot, as long as they notice it. However that will be accomplished with the cost of

an impolite behavior that may cause discomfort to the pedestrians.

Regarding the scope of this Thesis, an important phenomena that arises in real human

populated environments is the lane formation. This naturally occurs when groups of people

cross each other in a high density environment, which is the result of a motion pattern that

is more efficient, as it reduces avoidance maneuvers. This phenomena is also important for

the proposed approach, as if the robot can enter one of the lanes forming, it will be able to

navigate “with the flow”, efficiently moving in congested spaces. Figure 4.9 illustrates this

63

process and also validates the developed simulator in the sense this phenomena naturally

arises in it.

Figure 4.9: Lane formation phenomena: in densely populated environments, crossing groups
of people naturally arrange themselves into crossing lanes, which result in a more efficient
navigation.

Another interesting experiment consists of incorporating an “impolite” robot in the sim-

ulation, that moves in a straight line, disregarding the moving agents, shown in Figure 4.10.

This experiment serves two purposes: first, to show that the simulated agents properly react

to the presence of the robot during their motion; second, to illustrate that sometimes a large

part of the avoidance is performed by persons surrounding a robot, and not by its navigation

algorithm. Although this is a very simple perspective, it is often overlooked in many works,

where the sole responsibility falls on the robot’s motion planner. These results support the

idea that in some situations a very simple algorithm outperforms more complex ones, although

this is accomplished at the expense of an impolite behavior.

64

Figure 4.10: A robot using a simplistic motion algorithm moves in a straight line disregarding
the moving agents. In order to avoid collisions, the agents move away from the robot.

Limitations of Classical Approaches Still using the developed pedestrian simulator, it

is interesting to explore the limitation of the classical approaches when creating motion plans

in densely populated corridors. In Figure 4.11 the A∗ algorithm is used to create a plan that

takes the robot from the left to the right side of the corridor.

As this algorithm have been developed to work in a static mode, its planning phase takes

place at ”snapshots”of the current environment state. The problem is that in the next instant,

the plan is invalidated by the motion of the agents, prompting the algorithm to create a new

plan (represented as the black line in the figure). This sequence of plan/replan steps virtually

bring the robot to a halt, as there is no plan that is valid for more than a coupe of seconds.

Only when the density of agents reduces, the algorithm manages to create a plan that the

robot is able to follow, until its goal.

Regarding algorithms that have been developed for navigation in dynamic environments,

a common approach is to plan based on the prediction of future states of other agents. This

is the case with the RiskRRT algorithm, used in the simulation depicted in Figure 4.12.

In this simulation, the robot is able to navigate reasonably, until it is faced with motion

prediction of incoming agents. The problem is that, due to the high density of agents in the

corridor, at some point, the predicted future states of the agents cover all the region in front

of the robot, which causes the algorithm to fail in finding a solution. This is known as the

Freezing Robot Problem (FRP), and it is a recurrent problem in prediction-based dynamic

65

Figure 4.11: Performance of the A* motion planner in a densely populated dynamic environ-
ment.

motion planners.

4.2.3 Pedestrian’s Motion Generation and Modeling

Differently from subsection 4.1, no real data is used in this experiments. Instead of that,

a software is responsible for generating the trajectories that will be used to train the GHMM

algorithm. This software uses a file that describe checkpoints and connections to generate

the virtual trajectories. The visualization of the configuration file used in this experiment is

shown in Figure 4.13a.

The nodes are checkpoints where the simulated agent must pass. It is possible to configure

the direction and velocity, as well as their variance, that should be respected by the virtual

agent. The green lines represent the sequence of checkpoints that must be respected and the

yellow lines are the environment walls, that aid the creation of this map. In this example,

agents enter the corridor coming from the left area and then can move to three different

destinations, straight ahead, and left or right at the intersection.

Once more, the GHMM algorithm has been used to capture the information about the

typical paths, this time generated by the trajectory generation software. It can be visualized

66

Figure 4.12: Performance of the RiskRRT motion planner in a densely populated dynamic
environment. The left column shows the navigation without the predicted states of the agents,
for the sake of clarity. In the right column, where the predictions are depicted, it is possible to
see that they cover all the space in front of the robot, and the planner cannot find a solution.

in Figure 4.13b

4.2.4 Tests

In this experiment, there are three leader candidates, represented by the blue squares,

that are moving in the same direction intended by the robot. As shown in previous figures,

there are three possible destinations (top, middle and bottom). Using the GHMM algorithm

and the typical paths learned (see Fig. 4.13b), the algorithm predicts the likely goal for each

one of the candidates, represented as the three different lines drawn from each candidate. The

robot’s goal is located in the bottom of the image (Fig. 4.14), and is marked with a cross.

The candidate that has a goal similar to the robot’s is chosen, and the robot starts to follow

it.

In this experiment, there is also a group of red agents, and some of them move in the oppo-

site direction of the robot’s motion, which would normally create difficulties to the movement

of the robot. But as the robot selects and follows a leader, it manages to negotiate passage

67

(a) (b)

Figure 4.13: (a)Visualization of the file loaded by the trajectory generation program. The
nodes represent checkpoints the virtual agents must pass, with a given orientation and velocity.
(b) The resulting GHMM structure that models the typical paths of the generated agents.

with the incoming agents, and is able to successfully pass through the incoming group of

people until reaching its destination.

Figure 4.14: The robot is represented as the blue rectangle and the leader candidates as light
blue squares. The first figure shows the predicted typical path and goal for each evaluated
candidate. The candidate at the bottom is chosen as it is predicted to move to the same
destination as the robot.

68

4.3 Experiments with Pedestrian Simulator in Narrow Corri-

dors

In narrow corridors, the prediction of candidate’s goal is simplified, as it can be assumed

that subjects will move to one of the ends of the corridor. In this scenario, it will be assumed

that any agent moving in the same direction of the robot, are good leader candidates. This

allow a greater emphasis on the leader selection rules and on the type of navigation that the

robot will use.

4.3.1 Tests

Multi-mode Navigation One aspect of the navigation module created in this work is the

capacity of change the motion planner according to the presence and distance to the leader.

This system has been tested using a single moving agent and a robot in a narrow corridor, as

shown in Figure 4.15.

Figure 4.15: Multi-mode navigation, the robot is represented by the black rectangle, while
the leader candidate as the orange circle. Both have the same destination at the right end of
the corridor. The green square means leader path following mode is active, while the green
circle means the direct leader following mode is active.

69

Here the robot starts its navigation in the solo mode, using the RiskRRT motion planner

to reach the right end of the corridor. Once a leader candidate satisfies the leader selection

rules, as being under a certain distance threshold from the robot, it is selected as leader and

the multi-mode navigation switches to the path following mode. In this mode the path of the

leader is recorded (represented as the green line in the figure) and the navigation system uses

the Dijkstra’s shortest path algorithm, using subsamples of the recorded path as subgoals.

While in this mode, the leader is marked with a green square.

Once the robot catches up with the leader and the distance between them is less then

4m, the leader following mode is activated and the robot directly follows the leader, which is

marked with a green circle. Near the end of the experiment, the leader suddenly stops, having

reached his/her destination. According to the leader selection rules, this agent is no longer a

good leader, and the navigation system switches back to the solo mode, where the RiskRRT

algorithm takes over, and the robot resumes its motion toward the end of the corridor.

Navigating Among Crowds A narrow corridor poses a big challenge for robots to navigate

in the presence of several agents, as shown in subsection 4.3. It has been shown that both

classical and modern techniques developed for dynamic environment navigation would produce

suboptimal solutions. This experiment, shown in Figure 4.16, demonstrates one of the main

arguments of this work, that taking advantage from the motion of leaders, the robot can

navigate through difficult situations, as the one found in the narrow corridor.

In this experiment, two groups of nine agents each, that move to opposite directions in a

corridor, with the robot just behind one of these groups. According to the leader selection

rules, the robot soon chooses a leader and start to follow him/her. As the opposing groups

encounter each other, the phenomena of lane formation starts to occur, which is a natural form

of arrangement that improves the navigation of all agents. As the robot is closely following a

leader, it manages to enter one lane and effectively becomes part of the group moving to the

right side of the corridor.

It is interesting to notice that between images 6 and 7, due to the constant rearrangement

of the agents, a subjects appears between the robot and its leader. Due to the form that the

leader selection rules were created, the robot switches leader, and starts to follow the closest

good candidate, continuing to move smoothly among the crowd. This test clearly shows

the benefits of taking advantage of moving agents in a scenario, as they engage in complex

formations and the robot is able to profit from this.

4.4 Summary

This chapter presented three types of experiments that evaluated the capacity of a robot

to select a and follow a leader using different setups. In the first case, real data of human

motion was used to train a GHMM and to recreate the motion of humans in a virtual environ-

70

Figure 4.16: A robot is able to navigate in a difficult situation, along a populated corridor, by
selecting and following a leader. In this way the robot becomes part of a group of pedestrians,
and benefits from their motion interactions.

ment. The leader selection was accomplished using goal predictions provided by the GHMM

algorithm. In the second experiment, the GHMM was also employed to predict candidate’s

goals, but this time the motion of persons was simulated, by means of a pedestrian simula-

tor. In the last experiment the robot had to move in a crowded narrow corridor. Again a

pedestrian simulator was used, and the leader selection was accomplished using a set of rules,

together with the motion direction of agents. A multi-mode navigation framework was used

for the leader following, where different strategies of navigation were activated, according to

the situation. The contributions of this chapter are the following:

71

• Different methods can be used for goal prediction, depending on the complexity of the

environment. Here, it was demonstrated the use of a probabilistic approach, which

learned from previous data what were the typical paths traveled by persons in the

environment, enhancing the goal prediction.

• A pedestrian simulator was created, which allowed realistic experiments where agents

reacted to the presence of the robot and to the conditions of the environment.

• A multi-mode navigation framework was put in place, which used a state-of-the-art

technique for navigating without a leader, and two other navigation strategies for the

leader following, one that followed the leader’s path and other that followed directly the

leader.

• Experiments in crowded environment showed the benefits of taking advantage of the

motion of other agents. The robot successfully navigated through difficult situations,

where other algorithms provided suboptimal solutions.

72

Chapter 5

Experiments in Leader Evaluation

and Following Based on Learning

It takes years to build up trust, and

only seconds to destroy it.

anonymous

This chapter will conduct experiments associated with the methods described in Section

3.2, using a learning framework implemented with AdaBoost, to classify the quality of a

leader candidate. Tests will be divided in two parts, where first the objective is to evaluate

the classification capabilities of a leader evaluation algorithm, comparing the results of the

classification framework with a ground truth. In this part, a study about the features’ impor-

tance to the classification process is also performed. The second part will cover experiments of

leader selection and following using real data to recreate the motion of humans. For that, the

voting scheme described in subsection 3.3.1 is used, which will give a score for each candidate,

associated with their quality as a leader to be followed.

5.1 Data Acquisition Using a Following Robot

Data collection was performed with a small car-like robot (Figure 5.1), measuring approx-

imately 0.4 × 0.75m built at the Laboratory of Automation and Robotics (LAR). A laser

scanning range finder was installed on the robot, providing distance measurements up to 30m

and with a field of view of 270o. Also a firewire camera fitted with a wide-angle lens was

present at the robot, providing a way to acquire images with a large field of view. In this

way, videos could be taken during tests and then associated with the laser scans, as shown in

Figure 5.2. This allowed a better understanding of the experiment situations, together with

precise measurements of the surrounding area.

