

Hands-On ZigBee:
Imp~omen ting 802.15. 4 with Microcon trollers

This Page Intentionally Left Blank

Hands-On ZigBee:
Implementing 802.15.4 with Microcontrollers

Fred Eady

ELSEVIER

A M S T E R D A M • B O S T O N • H E I D E L B E R G • L O N D O N

N E W Y O R K • O X F O R D • PARIS • SAN D I E G O

SAN F R A N C I S C O • S I N G A P O R E • S Y D N E Y • T O K Y O

Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2007, Elsevier Inc. All fights reserved.

No part of this publicati9n may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request online via
the Elsevier homepage (http://www.elsevier.com), by selecting "Customer Support" and
then "Obtaining Permissions."

@ Recognizing the importance of preserving what has been written,
Elsevier prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

(Application submitted,)

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN-13:978-0-12-370887-8
ISBN-10:0-1237-0887-7

For information on all Newnes publications
visit our Web site at www.books.elsevier.com

07 08 09 10 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America.

Working together to grow
libraries in developing countries

www.elsevier.com] www.bookaid.org I www.sabre.org

Contents

Preface .. ix

What's on the CD-ROM?. ... xiH

Chapter 1" Speaking the Language .. 1

A True Story about a Couple of Flying Bugs ... 1

D~j~ vu .. 3

The Muhammad All of Networks ... 3

ZigBee Devices .. 5

ZigBee Network Topologies ... 6

Patty Cake, Patty Cake .. 7

Chapter 2" You Are Dangerous and You're Going to Hell 9

The IEEE 802.15.4 PHY .. 9

The PHY Data Service .. 12

The PHY M a n a g e m e n t Service ... 14

Primitive Passing Technique ... 18

The Envelope, Please ... 22

Chapter 3" Keep Running .. 23

Tired Yet?? .. 42

Chapter 4: A Look at the ZMD 900-MHzlEEE 802.15.4/
ZigBee-Ready Radio ... 43

IEEE 802.15.4 Done the ZMD Way ... 43

The ZMD44102 Transceiver ... 45

Contents

Preflighting the ZMD44102 ... 48

Our First Steps ... 50

Our First Network...Sorta .. 56

We're On Our Way .. 60

About ZMD ... 60

Chapter 5: Atmel Does IEEE 802.15.4 and ZigBee Too 63

The Atmel AT86RF230 ... 63

AT86RF230 Modes of Operation .. 65

Stepping It Up a Notch .. 68

AT86RF230 Extended Mode .. 70

Still, No Stack .. 72

An AT86RF230 PAN Coordinator Application .. 75

An AT86RF230 End Device Application ... 93

Yet One More Way .. 111

About Atmel ... 111

Chapter 6: They Do E v e r y t h i n g BIG in Texas ... 113
..

One of Two ... 113

Two of Two ... 127

About Texas Instruments ... 129

Chapter 7" Maxstream/XBee ... 131

The ×Bee ZigBee Module ... 132

About MaxStream ... 152

Chapter 8: Hopping Down the Bunny Trai l ... 153

Rabbit Semiconductor ... 165

Chapter 9: Cirronet Adds Southern Flavor to
IEEE 802.15.4 and ZigBee ... 167

About Cirronet .. 191

vi

Contents

Chapter 10: Silicon Labora to r ies .. 193

About Silicon Laboratories ... 208

Chapter 11" Renesas .. 211

About Renesas .. 229

Chapter 12: Freescale .. 231

About Freescale Semiconductor ... 251

Chapter 13: Panasonic .. 2 5 3

About Panasonic ... 264

Chapter 14: DLP Des ign ... 2 6 5

About DLP Design ... 279

Chapter 15: Microch ip .. 281

Birth of a Microchip ZigBee Network ... 282

ZENA ... 288

Summoning ZENA ... 289

About Microchip ... 295

Chapter 16: Telegesis .. 2 9 7

About Telegesis ... 310

Chapter 17" Cypress Mic roSystems 's CapSense ... 311

Capacitive Sensing Basics .. 311

CapSense Basics .. 312

CapSense Hardware 315

CapSense Logic ... 316

About Cypress MicroSystems ... 324

The Final W o r d .. 3 2 5

I n d e x .. 3 2 7

. i

V I I

This Page Intentionally Left Blank

Preface

My friend Jim caught word that I was writing a ZigBee-related book. Knowing that I have
only written about technical things in the past, Jim asked why I was writing about an obscure
1930's magician. I've never heard of the Great ZigBee but Jim must have come across him
somewhere in his travels.

This book is not a collection of magic tricks and illusions. (Although sometimes I think that
RF engineering is an illusion. Think about it. Why do you have to shield RF stuff? Maybe
because something very, very evil is going on inside the box? Hmmm...) This book is all
about teaching you about the IEEE 802.15.4 specification and how you can apply it to your
own projects using IEEE 802.15.4-compliant development tools and radios. As you will find
out, IEEE 802.15.4 and ZigBee are not one and the same. So, as we discuss the nuts and bolts
of IEEE 802.15.4, we'll also discuss the components that comprise ZigBee.

Not too many computing gadgets are restricted by wires these days. Just look at the do-it-all
wireless camera-toting, spreadsheet-running, text-messaging, internet-browsing, emailing
platform we call a cell phone. The do-it-all-with-RF philosophy of today's cell phones has
spread to the ISM (Industrial, Scientific and Medical) sector. Sensors, test equipment and
medical instruments are cutting the wires and replacing them with small short-range networks
that require little human intervention to operate. In most cases, these small networks are
based on the IEEE 802.15.4 specification. There are an unlimited number of additional ap-
plications for small IEEE 802.15.4 networks and that's why I believe IEEE 802.15.4 networks
and ZigBee are working solutions that engineers will adapt into our everyday lives for many
years to come.

As I write these words, the ZigBee Alliance is tweaking their ZigBee specification. That's
OK. Change is sometimes good. On the IEEE 802.15.4 side, those guys and gals are in the
Bahamas. Things ain't gonna change too quickly over there. What that means is that the back-
bone of a ZigBee network, IEEE 802.15.4 networking, won't be changing significantly even
though ZigBee may be going through a phase of expansion and change. Rest assured that
when you finish this book you will know enough about IEEE 802.15.4 and ZigBee to make
intelligent design decisions, no matter what the ZigBee protocol finally turns out to be.

While we're on the subject of protocols, many of you have asked when my 802.11 g book will
be available. Well, don't hold your breath. I had to pull hen's teeth to put the 802.11 b book
together, as no one in the industry would step forward to help me with the technical details of

ix

Preface

the 802.1 lb radios. I've sent messages and placed calls to the folks that I thought would have
an interest in providing you with the how-to's of embedding an 802.1 lg card into a microcon-
troller-based platform. I've received nothing in return. The same goes for SDIO. SDIO folks
won't even return my calls. So, scratch both of those subjects off your wish list for now.

I can't complain about the ZigBee and IEEE 802.15.4 crowd. Out of all of the requests
for assistance I generated, only a couple of them were denied or ignored. ZigBee Alliance
members even referred me to other members of the ZigBee Alliance for answers and product
assistance. With that, I would like to thank every IEEE 802.15.4/ZigBee product vendor and
ZigBee Alliance member that returned my phone calls, answered my emails, put up with my
whining and contributed to the content of this book.

You should understand that there are some things you will not get out of reading this book.
This book is not a ZigBee stack doctorate-level dissertation and you won't become a ZigBee
stack expert by reading this book.

Most of the IEEE 802.15.4 radio IC manufacturers offer a complete set of Gerber files that
will enable you to clone their radio module if that's your goal. Building an IEEE 802.15.4-
compliant radio from scratch is not something you and I will explore in this book.

If you are not familiar with microcontrollers and the communications protocols they employ,
there are no in-depth tutorial discussions involving SPI and RS-232 in the pages of this book.
I also pretend (we will never assume anything in this book, as assumption can turn you into a
donkey) that you know enough basic C to follow along with the code examples I'll be of-
feting to you throughout the book. If you're challenged in these areas, there are many fine
Elsevier titles that you may find helpful.

On the other hand, there are many things that you will take away from reading these pages.
The ZigBee protocol is based on the transport mechanism provided by an IEEE 802.15.4 net-
work. You and I will begin at the lowest layers of the ZigBee stack, the IEEE layers, and work
our way up. I will place a strong emphasis on helping you to understand IEEE 802.15.4 net-
working, as you will find out that for many of your applications ZigBee network functionality
provided by the ZigBee protocol is not a prerequisite for passing meaningful data between
network nodes. In fact, for many applications, ZigBee networking functionality is overkill.

All of the development kit hardware in this book is the latest and greatest. My goal is to ex-
pose you to as many of the popular IEEE 802.15.4-compliant/ZigBee-ready devices available
to you. So, you'll get a good dose of IEEE 802.15.4-compliant/ZigBee-ready hardware along
the way up the ZigBee stack.

Schematic diagrams of the various IEEE 802.15.4-compliant/ZigBee-ready radios and
development kits will be scarce in the paper pages of this book. It is not my intent to reprint
datasheet information that you can download from the manufacturers' web sites. However,
if there is any supporting documentation that is important to the idea I 'm trying to convey to
you and it's not something you can easily download, you will find it on the CD-ROM that ac-
companies this book.

Preface

My wife says I talk too much and my Mom says that, when I do talk, nobody knows what I 'm
talking about. So, with that I'll shut up and let you get on with climbing through the layers
of the ZigBee stack. I sincerely hope you have as much fun reading this book as I have had
writing it ©

xi

This Page Intentionally Left Blank

What's on the CD-ROM?

Following is a list of items included on the accompanying CD-ROM:

• UDP (User Datagram Protocol) Primer

• ARP (Address Resolution Protocol) Primer

• Frame Thrower II Source Code

• Rabbit 3000 Hardware Reference

• Cirronet Schematics

• Texas Instruments CC2420 Project with source code

• Microchip MRF24J40 Project with source code

xii i

This Page Intentionally Left Blank

CHAPTER 1
Speaking the Language

Some famous person once said, "No matter where you go, there you are." No matter where
you may find yourself, it's always a good idea to know how to speak the language. For
instance, when you find yourself in a foreign country, phrases like "Thank you," "Hello"
and "I need to use your bathroom" can come in very handy, depending on the situation. The
same philosophy holds true when it comes to learning about things technical. To that end,
I 'm going to take the stance that you are reading this book because you want to know more
about IEEE 802.15.4 and ZigBee. In this chapter, I 'm going out one step further and will
work with the pretense that you know absolutely nothing about IEEE 802.15.4 or ZigBee. So,
in my mind, my job is to teach you to speak the language of ZigBee and subsequently IEEE
802.15.4. Once you become familiar with acronyms like PSDU, MPDU, NWK, PAN and
MAC, the rest of the ZigBee puzzle and the underlying IEEE 802.15.4 protocol will begin to
come together more easily for you. You'll need to understand the nuances of ZigBee-speak
and IEEE 802.15.4-speak before we move into the actual hands-on portion of this book.
Otherwise, you and I will just be mindlessly assembling meaningless ZigBee radio building
blocks and crawling through undecipherable C source code.

If you're new to the concept of ZigBee, I want to introduce you to the world of ZigBee the
fight way. So, we'll start at the beginning of ZigBee time. However, first things first. It is re-
quired that you carve the ZigBee international anthem into your memory bank. So, get up out
of that recliner and repeat after me:

ZigBee: Wireless control that simply works.

Say it again, louder:

ZigBee: Wireless control that simply works.

I can't hear your

ZigBee: Wireless control that simply works.

A True Story about a Couple of Flying Bugs
I don't know about you, but for me the ZigBee pledge of allegiance sets the tone within
which ZigBee was initially designed. However, ZigBee wasn't always ZigBee, if you know
what I mean. I actually came across an old Philips presentation dated June 26, 2000 that laid
out the plans for what was then called the Philips RF-Lite Program. Interestingly enough, the
presentation begins with a painting called The Tower of Babel and in the liner notes there are

Chapter I

associated intellectual comments and interpretations of the Tower of Babel story. Although
I found this to be pretty weird, of course, the idea was to convey that RF-Lite would cut
through the clutter of remote control and existing competitive radio systems of the day.

As you progress through the Philips RF-Lite presentation, the concept of Firefly is present-
ed~ye t another protocol, but named after a flying bug. It is strongly believed that ZigBee
is supposedly named for bees doing that zig-zag thing they do that always seems to find the
best flowers and the hive. So, get used to references to flying bugs, particularly the bee.

By the way, ever wonder where lightning bugs (that's what us Southern kids called fireflies)
went during the day?? Well, let me tell you. Those little buggers hide amongst the trees and
vegetation during the day. And, if you think fireflies are docile little creatures that glow for
our delight, get real. These guys come out of the gate eating meat and that glow they produce
is for finding sex in the city. It has been said that if a male flashes the wrong signal, a female
of another species of firefly will descend upon him and, yep, you guessed it, eat him up.)

Firefly was a spin-off of HomeRF-Lite, which was touted as a very low-cost method of low-
speed data transfer that consumed very little power. (Hmmm...keep that low-power definition
of HomeRF-Lite and Firefly in your long-term memory cells, as I guarantee you'll experience
a little dEj~ vu as you continue to learn more about ZigBee and IEEE 802.15.4 networking.)
A Firefly working group was formed and face-to-face quarterly meetings were planned. (Hm-
mmm...as I write this text, a "quarterly" ZigBee Alliance Open House is being held in Seoul,
Korea and a new tactical direction for ZigBee was announced.) The Firefly working group
included some big guns such as Panasonic, Texas Instruments, Honeywell, Invensys, Lego
and Mattel. (Hmmm...Can you say Chipcon...Can you say Texas Instruments...Can you say
Chipcon IEEE 802.15.4 radios now owned by Texas Instruments? You'll also see Panasonic
play a part in IEEE 802.15.4 and ZigBee if you continue to read this little ZigBee book. Hon-
eywell and Invensys are currently ZigBee Alliance members along with Texas Instruments.
Hmmmm...)

Firefly was to be a low-speed product with a data throughput minimum of 10 Kbps and a
maximum throughput of 115.2 Kbps. I can't provide any hardcopy proof that the Firefly
communication link speeds were chosen to interface to and/or replace existing products with
existing RS-232 serial ports, but those Firefly speeds fit nicely within practical minimum and
maximum speeds of a typical RS-232 serial port.

The projected range of Firefly-based products was specified between 10 and 75 meters. Node
count for a Firefly network maxed out at 254 with a maximum of four of what was termed
"critical" devices. Up to 100 Firefly networks could be co-located. The real kicker was that
a Firefly node would cost less than $3.00 and be able to operate up to 2 years before the
Firefly's tail light would go dark.

The license-free ISM band was chosen for Firefly nodes, which would automatically insert
and disassociate themselves in the network as required. Firefly was obviously aimed at indoor/
outdoor use, as the marketing requirements listed RF penetration through walls and ceilings
and home/garden use. To help eliminate interference with other devices operating in the same

Speaking the Language

ISM bandwidth, the Firefly nodes would use DSSS (Direct Sequence Spread Spectrum) tech-
nology and Cartier Sense Multiple Access (CSMA-CA) listen-before-transmit network access.

The Firefly protocol stack looked much like stacks look today. Data from the Firefly radio en-
tered via a PHY (Physical) layer. The Firefly MAC (Medium Access Control) layer accepted
data from the PHY layer and pushed it up to the Firefly DLC (Data Link Control) layer. The
application layer resided inside the Firefly node and was accessed by an external user inter-
face via API (Application Program Interface) calls. The configuration I just described would
have resided in a Firefly slave node. A master Firefly node inserted a NWK (Network) layer
between the DLC layer and the application layer.

As you've already ascertained, a master/slave relationship formed the Firefly network topol-
ogy, with the master node being in direct communication contact with each slave node. This
type of topology creates a virtual peer-to-peer communications link as every node can talk
to every other node in the star as long as the master can pass the messages between the slave
nodes that need to talk to each other.

Meanwhile, there were a number of engineers that had determined that Wi-Fi (the subject
of my previous book) and Bluetooth, which is now trying to come into its own, as everyone
has a B luetooth cell phone interface in their ear, weren't going to cut it in some applications.
What these guys and gals wanted was a self-healing ad hoc network of digital radios that
could organize themselves into a cohesive and orderly network without external intervention.
Simply put, they wanted a working Firefly. However, that was not going to be. The IEEE
was already working on 802.15.4 by this time and the IEEE 802.15.4 standard came to life in
2003 and learned to fly (not glow and fly) in 2004. While all of this IEEE stuff was going on,
the ZigBee Alliance sprouted from the ground in 2002 and it now looks like the ZigBee acorn
is going to be a really big tree. As for the Firefly project, we all know what happens when
fireflies are left in the jar too long.

Ddj, vu
Although Firefly's tail light was glowing more dimly in the jar as each hour passed, many
of the attributes of Firefly would find their way out of that jar and into ZigBee. Remember
this? Firefly was a spin-off of HomeRF-Lite, which was touted as a very low-cost method of
low-speed data transfer that consumed very little power. Well, how about this? ZigBee was
designed as a low-speed means of data transportation, which consumes very little power and
can operate for months or even years on a single battery. When compared with other wireless
communications systems that operate in the license-free ISM band, ZigBee comes in on the
lowball side as far as cost per node is concerned. As you read more and more about ZigBee
and IEEE 802.15.4, think about what you've already read about Firefly. You'll experience
dEjh vu all over again.

The Muhammad Ali of Networks
I 'm old. I still remember a young man from Louisville, Kentucky named Cassius Clay who
stunned the world by knocking out a bigger and more powerful Sonny Liston. (Sonny was

Chapter I

later implicated with the Mob. I wonder how much Mob money unexpectedly changed hands
when Sonny's head hit the canvas.) Anyway, time passed and times changed. Cassius became
Muhammad Ali, Sonny was purportedly employed by the Mob after retirement and the newly
crowned king of boxing was to become by his poems an unexpected honorary ZigBee bene-
factor. Muhammad Ali once said (actually, he said it many times), "Float like a butterfly, sting
like a bee." There we go again. Another reference to flying bugs. We all knew what Muham-
mad meant and you can apply his description of his fighting style directly to ZigBee. ZigBee
is a lightweight wireless network protocol that packs a punch.

ZigBee is officially a wireless network protocol that is designed to be used with low-data-
rate sensor and control networks. If a sensor doesn't need to report its condition constantly
and allows the sensor-support electronics and radio to sleep most of the time, that sensor is
what ZigBee was designed for. ZigBee can also eliminate the need to string wires all over
the place, as it can easily reach data rates comparable to and above standard RS-232 and RS-
485 wired protocols. Although an IEEE 802.15.4 network can easily obtain RS-232 speeds,
you won't see many battery-powered applications of IEEE 802.15.4 networks replacing
RS-232 communications links, especially if the traffic on the IEEE 802.15.4-based pseudo-
RS-232 link is heavy. That's not what IEEE 802.15.4 networks or the ZigBee protocol is
designed to do.

Let's get one item of confusion out of the way. ZigBee is not IEEE 802.15.4 and IEEE
802.15.4 is not ZigBee. ZigBee is a standards-based network protocol supported solely by
the ZigBee Alliance that uses the transport services of the IEEE 802.15.4 network specifica-
tion. The ZigBee Alliance is responsible for the ZigBee standard and the IEEE is boss when
it comes to the IEEE 802.15.4 specification. That's no different from TCP/IP using the IEEE
802.1 lb wireless specification to transport IP datagrams and TCP segments between nodes
equipped with 802.1 lb radios. The concept of a network protocol tiding on a specification
is called layering. Thus, ZigBee is layered on top of the IEEE 802.15.4 specification, just as
TCP/IP can be layered over 802.1 l b or 802.3.

The IEEE 802.15.4 specification also uses internal layers, which are normally referred to as
sublayers. The wireless 802.1 l b specification and the wired 802.3 specification also employ
the concept of sublayers. The IEEE 802.15.4 specification calls out a pair of 802.15.4 sublay-
ers, the PHY and the MAC.

The IEEE 802.15.4 standard actually defines not one but two PHYs, which span across three
license-free frequency bands. One PHY spans the 868/915-MHz frequency band and the other
PHY is dedicated to the 2.4-GHz frequency band. The 2.4-GHz frequency band supports a to-
tal of 16 channels numbered 11 to 26. Ten channels beginning with channel 1 and ending with
channel 10 can be found in the 902-to-928-MHz frequency spectrum, which is commonly re-
ferred to as the 915-MHz band. The third license-free RF area, 868 to 870 MHz, only allows
for channel 0. Data rates for each of the frequency domains also differ with the 2.4-GHz band
allowing a maximum data rate of 250 kbps. The 902-to-928-MHz band data rate maximum
is 40 kbps and the single-channel 868 to 870 MHz tops out at 20 kbps. Most everyone that
walks the Earth can use the 2.4-GHz frequency spectrum. Only those that breathe air in North

Speaking the Language

America, Australia, New Zealand, Israel and Europe can operate their ZigBee radios in the
bands below 1 GHz.

If we relate the IEEE 802.15.4 sublayers to the ZigBee protocol stack, the ZigBee PHY
sublayer, which is actually the IEEE 802.15.4 PHY sublayer, is all about the radio and the
generation of the radio link. A ZigBee stack's PHY responsibilities include receiver energy
detection, link quality indication and clear channel assessment. The ZigBee stack's PHY is
also primarily responsible for transmitting and receiving packets across the magnetic me-
dium. The ability to sniff the air for other nodes is very important in the ZigBee and IEEE
802.15.4 world as this is what is done to determine if a new ZigBee or IEEE 802.15.4 net-
work can be spawned.

The IEEE 802.15.4 MAC sublayer is in control of what is happening on the radio link. Again,
relating the IEEE 802.15.4 MAC sublayer to the ZigBee stack, a ZigBee stack's MAC, which
is actually the IEEE 802.15.4 MAC, is in control of the access to the radio channel and em-
ploys the services of CSMA-CA (Cartier Sense Multiple Access - Collision Avoidance) to
avoid collisions on the radio link. Network association and disassociation are also duties that
are handled by the ZigBee stack's MAC sublayer. And, if there is any security being applied
to the radio link, the MAC is in charge of that too. Flow control, the acknowledgment and re-
transmission of data packets, frame validation and network synchronization falls on the IEEE
802.15.4 MAC sublayer in addition to everything else I've already mentioned. If all of that is
not enough work for the MAC, it is also a key player in making sure the upper layers of the
ZigBee stack get exactly what they require for proper application operation and data transfer.

If you had the chance to read my previous books on Ethernet networking, you know that we
dealt with packet sizes that could extend beyond one thousand bytes. The maximum number
of bytes we'll have to deal with in a ZigBee packet is only 127 and that includes the 16 bits
of CRC (Cyclic Redundancy Check). The CRC has another name: checksum. The CRC bits
make up a checksum value that is intended to help verify the integrity of the contents of the
ZigBee or IEEE 802.15.4 packet. The IEEE 802.15.4 standard also includes an optional ac-
knowledged data mode that allows any ZigBee or IEEE 802.15.4 network frame that has the
ACK flag set to have its receipt acknowledged by the receiver. This is a good way to know if
the frame has been received or not, but it doesn't guarantee that the frame will be processed
by the receiver. The idea of the acknowledged frame is to continue to retry to deliver the
frame after a defined timeout period. An error is declared if the frame is not acknowledged
after a predefined number of delivery attempts. If the full packet addressing scheme is em-
ployed, the maximum amount of actual data a ZigBee packet can contain is 102 bytes.

ZigBee Devices
Before we can talk about how ZigBee networks can be configured, we must first under-
stand who the ZigBee network players are and how they relate to IEEE 802.15.4. The IEEE
802.15.4 specification identifies two devices. They are the FFD and RFD. The 802.15.4 Full
Function Device (FFD) is literally able to do it all. A typical FFD found in a ZigBee net-
work will be powered from an inexhaustible power source, which is called out as an AC-fed

Chapter I

mains supply, as it must always be active and listening on the network, among other things.
An RFD (Reduced Function Device), on the other hand, is very limited in the tasks it can
perform (recording temperature data, monitoring switches or controlling an external device)
and more often than not depends on a battery for its power. Since the RFD's power source is
easily exhaustible, an RFD is prone to sleep most of the time.

ZigBee takes the IEEE 802.15.4 concept of FFD and RFD and creates three ZigBee protocol
devices. The ZigBee Coordinator is a one-of-a-kind FFD on the ZigBee network and actually
forms the network. Once the Coordinator establishes a ZigBee network, it allocates network
addresses for those that are allowed to join its network and maintains the binding table en-
tries. A ZigBee Coordinator also routes messages between RFDs in a network.

A ZigBee End Device is the node that physically interfaces to a sensor or executes control
functions. The ZigBee End Device can be either an FFD or RFD depending upon the End
Device's intended application.

The third ZigBee device is optionally deployed. A ZigBee Router is an FFD that enables the
extension of the physical range of a ZigBee network. The use of a ZigBee Router device
allows more nodes to join the network as the radio range of the root ZigBee network is effec-
tively increased. Since a ZigBee Router device is an FFD, it can also be used to perform End
Device functions, such as monitoring sensors and executing control functions.

ZigBee Network Topologies
There are currently three common ZigBee network topologies. The Star network configura-
tion is comprised of one ZigBee Coordinator and any number (within reason) of ZigBee End
devices. The ZigBee End Devices are physically and electrically isolated from each other and
depend on the ZigBee Coordinator to pass any type of information or message from Zig-
Bee End Device to ZigBee End Device if that becomes necessary. As you already know, the
ZigBee Coordinator is an FFD. The ZigBee End Devices can be FFDs or RFDs. ZigBee Star
networks are termed single-hop networks as there is only one hop or path between a ZigBee
End Device and the ZigBee Coordinator.

The ZigBee Cluster Tree topology employs the services of ZigBee End Devices that may
join the ZigBee network via a ZigBee Coordinator or a ZigBee Router. In this topology the
ZigBee Routers have two major functions. Since a ZigBee device can join the network via
the router, more nodes may be able to participate in the Cluster Tree network. As I pointed
out earlier, the ZigBee Router also has the ability to enhance the "reach out and touch
someone" capability of the network. The inclusion of a ZigBee Router eliminates the need
for an end device to be within radio range of the ZigBee network Coordinator. Just as in a
ZigBee Star network, ZigBee End Devices cannot directly communicate with each other in a
Cluster Tree network. ZigBee Routers speak directly to other ZigBee Routers and to ZigBee
Coordinators. Messages from ZigBee End Devices that need to be routed to other ZigBee
End Devices must be delivered by way of a ZigBee Router and/or a ZigBee Coordinator. So,
a ZigBee Cluster Tree network is basically multiple ZigBee Star networks connected to the
ZigBee Coordinator by ZigBee Routers. Since there are multiple paths that may be traversed

Speaking the Language

to get a message to the ZigBee Coordinator, the ZigBee Cluster Tree topology is considered
a multi-hop topology.

An extension to the ZigBee Cluster Tree topology is called the Mesh topology. ZigBee End
Devices configured as RFDs are still forbidden to communicate directly with each other in a
ZigBee Mesh network. However, ZigBee End Devices with FFD status can communicate with
other FFDs without having to be routed through a ZigBee Router or ZigBee Coordinator. Just
as you saw in the ZigBee Cluster Tree topology, ZigBee Routers and ZigBee Coordinators can
make direct contact with each other if the devices are within radio range and ZigBee RFDs
still must route their peer-to-peer messages through a ZigBee Coordinator or ZigBee Router.

Regardless of the ZigBee network topology, all ZigBee protocol networks allow each Zig-
Bee node equal access to the network. Thus, a ZigBee Star network would be considered a
single-hop multi-access network. Taking the multi-access concept to the other pair of ZigBee
networks would declare Cluster Tree and Mesh ZigBee networks as multi-hop multi-access
networks.

The multi-access method can possibly be used in two ways (nonBeacon and Beacon) by the
ZigBee protocol. A nonBeacon-enabled network allows every node that is participating in
the network to transmit at any time the channel is open. Nodes of a Beacon-enabled network
can only transmit inside of a predetermined time slot. In a Beacon-enabled ZigBee network,
the ZigBee Coordinator will periodically generate a superframe that is identified as a Bea-
con frame. Since the emission of the superframe implies the use of time slots, every node
must synchronize with the superframe in the time domain. Each node participating in the
Beacon method is assigned a specific time slot that it can use to transmit and receive data.
Normally, a node in a Beacon-based network will synchronize with the ZigBee Coordinator's
Beacons and wake up just before the Beacon is to be generated, hopefully do its thing inside
the Beacon's active time period, and go back to sleep awaiting the next Beacon period. The
superframe may also contain a time slot that is not dedicated to any specific node. In this
wide-open time slot, any node that wants to transmit or receive must compete with other
nodes with the same idea using the CSMA-CA methodology.

Patty Cake, Patty Cake
Baker's man, bake me a cake as fast as you can. Roll it and pat it and throw it in the PAN.
That's my version of the classic. My point is that you have learned quite a bit about ZigBee
and IEEE 802.15.4 networks, but there are still a few things I want to tell you before we
move on.

When not in a baker's hands, a ZigBee/IEEE 802.15.4 network is also known as a PAN
(Personal Area Network). You may also see a ZigBee/IEEE 802.15.4 network described as a
WPAN (Wireless Personal Area Network) or LR-WPAN (Low Rate Wireless Personal Area
Network). In your ZigBee travels, you may see the term PAN or WPAN Coordinator. No
worries. That's the same thing as the ZigBee Coordinator we've already talked about. You
may also see the terms ZC (ZigBee Coordinator), ZR (ZigBee Router) and ZED (ZigBee End
Device). Just grin and know that you are on top of those ZigBee acronyms. You've also got

Chapter I

a little IEEE 802.15.4 rubbed off on you, as you can now confidently discuss IEEE 802.15.4
network topologies.

Thus far, you have been introduced to the basics of ZigBee/IEEE 802.15.4 networking. We've
discussed the physical layer (PHY) and the MAC (Medium Access Control) layer of the
ZigBee stack model. We even ventured into a part of the NWK (Network) layer of a ZigBee
stack when I presented a rundown of the different ZigBee network routing algorithms. The
ZigBee stack's MAC and PHY layers are governed by the IEEE 802.15.4 specification. The
ZigBee stack's NWK layer and all layers above it are under the control of the ZigBee Alli-
ance specification. A typical ZigBee stack is organized in the fashion of Figure 1.1.

APPLICATION

Figure 1.1 Typical ZigBee stack organization. This may look imposing right now, but as we
move on up (as George Jefferson would say), you'll find it all to be quite logical.

The IEEE 802.15.4 specification is 679 pages in length. I don't plan on deciphering all of the
IEEE 802.15.4 specification and I 'm sure that you're not looking forward to me doing so.
After all, this is a "hands-on" book. If there's anything more to ferret out that concerns IEEE
802.15.4, we'll dig it out and bring it to light as we discover the ways of ZigBee by way of
practical experience or practical example.

Before we move on to bigger and better ZigBee and IEEE 802.15.4 things, I have a question
for you. What do Floyd Council, Roger Barrett and Pinkney Anderson have in common? (The
answer will be revealed as we move on...)

CHAPTER 2
You Are Dangerous and

You're Going to Hell
In the previous chapter you read and learned about certain elements of IEEE 802.15.4 and a
little bit about the ZigBee protocol stack. You know just enough to be dangerous. If you're not
already a ZigBee professional, at this point you only know enough about ZigBee and IEEE
802.15.4 to carry on a casual conversation at a cocktail party. However, since you put out your
hard-earned money to buy this book, I feel that it is my duty to elevate your knowledge of
the IEEE 802.15.4 standard and the ZigBee and IEEE 802.15.4 protocol definitions. In other
words, I want you to be able to converse with the nerdiest of the nerds at the cocktail party.

The last thing I saw you do with your hands was play patty cake. As my Mama says, "Idle
hands are the Devil's workshop." With the help of some advanced ZigBee and IEEE 802.15.4
tools, and some basic 802.15.4 hardware, I 'm going to run you fight through hell so fast that
the Devil won't even know you were there. Before we start this trip, you've got to learn to
walk on hot coals. Let's start at the bottom of the ZigBee stack fire and examine the inner
workings of the ZigBee stack's PHY layer.

The IEEE 802.15.4 PHY
No matter where you go, there you are. Well, we are standing in the cellar of the ZigBee stack
in a place called the PHY layer. Recall that I have warned you not to confuse what the IEEE
folks do for ZigBee with what the ZigBee Alliance folks do with the upper layers of the Zig-
Bee stack. The IEEE 802.15.4 PHY is governed by the IEEE 802.15.4 standards document.
The PHY works for but does not directly report to the ZigBee specification layers, which
reside above the IEEE 802.15.4 MAC sublayer.

You already know some basic things about the PHY. For instance, the PHY is responsible for
the following tasks:

• Data transmission and reception

• CCA (Clear Channel Assessment) for
CSMA-CA (Carrier Sense Multiple Access - Collision Avoidance)

• Activation and deactivation of the radio transceiver

• ED (Energy Detect) within the current channel

• Channel frequency selection

• LQI (Link Quality Indicator) for received packets

Chapter 2

You also know that two PHYs, 868/915 MHz and 2.4 GHz, are defined by the IEEE 802.15.4
specification. To that end, the IEEE 802.15.4 standard is designed to conform with established
regulations in Canada, Europe, Japan, Israel and the United States.

For all intents and purposes, the PHY's boss is the MAC, as everything the PHY does has to
somehow flow through the MAC layer of the ZigBee stack. The PHY's job is to provide an
interface between the MAC sublayer and the physical radio channel. There are actually three
interlayer interfaces associated with the PHY, which are called SAPs (Service Access Points).
The RF-SAP (Radio Frequency Service Access Point) is part physical and part logical as it
is made up of the radio hardware and radio firmware. You will sometimes see IEEE 802.15.4
radio manufacturers call this the HAL (Hardware Abstraction Layer). A HAL is simply a piece
of code that adapts the manufacturer's radio to the rest of the ZigBee/IEEE 802.15.4 node's
circuitry. Like the HAL, the PD-SAP (PHY Data Service Access Point) and PLME-SAP (PHY
Layer Management Entity - Service Access Point) access points are purely logical as they pro-
vide data and management access services between the PHY and MAC sublayers, respectively.

The PLME-SAP is the gateway to the PHY's PLME management entity. The PLME provides
the layer management service interfaces, which allow the invocation of layer management
functions. The PLME also has the responsibility of maintaining a database of managed PHY
objects called the PHY PAN Information Base (PHY PIB). Rather than just throw out the PIB
acronym, the bits and bytes that make up a PHY PIB can be seen in Code Snippet 2.1.

Code Snippet 2.1

typedef struct _PHY_PIB
{

BYTE phyCurrentChannel;
WORD phyChannelsSupported;
union _phyTransmitPower
{

BYTE val;
struct _phyTransmitPower_bits
{

unsigned int nominalTransmitPower -6;
unsigned int tolerance -2;

} bits;
} phyTransmitPower;
BYTE phyCCAMode;

} PHY_PIB;

Code 5n~pet 2. 1 Here ~ a logical layout of a typical PHY EB. It makes a lot more sense when you
can visual~e i t doesn't it?

The phyCurrentChannel PIB attribute can range from 0 to 26 and represents the RF chan-
nel to use for all following transmissions and receptions. The five most significant bits of
phyChannelsSupported are reserved and will always be set to zero. That leaves the 27 least-
significant bits of the phyChannelsSupported double word to indicate the availability status of

10

You Are Dangerous and You're Going to Hell

each of the 27 channels. For instance, 0b0000 0000 0000 0000 0000 1000 0000 0000 tells us
that channel 12 is available.

If you wear a pointy hat with stars and moons on it, and your RF (radio frequency) diploma/
certification was handed to you by an agent of the Devil in a blood red suit, you will be highly
interested in the nominalTransmitPower and tolerance bitmap. The pair of most significant
bits is representative of the tolerance on the transmit power, which ranges from _+1 dB to
_+3dB to _6dB in three respective binary steps of 0b00, 0b01 and 0b 10. The remaining six
least-significant bits form a signed integer in twos-complement format that corresponds to the
nominal transmit power of the device in decibels (dB) relative to 1 mW. Like I said, if you're
an RF wizard, that's important. Otherwise, just keep all of that in memory so you can spit it
out at the cocktail party. You know, baffle them with buffalo chips.

Three methods, or CCA Modes, apply to the phyCCAMode PIB attribute:

• CCA Mode 1 - Energy above threshold

• CCA Mode 2 - Carrier sense only

• CCA Mode 3 -Carr ier sense with energy above threshold

CCA Mode 1 will return a busy medium status if any energy is detected above the ED thresh-
old. Carrier sense only in the CCA Mode 2 short description says that the ED threshold is of
no concern in the determination of a clear channel. Instead, CCA Mode 2 simply looks for a
valid IEEE 802.15.4 signal and returns a busy medium status if a signal is detected. As you
have already concluded, CCA Mode 3 is a combination of CCA Mode 1 and CCA Mode 2 as
both a minimum ED threshold and the detection of a valid IEEE 802.15.4 signal will return a
busy medium status. You're now officially trained on clear channel assessment.

PHY LAYER
PLME

Figure 2.1: Reference model of PHY layer. Think of SAPs as simple transfer points between
layers of the stack. The PHY PIB is actually a simple collection of data that can be accessed
and used by the layer data-passing elements of the stack.

11

Chapter 2

A CCA is performed when a PLME-CCA.request primitive is received by the PHY. The
medium status of BUSY or IDLE is returned in a PLME-CCA.confirm primitive reply. What
the heck is a primitive? Don't worry your pointy little head as we're about to talk about primi-
tives. Meanwhile, a reference model of the PHY layer and all of its associated SAPs is posted
for you in Figure 2.1.

The PHY Data Service
MAC protocol data units (MPDUs) flow between peer MAC sublayers by way of the PD-SAP
courtesy of the PHY data service. The PD-SAP, as you'll discover with most other SAPs,
supports a set of primitives. A primitive is simply a logical entity that conveys important
information to an adjacent upper or lower layer by way of a SAP. Upper sublayers generally
use the information passed to them by lower sublayers to use in their service to the next higher
sublayer. In the case of the PHY data service, there are three PD-DATA primitives:

• PD-DATA.request

• PD-DATA.confirm

• PD-DATA.indication

Code Snippet 2.2 is a code visualization of the function provided by the PD-data primitives.
Note that the PD-DATA primitives are simply data structures filled with parameters and do
not carry any executable content within them.

Code Snippet 2.2

struct _PD_DATA_request
{

BYTE psduLength;
BYTE *psdu;

} PD_DATA_request;

s truc t _PD_DATA_confirm
{

BYTE status ;
} PD_DATA_corn%rm;

struct _PD_DATA_indication
{

BYTE psduLength;
BYTE *psdu;
BYTE ppduLinkQuality;

} PD_DATA_indication;

Code 5n~pet 2.2: Get used to ~e ~rm primitive as it ~ used ex~ns/ve~ in ~e ZigBee and IEEE
802.15.4 wodd5.

Normally, a request primitive is passed to request that a service be initiated. The confirm
primitive will usually return the status of a service request such as SUCCESS or FAILURE.

12

You Are Dangerous and You're Going to Hell

An indication primitive signals that an event has occurred that most likely will need some
attention. Confirm primitives also may provide a logical path to any data that was requested.
Let's define the functionality of each of the PD-DATA, primitives beginning with PD-DATA.
request.

The PD-DATA.request primitive requests the transfer of an MPDU (signified by *psdu (PHY
Service Data Unit) in Code Snippet 2.2) from the MAC sublayer to the PHY sublayer. If you
examine the relationship between an MPDU and a PSDU, you'll see that the PSDU is simply
an MPDU in the MAC's domain and vice versa with a MPDU being nothing more than a
PSDU in the PHY's domain. Same data with a different name depending on which side of the
MAC/PHY border you're standing on.

The PD-DATA.request parameters are to be used by the PHY and thus are communicated
with PHY-related parameters. The number of bytes to be transmitted by the PHY is given by
the psduLength parameter, while the actual packet to be transmitted is located in a memory
space defined by the pointer *psdu. Nothing fancy going here, as all we have thus far is prob-
ably no more than an array or data structure holding some data, a byte telling us how much
data is there and a pointer to the beginning of the buffer (array or data structure) that is hold-
ing the data. Remember, we can only pack 127 bytes into an IEEE 802.15.4 packet. Thus, one
byte will represent the length of an IEEE 802.15.4 packet with no problem.