73

Figure 5.1: The robot used for data acquisition when following pedestrians.

(a) (b)

Figure 5.2: Two images of the same instant, captured by the camera and the laser range finder
installed over the robotic platform. (a) Image from a wide-angle camera. (b) Representation
of the laser measurements, showing the three tracked subjects and their orientation as the
green vectors. The robot is represented as a black rectangle.

At this stage of the research, the mentioned robot was still not capable of navigate safely

in dynamic, populated environments. So, as the purpose of the experiment was to evaluate

the reactions of persons being followed by an autonomous robot, it was teleoperated using a

wireless gamepad by a person that was hidden from the subjects being followed, in order to

create the illusion that the robot was autonomous.

In total 47 tests of the robot following persons or group of persons were recorded, with

the mean duration of about 20 seconds each. Out of the total, interviews were conducted

with the leaders in the end of 10 tests, in an attempt to understand how the robot affected

the leaders and how the leaders reacted to the presence of the robot.

Tests were conducted in an open corridor, about 3m wide, that links several University

buildings. The robot operator had as objective to move along this corridor from one building

to another, covering a distance of about 20m in each pass. Whenever persons were present

74

Figure 5.3: Setup of modules used for data acquisiton.

while the robot was moving between its objectives, the operator positioned the robot just

behind the pedestrians and tried to maintain the same speed and a fixed distance. In the

case the leader stopped, moved aside or to fast, the operator should resume the stand-alone

navigation between the objective points, simulating the situation where an autonomous robot

would have abandoned a leader.

The setup used for data acquisition is sketched in Figure 5.3. There is a module that

receives the laser range finder measurements and another for the camera images. Readings

from both sensors are stored in a bag file, which is the standard structure used in ROS for

data recording. Isolated from these modules, there is also a program that receives commands

from a gamepad and passes them to a module responsible for a low level interface with the

robot’s motors.

5.1.1 Features Extraction of Followed Persons

In order to obtain the descriptors of each leader subject, only the laser range finder

measurements was used. Theoretically, features could also be extracted from the acquired

camera images, as face detection and posture measurements, for example. These features

could improve the training of the classifiers, as they could be associated with the quality of

the leader. Someone that looks backward too often, is potentially feeling discomfort towards

a robot following him/her.

Moreover, humans can communicate and interact in very complex ways, which may be very

difficult for an algorithm to detect. During some tests, for example, persons being followed

were very friendly towards the robot, sometimes inviting it to follow them as if the robot was

a pet (Figurer 5.4).

However, due to the high complexity to obtain such information, they were not used in

the feature extraction process. But certainly, a robot that could detect such interactions

would greatly improve its classification capabilities and this is a topic that deserves future

investigation.

The system setup used during the feature extraction process can be seen in Figure 5.5,

which shows which modules are used an how they are connected in order to extract the

features from the recorded bag file.

75

(a) (b)

Figure 5.4: Images of leaders inviting the robot to follow them, in both situation, they were
unaware of what was the objective of the robot, but noticed they were being followed by it.
(a) A man makes hand gestures inviting the robot to follow him as if it were a dog. (b) The
rightmost woman makes head gestures and tries to communicate with the robot, asking it to
follow her: ”C’mon, c’mon...”

Figure 5.5: Setup of modules used for data extraction.

Initially the bag is read and its messages are published to a module that clusters and tracks

moving objects using the motion tracker developed by Almeida (2010), which implements

clustering by the break point detection method and tracking using a Kalman Filter (KF).

As the laser measurements are obtained from the robot’s point of view (robot’s frame), static

objects will appear as moving ones, as the robot moves. To account for that, the measurements

need to be transformed to the global frame, in order to differentiate static object from moving

ones. One way of performing this task is by finding the transformation of the robot with

respect to the global frame (or map). Once this transformation is known, there will be

a transformation chain: global frame → robot frame → laser measurements, which allows

the laser measurements to be transformed to the global frame. The task of finding the

transformation global frame → robot frame, is accomplished using the Hector SLAM tool

76

(Kohlbrecher et al., 2011). This is a powerful tool, which is able to localize the robot in an

environment based only on laser measurements, without the necessity of a map or odometry

measurements.

Once the moving objects are tracked, the information associated with them is passed to

another module that proceeds to the feature extraction. This module provides information

regarding the robot and subject’s positions, their orientation and also their speed. Based on

these measurements, other features can be computed, as distances and relative angles. Such

features are then stored in a .txt file that will be further used during the training process.

Besides that, all the current information of each test can be visualized using a ROS tool called

RVIZ, to verify the consistency of the whole process.

With the purpose of generating features that can be understandable and visualized, in

order to better understand human-following strategies, the following features were extracted

for the training of the classifier algorithms:

• candidate’s absolute velocity vci : if a candidate moves too fast, the robot may not be

able to get close and begin to follow him/her, while if a leader is moving slowly, he/she

may not be suited to be a leader.

• relative heading between the robot and the candidate αrci : this feature relates to the

difference in the direction of movement between the robot and the candidates. A value

of cos(βci) close to 1 means both the robot and the candidate are moving along a similar

direction, while values close to −1 indicates motion in opposite directions.

• candidate’s relative velocity w.r.t. the robot reference frame vxrci and vyrci : relates

to getting closer to or further from the leader and also to the variation of the lateral

displacement.

• angle between the robot heading and the candidate’s position βci : this feature is associ-

ated to the lateral displacement of the subject, where a cos(αrci) ≈ 1 means the leader

is right in front of the robot and a cos(αrci) ≈ 0 means the candidate is by the robot’s

side.

• distance between the candidate and the robot dci : this is another important feature, as

we usually keep a constant distance when following someone. The robot must maintain

a minimum distance from the leader and, at the same time, a leader that is too far away

may not be suitable to be followed.

• lateral displacement of the candidate ldci : it is a measure of the lateral distance of each

candidate w.r.t. the robot motion direction. This feature may be related to leaders

giving space for the robot to pass them, which may be associated with the leader’s

discomfort.

77

Figure 5.6: Graphical representation of the features extracted during the following procedure.
The robot is represented as the blue square while the human being followed as the red circle.

The listed features are illustrated in Figure 5.6. The velocities of the robot and the

candidate 1 appear as vectors ~AB and ~CD, respectively. Besides the robot and candidate

absolute velocity (vr and vci), all other features are measured w.r.t. the robot reference frame

(with positive x pointing in the direction the robot’s velocity vector). The relative heading

αci is the difference in the orientation of the velocity vectors the candidate and the robot.

This feature is used to compute the projection of the candidate’s relative velocity over the

robot’s axis, vxrci and vyrci , represented by the vectors ~CG and ~GD, with ~CG ‖ ~AB and

~CG ⊥ ~GD. The relative position of the candidate w.r.t. the robot is used to calculate the

angle between positions βci , the distance dci (AC) and the lateral displacement ldci (FC).

As the candidates are tracked by a KF, all the measurements actually incorporate a

temporal dimension, as the filter uses previous states to compute the current one. Besides the

filtered features, their derivative and standard deviation were also computed. The derivative

provides information on the tendency of a measurement, for example if the distance between

the a candidate and the robot is growing or diminishing. The standard deviation is associated

with the stability of the measurements. For example, it might be preferable to follow a leader

that has a constant velocity instead of an oscillatory one. Due to this, the total number of

features is 21.

5.1.2 Data Labeling of Leader Quality

Most machine learning algorithms require a good dataset of examples to learn from. So one

important issue is how to associate the measurements obtained, as explained in the previous

section, to a good or bad leader situation. A labeling that is not properly performed, may

result in two main problems. First, it may provide contradictory information during the

training phase of the classifiers. Second, it can produce a bad ground truth dataset, which

would result in poor evaluations of good classifiers.

78

5.1.3 Labeling Methodology

In many data labeling situations, the decision to create a label on the dataset is clear and

objective, for example, faces in images, or pedestrians in laser scans. However, this is not

the case in this work. Here the intention is to capture how humans decide when to start or

stop following someone, or in other words, when someone is a good or bad leader. In order

to do so, participants must create labels based on their feeling about someone being a leader

or not. Of course there is a great subjective factor in creating such labels, as this feeling can

change from person to person.

The labeling process also needs to be simple, as the input of persons that were unfamiliar

with the process was required. This lead to a decision of creating a binary labeling system,

with candidates identified either as good or bad leader. Besides that, for the sake of simplicity,

the data presented to the volunteers should always have a single good/bad leader transition,

so tests that had more than one transition were split.

Before the labeling process began, the objective of the experiment was explained to each

of the volunteers responsible for the data labeling, where they should press a button whenever

they felt a transition from good/bad leader occurred.

The only source of information that volunteers had access was a video acquired by the

robot’s camera, that was displayed to the user from a recorded ROS bag file. Another ROS

module captured the keyboard input from the user and creates a new message that gets

recorded, together with all the information from the original bag file, to a new one. This

workflow is presented in Figure 5.7. All the experiments began with the robot following

someone, which characterized a good leader situation. The label had to be created while

the video was playing, so the labeler could have a better feeling about the dynamics of the

experiment.

Figure 5.7: Diagram of the data labeling process.

5.1.4 Good and Bad Leader Situations

Before the labeling began, examples of different classes of good and bad leader situations

were shown to the volunteers. Later they were asked to tell which of these situations occurred

in each experiment. Although each test has its own peculiarities, the experiments can roughly

79

fit one of the following classes:

• good leader (gd) - leader(s) maintained their speed and orientation, withouth chang-

ing their behavior while being followed (Figure 5.8);

Figure 5.8: Good leader behavior, although the robot is noticed, the leaders kept moving
without changing their behaviors

• bad leader, moved aside (as) - identifies situations where leaders gave room for

the robot to pass, generally moving aside, while keeping their original motion direction

(Figure 5.9);

Figure 5.9: Bad leader: the person notices the robot and moves aside, giving room for the
robot to pass.

• bad leader, far or fast (fr) - this occurred whenever the distance between the leader

and the robot grew to a point where it was not advantageous to keep following them

(Figure 5.10);

Figure 5.10: Bad leader: the subject marked with a white circle moves to fast compared to
the robot’s speed and gets too far from it.

• bad leader, stopped (st) - when the person being followed stops moving (Figure

5.11).

80

Figure 5.11: Bad leader: the person stops moving.

5.1.5 Combining Labels

To reduce subjectiveness in the data labeling process, it was performed with three persons.

The labels are represented as time tags and, to reduce subjective bias, the mean of the three

labels were used. In the case that labels were not close to each other (timewise), only the two

closest were used. This analysis was aided by the typical situation identified by the labelers.

For example, if one had found that the transition occurred because the leader was too far,

but the other two thought that the transition was due to the leader moving aside, only the

labels of the latter two were used, as they form the majority.

Table 5.1 shows an example of how the labels scheme works. The first column shows the

test number, the next three columns show the identified situation according to each one of the

evaluators (pro, rich, jor). The following three columns show the time each label was created.