When the PD-DATA.request primitive is pushed through the SAP and is received by the PHY,
the PSDU will be transmitted. Before the PHY transmits the PSDU it received from the MAC
layer, it will convert the incoming PSDU to a PPDU. If the transmitter is enabled, the PPDU
will be transmitted. Take a look at Figure 2.2. A PPDU is simply a PSDU with the addition of
the PHY header, which is comprised of a 4-byte preamble sequence, an 8-bit Start of Frame
Delimiter and a frame length byte. The preamble sequence and the Start of Frame Delimiter
as a unit are called the SHR (Synchronization Header). The single byte of frame length is also
known as the PHR (PHY Header).

MAC
Layer

Bytes:, 4

PHY Preamble
Layer Sequence

Synchronization Header
(SHR)

Bytes: 2 1 0 to 20 n 2

MAC Header (MHR) I MACPayload I MAC Footer
i I I (MFR)
,,

1 1 I 5 + (0 to 20) + n
Start of Frame ili~ ' I . ~' .

(SFD) ~;;
PHY Service Data Unit

(PSDU)

11 + (0to20) + n

Figure 2.2: If you've had the time to read my other networking books, you're waiting for me to say
the word encapsulation. The Data Payload loses and gains header information as it traverses up
and down the sublayer chain. The PSDU/MPDU relationship is obvious in this figure.

13

Chapter 2

Once the logic in the PHY and radio hardware have forced all of the bits out of the antenna, a
PD-DATA.confirm primitive will be issued by the PHY with a status of SUCCESS. On the other
hand, if a receive operation is in progress and the receiver is on or if the transmitter is off, the
PD-DATA.confirm primitive will be issued with a RX_ON or TRX_OFF status, respectively.

If you take a close look at the PD-DATA.confirm primitive code in Code Snippet 2.2, you'll
see that there is only a single parameter, status, in the PD-DATA.confirm primitive's data
structure. As far as the PD-DATA.confirm primitive is concerned, there are only three states
that the status parameter can take, which are SUCCESS, RX_ON and TRX_OFF. When
the MAC layer receives the PD-DATA.confirm primitive, it gets the status of the PD-DATA.
request primitive it previously issued to the PHY by examining the PD-DATA.confirm
primitive's status byte.

The PD-DATA.indication primitive is issued by the PHY to transfer a received PSDU to the
MAC sublayer. Note that the PHY packet terminology is used here, as the PHY will strip
the PHY header and only transfer the PSDU to the MAC layer. Of course, as we have seen
earlier, the MAC sees the PSDU and an MPDU in its domain. Upon arrival of the PD-DATA.
indication primitive the MAC has access to the number of bytes contained within the in-
coming PSDU, the data payload within the PSDU and the link quality measured during the
reception of the PPDU.

The PHY Management Service
If you understand how the PHY Data Service works, you'll have no problem with the PHY
Management Service as it behaves at ground level in an almost identical manner. The PLME-
SAP is the conduit in which the management commands flow between the MLME (MAC
Sublayer Management Entity) and PLME (Physical Layer Management Entity).

Like the PHY Data Service, the PHY Management Service includes a SAP that is supported
by primitives. The PLME-SAP supports the following primitives:

• PLME-CCA.request

• PLME-CCA.confirm

• PLME-ED.request

• PLME-ED.confirm

• PLME-GET.request

• PLME-GET.return

• PLME-SET-TRX-STATE.request

• PLME-SET-TRX-STATE.confirm

• PLME-SET.request

• PLME-SET.confirm

14

You Are Dangerous and You're Going to Hell

If you didn't doze off, you should be familiar with the acronyms and the mechanisms associ-
ated with request and confirm primitives. The PLME-CCA.request primitive requests that a
CCA (Clear Channel Assessment) be performed by the PHY. This particular primitive has
no parameters associated with it. The MLME simply issues the PLME-CCA.request primi-
tive and an assessment of the channel is performed. The PLME will issue the PLME-CCA.
confirm primitive in response to the MLME's PLME-CCA.request primitive. A status of
BUSY or IDLE will be returned by the PLME-CCA.confirm primitive unless the transceiver
is disabled or the transmitter is enabled, which will return a status of TRX_OFF and TX_ON,
respectively.

To obtain an ED measurement, the MLME issues the PLME-ED.request primitive. Like
the PLME-CCA.request primitive, the PLME-ED.request primitive has no parameters. The
PHY will perform an ED measurement upon receipt of the PLME-ED.request primitive if
the receiver is enabled. The PHY will issue a PLME-ED.confirm primitive with a status of
SUCCESS if all of the ducks are in a row. Otherwise, TRX_OFF will be returned as a status
if the transceiver is disabled and TX_ON will be returned if the radio is in the act of transmit-
ting when the do-an-ED-operation command arrives. The energy level will be returned in the
PLME-ED.confirm primitive as a number between 0x00 and 0xFF. A representation of a typi-
cal way to code the PLME-CCA and PLME-ED primitives is shown in Code Snippet 2.3.

Code Snippet 2.3

/ / struct _PLME_CCA_request
// {

/ / No Inputs
// } PLME_CCA_request ;

s truct _PLME_CCA_confirm
{

BYTE status ;
} PLME_CCA_confirm;

/ / struct _PLME_ED_request
// {

/ / No Inputs
/ / } PLME_ED_request ;

struc t _PLME_ED_confirm
{

BYTE status ;

BYTE EnergyLevel ;
} PLME_ED_cornSrm;

Code Snippet 2.3: No rocket science here. Hopefully, you've grasped the idea of primitives.

Do you recall those PHY PIB attributes we discussed in Code Snippet 2. l ? Well, here are the
primitives that allow you to read and write them.

15

Chapter 2

The MLME issues a PLME-GET.request primitive to the PLME specifying the PHY PIB
attribute it wants to know more about. Upon receipt of the PLME-GET.request primitive, the
PLME will attempt to retrieve the requested PHY PIB attribute from its database. The PLME
will issue a PLME-GET.confirm primitive containing a status of UNSUPPORTED_ATTRI-
BUTE if the requested PIB attribute is not found within the PHY PIB database. Otherwise,
the PLME will issue a PLME-GET.confirm primitive status of SUCCESS along with the
PHY PIB identifier and the value of the PIB attribute if the PHY PIB value is retrieved.

As you would logically expect, the PLME-SET.request primitive kicks off an attempt by the
PLME to write the requested PHY PIB attribute value to the associated PHY PIB attribute
that should be residing in the PHY PIB database. Just like the PLME-GET.confirm primitive,
the PLME-SET.confirm primitive will choke and return a status of UNSUPPORTED_AT-
TRIBUTE if the requested PHY PIB attribute is bogus and not found within the PHY PIB
database. What one would want to see is the PHY PIB attribute identifier and SUCCESS in
the status parameter of the PLME-SET.confirm primitive.

Code Snippet 2.4

s truct _PLME_GET_reques t
{

BYTE PIBAttribute ;

} PLME_GET_request ;

struct _PLME_GET_cornSrm
{

BYTE status;
BYTE PIBAttribute;

void *PIBAttributeValue;

} PLME_GET_confirm;

s t ruc t _PLME_SET_reque s t
{

BYTE PIBAttribute ;

void * PIBAttributeValue;

} PLME_SET_request ;

s truct _PLME_SET_confirm
{

BYTE status ;

BYTE PIBAttribute;

} PLME_SET_c onfirm;

Code Snippet 2.4: Odds are you'll not have to use all of these primitives. However, you'll sure look
good and sound really smart at the cocktail party.

The PLME-SET_TRX-STATE primitives coded up in Code Snippet 2.5 are gnarley little bug-
gers at first glance. The object of the PLME-SET_TRX-STATE primitives is to force the PHY
to change the state of the transceiver. There are three possible transceiver scenarios:

16

You Are Dangerous and You're Going to Hell

• Transceiver Disabled (TRX_OFF)

• Transmitter Enabled (TX_ON)

• Receiver Enabled (RX_ON)

The MLME generates and issues the PLME-SET_TRX-STATE.request primitive and waits
for the PLME to change the transceiver's state to that which was requested within the s ta te

parameter of the PLME-SET_TRX-STATE.request primitive. If everything goes as planned,
our good old SUCCESS status is returned in the PLME-SET_TRX-STATE.confirm primi-
tive. If the state that is requested is already in service, the PLME-SET_TRX-STATE.confirm
primitive returns the current state.

Here's a rundown on what happens when somebody doesn't follow the PLME-SET_TRX-
STATE.request primitive's script. If the PLME-SET_TRX-STATE.request primitive is
issued with a state parameter of RX_ON or TRX_OFF and the PHY is transmitting a PPDU,
BUSY_TX will be crammed into the PLME-SET_TRX-STATE.confirm primitive's status
parameter slot. This isn't all bad since when the transmission is completed, unless something
really stupid has gone down, the state of the transceiver will be changed.

If TX_ON or TRX_OFF states are desired and the PHY is receiving (RX_ON) beyond the
SFD (Start of Frame Delimiter), BUSY_RX will be returned by the PLME-SET_TRX-
STATE.confirm primitive and like the BUSY_TX situation, the ending is good if the monkey
doesn't drop the wrench as the transceiver's change of state is deferred until the reception of
the PPDU is complete. Any bits going out the antenna tube following the SFD constitutes a
valid transmission in progress.

If I have to explain what happens when the FORCE_TX_OFF state is issued from within the
PLME-SET_TRX-STATE.confirm primitive, donate this book to your local library. Code
Snippet 2.5 contains the data structures that represent the PLMN-SET-TRX-STATE primitives.

Code Snippet 2.5

s t ruc t _PLME_S ET_TRX_STATE_reque s t
{

BYTE state;

} PLME_SET_TRX_STATE_request;

s t ruc t _PLME_SET_TRX_STATE_c ornSrm
{

BYTE status ;

} PLME=SET_TRX_STATE_con~rm;

Code Snippet 2.5: Although the actions that are initiated by the primitives in the snippet are heady, the
invocation of the primitives follows suit with everything you now know about primitives at this point.

If you're wondering how the status values within the primitives are conveyed, they aren't re-
ally words but a set of predefined enumerated values. I've laid them all out for you to see in
Table 2.1.

17

Chapter 2

iiii ii!ili iiiiii !!! !iiii
BUSY 0 x 00 The CCA attempt has detected a busy channel.

BUSY RX

BUSY TX

FORCE TRX_OFF

IDLE

INVALID PARAMETER

RX ON

SUCCESS

0 x 0 1

0 x 0 2

0 x 0 3

0x 04

0 x 0 5

0 x 0 6

0 x 0 7

The transceiver is asked to change its state while
receiving.

The transceiver is asked to change its state while
transmitting.

,

The transceiver is to be switched off.

The CCA attempt is to be switched off.

A SET/GET request was issued with a parameter
in the primitive that is out of the valid range.

The transceiver is in or is to be configured into
the receiver enabled state.

A SET/GET, an ED operation, or a transceiver
state change was successful.

Table 2.1 Status values and descriptions. Don't get too excited about keeping these in your head.
These values are normally enumerated in the ZigBee or IEEE 802. 15.4 network firmware.

Primitive Passing Technique
You've seen that primitives are really just data structures that relate logically to the service
that they represent. If you're wondering how a primitive gets passed from layer to layer,
here's how it's done within the Microchip ZigBee stack. Let's follow some incoming data
through the PHY.

The Microchip ZigBee stack is always cycling through, looking for a primitive to act upon.
To allow the ZigBee stack application to process them, every primitive used by the Microchip
ZigBee stack is enumerated. That is, every primitive is assigned a unique number that corre-
sponds to its name. I've listed only the primitives that relate to the PHY in Code Snippet 2.6.
As we move into talking about the MAC and other parts of the ZigBee stack, I'll reveal the
related primitives and their enumerated values accordingly in a need-to-know fashion. Note
that the PD and PLME in the primitive names are directly related to the SAP (PD-SAP or
PLME-SAP) that the primitive traverses.

Code Snippet 2.6

typedef enum _ZIGBEE_PRIMITIVE
{

NO_PRIMITIVE = 0,

18

You Are Dangerous and You're Going to Hell

PD_DATA_request = 0x01,

PD_DATA_con/Srm = 0x02,

PD_DATA_indication = 0x03,

PLME_CCA_request = 0x04,

PLME_CCA_con~rm = 0x05,

PLME_ED_request = 0x06,

PLME_ED_cornSrm = 0x07,

PLME_GET_request = 0x08,

PLME_GET_cornSrm = 0x09,

PLME_SET_TRX_STATE_request = 0x0A,

PLME_SET_TRX_STATE_confirm = 0x0B,

PLME_SET_request = 0x0C,

PLME_SET_corn%rm = 0x0D,

Code Sn~pet 2.6. These tittle boys and girls shouM be ~miliar as we've just examined ~em.
Later on, you'll see ~at ~e MAC and o~er upper sublaye~ of ~e ZigBee s~ck a~o have a set of
a~oc~ted pfimidve& which a~ a~o enume~d.

If the NO_PRIMITIVE value is representing the next primitive to be acted upon, the Micro-
chip ZigBee stack software is allowed to cycle through background and housekeeping tasks
and search for the next primitive to process inside of the various task modules, which are
associated with each layer of the Microchip ZigBee stack. Since at this juncture you're only
familiar with the primitives that support the PHY, let's follow the PHYTasks path in Code
Snippet 2.7.

Code Snippet 2.7

BOOL ZigBeeTasks (ZIGBEE_PRIMITIVE *command)
{

ZigBeeStatus.nextZigBeeState = *command-

do
{

CLRWDT () ;

if(ZigBeeStatus.nextZigBeeState :: NO_PRIMITIVE)
{

ZigBeeStatus.nextZigBeeState = PHYTasks(ZigBeeStatus.nextZigBeeState);
}

if(ZigBeeStatus.nextZigBeeState == NO_PRIMITIVE)
{

ZigBeeStatus.nextZigBeeState = MACTasks(ZigBeeStatus.nextZigBeeState);
}

if(ZigBeeStatus.nextZigBeeState == NO_PRIMITIVE)
{

ZigBeeStatus.nextZigBeeState = NWKTasks(ZigBeeStatus.nextZigBeeState);
}

if(ZigBeeStatus.nextZigBeeState == NO_PRIMITIVE)

19

Chapter 2
{

ZigBeeStatus.nextZigBeeState = APSTasks(ZigBeeStatus.nextZigBeeState) ;
}

if(ZigBeeStatus.nextZigBeeState == NO_PRIMITIVE)
{

ZigBeeStatus .nextZigBeeState = ZDOTasks (ZigBeeStatus.nextZigBeeState) ;
}

Code Snippet 2.7: See how it works? NO_PRIMITIVE sends us into each of the task code modules,
which may or may not generate a primitive that needs to be passed to another task module. If we
find that we have to work on something that needs to be transferred up to the MAC inside of the
PHYTasks module, we set up to pass the primitive inside the PHYTasks code using the ZigBeeStatus.
nextZigBeeState. The next pass-through would then fall into the task module we specified in the
ZigBeeStatus.nextZigBeeState and the processing would continue there.

Let's follow through as if a packet has just entered the PHY FIFO (First In First Out), which
is used by the PHY to buffer incoming packets. The concept is more important than the detail
behind the code. So, I'll do a bit of paraphrasing when it's appropriate.

In the case of the Microchip MRF24J40 IEEE 802.15.4 transceiver, the packet is received by
the PHY and the MRF24J40 informs the PIC microcontroller of its arrival by issuing a hard-
ware interrupt, which pulls the PSDU from the PHY FIFO and stores it into a buffer area that
has been allocated in the PIC microcontroller's SRAM. The incoming PSDU must be pro-
cessed quickly and we already know that the buffered PSDU needs to be passed to the MAC's
MPDU area. Recall that the PD-DATA.indication primitive is issued by the PHY to transfer a
received PSDU to the MAC sublayer. Access to the MAC sublayer is provided by the services
of the PD-SAP.

Along the way, the PHYTask code has satisfied the need for a value for the *psdu param-
eter within the PD-DATA.indication primitive by allocating a buffer area within the PIC
microcontroller's SRAM and loading the *psdu parameter with the beginning location of
the PSDU buffer area. In the case of the Microchip ZigBee stack, the buffer area pointed
to by the *psdu parameter is loaded with the data contained in the incoming PSDU. In the
meantime, the psduLength parameter value for the PD-DATA.indication primitive was also
collected from the PPDU header and placed in the PD-DATA.indication primitive's data
structure. The ppduLinkQuality value gets collected from the transceiver and is stored into
the PD-DATA.indication primitive's data structure as well. Now that we have stuffed all of
the data parameter values required by the PD-DATA.indication primitive onto their holes,
we return the enumerated value of the PD-DATA.indication primitive (PD_DATA_indica-
tion = 0x03) to the caller, which will continue to cycle looking for the next primitive to act
upon. That next primitive to be acted upon will be the PD-DATA.indication primitive, as the
enumerated value of the PD-DATA.indication primitive will become the new value of the
ZigBeeStatus.nextZigBeeState variable.

Some of the primitives in Code Snippet 2.8 aren't yet ripe as far as we're concerned because
we haven't gone into any detail about the operation of the MAC. However, the point I want

20

You Are Dangerous and You're Going to Hell

to make is evident in Code Snippet 2.8. You can call out the SAP used by each of the primi-
tives (i.e., PD-SAE PLME-SAE MLME-SAE MCPS-SAP) by simply noting the pfimitive's
prefix (i.e., PD, PLME, MLME, MCPS). The primitive prefixes also tell all about the use of
the primitive. For instance, MLME (MAC Sublayer Management Entity) primitives are used
for MAC management tasks, while MCPS (MAC Common Part Sublayer) primitives are used
in d~a transfer tasks.

You can also get a feel ~om Code Snippet 2.8 as to how the primitives flow. The MAC issues
a PLME-CCA.request to the PHY and the PHY performs the action and returns the status to
the MAC in a PLME-CCA.confirm primitive. The only SAP available to carry the aforemen-
tioned primitives between the PHY and MAC sublayers is the PLME-SAP and the prefixes of
the primitives used are hollering PLME-SAP! PLME-SAP!

Code Snippet 2.8

switch(ZigBeeStatus.nextZigBeeState)
{

// Check for the primitives that are handled by the PHY.

case PD_DATA_request:

case PLME_CCA_request:

case PLME_ED_request:

case PLME_SET_request:

case PLME_GET_request:

case PLME_SET_TRX_STATE_request:

ZigBeeStatus.nextZigBeeState =

PHYTasks(ZigBeeStatus.nextZigBeeState);

break;

// Check for the primitives that are handled by the MAC.
case PD_DATA_indication-
case PD_DATA_confirm:
case PLME_ED_confirm:
case PLME_GET_cornSrm-
case PLME_CCA_confirm:
case PLME_SET_TRX_STATE_confirm:
case PLME_SET_con/Srm:
case MCPS_DATA_request-
case MCPS_PURGE_request-
case MLME_ASSOCIATE_request-
case MLME_ASSOCIATE_response:
case MLME_DISASSOCIATE_request-
case MLME_GET_request-
case MLME_GTS_request:
case MLME_ORPHAN_response-
case MLME_RESET_request-
case MLME_RX_ENABLE_request:
case MLME_SCAN_request.
case MLME_SET_request:
case MLME_START_request:

21

Chapter 2

case MLME_SYNC_request:
case MLME_POLL_request:

ZigBeeStatus.nextZigBeeState =
MACTasks(ZigBeeStatus.nextZigBeeState);
break;

Code Snippet 2.8: No~ the ~visbn of work done by the primiNves. The layering as it pe~ams to
primi~ves ~ very evident here. Use ~e prefix SAP clues to better unde~nd who~ zooming who
over which SAP m MAC and PHY sublayer ~nd.

The code flow will fall through the remainder of the code segment shown in Code Snippet 2.7
and pick up in the MACTasks module. This is the actual point of traversal of the PD-DATA.
indication primitive and all of its associated parameters from the PHY sublayer to the MAC
sublayer. Code within the MACTasks module will pick up on the PD_DATA_indication value
(PD_DATA_indication = 0x03) and execute code to extract elements from the transferred
MPDU and the passed primitive parameters that the MAC layer will use to service either the
next higher layer or pass data back through the PHY for transmission. Tricky, but deathly
simple, huh?

The Envelope, Please
If you answered, "They are all dead:' you are correct, as they all have indeed passed away.
You are also sorta correct if you pointed out that they all played the blues. I would have to ar-
gue with you about Syd on the blues point, as every Brit during that musical time period was
a wannabe "blues man" However, the answer I 'm looking for is found in the combination
of the names of South Carolina's Pink Anderson and North Carolina's Floyd "Dipper Boy"
Council, which were combined by Syd as a name for his new band, Pink Floyd.

Since we're on the dark side of life, here's one for you. What very famous deceased R&B star
played with Neil Young in a band called the Mynah Birds?

22

CHAPTER 3
Keep Running

Now you're even more dangerous than you were a chapter ago. That's just more cause for you
to keep running hard. We've run fight through the IEEE 802.15.4 PHY and the sign up ahead
says "IEEE 802.15.4 MAC."

The MAC sublayer is in charge of any operation that involves the physical radio channel. In
addition, the MAC is responsible for the tasks listed below:

• Providing a reliable link between two peer MAC entities

• Handling the CSMA-CA mechanisms for channel access

• PAN association and PAN disassociation

Beacon synchronization

• Beacon generation

• Device security

Overseeing the GTS mechanism

The MAC sublayer is very similar logically to the PHY sublayer. Naturally, the names have
changed and what the mechanisms behind the names do and represent has also changed in
the definition of the MAC sublayer. The duty of the MAC sublayer in the ZigBee domain is
to provide the services I mentioned earlier and to serve as an interface between the ZigBee
NWK sublayer and the PHY. The components that make up the IEEE 802.15.4 MAC are
shown schematically in Figure 3.1.

Like the PHY sublayer, the MAC sublayer has a management entity, which is called the
MLME (MAC Layer Management Entity). The MAC's MLME provides the same basic func-
tionality as the PHY's PLME but in a MAC kind of way. That is, it provides service interfaces
through which layer-management functions can be invoked. Remember the PHY PIB? Well,
guess what. There's a MAC sublayer PIB, which resides inside of the MLME. A representa-
tion of the parameters found within the Microchip ZigBee stack MAC sublayer PIB appear in
Code Snippet 3.1.

23

Chapter 3

MAC COMMON
PART SUBLAYER

MLME

m
Figure 3. 1 Components of IEEE 802. 15.4 MAC. The SAPs are the portals to the upper and
lower sublayers that the MAC is sandwiched between. Note also that a logical pipe has
been laid between the MCP5 and the MLME to allow the MLME to use the data services
of the MCPS.

The MAC data service is accessed through the MCPS data SAP (MCPS-SAP). The MLME-
SAP is used to provide access to the MAC management service. The data and management
paths between the MAC sublayer and the PHY sublayer are completed by our old friends the
PD-SAP and PLME-SAP, respectively. There is one additional interface used in the MAC
sublayer that does not have an equal in the PHY sublayer. There is an implicit interface be-
tween the MLME and MCPS that allows the MLME access to the MAC data service.

We've already examined in detail one way primitives can be passed between layers via SAPs
and in doing so we also revealed the logic behind a SAP. It will be a worthwhile exercise to
examine each of the MAC PIB entries, as we will uncover other points of interest that will
better our understanding of IEEE 802.15.4 operations.

The macAckWaitDuration value contained within Code Snippet 3.1 can range from 54 to 120
decimal. The value of macAckWaitDuration defines the maximum number of symbols to wait
for an acknowledgment frame to be returned after a frame has been transmitted. The value of
the macAckWaitDuration attribute is dependent upon the channel of operation. For channels 0
through 10, the macAckWaitDuration value should be equal to 120 decimal. The value of 54
decimal is common (and the IEEE 802.15.4 standard default value) for channels 11 through
26. As you can see in Code Snippet 3.1, the Microchip ZigBee wizards have set the macAck-
WaitDuration value to 57.

Code Snippet 3.1

t ~ e d e f s t r u c t _lv~C_PIB
{
// BYTE macAckWaitDuration; //made a constant

unsigned int macAssociationPermit :i;
unsigned int macAutoRequest :i;
unsigned int macBattLifeExtPeriods -I;

24

Keep Running
unsigned int macPromiscuousMode -i;
unsigned int macRxOnWhenIdle -i;
BYTE macBeaconPayload[MAC_PIB_macBeaconPayloadLength];

/* always 3 for non-Beacon, 5 for Beacon */
// BYTE macBeaconPayloadLength- /* made a constant */
// BYTE macBeaconOrder; //made a constant

TICK macBeaconTxTime-
BYTE macBSN.
LONG_ADDR macCoordExtendedAddress;
SHORT_ADDR macCoordShortAddress;
BYTE macDSN"
BYTE macMaxCSMABackoffs;
BYTE macMinBE;
PAN_ADDR macPANId-
SHORT_ADDR macShortAddress;

// BYTE macSuperframeOrder; //made a constant
// WORD macTransactionPersistenceTime; //made a constant
} MAC_PIB.

#define MAC_PIB_macAckWaitDuration (54+3)
#define MAC PIB_macBeaconPayloadLength 3
#define MAC_PIB_macBeaconOrder 15
#define MAC_PIBmacSuperframeOrder 15

Code Sn©pet 3. I If you actual@ ~ad ~e PHY chapteg you al~ady know what ~ ~ about.
Ths sample MAC HB s~uctu~ was token from Ne boweN of Ne Mkroch~ ZigBee stuck. No~
~at some of Ne MAC HB pammetes have been defined as consmnS by ~e Microch~ ZigBee
prog~mme~.

If I were you, about now I'd be asking, "What the heck is a symbol?" For the answer, let's
stop the truck, pull off the road and consult the IEEE 802.15.4 standard documentation.

Table 3.1 is a re~esher view that lays out the three PHY ~equency bands. Table 3.1 also
specifies chip rates, bit rates and symbol rates for each ~equency band.

PHY
(MHz)

868/915

2450

Frequency
band

(MHz)

868-868.6

902-928

2400-2483.5

i

Spreading parameters

Chip rate
(kchip/s)

300

600

2000

Modulation

i

BPSK

BPSK

O-QPSK

Data parameters

Bit rate
(kb/s)

20

40

250

Symbol rate
(ksymbol/s)

20

40

62.5

Symbols

Binary

BinaD'

16-ave
Orthogonal

| ,

Table 3. 1: The three PHY frequency bands. Be aware that lots of the stuff you will read about ZigBee
and IEEE 802. 15.4 networks in other places assumes the operation of the network is within the
2.4-GHz band. That means the speeds and feeds you will be quoted may only be valid for 2.4 GHz
networks and will not represent the speeds and feeds of the 868-MHz and 915-MHz bands.

25

Chapter 3

Symbol Chipsequence(Co, Cl, C2 C3~)
, ,

0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0

1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0

2 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0

3 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1

4 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1

5 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0
. . . .

6 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1
.

7 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1

8 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1
.

9 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1
, .

10 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1
.

11 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0
.... . . .

12 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0
, ,

13 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1

14 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0

15 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0

Table 3.2: PAl sequences. Memorize the chip values you see here as you'll constantly
be referencing them throughout the rest of this book. Better yet, just memorize the
mathematical algorithms that derive the chip values. That's much easier. On a serious
note, beware that the data symbol bits read from left to right instead of right to left
in this table.

We'll begin by examining the symbol as it relates to the 2.4-GHz band of frequencies. We
already know that the maximum data rate of an IEEE 802.15.4 PHY operating in the 2.4 GHz
band is 250 kbps. We also know that a byte of information consists of eight bits, which can
be divided into a pair of 4-bit nibbles. If the terms byte and nibble are familiar, you also know
that each nibble can range from 0b0000 to 0b 1111 and a byte includes the binary range of
0b00000000 through 0b 11111111. The 2.4-GHz PHY's modulation scheme is based on a 16-
ary quasi-orthogonal numbering system. That's another way of saying 16 nearly orthogonal
pseudo-random (PN) noise sequences.

The PN sequences and their relative nibble values are presented in their entirety in Table
3.2. The four least-significant bits of each byte (or octet for the Mozart in you) represent a
single data symbol. The same goes for the four most significant bits of that same byte. Then,
each of the data symbols (upper nibble and lower nibble) is correlated to one of the 32-bit
PN sequences you've memorized in Table 3.2. The bits are then shifted out of the antenna

26

Keep Running

least-significant bit first after being half-sine pulse shaped and modulated using O-QPSK
(Offset-Quadrature Phase-Shift Keying). If you are an alien from an advanced race, you are
able to actually view the transmission in real time. For the technology-challenged Earthlings
reading this book, I've provided a graphic of the transmission in Figure 3.2.

T c

I I I I I I I I] I I I I f I J I I I I I I I I I I t I J I I I I

I - p h a s e ~ h \ ,Io)', !1 \ !o~, I o l !1 \ po~,, ! o ~ ! o / ! ~ \ !o) ' h v !1 ,v h ~

I ~ I I i I r i i r t t t I i i i I I t t ~ I i I I I f i I
Q-phase _ ~ i/i/q"qi/T'q i i/Tqi/TXi/Tqi i/Tqi

- . - ~ l J ~ - . - i i i i = i i i = i i J i i i J i = i i i = i i i i i =
2T c

I - p h a s e

Q - p h a s e

2T c

co 0 1041 I 1 103o
011%1%1 I l

1

Figure 3.2: Graphic of data transmission. This is nice to know but you don't have to have in-depth
knowledge of how the modulated bits look or hell from another planet to put an IEEE 802.15.4
network on the air.

Don't get too wrapped up in the complex wording as the science of O-QPSK is easily
grasped. As you can see in Figure 3.2, each of those 32 bits in the pertinent chip value is
modulated 90 ° out of phase, which is where the term quadrature comes into play. Quadrature
actually means electrically 90 ° out of phase. Even count chips (Co, c2, c4, etc.) are modulated
on the in-phase (I) carrier while odd count chips (c~, c3, c5, etc.) are modulated on the quadra-
ture-phase (Q) carrier. For those of you that are not bona fide electrical engineers, the first 90 °
phase marker of chip Co in the I-phase is the beginning of chip c~ in the Q-phase. The chips in
the I-phase are leading the chips in the Q-phase by 90 ° . If your glass is half full, you would
also be correct in saying that the chips in the Q-phase are lagging the chips in the I-phase by
90 °. The 180 ° phase angle of chip Co occurs at the 90 ° peak of chip c~. Got the idea?

To be able to obtain a symbol data rate of 62.5 Ksymbols/s at 2.4 GHz as specified in Table
3.1 requires that the chip rate be 32 times the symbol data rate. How did I get that relation-
ship? Easy. One symbol is 32 chips. So, logic and Mr. Spock say that we must be able to
transmit the 32 chips in the same time period we transmit the 4 bits, which is the same as one
symbol. That equates to 32 times the symbol rate (32 * 62,500), which gives us a 2-Mchips/s
chip rate to obtain a 62.5-Ksymbol/s symbol rate in the 2.4-GHz frequency band.

The chip-and-dip stuff is all fine and dandy but we still don't really know how long a symbol
exists in the time domain. So, let's put our known values up against our unknown values in
some simple mathematical equations to see if we can come up with a viable answer.

27

Chapter 3

By way of the IEEE 802.15.4 standard document, we just discovered (we were actually told)
that the symbol rate for a regulation 2.4-GHz IEEE 802.15.4 PHY is 62.5 Ksymbols/s. We
also know that four bits (or 32 chips if you still have some dip left) make up a data symbol in
the 2.4-GHz domain. The IEEE 802.15.4 standard document also tells us how the I/Q phase
relationship is set and the width of each 1-phase and Q-phase chip in the O-QPSK modulation
scheme. The Q-phase chips are delayed by Tc with respect to the I-phase chips, where T~ is the
inverse of the chip rate. Each chip is 2Tc wide. With what we know fight now, we can math-
ematically deduce a symbol time unit (symbol period) and the value of Tc with some simple
math:

where:
ISM Band = 2.4 GHz
250 kbps = maximum bit-per-second data rate
62.5 Ksymbols/s = maximum symbol-per-second data rate
4 - bits per symbol
symbol period = 1 / symbol frequency

for a warm and fuzzy:
bits per symbol = 250 kbps / 62.5 Ksymbols/s = 4
symbol period = 1 / 62.5 Ksymbols/s = 16 its
Tc = 1 / 2 Mchips/s = 500 ns

Things are a bit (pun intended) different with the lower-frequency PHYs. Table 3.3 shows us
that each data bit is mapped into a 15-chip PN sequence instead of the 32-bit PN sequence we
saw used in the 2.4-GHz band. BPSK (Binary Phase-Shift Keying) modulation with raised co-
sine pulse shaping is used in the 868-MHz and 915-MHz bands with chip rates of 300 kchips/s
in the 868-MHz band and 600 kchips/s in the 915-MHz band.

Input bits Chip values
(CO ¢1 --. C14)

i i i

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

1
I i l l

0 0 0 0 1 0 1 0 0 1 101 1 1

Table 3.3: There's not as much to memorize here as there was for the 32-chip sequences. 50, it's
much easier to just put the 1 "s and O's into your memory bank than to memorize the mathemati-
cal algorithms used to derive them. I guarantee that after a couple of cocktails, you'll be the hit
of the party if you can cough up all 30 chip values correctly and find somebody that cares.

We already know what the maximum bit rates are for both of the lower-frequency PHYs by
way of Table 3.1. So, we are capable of determining the bit rate using the chip rate and the
number of bits per chip just as we did for the 2.4-GHz band. For instance, 15 chips represent
one bit. Thus, the chip rate for the 868-MHz band is 15 times the bit rate. So, 300 kchips/s
divided by 15 chips/bit is equal to 20 kbps. In this case, a symbol is equivalent to 1 bit. So,

2 8

Keep Running

we can conclude that the symbol rate is 20 Ksymbols/s. We are correct, as the IEEE 802.15.4
standard document actually calls out the 20 Ksymbols/s figure in Table 3.1. It doesn't hurt
to make sure we understand (and are speaking correctly at the cocktail party) by doing the
simple math. Let's check our logic and, as Jethro Bodine would say, cipher on the rates for
the 868-MHz and 915-MHz bands:

where:
ISM Band = 868 MHz
20 kbps = maximum bit-per-second data rate
20 Ksymbols/s = maximum symbol-per-second data rate
1 = bits per symbol
symbol period = 1 / symbol frequency

for a warm and fuzzy:
bits per symbol = 20 kbps / 20 Ksymbols/s = 1
symbol period = 1 / 20 Ksymbols/s = 50 ~ts

where:
ISM Band = 915 MHz
40 Kbps = maximum bit-per-second data rate
40 Ksymbols/s = maximum symbol-per-second data rate
1 = bits per symbol
symbol period = 1 / symbol frequency

for a warm and fuzzy:
bits per symbol = 40 kbps / 40 Ksymbols/s = 1
symbol period = 1 / 40 Ksymbols/s = 25 las

As you can see, the bottom portion of Code Snippet 3.1 tells us that we aren't done with
symbols. However, at least you know what a symbol is. If you decide to read the IEEE
802.15.4 specification, you'll find that your knowledge of symbols gained here will come in
real handy. Let's get back in the truck and get on the road so we can continue our look at the
MAC PIB attributes.

The next MAC PIB attribute listed in Code Snippet 3.1 is the macAssociationPermit bit. The
macAssociationPermit is a Boolean attribute, which means it can take on a representative
TRUE or FALSE condition. When the macAssociationPermit is TRUE, the coordinator is al-
lowing other devices to associate.

We didn't get too far as we'll have to pull off the road again. The macAutoRequest attribute
bit is also of the Boolean type. A device will automatically send a data request command if
its address is listed in the Beacon frame and the macAutoRequest state is TRUE. I know...I
know.. .What 's a Beacon frame? OK, I 'm pulling over.

The term superframe is used to describe the time interval that is bounded by a pair of consec-
utive Beacons. A Beacon is used to identify the PAN, convey network information, describe
the structure of a superframe and synchronize devices attached to the network. Networks that

29

Chapter 3

operate with Beacons being emitted at predefined time intervals are called slotted networks,
as designated time slots for devices to transfer data and commands are squeezed into the
time between the emission of a pair of consecutive Beacons. Normally, in a slotted network a
period of time called the Contention-Access Period (CAP) shares the superframe time with a
Contention-Free Period (CFP) as shown in Figure 3.3.

J
Frame Beacons

Figure 3.3: Contention-Free Period (CFP) and Contention-Access Period (CAP). The CAP
always follows the Beacon and is the free-for-all area for devices on the network that
wish to fight it out for air time. Only the privileged few get to party in the CFP.

The CAP is a time within the superframe in which any device can attempt to use the services
of the PAN by way of a slotted CSMA-CA methodology. The CFP time within the superframe
is made up of blocks of time called GTSs. A GTS (Guaranteed Time Slot) is dedicated to a
particular application, which most likely maps to an associated device or set of devices. Time-
critical applications will generally be prime candidates for GTS slots, as the opportunity to
collect or exchange data is always guaranteed at the same time in each superframe cycle. The
PAN Coordinator may allocate up to seven GTSs within a superframe. A GTS isn't limited to
one superframe time slot and may extend over more than one superframe time slot period.

The coexistence of the CAP and CFP is possible within a superframe, as the GTS time do-
main is only allowed a portion of the time slots contained between the periodic Beacons of
a superframe. The CAP time slots immediately follow the Beacon in slot 0 and precede the
CFP area. All CAP activity must be completed before the CFP time period begins and all CFP
activity must be completed within the allocated GTS timeframe and before the end of the
CFP period, which is signaled by the emission of the next Beacon. It is possible to define a
superframe that has no CFP functionality like the superframe shown in Figure 3.4.

j Frame Beacons

I I t i m e

Figure 3.4: This is akin to one of those mountain-man-no-holds-barred wrestling matches.
If you can get in the ring and do your thing, you win. There are no contenders coming
into the ring riding in a limo.

30

Keep Running

It is also permitted to create a "dead zone" or inactive period within a superframe. This is
accomplished by extending the Beacon-to-Beacon time to extend beyond the duration of
the CAP and CFP periods. A logical view of the "dead zone" that can be carved out inside a
superframe is shown in Figure 3.5.

Beacon

-,4'
o o

i i"

Beacon

CAP ~i.,, CFP ,,. i i
"i" "i i

I
.-~ i ~ -

i SD= !
i aBaseSupefframeOuration*2S° symbol~
I (Active) I
i BI = aBaseSuperframeDuration*2 B° symbols 4 "
I

Figure 3.5: Adding a no-fly zone to a superframe allows everyone to sleep in if they are so
inclined. The key to long-lived devices on IEEE 802. 15.4 networks is their ability to conserve
power whenever they can by sleeping.

The use of superframes is optional, which implies that an IEEE 802.15.4 network can oper-
ate without the presence of periodic Beacons. A network that does not require the services of
continuous Beacons delineating superframes is called an unslotted network. The term unslotted
is used to describe a network that does not allocate time slots, GTSs or generate periodic super-
frames using Beacons. Unslotted CSMA-CA techniques are employed in unslotted networks.

The best way to describe a Beacon frame is to examine a real one. A 10,000-foot view of a
Beacon frame is drawn out for you in Figure 3.6.

Octets: 2 1 4 or 10

MAC
Sublayer

Octets:

PHY
Layer

,,

L

"" "1
I

4 1 1 =

2 k m n 2

7 + (4 or 10~ + k + r n + n

13 + (4 or 10) + k + m + n

I
I
I
I
I
I

Figure 3.6: This view of a Beacon frame begins at the PHY level and ends up in the MAC sublayer.
The acronyms should be logical and come to you easily by now.

31

Chapter 3

The Daintree Networks SNA capture text shown in Capture Snippet 3.1 is a decoded 2.4-GHz
band Beacon frame that was generated by the code within the Microchip ZigBee stack and
put on the medium by a MRF24J40 transceiver.

Capture Snippet 3.1

Frame 3 (Length = 16 bytes)

Time Stamp: 12:19:03.483

Frame Length: 16 bytes

Capture Length: 16 bytes

Link Quality Indication: 136

IEEE 802.15.4

Frame Control: 0x8000

............. 000

. • . • 0 • • •

. ° . • 0

. • . . 0

. , . . 0

...... 00 0

.... 00

• . 0 0

I 0

Sequence Number : 152

Source PAN Identi~er: 0x0744

Source Address: 0x0000

MAC Payload

= Frame Type: Beacon (0x0000)

= Security Enabled: Disabled

= Frame Pending- No more data

= Acknowledgment Request: Acknowledgment

not required

= Intra PAN: Not within the PAN

= Reserved

= Destination Addressing Mode: PAN

identi~er and address ~eld are not

present (0x0000)

= Reserved

= Source Addressing Mode: Address ~eld

contains a 16-bit short address

(0x0002)

Superframe Speci~cation: 0xcfff

............ iiii

........ iiii

.... iiii

. . . 0 •

• . 0 • . •

• 1 • • • •

. • " 0 . " . . . O

GTS Speci~cation : 0x00

= Beacon Order (0x000f)

= Superframe Order (0x000f)

= Final CAP Slot (0x000f)

= Battery Life Extension: Disabled

= Reserved

= PAN Coordinator: Transmitter is

a PAN Coordinator

= Association Permit: Coordinator

accepting Association Requests

..... 000 = GTS Descriptor Count (0x00)

.000 0... = Reserved

0 = GTS Permit: Coordinator not accepting GTS

Requests

Pending Address Speci~cation: 0x00

..... 000 = Number of short Addresses pending: 0

.... 0 Reserved

.000 = Number of extended Addresses pending: 0

0 = Reserved

32

Keep Running
Beacon Payload

Protocol ID: ZigBee NWK (0x00)

Frame Check Sequence: Correct

NWK Layer Information: 0x8411

............ 0001

........ 0001

...... 00

. i

.000 0

.