Note that in test 7, for example, the first evaluator identified a different situation from the

others, so his time label is discarded (XX) and does not contribute to the final label. If no

transition of bad/good leader was found, meaning the leader remained a good one throughout

the test, no label was created (—). The remaining columns show the final label, computed

as the mean of the individual labels, its standard deviation and finally the consensus of the

transition situation, based on the majority vote of evaluators. For example, in test 9, the

first evaluator detected a leader far/fast situation, but the other evaluators found out that

the leader could still be followed (gd) so that was the consented situation.

Table 5.1: Labels from each evaluator and the final label

test
id. situation time labels (s)

final label (s) consensus
pro rich jor pro rich jor

1 st st st 27.84 27.97 29.84 27.97 st

2 fr fr fr 9.08 11.48 8.49 9.08 fr

6 as as as 12.02 11.39 12.47 12.02 as

7 as fr fr XX 12.56 12.99 12.78 fr

8 gd gd gd —— —— —— —— gd

9 fr gd gd XX —— —— —— gd

10 as st as 18.33 XX 18.24 18.29 as

To have a better understanding of this process, Figure 5.12 shows a plot of some of

81

the extracted features corresponding to test number 1 and 2 from Table 5.1. The gray area

represents bad leader labels, created by each evaluator. The beginning of such area represents

the moment the volunteers decided the subject being followed became a bad leader. The red

vertical line in the images represent the final label, computed as the mean of individual labels

after the voting method described above.

(a)

(b)

Figure 5.12: Comparison between each evaluator’s label (beginning of gray region) and final
label (vertical red line). The labels are plotted over the features extracted from a person
being followed. a) test 1 - leader stopped; b) test 2 - leader too far.

5.1.6 Resulting Dataset

Besides the four typical situations mentioned before (good leader, leader moved aside,

leader stopped and leader too far/fast), two other situations were recorded, which did not re-

82

quired manual labeling. The reason is that no transition exists and the subjects are considered

as bad leaders along the whole experiment. These situations refer to cases when candidates

are not moving, but rather standing close to the robot’s path (nm), and the other case is

when persons were moving to the opposite direction compared to the robot (od).

It is important to emphasize that the methodology developed for the data labeling system

only generated one good/bad leader transition for each test run. Once that transition was

marked, the remaining samples of a test retained the bad leader label. The main reason for

this type of implementation was the simplicity of the labeling process, allowing inexperienced

users to participate, but the drawback is that it may result in suboptimal labels. For example,

if the robot is following a leader that stops and later resumes his/her motion with the same

characteristics, he or she will not be labeled as good leaders after resuming their motion.

To minimize this contradictory information, care was taken in cutting out those bad →
good transitions. Also start and end transients caused by tracking initialization or target loss,

were also removed from each experiment. Figure 5.13 shows one example of the elimination

of transients in the dataset.

Figure 5.13: Example of cropping an experiment to eliminate the initial and final transients,
the gray area highlights the extracted region.

After the labeling and crop processes, each resulting dataset was given a name to identify

what situation they represented, together with a number to differentiate them, for example

as05 is the fifth test containing the leader moved aside situation. In total, 12911 samples

were obtained, with the proportion of 37% of bad leader labels and 63% of good leader labels.

This is equivalent to 451 seconds of tests, divided in 47 experiments and distributed in the

following classes:

• 9 gd - good leader

• 7 as - bad leader, leader moved aside

• 5 fr - bad leader, leader too far or fast

• 9 st - bad leader, leader stopped

83

• 7 nm - bad leader, candidate not moving

• 10 od - bad leader, candidate coming from opposite direction

5.2 Training of a Leader Classifier

For the training process, the data was organized according to the situation they repre-

sented (good leader, moved aside, stopped, too far/fast, not moving, opposite direction). By

grouping typical leader situations, it was possible to create datasets that contained exam-

ples of all the situations, both for training and for evaluation, so the classifier could also be

evaluated in terms of the situation presented.

To evaluate the classification, three measurements were made. The false good leader,

where the classifier labeled a sample as good leader but the ground truth has a bad leader label.

This is the most critical error, because by following someone that should not be followed, the

robot may disturb the leader or find itself in unwanted situations. The second measurement

is the false bad leader, that occurred when the classifier output a bad leader and the ground

truth is labeled as good leader. Although this is also a mismatch in the classification, it is

much less critical then the previous measurement. This is because if a robot does not follow a

potential leader, it is only loosing an opportunity, which can be associated with a conservative

stand-alone behavior, but it is not disturbing or interfering with the potential leader. Finally

the total error is the sum of the two previous measurements and represents the total number

of misclassifications.

The data was divided according to the following process. Two datasets (except only one

far/fast) of each situation were randomly picked and grouped to create a test set to be used

to evaluate the classification after training. An extra dataset contained one sample of each

situation, also randomly chosen, and constituted the validation dataset (this dataset was

used in Appendix B, for the training of an Artificial Neural Network (ANN)). Finally, the

remaining sets were used grouped into a training dataset. Table 5.2 describes the composition

of each dataset:

Table 5.2: Train dataset composition, with the number of datasets of each class used, the
number of samples and the proportion of bad leader labels.

gd as fr st nm od samples bad leader label %

train 7 4 3 6 4 7 8504 34.11

train (no odnm) 7 4 3 6 0 0 6626 15.44

validation 0 1 1 1 1 1 1692 47.16

test 2 2 1 2 2 2 2715 39.30

total 9 7 5 9 7 10 12911 36.91

During the Adaboost training, there was no limitation in the number of the weak learners

84

used, and the stop criteria was the error. In all cases, it reached 0 after a different number of

iterations (weak classifiers).

5.2.1 Leader Classification Results

The first test, consisted of comparing the feature contribution and the performance of a

classifier when two types of training datasets were presented. The first dataset was composed

by the situations shown in the first line of Table 5.2 and the resultant classifier is called

complete. The second dataset was based on the first one, but the not moving (nm) and

opposite direction (od) situations were excluded and will be called stripped classifier. The

objective of this test was to evaluate the impact of having ”bad leader only” situations (nm

and od) on the features contribution and on the classifier performance. Figures 5.14 and 5.15

show the contribution ratio of each of the 21 features.

Figure 5.14: Feature contribution ratio using the complete training dataset, number of
weak learners: 670, features used: 21.

Figure 5.15: Feature contribution ratio using the stripped training dataset, without the
not moving (nm) and the opposite direction (od) situations, number of weak learners: 472,
features used: 21

Note that in both situations, the most two most important features are the same: lateral

displacement and the distance between the robot and the leader. Although there are some

differences, the trend of the contributions are similar. In both cases, when looking at the first

85

features, that are the output of the KF in one instant, it is possible to see that the relative

velocity, both in x and y is less important then the other features. Also, the derivatives have

almost no role at all in the classification, with individual contributions of usually less then

1%.

Looking at the third group of features, it is possible to see that the predominant features

are the same in the two graphs, which are the standard deviation of the leader velocity and the

standard deviation of its distance. The difference is the much larger contribution of the latter

in the case where the od and nm situations are presented to the classifier during training.

The standard deviation is computed over a window of 1 second, so it can be interpreted as

the stability of a feature measurement during the last second.

The quantitative results of the classifiers trained with and without the nm and od situa-

tions are exhibited in Figure 5.16 and Figure 5.17, respectively.

Figure 5.16: Classification error when training with the complete training dataset, includ-
ing the not moving (nm) and the opposite direction (od) situations

Figure 5.17: Classification error when training with the stripped training dataset, without
the not moving (nm) and the opposite direction (od) situations

These Figures show the false good leader, the false bad leader and the total classification

error, using an Adaboost classifier trained with two different datasets. Each entry in the x

axis represents the error for one typical situation, so the performance of each classifier can

be evaluated not only globally but also according to specific situations. Looking at both

images, both classifiers have similar error rates for common situations, with the false good

leader error particularly large at the move aside (as) situation. The largest difference comes

from the od and nm situations. When these situations are present in the training set, the

86

classifier manages to correctly classify those situations, with minimal error. However when

these situations are removed from the training set, the result is a larger error in classifying

them, as it should be expected. Nevertheless, in two out of four of those situations (od01 and

nm03), the classifier that was not trained with the od and nm classes, managed to have a

very high hit rate, which demonstrates a very good generalization capability.

Following the process of feature selection, the least important ones are removed from

the train dataset and the classifiers are trained again (same set with reduced features). In

this case the features removed are all the derivative group and the standard deviation of the

relative velocity y, due to their low contribution. The results of the training regarding features

contribution, error and number of weak learners are shown in Figures 5.18 and 5.19.

Figure 5.18: Feature contribution ratio using the complete training dataset, number of
weak learners: 758, features used: 13

Figure 5.19: Feature contribution ratio using the stripped training dataset, number of
weak learners: 517, features used: 13

The quantitative results of the two classifiers, trained with a reduced number of features

are shown in Figure 5.20 for the classifier trained with the complete dataset and in Figure

5.21 for the classifier trained with the stripped dataset.

Regarding the feature contribution, it can be seen that the same trend from the first

test was maintained. When using the complete training dataset, focusing on the standard

deviation group, the standard deviation of the distance and of the target velocity are still

87

Figure 5.20: Classification error, complete training dataset, 13 features

Figure 5.21: Classification error, stripped training dataset, 13 features

more relevant than the other features of this group. This is still the case when the classifier

was trained with the stripped dataset, but the contribution of the aforementioned features

is much lower, only slightly higher then their counterparts. Independently of the training

dataset, the two most important features are still the lateral displacement and the distance

to the leader.

With respect to the quantitative results, there is no real improvement, with only slightly

changes in the classification error. The total error is the same from before the feature space

reduction.

Once more, the least relevant features are removed from the training dataset. This time

the features removed were from the standard deviation group, except the standard deviation

of the distance and of the target velocity. The feature contribution of this third training round

can be seen in Figures 5.22 and 5.23.

The quantitative results of the two classifiers, are shown in Figure 5.24 and in Figure 5.25.

5.2.2 Analysis of Contribution of Features to the Leader Evaluation

As the tests were labeled based on human experience, the findings of this chapter will

allow a better understanding about how humans decide to stop following someone, and what

are the features that we, unconsciously, use to make such decisions.

88

Figure 5.22: Feature contribution ratio using the complete training dataset, number of
weak learners: 1044, features used: 9

Figure 5.23: Feature contribution ratio using the stripped training dataset, number of
weak learners: 731, features used: 9

Figure 5.24: Classification error, complete training dataset, 9 features

Figure 5.25: Classification error, stripped training dataset, 9 features

89

Importance of the Lateral Displacement and Distance

First, and most important, is the analysis of the contributions of the most relevant features

in the classification of a good or bad leader. The tests provided very interesting results about

the importance of the lateral displacement and of the distance to the leader, which were the

features that contributed more to the creation of the classifier, independent of the training

set or the number of features used.

Both the lateral displacement and the distance are spatial features, that do not take into

account the dynamics of the leader. This means that the position of someone with respect

to the robot plays a very important role when deciding among leader candidates and when

deciding to stop following someone.