: Stack Pro~le (0xl)

: nwkcProtocolVersion (0xl)

= Reserved (0x0)

: Router Capacity- True

= Device Depth (0x0)

= End Device Capacity- True

0000- 00 80 98 44 07 00 00 ff cf 00 00 00 Ii 84 D 0

Capture Snippet 3.1 Every little bit that the MRF24J40 2.4-GHz transceiver slung out there was
caught and analyzed by the Daintree Networks SNA application.

Let's tear the capture apart piece by piece beginning with the information gleaned from the PHR.

According to Capture Snippet 3.1.1, the Beacon frame consists of 16 bytes, including a pair
of FCS characters contained within the MFR (MAC Footer). Note that the PHR containing
the frame length value and the PSDU are the only survivors following the PHY's transfer of
the PSDU to the MAC sublayer.

Capture Snippet 3.1.1

Frame 3 (Length : 16 bytes)

Time Stamp- 12-19-03.483

Frame Length. 16 bytes

Capture Length. 16 bytes

Link Quality Indication. 136

Capture Snippet 3.1.1

The contents of the MHR (MAC Header) lie within the bounds of Capture Snippet 3.1.2.
The MHR is populated with two bytes of Frame Control information, a Beacon Sequence
Number and, in this case, four bytes of Source Address Information. The Frame Control word
identifies the frame as a Beacon frame that is using the 16-bit short addressing mode in lieu
of the official 64-bit IEEE addressing mode. You can also see that the PAN is identified with
a unique 16-bit address. You can find the PAN Identifier value in the MAC PIB disguised as
macPANid. The Source Address is stored in the MAC PIB and resides inside the macCoord-
ShortAddress variable.

Although we already know where a Beacon should come from, if we didn't, we could make
the assumption that this Beacon was issued by a Coordinator, as the Source Address is
0x0000. The good news is that we don't have to assume (that turns one into a donkey). The
device that transmitted the Beacon is identified later in the Beacon bit stream.

The unassuming Sequence Number value is also taken from the MAC PIB. The Sequence
Number value is kept in the MAC PIB's macBSN variable.

33

Chapter 3

Capture Snippet 3.1.2

IEEE 802.15.4

Frame Control: 0x8000

............. 000

.

.

.

. o.

...... 00 0

.... 00

• .00

i0

Sequence Number- 152

= Frame Type- Beacon (0x0000)

= Security Enabled: Disabled

= Frame Pending • No more data

= Acknowledgment Request: Acknowledgment

not required

= Intra PAN: Not within the PAN

= Reserved

= Destination Addressing Mode: PAN

identi~er and address ~eld are not

present (0x0000)

= Reserved

= Source Addressing Mode: Address ~eld

contains a 16-bit short address

(0x0002)

Source PAN Identi~er- 0x0744

Source Address: 0x0000

0000: 00 80 98 44 07 00 00 ff cf 00 00 00 ii 84 D 0

Capture Snippet 3. 1.2

The first two bytes of the MAC Payload in Capture Snippet 3.1.3 give us some information
about what the superframe will look like and who transmitted this Beacon. We've already
discussed the macAssociationPermit attribute and you can see now where it is used.

Capture Snippet 3.1.3
MAC Payload

Superframe Speci~cation: 0xcfff

............ iiii

........ iiii

.... iiii

. . . 0

. . 0 •

. 1 •

i••• • • 0 • • • • • 0 • • •

GTS Speci~cation: 0x00

= Beacon Order (0x000f)

= Superframe Order (0x000f)

= Final CAP Slot (0x000f)

= Battery Life Extension: Disabled

= Reserved

= PAN Coordinator • Transmitter is

a PAN Coordinator

= Association Permit • Coordinator

accepting Association Requests

..... 000 = GTS Descriptor Count (0x00)

.000 0... = Reserved

0 = GTS Permit- Coordinator not accepting GTS

Requests

Pending Address Speci~cation" 0x00

..... 000 = Number of short Addresses pending • 0

.... 0 Reserved

34

Keep Running
.000 Number of extended Addresses pending. 0

0 = Reserved

0000" 00 80 98 44 07 00 00 ff c£ 00 00 00 ii 84 D O

#defrne MAC_PIB_macBattLifeExt FALSE

Capture Snippet 3.1.3

The Battery Life Extension, which is disabled in Capture Snippet 3.1.3, tells us if the coor-
dinator receiver operation time is reduced during the CAP to conserve battery life. You don't
see the macBattLifeExt variable in our MAC PIB lineup as it is defined as FALSE in the Mi-
crochip ZigBee stack's zigbee.def module. What you do see in the MAC PIB data structure is
macBattLifeExtPeriods, which can take on values of 6 or 8. The macBattLifeExtPeriods vari-
able indicates the number of backoff periods that the receiver is enabled following a Beacon
in battery-life extension mode. If battery-life extension mode is enabled, the value of macBat-
tLifeExtPeriods is set to 8 for channels 0 through 10 and set to a value of 6 for channels 11
through 26. There's your battery-life trivia question for the cocktail party.

The Beacon Order subfield of the Superframe Specification field is used to specify how often
a Beacon is transmitted. When computing the actual elapsed times, Beacon Order is specified
as BO along with a Beacon Interval, which is represented by BI. BI is equal to aBaseSuper-
frameDuration * 2 B° symbols, where BO is greater than or equal to 0 (zero) and less than or
equal to 14.

One of many MAC sublayer constants defined within the IEEE 802.15.4 standard, aBas-
eSuperframeDuration represents the number of symbols forming a superframe when the
superframe order is equal to 0 (zero). We'll get to a definition of superframe order in a mo-
ment. First, let's finish up our aBaseSuperframeDuration discussion.

The MAC sublayer constant aBaseSuperframeDuration is derived as follows"

aBaseSuperframeDuration- aBaseSlotDuration * aNumSuperframeSlots

Where:
aBaseSlotDuration - 60
aNumSuperframeSlots - 16

The number of symbols that make up a superframe slot when the superframe order is equal to
zero is the official IEEE 802.15.4 standard definition of the MAC sublayer constant aBaseS-
lotDuration. Sixteen slots make up the number of slots in any superframe and that number
of slots is given as aNumSuperframeSlots in the IEEE 802.15.4 standard documentation. We
have already determined a symbol is 16 ps in length for the 2.4-GHz band, 25 ps long in the
915-MHz band and 50 ps long in the 868-MHz band. So, some simple substitution reveals the
relative value of aBaseSuperframeDuration:

Where: ISM Frequency Band - 2.4 GHz
aBaseSuperframeDuration - 60 * 16 * 16 ps - 15.36 ms

35

Chapter 3

Where: ISM Frequency Band = 915 MHz
aBaseSuperframeDuration = 60 * 16 * 25 ps = 24.00 ms

Where: ISM Frequency Band = 868 MHz
aBaseSuperframeDuration = 60 * 16 * 50 ps = 48.00 ms

The science and elegance of mathematics sometimes only reflect what should exist in a per-
fect world. If I could point you to a perfect real-world mathematical model of every element
of IEEE 802.15.4 and ZigBee, there would be no need for this book. You like "touchy-feely"
just as much as I do and that's why this book exists (and why you're reading it). So, I put
the Daintree Networks SNA and a couple of ZMD 900-MHz radios tuned to channel 1 (906
MHz) to work on this one using a cross-section of BO (Beacon Order) and SO (Superframe
Order) value combinations. Here's what I came up with:

• ~ ~ ~

12:25:12.642

12:25:12.666

12:25:12.690

12:25:12.715

+00:00:00.024

+00:00:00.024

+00:00:00.024

+00:00:00.024

~ ~

0x5353

0x5353

0x5353

0x5353

~ i ~ 3 ~ ~ ' ~ : ~ i " ~ e '

IEEE 802.15.4

IEEE 802.15.4

IEEE 802.15.4

IEEE 802.15.4

• ,.,~ , .

Beacon: BO: 0, SO: 0

Beacon: BO: 0, SO: 0

Beacon: BO: 0, SO: 0

Beacon: BO: 0, SO: 0

~ i~i~!~~~i!~ i! ii!!i ~!i~i iiii~iii,!iiil i ~iii!! !~~~i~ ! ~ ~ ~ ~ i ~ ~ i ~ ~ ~ ~ l ~ ~ ~ i ~ ~ ~̧
~ i ~ ~ ~ ~ i ~ ~ ~~i~ i i~~~~ ¸ ~ ~ ~ ~ ~

13:33:49.052 0x5353 IEEE 802.15.4 Beacon: BO: 5, SO: 0

13:33:49.828 +00:00:00.777 0x5353 IEEE 802.15.4 Beacon: BO: 5, SO: 0

13:22:32.000 0x5353 IEEE 802.15.4 Beacon: BO: 14, SO: 0

13:29:09.464 +00:06:37.464 0x5353 IEEE 802.15.4 Beacon: BO: 14, SO: 0

Here are the ideal mathematical Beacon Intervals for the 915-MHz frequency band:

Where: BI = aBaseSuperframeDuration * 2 B° symbols

36

Keep Running

• When BO = 0, BI = 1 * 24.00 ms = 24.00 ms

• When BO = 5, BI = 32 * 24.00 ms = 768.00 ms

• When BO = 14, BI = 16384 * 24.00 ms = 393.22 S = 6.55 minutes

This book is not the result of or part of any government contract. However, the numbers gath-

ered by the Daintree Networks SNA versus the ideal mathematical values are good enough

for government work. What I really want you to come away with here is that the BO value

determines the time interval between periodic Beacons. Note the Beacon interval time deltas

for BO = 5 and SO = 0 are equal to the Beacon interval time deltas when BO = 5 and SO = 4.

There was a reason for calculating the aBaseSuperframeDuration values in the way we did

earlier. The 24.00-ms value for the 915-MHz band is an ideal value that is based on symbols

when SO = 0 (zero). With that understood, the value of SO is used in the determination of the

superframe duration, which is dubbed SD. SD is the length of the active time of a superframe

inside of the BI. The value of SD is calculated as follows:

SD = aBaseSuperframeDuration * 2 s°

Thus, we can mathematically conclude that for the 915-MHz frequency band:

• When SO = 0, SD = 1 * 24.00 ms = 24.00 ms

• When SO = 4, SD = 16 * 24.00 ms = 387.00 ms

• When SO = 13, SD = 8192 * 24.00 ms = 196.61 S = 3.28 minutes

It makes sense that when the superframe order is equal to the Beacon order, the duration of

the superframe (SD) is equal to the Beacon interval (BI). Hopefully, you can also use the SD

and BI numbers to get a feel for the relationship between the "dead zone" time versus the ac-

tive superframe time within a Beacon interval.

To further prove out our symbolic math and the accuracy of the radio design versus the

IEEE 802.15.4 standard, I tuned my network, the Daintree Networks SNA and the ZMD

ZMD44102 capture device to the European 868-MHz band and captured the IEEE 802.15.4

bits as they flowed from antenna to antenna. Here are the results of the 868-MHz capture with
BO and SO both equal to zero:

17:53:52.000 0x5353 IEEE 802.15.4 Beacon: BO: 0, SO: 0

17:53:52.049 +00:00:00.049 0x5353 IEEE 802.15.4 Beacon: BO: 0, SO: 0

17:53:52.097 +00:00:00.049 0x5353 IEEE 802.15.4 Beacon: BO: 0, SO: 0

Again, this is close enough for government work. Before we make the capture and take the

measurement, let's calculate what the Beacon interval should be when BO = 5 at 868 MHz:

37

Chapter 3

Where:

BI = aBaseSuperframeDuration * 2 ~° symbols

B I - 48.00 ms * 3 2 - 1.54 s

Here's what the Daintree Networks SNA capture had to say:

18:10:16.000

18:10:17.553

18:10:19.106

+00:00:01.553

+00:00:01.553

0x5353

0x5353

0x5353

IEEE 802.15.4

IEEE 802.15.4

IEEE 802.15.4

Beacon: BO" 5, SO: 0

Beacon: BO: 5, SO: 0

Beacon: BO: 5, SO: 0

I couldn't crank the ZMD ZMD44102 868/900-MHz radios I used for this segment up to
the 2.4-GHz band. So, I reached into my box full of Atmel AT86RF230 2.4-GHz transceiver
boards and pulled one out. I cranked in a superframe order and Beacon order of zero. You

know what that means:

Where: BI = aBaseSuperframeDuration * 2 B° symbols

• When BO = 0, B I - 1 * 15.36 ms = 15.36 ms

Here's what the Daintree Networks SNA capture had to say"

13:55:52.000

13"55:52.015

13"55:52.031

+00:00:00.015

+00:00:00.015

0xbabe

0xbabe

0xbabe

IEEE 802.15.4

IEEE 802.15.4

IEEE 802.15.4

Beacon: BO" 0, SO: 0

Beacon: BO" 0, SO: 0

Beacon: BO: 0, SO: 0

Then, just for grins, I dialed in a superframe and Beacon order of 4. If everything I've told

you thus far is true (and you know it is), then the math should prove out against the Daintree

Networks SNA capture data here as well:

Where: BI = aBaseSuperframeDuration * 2 B° symbols

• When BO = 4, BI = 16 * 15.36 ms = 245.76 ms

The envelope please:

14:52:27.867

14:52:28.112

+00:00:00.246

+00:00:00.246

0xbaad

0xbaad

IEEE 802.15.4

IEEE 802.15.4

Beacon: BO: 4, SO: 4

Beacon: BO: 4, SO: 4

38

Keep Running

Close enough for government work.

Here are the rules of engagement we've followed as they pertain to SO and BO so far:

SO must always be less than or equal to BO

Active SO and BO values range between 0 and 14

SO and BO are don't cares if their values equal 15

You're going to love this. As far as the Beacon capture we started with is concerned, all
of that superframe math we just performed was simply an exercise, as both the Beacon
Order and Superframe Order fields contain a decimal 15. What this means is that the
Coordinator will not transmit a Beacon frame unless it is requested to do so. For instance,
a Beacon request command will trigger a Beacon frame as a response and that's exactly
what happened in this case. The decimal 15 in the Superframe Order field deactivates the
superframe that would normally immediately follow the Beacon. Note that this version of
the Microchip ZigBee stack does not support slotted networks as both the Beacon Order
and Superframe Order fields are permanently defined at decimal 15, as shown in Code
Snippet 3.2.

Code Snippet 3.2

#defme MAC_PIB_macBeaconOrder 15

#define MAC PIB_macSuperframeOrder 15

Code Snippet 3.2: This set of 15"5 is a surefire way to identify an IEEE 802.15.4 unslotted network.
No automatic Beacons, no GTSs and no superframes will be anywhere to be found.

Since the superframe has been eliminated from the network we captured this Beacon from,
the GTS area does not exist and the gaggle of zeroes in the GTS Specification fields in Cap-
ture Snippet 3.1.4 drives that home.

Capture Snippet 3.1.4

MAC Payload

Superframe Specification- 0xcfff

............ iiii

........ iiii

.... IIii

. . .0

• .0

.i

1

GTS Specifcation- 0x00

..... 000

• 000 0...

= Beacon Order (0x000f)

= Superframe Order (0x000f)

= Final CAP Slot (0x000f)

= Battery Life Extension. Disabled

= Reserved

= PAN Coordinator • Transmitter is

a PAN Coordinator

= Association Permit- Coordinator

accepting Association Requests

= GTS Descriptor Count (0x00)

= Reserved

39

Chapter 3

0 = GTS Permit- Coordinator not accepting GTS

Requests

Pending Address Speci~cation: 0x00

..... 000 = Number of short Addresses pending: 0

.... 0... = Reserved

.000 Number of extended Addresses pending: 0

0 Reserved

0000: 00 80 98 44 07 00 00 ff cf 00 00 00 ii 84 D O

Capture Snippet 3. 1.4

The last three bytes of our Beacon are optional and the presence of the MAC_PIB_macBea-
conPayloadLength definition in Capture Snippet 3.1.5 assures their presence.

Capture Snippet 3.1.5

Beacon Payload

Protocol ID: ZigBee NWK (0x00)

Frame Check Sequence: Correct

NWK Layer Information: 0x8411

............ 0001

........ 0001

...... O0

.

.000 0

.

= Stack Pro~le (0xl)

= nwkcProtocolVersion (0xl)

= Reserved (0x0)

= Router Capacity: True

= Device Depth (0x0)

= End Device Capacity: True

0000: 00 80 98 44 07 00 00 ff cf 00 00 00 11 84 D 0

#defme MAC_PIB_macBeaconPayloadLength 3

Capture Snippet 3. 1.5

The data contained within the three optional bytes comes from the three elements of the mac-
BeaconPayload[] array. It's rather easy to see in Code Snippet 3.3 how the three octets work
their way into their spots in the Beacon Payload fields. The contents of the Beacon Payload
field are intended for use by sublayers above the MAC sublayer.

Code Snippet 3.3

#de~_ne ZIGBEE_PROTOCOL_ID 0x00

#defme nwkcProtocolVersion 0x01

#defme MY_STACK_PROFILE_ID 0x01

void SetBeaconPayload(void)
{

macPIB.macBeaconPayload[0] = ZIGBEE_PROTOCOL_ID;

macPIB.macBeaconPayload [i] = (nwkcProtocolVersion

MY_STACK_PROFILE_ID;

<<4) I

40

Keep Running
macPIB.macBeaconPayload[2] : currentNeighborTableInfo.depth << 3-

if (macPIB.macAssociationPermit &&
(currentNeighborTableInfo.numChildren < NIBnwkMaxChildren) &&
(currentNeighborTableInfo.neighborTableSize < MAXNEIGHBORS))

}
}

}

if (!nwkStatus.[ags.bits.bAllEndDeviceAddressesUsed)
{

macPIB.macBeaconPayload[2] I= 0x80; // End Devices can join
}
if ((currentNeighborTableInfo.depth < (NIB_nwkMaxDepth-l)) &&

(currentNeighborTableInfo.numChildRouters < NIB_nwkMaxRouters) &&
!nwkStatus.~ags.bits.bAllRouterAddressesUsed)

macPIB.macBeaconPayload[2] I : 0x04" / / Routers can join

Code Snippet 3.3." If you take your time and read through the long "if" arguments, you'll see
that this code segment is simply telling the upper layers that end device and router addresses are
available for use.

I searched through the Microchip ZigBee stack and didn't find any other occurrences of the
MAC PIB elements macPromiscuousMode or macRxOnWhenldle. Their names give away
their purpose. The MAC is in a receive all mode when macPromiscuousMode is TRUE.
When macRxOnWhenldle is TRUE, the MAC sublayer enables the receiver during idle
periods.

I didn't find that the MAC PIB element macBeaconTxTime had been used anywhere in the
Microchip stack either. That would make sense as this parameter is used in slotted networks.
Recall that the Microchip ZigBee stack at this time does not support slotted networks. The
macBeaconTxTime is a 20-bit symbol time indicating when the last Beacon frame was trans-
mitted. As you would imagine, the time is taken at the same point within every transmitted
Beacon frame.

The macDSN is much like the macBSN in that it gets incremented and added to every trans-
mitted data or MAC command frame. The macBSN is the macDSN's counterpart in a Beacon
frame.

Code Snippet 3.3 is an excerpt from the Microchip ZigBee stack source code that relates how
the macMinBE and macMaxCSMABackoffs MAC PIB variables are used. Let's suffice to
say that macMinBE is the minimum value of the backoff exponent in the CSMA-CA algo-
rithm and leave it at that for now. The default value of macMinBE is 3 according to the IEEE
802.15.4 standard document and that is reflected in Code Snippet 3.4. The maximum number
of back-offs the CSMA-CA algorithm will tolerate before signaling a channel access failure
is set by the macMaxCSMABackoffs value. Once again, the default value declared for the
macMaxCSMABackoffs in the IEEE 802.15.4 standard document has been used here.