In the case that situations where candidates are not moving or moving from the opposite

direction, the standard deviation of the distance becomes one of the most important features

to the classification of good/bad leader. As the standard deviation is computed on a time

window, this measurement can be understood as the stability of the measurements during the

elapsed time. In this case, the stability of the distance between the robot and the candidate

becomes a feature of great importance. To understand why this happens, one can think how

the distance evolves in the case of a good or bad leader. In the first case, it is expected to

remain stable, assuming both the leader and the robot can maintain similar velocities. But

in the case the candidate is not moving, or coming from the opposite direction, the distance

between them and the robot will constantly change. Tests showed that this is a feature more

important then the velocities or relative heading of candidates.

Relevance of Derivative Features

The lack of importance of the derivative of the used features was also evident, with them

having almost no contribution to the results. It was expected that the derivatives provided a

measure of the tendency of features to grow or diminish (a growing distance, or an increasing

velocity of a leader). A probable cause for the small contribution is that the derivatives ended

up amplifying the noise presented in the measurements, resulting in useless features. If this

was the cause, a possible workaround would be to compute the derivative over a time window,

to reduce the noise amplification.

Relevance of Velocity Features

One expectation that matched the results was the low contribution of the relative velocity

vxrci , measured along the robot’s heading direction, between the robot and the leader. The

reason was that, due to the teleoperation, the robot presented a large variation on the veloc-

ity, as the operator tried to keep the pace of a leader. So, even if the leader velocity remained

almost constant, the variation on the robot velocity, caused by inaccuracies of human teleop-

90

eration, would produce a variation on the relative velocity. Another possible cause to the low

contribution of this feature is that it was overshadowed by other features as, for example, the

standard deviation of the distance or the standard deviation of the velocity of the leader.

This may also be the reason for the low contribution of the relative velocity along y axis,

measured perpendicular to the robot’s heading, where it may have been overshadowed by the

lateral displacement feature, which had a much greater importance.

Quality of the Results

When evaluating the classifier results, several aspects must be taken into account, as the

number of features used, the error rate and the number of weak learners used. Although

in all the training the classifiers reached error zero for the train dataset, they required a

different number of weak classifiers to reach that result. Such number has a direct effect on

the time spent for classification. As the objective of the current work is to incorporate such

classifiers on robots, the time spent for classifications is a critical constraint. So, even though

the classifiers can technically reach error 0, this may not be feasible to implement in practical

experiments.

In overall, the trained classifiers produced very good results, with the total error across

different situations ranging from 6% to 10%. And the total error for false good leader clas-

sifications ranging from 5% to 9%, according to the training set and the number of features

used.

By evaluating the error in a situation-by-situation basis, it is possible to notice that it can

grow quite large in some situations. When presenting od and nm situations to the classifier

trained with no examples of such situations (stripped classifier), the error grew as high as

36% (Figure 5.21). Excepting those situations, both classifier types, complete and stripped,

had similar results. Both classifiers, independent on the number of features used, had no

noticeable error in the good leader situation (gd), and their performance in other situations

were practically the same.

There was no significant differences between the qualitative results among the two types

of classifiers and using different number of features. Nevertheless, this stepwise analysis was

required, where features are removed, the classifier trained and errors measured. The reason

is the form the AdaBoost works, as it uses a combination of weak classifiers over features, the

removal of one of them could change the way the others are combined, possibly affecting the

results.

Although promising, these results are obtained from a sum of instant classifications, so

past information is not taken into account for the classification. This means that the output

of the classifiers cannot be taken directly to be used for leader following, with the risk of

switching constantly between good/bad leader. Instead of that, it should be used as the

input of a higher level program that is capable of computing a leader score, that takes into

91

account previous classifications, maintaining some kind of hysteresis. These experiments will

be conducted in the following section.

5.3 Tests of Leader Classifier Integrated with Navigation

These tests evaluated the performance of the classification framework, presented in the

previous section, when integrated with a navigation framework, where a robot must classify,

select and follow leaders. Simulations were performed using STAGE and the ROS framework

and, as in previous experiments, real data was used to recreate the motion of real persons in

the simulations.

As a result, the features extracted from the motion of the recreated pedestrian are realistic.

And, at the same time, they are different from the ones used in the training of the classifier, as

they are measured with respect to the virtual robot configuration, which will be different from

the configuration of the real robot, originally used. A drawback, however, is that pedestrians

are not able to react and change their behavior due to the presence of this virtual robot.

Tests were conducted with the four typical situations encountered during the data acqui-

sition (see subsection 5.1.2), which are: one with good leader situation, and three with bad

leader situations when a leader stops, is too fast or far, and when a leader moves aside. Again,

the multi-mode navigation system was used, and the objective of the robot was to move from

the left to the right side a corridor, following leaders when they were available, or moving

independently (solo mode), if no good leaders were present.

The environment where tests took place is an open corridor (see Figures 5.8 to 5.11), that

was mapped with a laser range finder, during the data acquisition process.

Figure 5.26 shows a sample image of a test. The robot is represented as a black rectangle,

and leader candidates are represented as small colored circles. The color of the circles repre-

sents the instantaneous classification of those subjects, where green means a good leader and

red a bad one. The velocity vector of the candidates is represented as a green arrow, and the

selected leader is marked with a green square.

Figure 5.26: Details on a leader following tests showing how the entities are represented.

92

Good Leader In this first test, illustrated in Figure 5.27, the robot is behind a group of

persons that move together. This group comprises several persons, but due to occlusions, not

all of them are detected by the tracker system. The subjects that are closer to the robot are

correctly classified as good leaders and the candidate with the higher score is selected and

marked with a square.

Figure 5.27: Robot following of a good leader, using the learning-based classification frame-
work.

In the other hand, persons moving in the opposite direction are correctly classified as bad

leaders, as can be seen by the red circles representing them. Besides this, due to limitations

of the tracking system, sometimes static objects are erroneously tracked as persons, but the

classification system has no problem in marking them as bad leader candidates, as can be

seen by the red circles over some of the static objects.

93

It is possible to see that, in this test, the closest leader candidate is not always chosen. The

reason is that in this framework, the rules system for leader selection was not implemented,

using only the voting scheme presented in subsection 3.3.1.

Following a large group of people, as it is the case here, has advantages in the sense that

they provide a compact “wave front” that can “protect” the robot from incoming subjects, as

others inevitably give room to this group of persons to pass. The robot takes advantage of

the space left behind by this group, moving together with it.

Bad Leader - far and/or fast This test shows a situation where the person that was

initially chosen as leader is moving faster than the robot’s maximum speed and, as a con-

sequence, becomes too far from the robot. Once again, the robot manages to avoid persons

moving from the opposite direction by following the path taken by the leader, as shown in

Figure 5.28.

Figure 5.28: Robot following of a leader that is moving too fast, increasing the distance from
the robot.

94

In the third image, the leader starts to be classified as a bad leader, which can be seen

by the red circle, but due to the hysteresis of the voting system, it remains for a while as the

chosen leader. On the fourth image, the subject is discarded as a leader. From that point on,

the solo mode navigation is activated and the robot continues to move to the right part of

the corridor using the RiskRRT navigation algorithm, still avoiding persons moving from the

opposite direction.

Bad Leader - leader stops In this test, illustrated by Figure 5.29, the robot follows a

group of three persons that are moving toward the right side of the corridor. The best leader

candidate is the person in the right-most part of the group. During this test the corridor was

almost empty and there were no persons moving in the opposite direction.

In the third image, the group being followed splits, as they noticed the presence of the

robot (on the recorded dataset), and the currently selected leader stops (fourth image). The

algorithm is able to quickly select as a new leader another member of the group, that continued

to move. After this event, the group reunites and resume their motion towards the end of the

corridor, followed by the robot.

This test illustrates the capability of the developed algorithm of maintaining a list of the

available candidates and of switching among them according to their specific behavior and

circumstances.

Bad Leader - leader moves aside The last test, shown in Figure 5.30, presents a situation

where the leaders being followed notice the presence of the robot and move aside, in an attempt

to free the path for the robot.

This is a situation that can usually be associated with discomfort of the persons being

followed, as they prefer to move out of their typical path than continue along it while being

followed. Unfortunately, this test was not successful. The robot kept following the leader

even when they have moved out of the corridor.

One possible explanation to why the classifier failed in this situation, is that when this

behavior occurred during the data acquisition phase, as the robot was manually controlled, it

kept its heading in the direction of the end of the corridor. This resulted in an increase of the

lateral displacement feature. As in this test the robot was closely following the leader, when

the subject moved aside, the robot changed its heading to match the new leader position, as

the robot motion controller always tries to minimize the heading error.

As a result, there is no change in the lateral displacement, because the robot always tries

to face the leader position, and this feature is computed based on the difference of the heading

of the robot and the leader position, which in this case, is close to zero.

95

Figure 5.29: Robot following a group of leaders that splits, and some subjects stop moving,
the classification system readily selects a new subject that is more suited to be a leader.

5.3.1 Analysis

The performance of the tests varied. In the first three experiments, where the robot was

faced with situations of a good leader, and bad leaders that moved too fast or stopped, the

algorithm managed to correctly classify the subjects. The classification framework was also

able to discard, as leader candidates, agents that were not moving or were moving in the

opposite direction of the robot. However, in the case of a bad leader that moved aside, the

algorithm failed the classification, and the robot kept following that agent until it left the

96

Figure 5.30: Robot following a leader that moves aside to an area that it cannot navigate.
The classification algorithm fails to detect the subject as a bad leader.

scenario.

The integration of the navigation system with the leader voting scheme also provided good

results. The algorithm maintained a list of possible candidates, with a score associated with

each of them. The robot was able to properly follow the best candidate of this list and change

the agent being followed, if it presented a bad leader behavior, which penalized its score.

At first glance, these results may suggest that a simple rule-based leader selection algo-

rithm would provide similar results to the ones presented here. But if a rule-based system was

to be developed to classify leaders in more complex environments, it would require exhaustive

experiments and manual setting of thresholds in an attempt to deal with complex situations.

This is where the advantages of a learning framework resides, as it can be extended to incor-

porate more complex features and learn from more intricate scenarios and examples, without

the need of manual setting of parameters.

97

Future developments should use more complex features, possibly obtained from different

sensors, as cameras, microphones and other, to enhance the classification capability of the

learning algorithm. Data acquisition in more complex scenarios should also be conducted,

where leaders would move according to more complex paths. Features should also reflect that

a leader is moving away from a previous planned path of the robot, so it would detect when

a leader is moving away from its desired path, and stop following this person.

5.4 Summary

In this chapter, experiments on a new method for leader evaluation were presented. This

technique uses the AdaBoost algorithm to learn from labeled data how to classify a person

as good or bad leader, according to a set of extracted features. Data was obtained using a

laser range finder mounted on a robot that followed persons, while the labels associated with

measurements were created using a simple framework where volunteers would watch a video

of the tests and mark the moment they felt the robot should stop following someone.

The labeled data passed through a feature extraction process, and then different sets of

features were used for training the Adaboost algorithm. This allowed a study of the impor-

tance of each of them to the classification process. After this, the voting scheme presented

in subsection 3.3.1 was used to transform instantaneous classifications in a score that repre-

sented how good a person would be as a leader to the robot. This system was integrated with

a multi-mode navigation system and experiments of leader selection and following were con-

ducted in a virtual environment where real data was used to recreate the motion of persons.