41

Chapter 3

Code Snippet 3.4

if(params.MLME_RESET_request. SetDefaultPIB==TRUE)
{

macPIB.macPANId.Val = 0xFFFF;

macPIB.macShortAddress.Val = 0xFFFF;

phyPIB.phyCurrentChannel = ii;

macPIB.macAssociationPermit = FALSE;

macPIB.macMaxCSMABackoffs = 4;

macPIB.macMinBE = 3;
}

Code Sn~pet 3.4: I don't know about yo~ but ~e smoke just seems to clear when I match up
variables and ~ek func~ons.

The macTransactionPersistenceTime is defined in superframe periods as the maximum time
a transaction can be stored by a coordinator and indicted in its Beacon. The IEEE 802.15.4
default for macTransactionPersistenceTime is 0x01F4 superframe periods.

Tired Yet??
You better not poop out on me. We're just getting started. I hope you were paying attention
as all of the PHY and MAC stuff I've been throwing at you will start to make sense in the
upcoming chapters.

The gentleman in question from the last chapter was spending a bit of time in Canada as he
decided he didn't want to finish out his time with the United States Navy. Being a musician
at heart, Rick James formed the Mynah Birds with his buddy Neil Young. Little did anyone
in the Mynah Birds know that the bands Steppenwolf and Buffalo Springfield would end
up with a couple of the other Mynah Birds in their bands later on. Unlike The Byrds, which
some think Rick got the Mynah Birds band name idea from, the black leather jackets, yellow
turtlenecks and boots didn't make the Mynah Birds famous. Rick getting busted in the studio
for being AWOL didn't help things much either. Needless to say, the Mynah Birds went by
the wayside. However, the parts and pieces of the Mynah Birds produced and participated in
big-name acts. If you can't hum "Heart of Gold" or sing to "Cinnamon Girl," go buy some
Neil Young albums. Ever hear of Crosby, Stills, Nash and Young? Guess who Young is? Neil
did some Buffalo Springfield time as well. Motown Records ended up with Rick James and
old Ricky singlehandedly pulled Motown Records from the dust and back into contention
with his 1981 hit "Super Freak." The Super Freak left us on August 7, 2004.

If you don't know who Bob Marley was, give this book to your sister, as she probably does
know who Bob Marley was. I'll bet she also knows who was more popular in Jamaica than
Bob Marley and had hits before Bob started jammin'. Do you?

42

CHAPTER 4
A Look at the ZMD 900-MHz

IEEE 802.15. 4/ZigBee-Ready Radio
I sincerely hope you were wearing shoes while we were running through PHY and MAC hell.
Your feet may be hot but you can now utilize the power of your mind to distance yourself
from pain, as you are on the road to mastery of IEEE 802.15.4. Whether you like it or not,
you are now a student of IEEE 802.15.4. There won't be any heavy IEEE 802.15.4 medita-
tion sessions and I won't require you to strike a mid-air IEEE 802.15.4 Kung Fu pose while
effortlessly defying gravity. While we're on Kung Fu movie stunts, the best one I ever saw
had Kung Fu masters that could spin themselves into the ground and then cover themselves
with dirt. These guys would spin into their holes along a path and as the bad guys approached
they would spin themselves out of the ground and fight. Naturally, the spinning, hole-digging
masters also had the ability to hang in the air forever while kicking the living crap out of their
opponents. Once the fight was over, the masters would spin themselves back into hiding and
await their next victims.

IEEE 802.15.4 Done the ZMD Way
The more you learn about how IEEE 802.15.4 works, the easier it will be to work with Zig-
Bee. This book is all about doing IEEE 802.15.4 and ZigBee things. Right now, let's do some
real IEEE 802.15.4 stuff. ZMD offers a really good IEEE 802.15.4 development kit that puts
all of the elements of IEEE 802.15.4 together using ZMD44102 900-MHz IEEE 802.15.4
radio technology and basic ZMD44102 radio firmware. You've already been exposed to the
ZMD44102 900-MHz transceivers, since I used them to check Beacon intervals in Chapter 3.

The ZMD44102 transceiver can operate in the 868-MHz band, which is the domain of Eu-
ropean IEEE 802.15.4-compliant transceivers, and in the 915-MHz ISM in North America,
Australia and New Zealand. I don't know about you, but I 'm a cordless-phone freak. I like
to keep up with the latest cordless-phone technology and I always send my Morn a new
phone when I get one. Remember when cordless phones reached into the 900-MHz fre-
quency band? Those new 900-MHz babies could talk farther and longer on a single battery
charge than the existing 46/49-MHz cordless units. Plus, it was a little bit harder to eaves-
drop on the 900-MHz phones, as a standard police scanner could tune you in to all of the
neighborhood 46/49-MHz phones. Not too long after the 900-MHz phones became popular,
2.4-GHz phones showed up on the WalMart shelves. My take is that consumers saw the
higher-frequency phones as technologically better since the frequency number was higher,
and the marketing guys and gals knew that. It's kinda like buying a computer these days~the

43

Chapter 4

faster the better. My foray into cordless phones does have a point to make. The ZMD44102
900-MHz transceivers only compete with 900-MHz cordless phones and 900-MHz propri-
etary radio traffic. With the addition of 2.4-GHz cordless phones to the 2.4-GHz band, a
2.4-GHz IEEE 802.15.4-compliant transceiver now has to contend with B luetooth traffic,
802.1 lb/802.11 g WLAN traffic, proprietary radio traffic in the 2.4-GHz band and the ubiqui-
tous microwave oven.

To further prove that 900 MHz is a viable frequency band for serious ZigBee work, the ZMD
folks sniffed the air at the June 2006 ZigBee Open House. The results indicated that there was
much more 2.4-GHz traffic than 900-MHz traffic competing for airspace.

The ZMD Starter Kit Bundle
The IEEE 802.15.4 concepts that will be offered up in this chapter will be brought to fruition
using the Starter Kit Bundle version of the ZMD Wireless Sensor Starter Kit. That "bundle"
means that our ZMD Wireless Sensor Starter Kit includes an extra ZMD44102 Starter
Board that can be employed as a Daintree Networks SNA Sniffer capture module or an extra
IEEE 802.15.4 node. The ZMD44102 Starter Board's ZMD44102 IEEE 802.15.4-compli-
ant/ZigBee-ready single-chip 900-MHz transceiver serves under the command of a Silicon
Laboratories C8051F120 microcontroller with an associated JTAG interface. Since the word
"sensor" is synonymous with ZigBee and IEEE 802.15.4, the ZMD folks included one of
their TSic 106 precision temperature sensors on each of the ZMD44102 Starter Boards. If you
look just below and to the fight of the Silicon Laboratories C8051F120 in Photo 4.1, you'll
see the 3-wire TSic 106.

Photo 4.1: Sificon Laboratories C8051F120. The l O-pin header interfaces the Silicon
Laboratories USB Debug Adapter to the ZMD44102 Starter Board's C8051F120. The
ZMD44102 and all of its supporting electronics are directly to the right of the C8051F 120.
Power for the ZMD44102 Starter Board is supplied by the USB connection or the power
jack. The switch bank to the right of the power jack configures the ZMD44102 Starter
Board into either the 868-MHz or 900-MHz band and defines the ZMD44102 Starter Board
as a central or remote node.

44

A Look at the ZMD 900-MHz IEEE 802.15.4/ZigBee-Ready Radio

The Silicon Laboratories portion of the ZMD Wireless Sensor Starter Kit Bundle includes the
C8051F120 microcontrollers, Silicon Laboratories' driver package for the Keil PK51 C com-
piler and a Silicon Laboratories USB Debug Adapter, which I've photographed in Photo 4.2.

Photo 4.2: Silicon Laboratories USB Debug Adapter. This tittle puppy provides a programming
and debugging path between the Keil PK51 C compiler/pVision3 environment and the
ZMD44102 Starter Board.

A 4K demo version of Keil's PK51 C compiler is included with the Starter Kit Bundle. How-
ever, you're going to need the full version of the Keil PK51 C compiler to fully utilize the
supporting C source code that comes with the ZMD Wireless Sensor Starter Kit. For those of
you that only want to evaluate the ZMD radio or the C8051F120 microcontroller, all of the C
source code examples are also provided as ready-to-program hex files that you can push down
into the C8051F120 using the USB Debug Adapter and Silicon Laboratories Flash program-
ming utility that come with the ZMD Starter Kit Bundle.

The ZMD Starter Kit Bundle also comes with a 30-day trial version of Daintree Networks
SNA. The Daintree Networks SNA (Sensor Network Analyzer) package is a professional
IEEE 802.15.4 packet sniffer. Everything you need to know about a transmitted IEEE
802.15.4 packet is available via the Daintree Networks SNA application's integral window
panes. Fortunately, the Daintree Networks SNA demo included with the ZMD Wireless Sen-
sor Starter Kit is the professional version, which allows you not only to see the bits, but to
visualize a ZigBee-enabled IEEE 802.15.4 network as well. The ZMD44102 Starter Boards
are compatible with Daintree Networks SNA. So, we can and will use one of the ZMD44102
Starter Boards as the Daintree Networks SNA 900-MHz capture device.

The ZMD44102 Transceiver
The ZMD44102 CMOS transceiver you're eyeballing in Photo 4.3 is an 868.3-MHz/902-
928-MHz band single-chip multichannel IEEE 802.15.4-compatible system-on-chip device.
License-free operation is provided by the ZMD44102 on the 868.3-MHz European band and
the 902-MHz-to-938-MHz North American ISM (Industrial, Scientific and Medical) bands.
The ZMD44102 is fully capable of obtaining the maximum burst data rate of 20 Kbps in the

45

Chapter 4

868-MHz band. It can also reach the maximum 900-MHz band data rate of 40 Kbps. The
ZMD44102 employs the services of Direct Sequence Spread Spectrum technology (DSSS),
which provides a reliable means of data transfer in high-traffic and hostile RF environments.
Keeping with the simplicity associated with IEEE 802.15.4 devices, the ZMD44102 is highly
integrated and requires a minimum of external components for proper operation. ZMD44102
line-of-sight transmission distances can reach beyond 100 meters.

Photo 4.3:ZMD44102 CMOS transceiver. It looks just like its 2.4-GHz cousins but it doesn't
have to fight with the microwave oven for air time.

The ZMD44102 CMOS transceiver you're eyeballing in Photo 4.3 is an 868.3-MHz/902-
928-MHz band single-chip multichannel IEEE 802.15.4-compatible system-on-chip device.
License-free operation is provided by the ZMD44102 on the 868.3-MHz European band and
the 902-MHz-to-938-MHz North American ISM (Industrial, Scientific and Medical) bands.
The ZMD44102 is fully capable of obtaining the maximum burst data rate of 20 Kbps in the
868-MHz band. It can also reach the maximum 900-MHz band data rate of 40 Kbps. The
ZMD44102 employs the services of Direct Sequence Spread Spectrum technology (DSSS),
which provides a reliable means of data transfer in high-traffic and hostile RF environments.
Keeping with the simplicity associated with IEEE 802.15.4 devices, the ZMD44102 is highly
integrated and requires a minimum of external components for proper operation. ZMD44102
line-of-sight transmission distances can reach beyond 100 meters.

The low-power 20/40-Kbps ZMD44102 transceiver is also equipped with a complete IEEE
802.15.4-compliant PHY and a thin MAC that is implemented in hardware. The ZMD44102
MAC houses a 128-byte transmit FIFO (First In First Out) buffer and a 256-byte receive FIFO.
That's just enough temporary buffer area for one IEEE 802.15.4 frame going out and two incom-
ing IEEE 802.15.4 frames. Even though the ZMD44102 MAC can buffer up a couple of incoming
IEEE 802.15.4 frames, we will want to clear the input FIFO as quickly as possible to prevent the
loss of data. What good would any MAC be if it could not automatically check and generate a
CRC (Cyclic Redundancy Check)? The ZMD44102's MAC doesn't have to worry about being
substandard, as it generates frame CRCs and checks incoming frames for the correct CRC.

46

A Look at the ZMD 900-MHz IEEE 802.15.4/ZigBee-Ready Radio

Remember slotted and unslotted networks? I told you there would be a test later. The
ZMD44102 can be used in standard unslotted CSMA-CA networks and in slotted CSMA-CA
networks. When used in slotted networks, the ZMD44102 has the capability to handle the
GTS area that may be associated with a superframe.

In addition to its ability to easily operate in slotted and unslotted network situations, the
ZMD44102 MAC operates in a multitude of other modes. The ZMD44102 MAC has to
receive as well as transmit. If the ZMD44102 MAC belongs to a PAN Coordinator, the
ZMD44102 MAC will be asked to perform active scans to determine RF energy levels (ED)
or find the most suitable channel on which to start a new PAN. If the ZMD44102 MAC finds
itself in the End-Device role, a passive scan may be requested in an attempt to find a Beacon
that would signal a PAN Coordinator is within range. It's the MAC's job to execute that scan.
Beacon generation and Beacon tracking are both tasks that are handled by the ZMD44102
MAC, depending on whether the device associated with the ZMD44102 MAC is a PAN Coor-
dinator or an End Device.

Many of the MAC tasks such as scanning and superframe component handling are regulated
by time. Normally, peripheral interrupts and microcontroller timers would be put on the front
line to handle the timekeeping and task scheduling. Servicing interrupts and shepherding
internal timers gobble up microcontroller resources. To help keep the microcontroller focused
on the application instead of the ZMD44102 MAC's timing requirements, the ZMD44102 in-
corporates a gaggle of its own internal timers. The ZMD44102 uses a pair of separate clocks
to pull off its timing tricks. The 24-MHz system clock is used to clock the digital core and
a separate 32.768-kHz clock, which supports sleep and power-down modes, and acts as an
RTC. Both of the ZMD44102's internal clocks, in one manner or another, support the set of
IEEE 802.15.4-oriented timers that are integrated into the ZMD44102's HW-MAC. The RTC
continues to run when the 24-MHz system clock is shut down during sleep and Global Power
Down modes. Shutting down the 24-MHz clock reduces the ZMD44102's power consump-
tion. Since the RTC runs full time, it can maintain network time. This allows the ZMD44102
in an End Device to sleep and always keep track of superframe time. Recall that in slotted
networks the best thing for an End Device to do is sleep and wake just before the superframe
that will service it begins.

Most IEEE 802.15.4/ZigBee transceivers use an SPI portal to communicate with a host mi-
crocontroller. By implementing an industry-standard SPI portal, the ZMD44102 allows the
IEEE 802.15.4 designer to pair the ZMD44102 up with just about any of today's off-the-shelf
microcontrollers. There may be instances when the SPI hardware interface is not accessible.
No worries. The ZMD44102 is also capable of passing data and commands over a parallel
interface made up of the host microcontroller's general-purpose I/O pins.

The ZMD Wireless Sensor Starter Kit documentation uses the IEEE 802.15.4 standard's
nomenclature in their datasheet and user manual language. That's a good thing. As you read
about the ZMD44102, you can directly relate its operation to the relevant sections of the
IEEE 802.15.4 standard.

47

Chapter 4

Preflighting the ZMD44102
I thoroughly enjoyed getting the ZMD Starter Kit Bundle up and running. The demo ap-
plication code and Silicon Laboratories drivers that came with my ZMD Wireless Sensor
Starter Kit were designed to be used with Keil's uVision2 environment. We will be using
the latest version of the Keil PK51 C compiler, which is built around uVision3. After some
investigation, or should I say, after things wouldn't work quite fight, I found that the Silicon
Laboratories USB Debug Adapter required the uVision3 drivers loaded in order to enable
the recognition of the USB Debug Adapter's USB interface from within the Keil PK51 C
compiler's debug utilities set-up windows. Once I got the Keil PK51 C compiler to recognize
the Silicon Laboratories USB Debug Adapter, I performed a test compile of the BCS (Ba-
sic Communication Software) source that came with the ZMD Wireless Sensor Starter Kit.
Everything came out lovely and I engaged the uVision3's virtual DEBUG button to pour my
newly compiled BCS hex file into the ZMD44102 Starter Board's C8051F120 Flash. The
idea behind the ZMD Starter Kit Bundle is to allow the development kit user to apply the
ZMD44102 hardware directly to the mechanisms of IEEE 802.15.4. The actual "application"
stuff can then be layered on top of the transport foundation the ZMD44102 Starter Boards
provide. A ZigBee or IEEE 802.15.4 application does not have to be complex. The simple act
of reading a temperature or monitoring a switch is considered an application in the ZigBee
and IEEE 802.15.4 worlds.

I want to continue to show you what is going out of the network node antennae. Since
the ZMD44102 is a 900-MHz radio, we must configure the Daintree Networks SNA
for 900-MHz band operation and prepare the associated Daintree Networks SNA IEEE
802.15.4-compliant frame-capture hardware. It's only logical (and necessary) to use the third
ZMD44102 Starter Board as the frame-capture hardware for the Daintree Networks SNA. The
ZMD44102 Starter Board is compatible with the Daintree Networks SNA application. An ap-
plication note on the Daintree web site provides in detail what is required to put a ZMD44102
to work as a Daintree Networks SNA capture device. In addition, a precompiled and ready-
to-load Daintree driver hex file is included with the ZMD Wireless Sensor Starter Kit Bundle.
All we have to do is load up the Silicon Laboratories standalone Flash programming utility,
which also was a component of the ZMD Wireless Sensor Starter Kit Bundle, and drop the
Daintree Networks SNA driver/capture code into the C8051F120 Flash on the newly tasked
ZMD44102-based IEEE 802.15.4 capture module.

Firing Up the ZMD44102
Before we jump off into turning on radios, there's business that the microcontroller needs for
us to take care of first. The initialization of the ZMD44102 Starter Board is taken care of up
front in the main function of the BCS. In this case, the C8051F120 is the target microcon-
troller and the function calls in Code Snippet 4.1 invoke the instructions needed to get the
C8051F120 on course.

48

A Look at the ZMD 900-MHz IEEE 802.15.4/ZigBee-Ready Radio

Code Snippet 4.1

WD_DI SABLE () •
SYSCLK_Init () •
portInit() ;
zmdlnitHal () ;

mlmeResetRequest (TRUE) ;

EA : l-

zmdGpd (OFF) ;

zmdReset (HOLD_TIME_3) •

/* initializes system clock */
/* initializes crossbar, i/o lines and interrupts */
/* initializes the ZMD's HAL */
/* init the PHY and MAC layer with its default

values * /
/* enable global interrupts */

/* resets the ZMD44102 */

Code Snippet 4.1 This is standard stuff as far as microcontrollers go. The Silicon Laboratories
C8051F120 gets its clock and general-purpose I/0 configuration from the SYSCLK_Init, portlnit
and zmdlnitHal functions.

The SYSCLK_Init function essentially only consists of a single instruction that commands
the C8051F120 to use its internal 24.5-MHz oscillator as its clock source. The C8051F120
uses a digital crossbar to multiplex digital peripherals and I/O ports to selected general-pur-
pose I/O pins. The code within the portInit function works on the C8051F120's crossbar and
sets up the desired general-purpose I/O configuration.

We discussed the HAL earlier. If you're thinking that the coding of the HAL is based on the
C8051F120 interfacing to the ZMD44102, you're correct. The ZMD44102 HAL lays the
groundwork for the zmdGpd (ZMD44102 Global Power Down) and zmdReset functions
listed in Code Snippet 4.1. The zmdReset timing controls the mode that the ZMD44102
will reset into. For instance, in Code Snippet 4.1, the ZMD44102 reset argument specifies a
RSN pin hold time of 730 ms, which will reset into the Off mode. If the zmdReset argument
were HOLD_TIME_I (500 gs), the ZMD44102 would reset into idle mode. Sleep or Global
Power Down reset mode is entered when the zmdReset argument is HOLD_TIME_2 (3 ms).
C8051F120 SPI initialization and millisecond/microsecond timing routines are also defined
within the ZMD HAL code. SPI support is future enhanced within the HAL functions with
calls for SPI byte reads and writes as well as SPI block read and write routines.

Does MLME ring a bell? BONG! ! MLME is short for MAC Layer Management Entity. The
leading "mlme" in the mlmeResetRequest function call tells us that a MAC management ac-
tion is about to be requested. The code we are looking at in Code Snippet 4.1 is technically
one layer above the MAC sublayer. The semantics of the mlmeResetRequest function call
follow the service primitive semantics called out in the IEEE 802.15.4 standard. So, techni-
cally the MLME-RESET.request primitive has been put into motion via the MLME-SAP.
What should happen as a result of the mlmeResetRequest function call's TRUE argument is
that the MAC sublayer gets reset and all of the MAC PIB attributes are reset to their default
values. The ZMD implementation of the mlmeResetRequest primitive issuance also resets the
PHY PIB attributes to their defaults. Every MAC PIB and PHY PIB attribute that matters to
the ZMD44102 is set to defaults in the code contained within Code Snippet 4.2.

49

Chapter 4

Code Snippet 4.2

void mlmeResetRequest(BOOL SetdefaultPIB)
{

if (SetdefaultPIB)
{

phyPIBInit(TRUE); // init phy layer with default values

macPIB.macBeaconPayloadLength = 0;

macPIB.macBeaconOrder = 0x0F;

macPIB.macBSN = 0x00;

macPIB.macCoordShortAddress = 0xFFFF;

macPIB.macDSN = 0x00;

macPIB.macPANId = 0xFFFF; // not associated

macPIB.macShortAddress = 0xFFFF; // no short address

macPIB.macSuperframeOrder = 0x0F;

void phyPIBInit (BOOL defaultValue)
{

if (defaultValue)
{

phyPIB.phyCurrentChannel = 0x00;

phyPIB.phyChannelsSupported = 0x7FF;

phyPIB.phyTransmitPower = ZMD_TX_PWR_0;

phyPIB.phyCCAMode = CCA_THRESHOLD;
}

}

Code Sn~pet 4.2: Th~ ~ a ZMD impbmen~on of ~e MLME-RESEZ~quest primi~ve. The ZMD
code~ decided ~at it was a good idea to go ahead and initialize ~e PHY too. No~ ~at ~e de~ult
MAC Beacon Order and Supe~rame Order values define an unslot~d network.

OK. The C8051F120 crossbar and general-purpose I/O are configured correctly and the
ZMD44102 has a viable SPI connection to the C8051F120. The ZMD44102 is sitting in a
default mode as we have only issued a power-on reset to the device and set its GPD pin to an
inactive state, preventing the ZMD44102 from entering a Global Power Down state. So far,
we have not spoken with the ZMD44102 via the C8051F120's SPI portal.

Our First Steps
We are about to leave our crawling stage and put a step or two together with our first IEEE
802.15.4 data transmission. I didn't mention the words network or ZigBee because we won't be
establishing or joining a network and we won't be utilizing any of ZigBee's sublayer services
to send our little three-letter message. In fact, we don't even have an End Device configured
to listen to us other than the Daintree Networks SNA capture device. Since there is no official
ZigBee or IEEE 802.15.4 network, the visualization feature of the Daintree Networks SNA won't
be able to draw us up a pretty picture of the network. That's OK. The Daintree Networks SNA will
still capture whatever bits we are able to throw out of the ZMD44102 Starter Board's antenna.

50

A Look at the ZMD 900-MHz IEEE 802.15.4/ZigBee-Ready Radio

The code shown in Code Snippet 4.3 is what we will use to send the characters "ZMD" over
channel 1 of the 900-MHz ISM band.

Code Snippet 4.3

void UnslottedTx (void)
{

unsigned char ack;

unsigned char channel;

unsigned char tx data[125];

unsigned char payload length;

unsigned int destpanid, destaddr;

destpanid : 0xBEEF-

destaddr : 0xFEED;

channel = 0x01;

ack =0x01 ;

tx_data[0] : 'Z' ;

tx data[l] = 'M' -

tx_data[2] = 'D' •

payload length = 0x03;

plmeSetRequest (phyCurrentChannel, &channel) •

zmdUnslottedTx(ack, tx_data, payload length, destpanid, destaddr,

AM_SHORT_ADDR) ;
}

}

Code Snippet 4.3. Do you recognize the p/me prefix? PHY Layer Management Entity should have
roiled right off]/our tongue./t looks fike a PHY management pnm/t/ve /5 being used to request the
ZMD44102 to switch to and use channel I. What do you think?

The functions and services provided by the ZMD BCS code package functions, such as the one
you see in Code Snippet 4.4, are responsible for making the little application in Code Snippet
4.3 so simple to conceive. In the IEEE 802.15.4 specification, the PHY is defined with inte-
gral data (PD-SAP) and management (PLME-SAP) SAPs (Service Access Points), which are
logical portals that pass primitives between the PHY and MAC sublayers. Since the PHY's
PLME-SAP and PD-SAP are the only SAPs that join the MAC and PHY sublayers, the MAC
will always pass the final management or data primitive to the PHY sublayer and any data the
PHY needs to pass up the stack will always flow through the MAC. Recall that a primitive in
the true IEEE 802.15.4 sense does not within itself contain any executable elements or ele-
ments that will directly invoke program execution. A primitive simply carries what is needed to
assist in the action that the primitive is intended to initiate. In reality, primitives are simply data
structures that contain information that can be used and built upon by the neighbor sublayer
the primitive is passed to. Instead of passing the PLME-SET.request primitive in the traditional
IEEE 802.15.4 manner, the ZMD BCS code calls an executable function using the primitive
name. The "plme" portion of the plmeSetRequest function stands for PHY Layer Management
Entity. The PLME, as it is called in the IEEE 802.15.4 spec, is responsible for coordinating any

51

Chapter 4

management functions associated with the PHY. If a PLME-SET.request primitive were issued
in the IEEE 802.15.4 by-the-book method, a PLME-SET.confirm primitive would normally be
expected in response. The ZMD plmeSetRequest function returns the status d~ectly to the func-
tion caller in lieu of passing a formal confirmation primitive. If you understand the idea behind
primitives, the ZMD IEEE 802.15.4-like functions should not ruffle your fe~hers. The ZMD
IEEE 802.15.4 shoacut methods work very well and the final results of executing a ZMD BCS
function instead of passing a primitive in the traditional way are identical.

Code Snippet 4.4

PHY_ENUM plmeSetRequest (PHY_PIB_ATTR PIBAttribute, void
*PIBAttributeValue)
{

switch (PIBAttribute)
{

case phyCurrentChannel.
if (*(UINT8*)PIBAttributeValue > i0) return PHY_INVALID_PARAMETER;
phyPIB.phyCurrentChannel = *(UINT8*)PIBAttributeValue;
zmdWriteReg(PHY_CHANNEL, phyPIB.phyCurrentChannel);
break;

case phyChannelsSupported: // this is a read only parameter
return PHY_INVALID_PARAMETER;

case phyTransmitPower-
if (*(UINT8*)PIBAttributeValue > 3) return PHY_INVALID_PARAMETER;
phyPIB.phyTransmitPower = *(UINT8*)PIBAttributeValue;
{

UINT8 temp_value;

temp_value = (zmdReadReg(TX_MODE) & 0xCF)] (phyPIB.phyTransmitPower << 4);
zmdWriteReg(TX_MODE, temp_value);

}
break;

case phyCCAMode- // this is a read only parameter
return PHY_INVALID_PARAMETER;

default : return PHY_UNSUPPORTED_ATTRIBUTE;
}
return PHY_SUCCESS ;

}

Code Snippet 4.4: This ZMD version of a PiME-Set.request primitive services four PHY PIB attributes.
Note that the channels supported and CCA Mode PHY PIB attribute values cannot be altered in the
ZMD BC5 package. However, the ZMD BC5 code is so easy to follow, you can alter the BCS code
to change those read-only PHY PIB attributes to alterable variables.

The important thing to come away with from the code in Code Snippet 4.4 is that, once
the attribute value is placed into its position within the PHY PIB, the zmdWriteReg func-
tion launches the bits across the C8051F120-to-ZMD44102 SPI portal into the associated
ZMD44102 transceiver register.

52

A Look at the ZMD 900-MHz IEEE 802.15.4/ZigBee-Ready Radio

Code Snippet 4.5 takes all of the PAN, attribute and data values we specified in Code Snippet
4.3 and places them into the corresponding ZMD44102 registers. Let's follow the flow of the
code in Code Snippet 4.5.

The ZMD44102 is reset into idle mode and the ZMD44102's threshold trimming and register
values are set to their optimum values by the code contained within the zmdInit function. A
plmeGetRequest function call requesting the current channel is issued within zmdSetPibVal-
ues. If the PHY returns the channel number successfully, the current channel is loaded into
the ZMD44102. A second plmeGetRequest function call issued within zmdSetPibValues
retrieves the transmit power setting, which is also transferred via a zmdWriteReg SPI transac-
tion to the proper ZMD44102 register.

Code Snippet 4.5

MAC_STATUS_ENUM zmdUnslottedTx (BOOL ack, UBYTE *payload, UINT8 payload_
length, UINTI6 dest_pan_id, UINTI6 dest_addrl6, ADDR_MODE addr_mode)
{

UBYTE i"
UBYTE buffer [aMaxPHYPacketSize] ;
UBYTE irq_reason, rx_status, tx_status;

zmdReset (HOLD_TIME_I) ;
zmdInit () ;
zmdSetPibValues () ;

/* set the transmit frame MAC payload length */

zmdWriteReg(MSDU_TX_LENGTH, payload_length);
/* set sequence no */

zmdWriteReg(MHR_TX_SEQ_NO, macPIB.macDSN++)-
if (addr_mode == AM SHORT ADDR)
{

/* set pan id */
zmdWriteReg(MHR_TXDST_PAN_ID_I, LOW_BYTE(dest_pan_id));

zmdWriteReg(MHR_TX_DST_PAN_ID_2, HIGH_BYTE(dest_pan_id))-
/* set dest addr */
zmdWriteReg(MHR_TX_DST_ADDRI6_I, LOW_BYTE(dest_addrl6));
zmdWriteReg(MHR_TX_DST_ADDRI6_2, HIGH_BYTE(dest_addrl6))-
/* set source addr */
zmdWriteReg(MHR_TX SRC ADDRI6_I, LOW_BYTE(macPIB.macShortAddress));

zmdWriteReg(MHR_TX_SRC_ADDRI6_2, HIGH_BYTE(macPIB.macShortAddress));
/* set the transmit frame MAC header frame control ~eld, higher bits */
zmdWriteReg(MHR TX FC 2, FT DST ADDR MODE 16 I FT SRC ADDR MODE 16);

}

/* configure tx" use CSMA */
zmdWriteReg(MAC_TX_CONFIG, MC_CSMA);

if (ack == ACK_REQUEST)
{

/* set the transmit frame MAC header frame control ~eld, using Ack */
zmdWriteReg(MHR_TX_FC_l, FT_DATA I FT_ACK_REQUEST I FT_INTRA_PAN);

53

Chapter 4

/* store ACK and LQI, auto check sequence number enabled *I

zmdWriteReg(MAC_RX_CONFIG, MC_FIFO_STORE_ACK [MC_FIFO_STORE_LQI I MC_ACK_

SQU_NB_CHECK_EN) ;

}

else

(

/* set frame type */

zmdWriteReg (MHR_TX_FC_I, FT_DATA) ;

}

/* write payload data to tx ~fo */

zmdWriteTxFifo (payload_length, payload) ;

/* activate transmission */

zmdWriteReg (MAC_CTRL, MC_TX_ON) ;
**

Code Snippet 4.5: Just plug in the matching stuff from Code Snippet 4.3 and th% should all make
sense to you. We are simply loading up the appropriate ZMD44102 registers and turning on the
transmitter.

As you follow down through the code progression in Code Snippet 4.5, note that only the
three bytes of payload data are actually loaded into the ZMD44102's transmit FIFO. The
ZMD44102 contains an internal frame-forming engine that automatically plucks the required
frame elements from the ZMD44102 registers and melds them with the payload data for
transmission. If the programmer desires to have complete control of the frame-assembly pro-
cess, the ZMD44102's frame-forming automation can be programmatically disabled.

Executing our little UnslottedTX function resulted in the transmission of fourteen bytes, which
were all captured by our ZMD44102 Starter Board turned Daintree Networks SNA 900-MHz
capture module. The Daintree Networks SNA packet decode is shown in Screen Capture 4.1.

!~ Frame I (Length - 14 bytes)

~IEEE 802.15.4

i ~,.Freme Control : 0x8861
; i " 001 = Frame Type: Data (0x0001)

~ ~ 0.., = Security Enabled: Disabled

~ 0 = Frame Pending: No more data

~ I = Acknovledgment Request: Acknowledgement required

! 1 Intra PAN: githin the PAR

! i " "" 00 0 Reserved
i i " " " ' " 10 D e s t i n a t i o n A d d r e s s i n g] l o d e : A d d r e s s ~ieXd conrmins a 1 6 - b i t short address (0x0002)

7

i i 00 Reserved
:L I0 Source Addressing Mode: Address ~ield contains a 16-bit short address (Ox0002)

! i Sequence }hmber: 14
..... Descinatlon PAR Identifier: Oxbee~

..... Destlnatlon Address: Oxt'eed

...... Source Address: 0x4153
÷

~....Frema Cheek Sequence', Correct

oooo, 61 eeoe ,f be ed fe S3 41 ~ ~ a.. o > , , - S A ~ . .

Screen Capture 4. 1Again, just match up the familiar items with what we've been discussing
and that light bulb hanging above your noggin should illuminate.

54

A Look at the ZMD 900-MHz IEEE 802.15.41ZigBee-Ready Radio

Let's analyze the contents of Screen Capture 4.1. The actual frame-length calculation, which is
gathered from the PPDU (PHY Protocol Data Unit) header area, is correct. Including the pair
of CRC bytes that are shown as dots at the end of the hex dump, I count 14 octets in the hex
dump area of Screen Capture 4.1.

The Frame Control Word resides inside of the MAC protocol data unit (MPDU) header, which
is identified by MHR (MAC header) in the IEEE 802.15.4 specification. I added the FF_IN-
TRA_PAN bit to the low byte of the Frame Control Header in Code Snippet 4.5 as there will be
no intra-PAN communications in our simple little IEEE 802.15.4 network. My code change is
reflected by the Intra PAN bit value shown in Capture 4.1. Turning on the intra-PAN bit in the
Frame Control word eliminates two bytes (Source PAN Identifier) from the addressing fields.

The broken-down Frame Control word tells us that the Destination Addressing and Source
Addressing Modes are 16 bits in length, which means that 16-bit short addresses will be used
instead of the 64-bit IEEE addresses. Most every IEEE 802.15.4 and ZigBee implementation
uses the 16-bit addressing modes rather than the IEEE 64-bit addressing modes as the less stuff
you're sending, the more power you're saving. Do the Destination PAN Identifier and the Desti-
nation Address values look familiar? How about the Source Address value? According to Code
Snippet 4.2, the source Address should be 0xFH~'F as macPIB.macShortAddress = 0xI~'FFF is
defined. Well, before I compiled the UnslottedTx application, I changed the macPIB.macShort-
Address value in the MAC PIB to read ASCII "SA" for Source Address. The MAC PIB (PAN
Information Base) is kept inside the mlmeResetRequest function in the BCS code. If you fol-
low the IEEE 802.15.4 rule book, which the BCS is doing in its own way, the logical location
of the MAC PIB should be inside of the MLME (MAC Sublayer Management Entity), which is
part of the MAC sublayer.

It looks like it took me fourteen tries at sending and capturing this frame (it did), as the Se-
quence Number is greater than one. Even though we asked for an acknowledgment to be sent
upon reception of this frame, there was no End Device to receive our data and, thus, an ac-
knowledgment from a nonexistent End Device cannot be generated or transmitted.

The frame captured in Capture 4.1 is about as raw and basic as it gets. There is absolutely
nothing ZigBee in this gaggle of bits at all. Everything you see in Screen Capture 4.1 is IEEE
802.15.4 PHY and MAC related. All we did here was stuff the Frame Control bits, make up
some addressing words, stick a text message behind it all and cram it into the ZMD44102's
registers and transmit FIFO. The ZMD44102 added the necessary frame encapsulation pieces
(preamble, SFD (Start of Frame Delimiter), CRC), formed up the IEEE 802.15.4 frame and
pushed the whole mess out the ZMD44102 Starter Board's antenna.

No rules were broken and there is absolutely nothing wrong with the frame we just aired. As
long as the receiver and the receiving application know what to do with the incoming frame,
who cares about its format? For instance, the receiver could have simply parsed or counted
through the Frame Control and addressing fields of the IEEE 802.15.4 frame we sent and
picked out what it wanted to use of the text message. Or, if there were more than one receiver,
the address information could have also been parsed and logically analyzed to determine who

55

Chapter 4

the message was really intended for. That's essentially what a ZigBee stack does, but it does it
quite a bit more elegantly.

Our First Network...Sorta
Let's be a bit more elegant as well. I say we build up a simple two-node unslotted network
and send a meaningful byte of data over it. Recall that the term "unslotted" means that the
little ad hoc IEEE 802.15.4 network we're about to build will not use Beaconing, which
means there will be no special, exclusive or repetitive time slots allocated for data transfer
timed to a recurring Beacon signal. In other words, no superframes and no GTSs. If the coast
is clear, fire when ready.

All we'll really need to do is to determine if we want an acknowledgment of the transmission,
which we do, identify some specific transmitter and receiver PAN and node addresses, which
we have, specify the length of the data we wish to send--did that too---and plug in our data.
You've already seen that the ZMD folks have done most of the work for us already in the
BCS code. Once we have nailed down who, what and where, all we have to do is call upon
some of the functions included within the BCS. We will need another ZMD44102 Starter
Board to act as a receiver. That means we will also need some receiver code. The ZMD44102
Starter Board receiver node code is notated in Code Snippet 4.6.

Code Snippet 4.6

void UnslottedRx (void)
{

UINT8 channel ;
UBYTE data_buffer [aMaxPHYPacketSize] ;
UBYTE i, j ;

channel = 0x01;
plmeSetRequest (phyCurrentChannel, &channel) ;
while (i)
{
if (RX_FAILED == zmdUnslottedRx (&data_buffer, TRUE))

break;

else
{
wai t_ms (5) ;
for (j=0 ; j<20 ; j++)
i = data_buffer[j];

P3 = data_buffer[10] ;
}

}

Code Snippet 4.6: There's not much you can't get your arms around here. A good guess for the
value of the aMaxPHYPacketSize variable i5 127. What do you think?

The Boolean variable auto_ack in Code Snippet 4.7 is indeed TRUE as things get turned over
quickly to the zmdUnslottedRX function. Thus, the very first thing that is done to the receive

56

A Look at the ZMD 900-MHz IEEE 802.15.4/ZigBee-Ready Radio

configuration is to turn on the auto acknowledgment bit and allow the LQI (Link Quality
Indication) word to be stored behind the packet in the ZMD44102's receive FIFO. Then, the
ZMD44102's transmit success interrupt trigger is disabled.

Code Snippet 4.7

MAC_STATUS_ENUM zmdUnslottedRx (UBYTE *data_buffer, BOOL auto_ack)
{

UBYTE rx_status, irq_reason;
zmdReset(HOLD TIME I) ; zmdInit() ;

zmdSetPibValues()-
/* enable frame ~iter- frames with CRC failure are ignored */

zmdWriteReg(MAC_FILT_CONFIG, MFC_LVLI_FILT_EN);
if (auto ack == TRUE)
{

zmdWriteReg(MAC RX CONFIG, MC AUTO ACK EN I MC FIFO STORE LQI);
/* no interest in ack sending status */

zmdWriteReg(IRQ_MASK 2, MASK TX SUCCESS);
}

else
zmdWriteReg(MAC_RX_CONFIG, MC_FIFO_STORE_LQI);

/* switch the receiver on */
zmdWriteReg(MAC_CTRL, MC_RX_ON);
/* wait for the IRQ and get its reason, blocking function */

irq_reason = zmdWaitForIRQ();
/* get the receive status */
rx_status : zmdReadReg(MAC_RX_STATUS);
/* check the receive status */

if ((rx_status :: MS_RX_DATA) I I (rx_status :: MS_RX_DATA_ACK))
{

/* get the received data from the rx ~fo and stored it to the data_
buffer */

if (zmdGetRxPacket(data buffer)) {
/* received data is in the data_buffer; leave receive function */
return SUCCESS;

}

else
{

zmdWriteReg(MAC_CTRL, MC_TRX_OFF);
return RX_FAILED;

}

zmdWriteReg(MAC_CTRL, MC_TRX_OFF);
return SUCCESS-

}

Code Sn~pet 4.7: Pay spec~l at~ntion to ~e frame N~fing. We a~ able to send and receive
wiNout ~gard to addressing as Ne MAC s on~ examining the CRC of each incoming frame.