These are the contributions of this chapter:

• Developed a framework for leader following data acquisition and labeling, using human

input.

• Proposed a set of features to be extracted and used in the training of an Adaboost

algorithm, to classify persons as good or bad leaders.

• Conducted a study on the contribution of different features to the classification process,

which allowed a better understanding of what are the underlying criteria that persons

use to decide when start or stop following someone.

• Integrated the classification output with a voting scheme and with a multi-mode navi-

gation, and conducted tests where a virtual robot would select and follow persons, based

on their evaluation as leaders.

• Proposed a simulated environment where the motion of persons was recreated using

previously recorded data, which allowed realistic features to be extracted and used by

a virtual robot.

98

Chapter 6

Conclusions and Future Work

Robot navigation in human populated environments is a difficult task, due to the unpre-

dictability and large complexity of the interactions that take place in those scenarios. This

thesis proposed a new form of robotic navigation in such environments, where instead of

regarding moving persons as obstacles, they were considered as entities that could help the

robot to move in difficult situations.

It was hypothesized that by selecting and following leaders, the robot could take advan-

tage from the navigation expertise of pedestrians, as moving along optimal paths, respecting

social conventions, negotiating rights of passage, and dealing with complex and unexpected

situations.

With this approach, the problem to be solved was no longer how to create motion plans

in populated dynamic environments, but how to choose persons and how to follow them,

according to the robot’s objective. This lead to the development of two new methods for

leader selection, that were the focus of the study in this work.

6.1 Leader Selection and Following Based on Reasoning

Analysis on the Leader Selection Methods The first method proposed that if a person

was moving to the same destination as the robot, or was moving along a similar path initially

planned by the robot, he or she would be a good leader to be followed. This meant that

the robot could stick to this person and take advantage of his/her motion until reaching its

objective.

To develop this technique, the likely goal and path of candidates had to be predicted. This

work explored both simple approaches as state extrapolation, and complex ones, as models

of typical paths, using probabilistic tools, as the GHMMs. After filtering leader candidates

based on their predicted destination, a set of simple rules were used to rule out candidates

that were in difficult positions to be followed, as behind the robot, or too far from it, for

example.

99

One of the limitations of this method is that the environment must be known to the robot

before the leader selection process can take place. In the case that the typical paths are used

for goal prediction, the environment must first be observed, so enough data can be collected

to create the models of the common traveled paths. This is not always a feasible situation.

Besides that, in dynamic environments the motion of pedestrians may not always fit previous

observations and unexpected situations and detours can result in erroneous goal predictions.

Analysis of the Navigation Tests To evaluate this approach, the leader selection method

was integrated with a multi-mode navigation algorithm. This approach used three different

navigation algorithms that were used in specific situations. On the solo mode, this system

uses the RiskRRT algorithm, which is well suited for navigation in dynamic environments

and that was used when no leader candidates were present or when none of those candidates

could be used as leaders. When good leaders were present, the system could activate two other

modes, depending on the distance between the robot and the leaders. When this distance

was above 4m, the path follow mode was activated, where the robot followed the path of the

selected leader. In the case the distance was below 4m, the direct follow mode was chosen,

where the robot used two proportional controller to directly follow the leader, controlling the

distance and the heading of the robot.

Two types of tests were performed, one that used a mixture of real data with a virtual

world and another one that implemented a pedestrian simulator. In the first case, the real

data was used to train a GHMM and also to recreate the motion of real persons in the virtual

world, where a robot would select and follow these recreated agents. The advantage of this

method is the use of real data for the training and prediction processes, but the drawback is

that the recreated persons could not react to the presence of the robot, as their motion was

only a playback of data acquired earlier.

In the second type of tests, only simulated data was used. In this setup, a pedestrian

simulator was created, based on the Social Forces model, where the sum of attractive and

repulsive forces determined the resulting motion of simulated pedestrians. Using this tool,

it was possible to create realistic experiments where the presence of the robot affected the

surrounding agents.

In both types of tests the ability of the robot’s algorithm to select and follow leaders were

successfully demonstrated, enabling the robot to navigate through difficult situations where

other approaches had suboptimal results. In these situations, the robot effectively became

part of a group and avoided collision with other agents.

6.2 Leader Selection Based on Learning

Analysis on the Leader Evaluation Framework Instead of using sets of rules and con-

ditions, the second method originated from the desire to understand and replicate how humans

100

perform leader selection. To accomplish this proposition, a machine learning framework was

used to learn from real examples how to classify someone as a good or a bad leader candidate.

This study can be divided into five parts: data acquisition, data labeling, feature extraction,

algorithm training and classification tests.

For the data acquisition, a car-like robot, remotely operated, moved along an open corridor

between two objective points. Whenever persons were present in the robot’s path, the human

operator positioned the robot behind them and engaged in a following behavior, until reaching

one of its objective points. While moving, the robot recorded measurements made with a

camera and a laser range finder, installed on it.

After this, the labeling part took place. The video of the tests was shown to volunteers,

that marked the instant when, according to their opinion, the robot should have abandoned

the leader following behavior, and were asked the reason they chose such instant. In the end

of this process, the labels of the participants were merged and categorized according to the

reason that the robot should have left the leader, according to the evaluator’s opinion.

For the feature extraction, an algorithm used the laser measurements to detect and track

the motion of persons, so the measurements (or features), were calculated based on the state

of the robot and the state of the tracked persons. Examples of the extracted features were

the distance between candidate and robot, their relative velocity and others.

The machine learning algorithm used was the AdaBoost, because it allows an evaluation

of the contribution of the features used for the classification process. This is an important

factor, as it permitted the study of the features that are unconsciously used by humans when

deciding to start or stop following someone. Different sets of features were used in the training

phase, with the less important features being sequentially removed.

Experiments in a straight corridor showed that the lateral displacement, the distance

between the robot and the leader, and the standard deviation of this distance, were the features

that mostly contributed to the classification process. It is interesting to notice that among

the three most important features, two of them are measurements that are not dependent on

the dynamics of the environment (lateral displacement and distance). These findings can be

used in future designs of leader following algorithms, to better select leaders and reduce the

discomfort caused by the robot.

The study of features importance in leader selection is an important contribution of this

Thesis, as no other references of works with similar approaches or objectives, were found. It

also launches the base for future studies in a new area of Human Robot Interaction (HRI),

related to the human comfort and acceptance when a robot follows them, which is different

from current proxemics studies where the focus is in the robot navigating while respecting

personal spaces.

It is important to emphasize that these results were obtained using only one type of robot,

and in one specific test scenario, where people moved along an open corridor. Also the features

101

extracted are highly dependent on the type of sensors and the algorithm used. Without more

tests with different platforms, sensors, scenarios and algorithms for feature extraction, care

must be taken when generalizing these findings.

In different setups, the features extracted will have distinct characteristics from the ones

used in this work, due to different types of platforms, sensors and algorithms used. In this

case, the advantages of using a learning framework become evident. As the presented algo-

rithms learn from examples, new classifiers can adapt to the features obtained in different

experiments. In resume, the framework described in this work permits that the same type

of experiments to be repeated for different robots and scenarios, while a learning tool allows

new classifiers to be trained according to new features and situations.

Analysis of the Navigation Tests This classification framework was also evaluated while

integrated with a navigation system, so the performance of a robot that followed persons using

this technique could be assessed. As the classification system worked over instantaneous

measurements, a method that created hysteresis for the leader selection was developed, so the

history of classifications could be taken into account. This was accomplished using a voting

system, where positive classifications increased a candidate score and negative classifications

reduced it, but by a larger factor. These rules allowed a score to be associated with each

leader candidate, that could be used for the leader selection, associated to the quality of each

subject as a leader.

For this tests, the same navigation system presented in Section 6.1 was used. Also the

same type of setup that mixed real data measurements with a virtual robot was used. The

difference here is that the features were extracted based on the virtual robot position, so

although the motion of pedestrians had been previously recorded, the features were different

from the ones used for training the algorithm.

The tests were conducted in the four different leader situations, previously classified.

Although the robot could properly identify, follow and abandon leaders in most of the cases,

it failed to detect the bad leader situation where the leaders moved aside. This was a difficult

situation, that was associated with the discomfort of the person being followed. The conclusion

was that the features used for the training of the classification algorithm were not enough to

detect that situations when a robot was closely following a leader.

As a side study, during the data collection process, a small group of persons (N=10) were

interviewed to assess how they felt about having a robot following them. In all the interviews,

people told they noticed the presence of the robot, and they changed their behavior because

of it. This deserves further exploration, with more experiments and a larger number of

interviews, to investigate what are the aspects of the robot design and behavior that influence

the persons being followed, and how that affects them.

102

6.3 Comparison of Leader Selection Methods

This thesis presented two methods for leader selection, one that based the decision on

the prediction of a candidate’s goal together with a set of rules, and other where a learning

framework was trained using examples of good or bad leaders labeled by humans.

As experiments were conducted in different setups, it is difficult to establish a quantitative

comparison for both methods. It is possible, however, to point what are the strengths and

weaknesses of each approach.

The reasoning-based leader selection had very good results in selecting a leader for long-

term following and in selecting and following leaders in densely populated environments.

However, it is heavily dependent on the goal prediction of candidates and it requires a previous

knowledge of the environment to obtain good goal prediction. Besides that, the algorithm

only choses the best leader, disregarding other sub-optimal candidates.

The learning-base approach, in the other hand, is able to evaluate each candidate based

on a series of features, creating combinations that may be associated with humans behaviors

and discomfort. Another advantage is that it can be used in unknown environments, and

the learning framework can easily be expanded to account for new features and situations.

This method also keeps a list of candidates and give scores to them, associated with their

behavior along time, so the task of leader switching becomes easier. The drawbacks of this

technique is that, in the form it was implemented here, a leader may lead the robot away

from its objective, and it may fail to detect some situations, namely when leaders present the

move aside behavior.

As a suggestion of future developments, a technique that integrated the reasoning-based

and the learning-based approach could overcome individual limitations and sum the strengths

of each method, resulting in a much more robust leader selection algorithm.

6.4 Future Work

This study only entered briefly in a large an unexplored field of how to take advantage

of moving entities, for the benefit of robot motion. This thesis focused on only one form

of taking advantage, which was by following selected leaders in the environment. But this

concept has a broader definition, and other forms of taking advantage from human motion

are possible. For example, using the typical motion paths of persons as optimal paths in an

environment, to guide the search of motion planning algorithms, even when no persons are

present.

Regarding improvements in the work developed here, intensive data collection should be

conducted with automated robots following persons, using a variety of sensors and scenarios,

so a large database of leader following examples can be constructed and shared with other

researchers. This would allow the training of better machine learning classifiers and a real

103

comparison between different methods using the same ground-truth.

This database could also profit from a more complex labeling system. In the current

work, only one transition from good to bad leader was present in each test, using a binary

label. In future developments, it could be interesting to have many levels of leader quality,

to better reflect real situations, where the transition from good to bad leader is a gradual

change. One form of accomplishing this, would be to create transient labels, backpropagating

instant transitions into gradual ones.

As some of the tests of robot following using the classification framework have failed,

it is necessary to explore more features that could be used to improve the performance of

classification algorithm. Examples of such features are be body posture, gaze direction, and

also relative measurements taking into account a preferential path by of the robot. This ideas

come from the fact that in many cases, persons looked back several times before changing

their behavior, which could be associated with their discomfort. But this reactions could not

be captured using only a laser range finder and more complex algorithms are required for the

detection of such features, using camera images, for example.

This work conducted tests in simulated environments and in mixed conditions, using real

data together with virtual environments. So an essential future task, is to perform experiments

in real situations. Only then the true impact of the developed algorithms can be evaluated.

This will allow a deeper study on the reaction of persons to a robot following then, and may

lead to adjustments in the algorithms to cope with situations that were not anticipated in

this thesis.

Finally, with a better understanding of what characterizes a good leader (Dyer et al.,

2009) and of the behavior of pedestrians moving together with a robot, it will be possible to

explore other situations of HRI. For example, instead of following persons, the robot would

became the guide of groups of humans, or even actively change the organization of a group

De Schutter et al. (2001). This could bring benefits in emergency or panic situations, where

the default human behavior is actually dangerous to the group (Helbing et al., 2000), but

could be altered with the intervention of robots.

6.5 Contributions

Different forms of navigation taking advantage of moving agents were explored in this

thesis. The main contributions can be resumed as follows:

1. Implementation of a probabilistic approach of leader selection, base on goal prediction,

using the Growing Hidden Markov Model (GHMM) (Stein et al., 2012a,b).

2. Development of a pedestrian simulator, that was integrated on the leader selection

framework, which allowed realistic experiments where agents reacted to the presence

104

of the robot and to the conditions of the environment (Stein et al., 2013b). Experi-

ments in crowded environment, using the pedestrian simulator, showed the benefits of

taking advantage of the motion of other agents, where the robot successfully navigated

through difficult situations, while other state-of-the-art algorithms provided suboptimal

solutions.

3. Implementation of a multi-mode navigation framework, which used a state-of-the-art

technique for navigating without a leader, and two other navigation strategies for the

leader following, one that followed the leader’s path and other that followed directly the

leader.

4. Developed a framework for leader following data acquisition and labeling, using human

input, and proposed a set of features to be extracted and used in the training of an

Adaboost algorithm, to classify persons as good or bad leaders. This framework was also

used to conducted a study on the contribution of different features to the classification

process, which allowed a better understanding of what are the underlying criteria that

persons use to decide when start or stop following someone (to appear in Stein et al.,

2013a).

5. Integrated the AdaBoost classification output with a voting scheme and with a multi-

mode navigation, and conducted tests where a virtual robot would select and follow

persons, based on their evaluation as leaders. Tests were conducted in a simulated

environment where the motion of persons was recreated using previously recorded data,

which allowed realistic features to be extracted and used by a virtual robot.

105

106

References

Abe, Y. and Yoshiki, M. (2001). Collision avoidance method for multiple autonomous mobile

agents by implicit cooperation. In Proceedings 2001 IEEE/RSJ International Conference

on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next

Millenni, pages 1207–1212, Maui, HI, USA.

Alexander, R. M. (1984). The gaits of bipedal and quadrupedal animals. The International

Journal of Robotics Research, 3(2):49–59.

Almeida, J. (2010). Target tracking using laser range finder with occlusion. Master’s thesis,

Universidade de Aveiro, Aveiro, Portugal.

Arras, K. O., Grzonka, S., Luber, M., and Burgard, W. (2008). Efficient people tracking in

laser range data using a multi-hypothesis leg-tracker with adaptive occlusion probabilities.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages

1710–1715.

Baiget, P., Sommerlade, E., Reid, I., and Gonzalez, J. (2008). Finding prototypes to estimate

trajectory development in outdoor scenarios. In Proceedings of the 1st THEMIS Workshop,

pages 27–34.

Bennewitz, M., Burgard, W., Cielniak, G., and Thrun, S. (2005). Learning motion patterns

of people for compliant robot motion. The International Journal of Robotics Research,

24(1):31.

Bennewitz, M., Burgard, W., and Thrun, S. (2003). Adapting navigation strategies using

motions patterns of people. In Robotics and Automation, 2003. Proceedings. ICRA’03.

IEEE International Conference on, volume 2, pages 2000–2005.

Borenstein, J. and Ulrich, I. (1997). The guidecane-a computerized travel aid for the active

guidance of blind pedestrians. In Robotics and Automation, 1997. Proceedings., 1997 IEEE

International Conference on, volume 2, pages 1283–1288.

Brock, O. and Khatib, O. (1999). High-speed navigation using the global dynamic window

107

approach. In Proceedings of IEEE International Conference on Robotics and Automation

(ICRA), volume 1.

Brooks, R. (1986). A robust layered control system for a mobile robot. Robotics and Automa-

tion, IEEE Journal of, 2(1):14–23.

Burgard, W., Cremers, A. B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W.,

and Thrun, S. (1999). Experiences with an interactive museum tour-guide robot. Artificial

Intelligence, 114(1-2):3–55.

Choi, W. and Latombe, J.-C. (1991). A reactive architecture for planning and executing robot

motions with incomplete knowledge. In IEEE/RSJ International Workshop on Intelligent

Robots and Systems ’91. ’Intelligence for Mechanical Systems, Proceedings IROS ’91, pages

24 –29 vol.1.

Ciolek, T. M. and Kendon, A. (1980). Environment and the spatial arrangement of conver-

sational encounters. Sociological Inquiry, 50(3-4):237–271.

De Schutter, G., Theraulaz, G., and Deneubourg, J. (2001). Animal-robots collective intelli-

gence. Annals of Mathematics and Artificial Intelligence, 31(1):223–238.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271.

Drauschke, M. (2008). Feature subset selection with adaboost and adtboost. Technical report,

Tech. rept. Department of Photogrammetry, University of Bonn.

Dyer, J. R., Johansson, A., Helbing, D., Couzin, I. D., and Krause, J. (2009). Leadership,

consensus decision making and collective behaviour in humans. Philosophical Transactions

of the Royal Society B: Biological Sciences, 364:781–789.

Ellis, D., Sommerlade, E., and Reid, I. (2009). Modelling pedestrian trajectory patterns

with gaussian processes. In 2009 IEEE 12th International Conference on Computer Vision

Workshops (ICCV Workshops), pages 1229–1234. IEEE.

Erdmann, M. and Lozano-Pérez, T. (1987). On multiple moving objects. Algorithmica, 2(1-

4):477–521.

Fiorini, P. and Shiller, Z. (1993). Motion planning in dynamic environments using the rela-

tive velocity paradigm. In Proccedings of IEEE International Conference on Robotics and

Automation (ICRA), pages 560–560.

Fiorini, P. and Shiller, Z. (1998). Motion planning in dynamic environments using velocity

obstacles. The International Journal of Robotics Research, 17(7):760–772.

108

Fraichard, T. and Laugier, C. (1993). Path-velocity decomposition revisited and applied to

dynamictrajectory planning. In Proceedings of IEEE International Conference on Robotics

and Automation (ICRA), pages 40–45.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139.

Fritzke, B. et al. (1995). A growing neural gas network learns topologies. Advances in neural

information processing systems, 7:625–632.

Frost, R. (1916). Mountain Interval. Henry Holt.

Fujimura, K. and Samet, H. (1989). A hierarchical strategy for path planning among moving

obstacles. IEEE Transactions on Robotics and Automation, 5(1):61–69.

Fulgenzi, C., Spalanzani, A., and Laugier, C. (2007). Dynamic obstacle avoidance in uncertain

environment combining PVOs and occupancy grid. In Proceedings of IEEE International

Conference on Robotics and Automation (ICRA), pages 1610–1616.

Fulgenzi, C., Spalanzani, A., and Laugier, C. (2009). Probabilistic motion planning among

moving obstacles following typical motion patterns. In Intelligent Robots and Systems,

2009. IROS 2009. IEEE/RSJ International Conference on, pages 4027–4033.

Fulgenzi, C., Spalanzani, A., Laugier, C., and Tay, C. (2010). Risk based motion planning

and navigation in uncertain dynamic environment. Research report, INRIA Rhone-Alpes.

Fulgenzi, C., Tay, C., Spalanzani, A., and Laugier, C. (2008). Probabilistic navigation in

dynamic environment using rapidly-exploring random trees and gaussian processes. In

IEEE/RSJ 2008 International Conference on Intelligent RObots and Systems, Nice, France.

Gockley, R., Forlizzi, J., and Simmons, R. (2007). Natural person-following behavior for

social robots. In Proceedings of the ACM/IEEE international conference on Human-robot

interaction, pages 17–24.

Gross, H.-M., Boehme, H., Schroeter, C., Mueller, S., Koenig, A., Einhorn, E., Martin, C.,

Merten, M., and Bley, A. (2009). TOOMAS: interactive shopping guide robots in everyday

use - final implementation and experiences from long-term field trials. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, 2009. IROS 2009, pages 2005–2012.

Hall, E. T. (1966). The hidden dimension. Doubleday.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determi-

nation of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on,

4(2):100–107.

109

Helbing, D., Farkas, I., and Vicsek, T. (2000). Simulating dynamical features of escape panic.

Nature, Vol. 407, pp. 487-490, 2000.

Helbing, D., Farkas, I. J., Molnar, P., and Vicsek, T. (2002). Simulation of pedestrian crowds

in normal and evacuation situations. In Sharma, S. D. and Schreckenberg, M., editors,

Pedestrian and Evacuation Dynamics, pages 21–58. Springer Berlin.

Helbing, D. and Molnar, P. (1995). Social force model for pedestrian dynamics. Physical

Review E, 51:4282–1286.

Helbing, D., Molnar, P., Farkas, I., and Bolay, K. (2001). Self-organizing pedestrian move-

ment. Environment and Planning B, 28(3):361–384.

Henry, P., Vollmer, C., Ferris, B., and Fox, D. (2010). Learning to navigate through

crowded environments. In 2010 IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 981–986. IEEE.

Ho, D. M., Hu, J.-S., and Wang, J.-J. (2012). Behavior control of the mobile robot for

accompanying in front of a human. In Advanced Intelligent Mechatronics (AIM), 2012

IEEE/ASME International Conference on, pages 377–382.

Hoeller, F., Schulz, D., Moors, M., and Schneider, F. E. (2007). Accompanying persons with

a mobile robot using motion prediction and probabilistic roadmaps. In Intelligent Robots

and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages 1260–1265.

Huettenrauch, H., Eklundh, K., Green, A., and Topp, E. (2006). Investigating spatial re-

lationships in human-robot interaction. In 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 5052 –5059.

Ikeda, T., Chigodo, Y., Rea, D., Zanlungo, F., Shiomi, M., and Kanda, T. (2012). Modeling

and prediction of pedestrian behavior based on the sub-goal concept. In Robotics: Science

and Systems VIII.

iRobot (2013). iRobot corporation: Robots that make a difference. Retrieved June 2013,

from http://www.irobot.com/us/.

Ishiguro, H., Ono, T., Imai, M., Maeda, T., Kanda, T., and Nakatsu, R. (2001). Robovie: an

interactive humanoid robot. Industrial robot: An international journal, 28(6):498–504.

Johnson, N. and Hogg, D. (1996). Learning the distribution of object trajectories for event

recognition. Image and Vision Computing, 14(8):609–615.

Kanda, T., Glas, D. F., Shiomi, M., Ishiguro, H., and Hagita, N. (2008). Who will be the

customer?: a social robot that anticipates people’s behavior from their trajectories. In

110

Proceedings of the 10th international conference on Ubiquitous computing, UbiComp ’08,

pages 380–389, New York, NY, USA. ACM.

Kant, K. and Zucker, S. W. (1986). Toward efficient trajectory planning: The path-velocity

decomposition. The International Journal of Robotics Research,, pages 72 –89 vol. 5:.

Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K., and Tachibana, K. (2000). Virtual

object manipulation on a table-top AR environment. In Proceedings of ISAR 2000, pages

111–119.

Kavraki, L. E., Svestka, P., Latombe, J. C., and Overmars, M. H. (1996). Probabilistic

roadmaps for path planning in high-dimensionalconfiguration spaces. IEEE transactions

on Robotics and Automation, 12(4):566–580.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The

International Journal of Robotics Research, 5(1):90–98.

Kim, K., Lee, D., and Essa, I. (2011). Gaussian process regression flow for analysis of motion

trajectories. In 2011 IEEE International Conference on Computer Vision (ICCV).

Kluge, B. and Prassler, E. (2004). Reflective navigation: individual behaviors and group

behaviors. In Proceedings of IEEE International Conference on Robotics and Automation

ICRA, volume 4, pages 4172–4177.

Kohlbrecher, S., Meyer, J., von Stryk, O., and Klingauf, U. (2011). A flexible and scalable

slam system with full 3d motion estimation. In Proc. IEEE International Symposium on

Safety, Security and Rescue Robotics (SSRR). IEEE.

Koren, Y. and Borenstein, J. (1991). Potential field methods and their inherent limitations

for mobile robot navigation. In Proc. IEEE Int. Conf. Robotics and Automation, pages

1398—1404.

Krogh, B. and Thorpe, C. (1986). Integrated path planning and dynamic steering control for

autonomous vehicles. In Robotics and Automation. Proceedings. 1986 IEEE International

Conference on, volume 3, pages 1664–1669.

Kruse, T., Basili, P., Glasauer, S., and Kirsch, A. (2012). Legible robot navigation in the

proximity of moving humans. In Advanced Robotics and its Social Impacts (ARSO), 2012

IEEE Workshop on, pages 83–88.

Kruse, T., Pandey, A. K., Alami, R., and Kirsch, A. (2013). Human-aware robot navigation:

A survey. Robotics and Autonomous Systems.

111

Large, F., Laugier, C., and Shiller, Z. (2005). Navigation among moving obstacles using the

NLVO: principles and applications to intelligent vehicles. Autonomous Robots, 19(2):159–

171.

Large, F., Sckhavat, S., Shiller, Z., and Laugier, C. (2002). Using non-linear velocity obstacles

to plan motions in a dynamic environment. In Proceedings of IEEE International Conference

on Control, Automation, Robotics and Vision, volume 2, pages 734–739.

Large, F., Vasquez, D., Fraichard, T., and Laugier, C. (2004). Avoiding cars and pedestrians

using velocity obstacles and motion prediction. In Proceedings of IEEE Intelligent Vehicles

Symposium, pages 375–379.

Latombe, J. (1991). Robot Motion Planning. Kluwer Academic, 1 edition.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, Cambridge, U.K.

Available at http://planning.cs.uiuc.edu/.

LaValle, S. M. and Kuffner Jr, J. J. (2001). Randomized kinodynamic planning. The Inter-

national Journal of Robotics Research, 20(5):378.

Lozano-Perez, T. (1983). Spatial planning: A configuration space approach. IEEE Transac-

tions on Computers, C-32(2):108 –120.

Luber, M., Spinello, L., Silva, J., and Arras, K. (2012). Socially-aware robot navigation: A

learning approach. In 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 902–907.

Makris, D. and Ellis, T. (2002). Path detection in video surveillance. Image and Vision

Computing, 20(12):895–903.

Miura, J., Satake, J., Chiba, M., Ishikawa, Y., Kitajima, K., and Masuzawa, H. (2010).

Development of a person following robot and its experimental evaluation. In Proceedings

of the 11th International Conference on Intelligent Autonomous Systems, pages 89–98,

Ottawa, Canada.

Miura, J. and Shirai, Y. (2000). Modeling motion uncertainty of moving obstacles for robot

motion planning. In IEEE International Conference on Robotics and Automation, 2000.

Proceedings. ICRA ’00, volume 3, pages 2258–2263 vol.3.

Miura, J., Uozumi, H., and Shirai, Y. (1999). Mobile robot motion planning considering the

motion uncertainty of moving obstacles. Proceedings. 1999 IEEE International Conference

on Systems, Man, and Cybernetics, pages 692–697.

Mombaur, K., Truong, A., and Laumond, J. (2009). From human to humanoid locomotion -

an inverse optimal control approach. Autonomous Robots, 28:369–383.

112

Müller, J., Stachniss, C., Arras, K., and Burgard, W. (2008). Socially inspired motion planning

for mobile robots in populated environments. In Proc. of International Conference on

Cognitive Systems.

Murphy, L. and Corke, P. (2012). STALKERBOT: learning to navigate dynamic human

environments by following people. In Proceedings of the 2012 Australasian Conference on

Robotics & Automation.

Myers, T., Noel, T., Parent, M., and Vlacic, L. (2005). Autonomous motion of a driverless

vehicle operating among dynamic obstacles. In Proceedings of IEEE Conference on Decision

and Control, European Control Conference, pages 5071–5076.

O’Callaghan, S. T., Singh, S. P. N., Alempijevic, A., and Ramos, F. T. (2011). Learning

navigational maps by observing human motion patterns. In 2011 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 4333–4340. IEEE.

Petti, S. and Fraichard, T. (2005). Partial motion planning framework for reactive planning

within dynamic environments. In Proc. of the IFAC/AAAI Int. Conf. on Informatics in

Control, Automation and Robotics.

Prassler, E., Scholz, J., and Fiorini, P. (2001). A robotics wheelchair for crowded public

environment. Robotics & Automation Magazine, IEEE, 8(1):38–45.

Quigley, M., Gerkeyy, B., Conleyy, K., Fausty, J., Footey, T., Leibsz, J., Bergery, E., Wheelery,

R., and Ng, A. (2009). ROS: an open-source robot operating system. In ICRA Workshop

on Open Source Software.

Quinlan, S. and Khatib, O. (1993). Elastic bands: Connecting path planning and control.

In Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on,

pages 802–807.

Reif, J. and Sharir, M. (1985). Motion planning in the presence of moving obstacles. In

Proceedings of 26th Annual Symposium on Foundations of Computer Science, pages 144–

154.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. COM-

PUTER GRAPHICS, 21:25–34.

Reynolds, C. W. (1999). Steering behaviors for autonomous characters. In Game Developers

Conference. http://www. red3d. com/cwr/steer/gdc99.

Rios-Martinez, J., Spalanzani, A., and Laugier, C. (2011). Understanding human interaction

for probabilistic autonomous navigation using Risk-RRT approach. In 2011 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages 2014–2019. IEEE.

113

Robotics, N. (2013). BotJunkie review: Neato robotics XV-11 - neato

robotics. Retrieved June 2013, from http://www.neatorobotics.com/

botjunkie-review-neato-robotics-xv-11/.

Sehestedt, S., Kodagoda, S., and Dissanayake, G. (2010). Robot path planning in a social

context. In 2010 IEEE Conference on Robotics Automation and Mechatronics (RAM),

pages 206–211. IEEE.

Severinson-Eklundh, K., Green, A., and HÃ1
4ttenrauch, H. (2003). Social and collaborative

aspects of interaction with a service robot. Robotics and Autonomous Systems, 42(3-4):223–

234.

Shiller, Z., Large, F., and Sekhavat, S. (2001). Motion planning in dynamic environments:

obstacles moving along arbitrary trajectories. In Proceedings of IEEE International Con-

ference on Robotics and Automation (ICRA), volume 4, pages 3716–3721 vol.4.

Shiomi, M., Zanlungo, F., Hayashi, K., and Kanda, T. (2012). A framework with a pedestrian

simulator for deploying robots into a real environment. In Noda, I., Ando, N., Brugali, D.,

and Kuffner, J., editors, Simulation, Modeling, and Programming for Autonomous Robots,

volume 7628 of Lecture Notes in Computer Science, pages 185–196. Springer Berlin / Hei-

delberg.

Sidenbladh, H., Kragic, D., and Christensen, H. I. (1999). A person following behaviour for

a mobile robot. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International

Conference on, volume 1, pages 670–675.

Sisbot, E., Marin-Urias, L., Alami, R., and Simeon, T. (2007). A human aware mobile robot

motion planner. IEEE Transactions on Robotics, 23(5):874 –883.

Snape, J., van den Berg, J., Guy, S., and Manocha, D. (2009). Independent navigation of

multiple mobile robots with hybrid reciprocal velocity obstacles. In Proceedings of the

International Conference on Intelligent Robots and Systems (IROS), pages 5917–5922.

Stachniss, C. and Burgard, W. (2002). An integrated approach to goal-directed obstacle

avoidance under dynamic constraints for dynamic environments. In IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2002, volume 1, pages 508– 513 vol.1.

IEEE.

Stein, P., Santos, V., Spalanzani, A., and Laugier, C. (2013a). Learning-based leader classifi-

cation. In IROS 2013 Workshop on Assistance and Service Robotics in a Human Environ-

ment.

114

Stein, P., Santos, V., Spalanzani, A., and Laugier, C. (2013b). Navigating in populated

environments by following a leader. In International Symposium on Robot and Human

Interactive Communication (RO-MAN).

Stein, P., Spalanzani, A., Laugier, C., and Santos, V. (2012a). Leader selection and following

in dynamic environments. In 2012 12th International Conference on Control Automation

Robotics Vision (ICARCV), pages 124–129.

Stein, P., Spalanzani, A., Santos, V., and Laugier, C. (2012b). Robot navigation taking

advantage of moving agents. In IROS 2012 Workshop on Assistance and Service robotics

in a human environment.

Susnjak, T. (2009). Accelerating classifier training using AdaBoost within cascades of boosted

ensembles. Science in computer sciences, Massey University, Auckland, New Zealand.

Svenstrup, M., Bak, T., Maler, O., Andersen, H. J., and Jensen, O. B. (2009). Pilot study

of person robot interaction in a public transit space. Research and Education in Robotics

– EUROBOT 2008, pages 96–106.

Tadokoro, S., Hayashi, M., Manabe, Y., Nakami, Y., and Takamori, T. (1995). On motion

planning of mobile robots which coexist and cooperate with human. In 1995 IEEE/RSJ

International Conference on Intelligent Robots and Systems 95. ’Human Robot Interaction

and Cooperative Robots’, Proceedings, volume 2, pages 518–523 vol.2.

Takayama, L. and Pantofaru, C. (2009). Influences on proxemic behaviors in human-robot

interaction. In IEEE/RSJ International Conference on Intelligent Robots and Systems,

2009. IROS 2009, pages 5495–5502. IEEE.

Tay, C. and Laugier, C. (2007). Modelling smooth paths using gaussian processes. In Proc.

of the Int. Conf. on Field and Service Robotics, Chamonix, France.

Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox, D., Hahnel, D.,

Rosenberg, C., Roy, N., and Schulte, J. (1999). MINERVA: a second-generation museum

tour-guide robot. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International

Conference on, volume 3.

Tipaldi, G. and Arras, K. (2011). I want my coffee hot! learning to find people under spatio-

temporal constraints. In 2011 IEEE International Conference on Robotics and Automation

(ICRA), pages 1217 –1222.

Tranberg Hansen, S., Svenstrup, M., Andersen, H., and Bak, T. (2009). Adaptive human

aware navigation based on motion pattern analysis. In The 18th IEEE International Sym-

posium on Robot and Human Interactive Communication, 2009. RO-MAN 2009, pages

927–932.

115

Trautman, P. and Krause, A. (2010). Unfreezing the robot: Navigation in dense, interacting

crowds. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 797–803. IEEE.

Treuille, A., Cooper, S., and Popovic, Z. (2006). Continuum crowds. In ACM SIGGRAPH

2006 Papers, page 1168.

Tsuchiya, M. and Fujiyoshi, H. (2006). Evaluating feature importance for object classifica-

tion in visual surveillance. In Pattern Recognition, 2006. ICPR 2006. 18th International

Conference on, volume 2, pages 978–981.

van den Berg, J., Guy, S., Lin, M., and Manocha, D. (2011). Reciprocal n-body collision

avoidance. Robotics Research, pages 3–19.

van den Berg, J., Lin, M., and Manocha, D. (2008a). Reciprocal velocity obstacles for real-

time multi-agent navigation. In Proc. of IEEE Conference on Robotics and Automation,

pages 1928–1935.

van den Berg, J., Patil, S., Sewall, J., Manocha, D., and Lin, M. (2008b). Interactive navi-

gation of multiple agents in crowded environments. In Proceedings of the 2008 symposium

on Interactive 3D graphics and games, pages 139–147.

Vasquez, D., Stein, P., Rios-Martinez, J., Escobedo, A., Spalanzani, A., and Laugier, C.

(2012). Human aware navigation for assistive robotics. In International Symposium on

Experimental Robotics (ISER).

Vasquez Govea, D. A., Fraichard, T., and Laugier, C. (2009). Growing hidden markov models:

An incremental tool for learning and predicting human and vehicle motion. International

Journal of Robotics Research, 28(11-12):1486–1506.

Vaughan, R. (2008). Massively multi-robot simulation in stage. Swarm Intelligence, 2(2-

4):189–208.

Walters, M. L., Dautenhahn, K., Te Boekhorst, R., Koay, K. L., Syrdal, D. S., and Nehaniv,

C. L. (2009). An empirical framework for human-robot proxemics. In Symposium at the

AISB09 Convention,.

Yu, C.-C. and Wang, C.-C. (2012). Collision- and freezing-free navigation in dynamic envi-

ronments using learning to search. In 2012 Conference on Technologies and Applications

of Artificial Intelligence (TAAI), pages 151–156.

Zhu, Q. (1991). Hidden markov model for dynamic obstacle avoidance of mobile robot navi-

gation. Robotics and Automation, IEEE Transactions on, 7(3):390–397.

116

Appendix A

Test Framework for Typical Paths

Modeling and Prediction Using

Gaussian Process

A Gaussian Process is a generalization of the Gaussian probability distribution. One

advantage of this method is that it is possible to incorporate human motion uncertainties into

the model, providing a probabilistic framework for the prediction of future paths. Another

advantage of this technique is that it allows the representation of pedestrians’ trajectories as

continuous functions, eliminating the need of a discretization step of the sample paths. This

also allows predictions to be made in any desired timestep, without the need of interpolation.

A GP can be fully defined by a mean function m(x) and a covariance function k(x, x′)

f ∼ GP (m(x), k(x, x′))

these functions have free parameters that are called hyperparameters and which are computed

during the learning phase. The resulting mean function can be understood as the typical path

and the covariance function represents the uncertainty of the model in each point.

Test Setup On the tests conducted, a group of trajectories were generated using a small-

scale robot (10 cm long), shown in Figure A.1. It is interesting to use a real setup because, in

this way, the real constraints of the system could be taken into account. A small scale setup

also has the advantages that complex paths and situations could be experimented in a small

indoor area. Figure A.2 shows the schema of the setup that was built in the laboratory.

As the robot has no internal sensors to determine its position on the environment, an

external system tracks and computes the position and orientation of the robot. The position

and orientation of the robot in the environment are obtained by an overhanging camera, using

the ARToolKit augmented reality system (Kato et al., 2000), together with a Kalman Filter

117

Figure A.1: Small scale robot used to generate real trajectories for the typical paths modelling
with GP.

Figure A.2: Schema of the implemented setup. The image of the arena is acquired and
passed to a module that performs detection and tracking, based on the robot’s position and
orientation, control commands are computed and sent via a wireless link.

to cope with noise and temporary failures in the tracking. This approach allows inexpensive

robots to have accurate information about their surroundings and about other robots, what

would only be possible with high grade sensors if this setup was not used (a similar setup has

been developed by Snape et al. (2009)).

The path that the robot should follow was represented by a series of virtual checkpoints.

Finally, a control loop computed the desired speed and steer, based on the robot’s position,

in order to pass through the intended checkpoints and the computed actuators commands are

sent through a wireless channel to the robot, using a Xbee R©Radio Modem.

The resulting trajectories of a test (Figure A.3) can be clustered according to some criteria,

as common initial and final points, for example, as illustrated by Figure A.4. Each group

of trajectories can then be used as the training dataset for the supervised learning of the

hyperparameters of a GP, which results in a particular mean and covariance function, as

118

Figure A.3: Resulting trajectories of an experiment.

Figure A.4: Two clusters of recorded trajectories used for the GP training, grouped according
to common start and finish regions.

illustrated in Figure A.5.

After this phase, several GPs would represent each of the trajectories clusters. For the

prediction phase, the partial observations of the motion of an object are fed to each one of the

available GPs models, resulting in predictions of the mean and covariance of future states.

According to the matching degree between the observations and the outputs of each GPs

models, more confidence will be given to a certain GP model (Figure A.6). In this way, the

GP model that best represents the acquired observations will be used for the prediction of the

path likely to be traveled by the observed person, together with its uncertainty, represented

by the covariance function. For more detail on the modeling of typical using GPs, the reader

is referred to Tay and Laugier (2007), Ellis et al. (2009), Fulgenzi et al. (2010).

119

Figure A.5: The resulting GP for each of the clusters. The black solid line represents the
mean function of the GP, which can be seen as the resulting typical path, while the gray area
is the GP’s covariance function, drawn with 95% of confidence.

Figure A.6: Given a trajectory observation, represented in dark green, two GP models are
evaluated to find the best match. In this case the GP number 1 is the winner and can be
used for the prediction of the future path likely to be traveled by the observed object.

120

Appendix B

Comparison of Leader Evaluation

using AdaBoost and Artificial

Neural Networks

In this thesis, the evaluation of the performance of the AdaBoost classifier was subject to

the quality of the ground truth used. As this reference was labeled using inputs from persons,

it is feasible to assume that, in some tests, the algorithms could perform better classifications

than the ones performed by humans. However, these would produce bad results, due to the

discrepancies between bad ground truth and good classification results.

Therefore, for a better assessment of the performance of the developed classifier, it was

compared with another machine learning algorithm, the Artificial Neural Network (ANN).

B.1 Comparison of Leader Classification Results

Three ANNs were trained, using the data sets that included the od and nm situations.

The same number of samples and groups of features of the AdaBoost algorithms created in

chapter 5 were used here. The composition of the dataset used, regarding the leader situations

(complete classifier) and the balance of bad leaders samples over the total samples are shown

in Table B.1.

Table B.1: Train dataset composition, with the number of datasets of each class used, the
number of samples and the proportion of bad leader labels.

gd as fr st nm od samples bad leader label %

train 7 4 3 6 4 7 8504 34.11

validation 0 1 1 1 1 1 1692 47.16

test 2 2 1 2 2 2 2715 39.30

121

The ANN used is a feedforward, pattern recognition network. Its topology has a number

of input neurons that match the feature set used: one hidden layer with 12 neurons and 2

output neurons that represent the two classes used in this work, good or bad leader. The

activation function of the neurons is the sigmoid function. All the trained ANN stopped

due to a condition of 100 iterations without improvement in the error, using the validation

dataset. For information about the features used in each training, refer to section 5.1.1.

B.1.1 Performance comparison using 21 Features

The first ANN trained used the 21 original features extracted from laser measurements.

The performance of the training is shown in Figure B.1.

Figure B.1: Performance of an ANN trained with 21 features.

The three types of classification error, false good, false bad and false total are shown in

Figure B.2, compared with the errors of the AdaBoost classifier trained with the same dataset.

Figure B.2: Comparison between AdaBoost and ANN classification error, using 21 features.

122

This comparison show very similar results, with the larger differences in two bad leader

situations, the leader stopped (st08) and leader moved aside (as02).

B.1.2 Performance comparison using 13 Features

The second train used a new features set, reduced to only 13 features, where the features

removed are all the derivative group and the standard deviation of the relative velocity y.

The performance of the ANN training using 13 features is shown in Figure B.3.

Figure B.3: Performance of an ANN trained with 13 features.

The comparison in the classification error between the resulting ANN and the equivalent

AdaBoost classifier is shown in Figure B.4.

Figure B.4: Comparison between AdaBoost and ANN classification error, using 13 features.

In this experiment, the differences on the performance between the two classifiers is even

smaller, with larger differences in the bad leader situation st04 and, again, in a situation

where the leader moved aside (as02).

123

B.1.3 Performance comparison using 9 Features

In the final training, the features set was removed once again, removing the standard

deviation group, except for the standard deviation of the distance and of the target velocity.

The resulting training performance is shown in Figure B.5, while the comparison of the

classification error is shown in Figure B.6.

Figure B.5: Performance of an ANN trained with 9 features.

Figure B.6: Comparison between AdaBoost and ANN classification error, using 9 features.

Once again, there was no significant difference in the classification errors comparing the

ANN and the AdaBoost classifiers. Only a residual error was present on one of the leader

stopped situation (st04), and a minimal increase in the error of the not moving situation

(nm05). Still, the largest difference was, once more, at the same leader moved aside situation

(as02).

124

B.2 Analysis

Results showed that both the classifiers had virtually the same performance, with minimal

differences, that were evident mostly in the leader moved aside situation (as02). In overall,

the ANN had better results, although the total error difference was so small (about 1%), that

it cannot be said that the ANN was superior to the AdaBoost classifier.

These results, where two different learning methods had virtually the same performance,

show that limitations in improving the performance of the classification algorithms are likely

to be in the types and number of features used, and similar errors are probably a result of

suboptimal ground truth datasets.

125