57

Chapter 4

The receiver gets activated and as soon as some valid data (good packet CRC) gets through to
the receive FIFO, control is returned to the UnslottedRX function. The 5mS wait is there to
allow time for the link to turn around and the receiver MAC to post and transmit an acknowl-
edgment message. I allowed 5 ms here but it really only takes about 3 ms for this to happen.
The zmdGetRxPacket function has already transferred the data from the receive FIFO to the
data_buffer array. So, all we have to do is parse through the data_buffer array and do with
its contents as we please. I know that the actual data payload is at offset 0x0A as there is a
packet length byte at offset 0x00 of the data_buffer array. Just to make something physical
happen, I dump the payload data byte into the receiving ZMD44102 Starter Board's LED I/O
port. You can see the contents of the data_buffer array after the reception of the packet from
our transmitting node in Screen Capture 4.2.

============================= I
t O×2b

OxO0 I I ~ ~ ~l~''~ C : 0 x 0 0 0 ~ E ~ ~[OV A " R 0

~c I ~ OxOOOC

i

,3 0 x T e F8 MOV R 0 .A i
l ' ~ 0~ I£ C','rpADD : i

i r5 [~05 I~C : 0x000D E9 MOV A,RI i
i ,6 o.00 I ~ i C : 0 x 0 0 0 E 33 RLC A
i .,7 0~. i ~ i c . 0 ~ o 0 0 F ~6 ~ov A.~o !
i-~ s., -!~c:0.0010 33 RrC A !
...... I ~ C : 0 ~ 00 i X 6011 J Z C : 0024

: l~C:oxooi3 o4 rNC A i
i~C:0x0014 60F0 Jz c:ooo6
i~c:0~0Ol6 ~D Mov A.RS ~!

~]' " " " " I"~--'l]l I I l ?] l]~ll'] l '.'. l : " i(]''i' " " -- -- 'i I lv~ I]]I" :.~ "~l "ll "l l~. - l] l?]] l'I'~::l?'? I ~ [I~II:'L --" :~ 14 AGDI-Msg: Break set at 0xFF005154 ~ ;xl
*** AGDI-Msg: Break cleared at 0xFF005154 [-3 data_bt~f~ i X:0M]f80031...] i ...
*** AGDI-Mss: Break cleared at 0xFF005154 [0] 10xOA
*** AGDI-Ms s : Reset successful. [1] i 0~I
* * * AGDI-Mss: Reset successful. :; [21 [0~88
*** AGDI-Mss: Break at 0xFF005154 will take effect after t [3] [0 ~ 0 1

*** AGDI-Ms s : Break cleared at 0xFF005154 14] ! O~F
*** AGDI-Mss: Reset successful. [5] i O~BE
*** AGDI-Mss: Break set at 0xFF0O5154 [~] ~ ~ D
*** AGDI-Mss: Break cleared at 0xFF005154 : [7] i0~E
*** AODI-Mss : Break set at 0xFF00515A ~ [8] ~ 0x53
*** AGDI-Msg: Reset successful. [9] i [~41

Oi &-:< " " : i _ _ •

• [1 1 1 0 x ~ 5

. . - . . - . .- , : w

Screen Capture 4.2: This is kinda busy but the proof is in the array data pudding.

Take a look at the Sequence Number in Screen Capture 4.3. It matches up with the Sequence
Number in Screen Capture 4.2 and the sequence number in Screen Capture 4.4. We success-
fully twisted all of the necessary buttons and knobs (the acknowledge request bit set in the
Frame Control word and the AutoAckEnable bit set in the receive configuration) to allow the
ZMD44102's MAC to generate the 5-byte acknowledge message shown in Screen Capture 4.3.

58

A Look at the ZMD 900-MHz IEEE 802.15.4/ZigBee-Ready Radio

P~cket t)ecode i- ii ~ {I

....... :': : • i : i ̧! ; iii C12 ::<<::i:i!: ¸ :: :iii:ii::i:::!ii: i i:::(:/i: :!< : ::C: : , i ! : <: : i:i!!. _ !: : .

Frame 2 (Length -- 5 bytes)

i Ti,,e Stamp: 15:38:03.949

Frame Lengr~h: 5 bytes

Capture Length: 5 bytes

Link Ouali~y Indication: 231

~ IEEE 802.15.4

Frame Control: OxO002

............. 010 = Frame Type: Ackno~led~en~ (0xO002)

. 0 Security Enabled: Disabled

• 0 Frame Pending: No more da~a

• 0 = Ackno~ledq~en~ Request: Acknowledgement not required

• 0 Intra PAN: No~ within the PAN

. 00 0 Reserved

..... 00 Destination Addressing Mode: PAN identifier and address field are not present (0x0000)

,. O0 Reserved

: 00 Source Addressing Mode: PAN identifier and address field are not present (0x0000)

:e,$1ence N~u~,e r :

Frame Check Sequence: Correct

oooo~ 02 oo 0~ ~i . .
~11]l i J i 1]]1]1111 Ji~i]~J3]~il ~i~ ~ i~i .

Screen Capture 4.3. This acknowledgment message is automatically generated by the ZMD44102
MAC in response to the data frame received from the transmitting node in our dual-node IEEE
802.15.4 network.

I hope you're wondering why all of the PAN, destination and source addresses are the same
and everything works just fine. Well, all we really have here is a simple peer-to-peer network.
There are no official PAN Coordinators or End Devices and there is no ZigBee NWK layer to
assist in the formation and operation of our little juvenile delinquent network. The need for
address management was eliminated by this line of code from Code Snippet 4.7"

/* enable frame filter, frames with CRC failure are ignored */

z mdWr i t e R e g (MAC_F I L T_C ONF I G, MF C_LVL I_F I L T_EN) ;

There are three levels of MAC filtering supported by the ZMD44102. Level 1, which is
invoked by the code I just showed to you, only checks the incoming frames for a good
CRC. Therefore, any IEEE 802.15.4 frame with the correct CRC will be allowed into the
ZMD44102's receive FIFO. Level 2 filtering is not enabled and if it were the frame type,
address and PAN identifier would be scrutinized. The functions provided by Level 3 frame
filtering are as follows:

Reject all nonacknowledge flames while waiting for an acknowledgment

Reject all nonBeacon flames in Beacon track mode during the Beacon scan phase

Reject all nonBeacon flames during active and passive scan

Reject all noncommand flames during orphan scan

5 9

Chapter 4

By eliminating frame filtering at Levels 2 and 3, we put the ZMD44102 MAC into semipro-
miscuous mode.

~-Fraae I (Lengl~ = 12 bytes)
• i-, Time Strap: 15: 38- 03.947

i, Frame Length: 12 bytes
i" Capture Length: 12 bytes . .

i !i... Link Quality Indication: 248

8 .~ IEEE 802.15.4

i ~Fz :~e Control : 0x8861 • .
i i... 001 = Freae Type: Data (OxO001)

i 0 Security Enabled: Disabled

i.,.. 0 Fraae Pending: No more data

i - ' 1 Acknowledgment; Request: Acknowledgement; required

i 1 = I n t r a P ~ I : l l i r 2 ~ n r .he PAN

i 00 0 Reserved

i ~ 10 D e s t i n a t i o n Address ing Mode: Address f i e l d c o n t a i n s a 1 6 - b i t s h o r t address (0 x 0 0 0 ~)

. i i O0 Reserved
~; C,.,10 Source Addressing Node: Address f i e l d cont.ains a 16 -b i t shor t address (0x0002)
i" Sequence Number: 1

i Destlnatlon PAN Identifier: 0xbeef
:~:-Destlnatlon Address: Oxfeed

i ,.~source Address: 0x4153

i.,. Fzaae Check Sequence: Correct
IAC P,~Fi,:,'~~.: 5

• ~ o>=-si~.

Screen Capture 4.4: Out of all of the twelve bytes sent, only one byte is of importance to us.

The lone MAC payload byte (0x55) shown in Screen Capture 4.4 is singled out and written to
the ZMD44102 Starter Board's LED general purpose I/O pins.

We're On Our Way
We've taken our first couple of steps towards walking in ZigBee and IEEE 802.15.4 network
land. Be sure to get very comfortable with all of the IEEE 802.15.4 concepts we've covered
thus far, because we're going to step it up a notch in the next chapter.

About ZMD
ZMD was founded in 1961 and over the past 45 years it has played a significant role in the
rapid development of the microelectronics industry. The company is said to be the cradle of
the Saxon microelectronics industry and is a founder of the largest European semiconductors
cluster, "Silicon Saxony". That's nice. My experience with ZMD has been through a relation-
ship with William Craig, who supplied the ZMD content for this book. Here's yet another
human that cares about you if you care about 900-MHz IEEE 802.15.4 radios. Bill actually
returns phone calls and responds to emails. Thanks, Bill. You can find Bill's moniker amongst
the ZigBee Alliance elite.

60

A Look at the ZMD 900-MHz IEEE 802.15.4/ZigBee-Ready Radio

By the way, the reggae king that paved the way for Bob Marley was Desmond Dekker. Des-
mond was into ska as well. If you don't know what ska is, try listening to some No Doubt
music, as that Gwen Stefani-fronted band is heavily influenced by ska. Desmond's big hit
was done with his backing band, The Aces. The song was called Israelites and was released in
1969. I was to become an AM radio DJ the following year. I played the hell out of Desmond's
Israelites on my nightly show. Desmond left us on May 25, 2006.

Here's an easy one for you. Who is considered the Guy Lombardo of Halloween?

61

This Page Intentionally Left Blank

CHAPTER S
A tmel Does IEEE 802.15. 4 and ZigBee Too

Atmel does ZigBee and IEEE 802.15.4 too. In this chapter we'll explore ZigBee and IEEE
802.15.4 from an Atmel perspective. I have five Atmel Z-Link radio modules that we can have
some fun with. One of them agreed to a photo op and posed for Photo 5.1. So, let's open the
ZigBee/IEEE 802.15.4 door that says "Atmel."

Photo 5. 1: Just hook into the Z-Link module's 2mm female headers to get at the
ATmega 1281 's free general-purpose I/0 pins and access the AT86RF230 your way. The
other side of the Z-Link module can be seen in Photo 5.2.

The Atmel AT86RF230
Low power, low cost, IEEE 802.15.4-compliant and ZigBee-ready are all words that de-
scribe the Atmel AT86RF230 IEEE 802.15.4-compliant transceiver. The idea behind the
AT86RF230 is to provide the ZigBee or IEEE 802.15.4 network programmer/designer a no-
brainer building-block path between a microcontroller's SPI pins and the IEEE 802.15.4 radio
antenna hanging off of the AT86RF230.

63

Chapter 5

In my opinion, RF design is black magic that is left to those that are in league with the beings
of the underworld (you know, the Devil). In the case of the AT86RF230, all of the critical RF
components with the exception of the antenna, crystal and decoupling capacitors are integrat-
ed into the AT86RF230 chip. So, you don't have to hold a degree from Devil U to put some
IEEE 802.15.4 bits in the air with the AT86RF230.

The Z-Link AT86RF230 modules we will be using came as part of the Atmel ATAVR-
RZ200 IEEE 802.15.4/ZigBee Demonstration Kit. In addition to five ATmega1281V-based
AT86RF230 transceiver modules, the ATAVRRZ200 IEEE 802.15.4/ZigBee Demonstra-
tion Kit includes a Z-Link master module that is equipped with a very nice dot-matrix LCD
and a socket for an AT86RF230-based Z-Link transceiver module. The ATAVRRZ200
IEEE 802.15.4/ZigBee Demonstration Kit Z-Link master module also provides hook-ups
for programming and debugging the Z-Link master module's ATmega128 and the Z-Link
module's ATmega1281V using an Atmel JTAGICE mklI or the ATAVRISP mklI program-
ming dongle. As a convenience to the Z-Link developer (and if you just plain don't have one),
the ATAVRRZ200 IEEE 802.15.4/ZigBee Demonstration Kit comes with an ATAVRISP mklI
programming dongle. The ATAVRRZ200 IEEE 802.15.4/ZigBee Demonstration Kit Z-Link
master module is lounging with a piggy-backed Z-Link module in Photo 5.2.

Photo 5.2: All of the fun stuff is crammed undemeath the LCD. The Z-Link module
piggybacks onto the Z-Link master controller board and can be seen at the extreme right
of the shot. Everything is battery powered. However, the Z-Link master controller board
has the capability of being mains powered.

A standard microcontroller SPI pin arrangement and four general-purpose I/O connections
are all you need for access and control of the AT86RF230. The single-chip RF transceiver
provides a complete radio interface between your favorite SPI-equipped microcontroller and
the antenna connected to the AT86RF230's power amp.

64

A tmel Does IEEE 802.15.4 and ZigBee Too

As you can see in Figure 5.1, the AT86RF230 can be logically divided into an analog do-
main and a digital domain. The AT86RF230 transmits signals that are modulated using the
O-QPSK method with half-sine pulse shaping and 32-length block spreading. O-QPSK (Off-
set-Quadrature Phase-Shift Keying) should ring a bell, as we discussed it in Chapter 3. Recall
also that I recommended that you commit the entire set of 32-bit chip codes to memory. So,
you shouldn't have to backtrack to refresh your memory with the O-QPSK concepts. Note the
quadrature I and Q signals that are associated with O-QPSK in the AT86RF230's receive path
in Figure 5.1. Since the I/Q pair appears in the receive chain of the AT86RF230, you can bet
that the I/Q phase relationship method is also used in the AT86RF230's transmit chain.

RFP

RFN

IRQ

SEL

MLSO

SCLK

MOSI

CLKM

SLP_TR

RSTN

Figure 5. 1 This is a simplified block diagram of the AT86RF230. Considering you've been exposed
to it at least twice now, you should be able to hold your own in any I/Q modulation conversations
that may pop up at the cocktail party.

AT86RF230 Modes of Operation
The AT86RF230 can operate in a number of modes that are suitable for supporting ZigBee
operations. The AT86RF230 operating modes are controlled by only two signal pins and
the SPI portal. When it comes to configuring an AT86RF230 operating mode two registers,
TRX_STATE and TRX_STATUS, take the spotlight. The SPI feeds the TRX_STATE register
and the success or failure of state or configuration changes is reflected in the TRX_STATUS
register, which is also queried by the host microcontroller via the SPI portal.

The AT86RF230's active-high SLP_TR pin is used to enter SLEEP mode. It is also used to
wake up the AT86RF230 transceiver. As you would imagine, SLEEP mode is the ultimate
low-current consumption state of the AT86RF230. In fact, the only currents flowing during
AT86RF230 SLEEP mode are leakage currents.

65

Chapter 5

The AT86RF230's transceiver is forced into TRX_OFF mode by the AT86RF230's active-low
RST pin unless the AT86RF230 is in the P_ON mode when RST is asserted. The relationship
of P_ON to RST is depicted graphically in Figure 5.2.

FORCE_TRX_OFF ~ii',
(All modes except SLEEP) (Aif modes except P ON)

/

~'!~! RX ON

PLL_ON

TX__START
SLP TR=1

Legend
Dark: SPI Write to Register TRX._STATE (0x02)
Light: Control signals via tC Pin
Reverse

Figure 5.2: This figure seems very busy until you calm down and follow through it logically.
All roads lead into and out of TRX_OFF.

Although the TRX_OFF and FORCE_TRX_OFF commands both take one down differing
paths to an identical outcome, their resultant operation depends on the current state of the
AT86RF230. If the AT86RF230's transceiver is in the BUSY_RX or BUSY_TX state, issuing
FORCE_TRX_OFF will interrupt the receive or transmit process and force the AT86RF230
transceiver into the TRX_OFF state. Issuing a TRX_OFF command while the AT86RF230 is
in a BUSY_TX or BUSY_RX state will not immediately kill the transmit or receive process
that is in motion. Instead, the TRX_OFF command that was issued during the busy period is
queued until the frame that is currently being transmitted or received is completely serviced.
When the current transmit or receive operation is complete, the TRX_OFF command is
executed. Another look at Figure 5.2 shows no direct TRX_OFF command paths between the
BUSY_RX, BUSY_TX and TRX_OFF modes.

Let's walk through the rest of the basic AT86RF230 modes. As we fall through, bear in mind
that any commands involving SLP_TR and RST are a result of a logic level applied to the as-
sociated AT86RF230 command input pin.

66

A tmel Does IEEE 802.15.4 and ZigBee Too

As you can plainly see in Figure 5.2, there is only one way to leave the P_ON mode. A
TRX_OFF command must be issued by the host microcontroller via the SPI to transition
from the initial power-on mode to the TRX_OFF state. When the AT86RF230 is powered
up, the AT86RF230's crystal oscillator is activated and 128 laS later a master clock signal
appears at the AT86RF230's CLKM pin. The small delay between crystal oscillator activa-
tion and the appearance of a clock signal at the AT86RF230's CLKM pin allows time for the
AT86RF230's crystal oscillator to stabilize.

If the host microcontroller uses the CLKM signal as its system clock, the host microcon-
troller is said to be operating in synchronous mode with the AT86RF230. Pull-up resistors
are connected to the AT86RF230's RST and SEL I/O pins and pull-down resistors are con-
nected to the AT86RF230's SCLK, MOSI and SLP_TR pins. All of the pulling resistors are
active in the P_ON state to keep logically undefined microcontroller general-purpose I/O
pins from placing the AT86RF230 into an unwanted mode upon microcontroller power-up.
The AT86RF230's pull-ups and pull-downs will be disabled when the AT86RF230's state is
changed to TRX_OFF. Therefore, for proper operation of the AT86RF230 it is the duty of the
microcontroller firmware to pull SLP_TR low and RST high before leaving the P_ON state.

Once the AT86RF230 is placed into the TRX_OFF state, the raising or lowering of the
AT86RF230's SLP_TR signal pin will force the AT86RF230 to enter SLEEP mode or
exit SLEEP mode, respectively. Entering AT86RF230 SLEEP mode totally disables the
AT86RF230. Nothing electronic within the AT86RF230 functions during SLEEP mode,
which explains why only leakage currents flow while the AT86RF230 sleeps. You can only
put the AT86RF230 to sleep via the SLP_TR pin while in TRX_OFF mode and you can only
wake up the AT86RF230 by lowering the SLP_TR pin to a logic 0 (zero) or resetting the
AT86RF230 by bringing the AT86RF230's RST pin low. Applying a low to the AT86RF230's
RST pin to exit sleep mode sets the AT86RF230's SPI and configuration registers to their
default values and puts the AT86RF230 into the TRX_OFF state.

When the AT86RF230 is in the TRX_OFF state, the AT86RF230's SPI and the crystal oscil-
lator are active. The digital domain of the AT86RF230 is also available as the AT86RF230's
internal 1.8V voltage regulator is enabled. All pulling resistors are inactive while the
AT86RF230 is in the TRX OFF state.

The AT86RF230's analog voltage regulator is enabled when the AT86RF230 leaves the
TRX_OFF state and enters the PLL_ON state. Upon activation, the PLL will eventually lock
onto the receive frequency. Once this happens, an interrupt request will be signaled by the
AT86RF230's IRQ pin. The host microcontroller can use this interrupt request signal as noti-
fication that the AT86RF230's PLL has successfully started and locked.

Entering the PLL_ON state from the TRX_OFF state is one of two paths that can be directly
taken towards transmitting and receiving. An RX_ON command issued via the SPI pipe
will move the AT86RF230 from the TRX OFF state to the RX ON state. Once the RX ON
state is reached, the AT86RF230's analog and digital receiver blocks and the PLL frequency
synthesizer are energized. The AT86RF230 is in a listen mode at this point. When a preamble

67

Chapter 5

is detected, the digital receiver is activated and the AT86RF230's mode moves to BUSY_RX.
If the microcontroller is using the CLKM signal for any reason, it will see an active CLKM
signal in both the RX_ON and BUSY_RX modes.

The AT86RF230's basic modes make the general assumption that the AT86RF230's CLKM
output is driving the host microcontroller in synchronous. That may or may not be the case
depending upon the design. The idea behind having the host microcontroller use the CLKM
signal is to leave the AT86RF230 on watch while the microcontroller sleeps. If the microcon-
troller is indeed being clocked by the AT86RF230, that's where the RX_ON_NOCLK State
becomes very useful. RX_ON_NOCLK state is entered when SLP_TR is set to a logical high
while the AT86RF230 is in the RX_ON mode. After SLP_TR goes high, the host microcon-
troller has 35 AT86RF230 clock cycles to do whatever it has to do to prepare for and go to
sleep. Once the AT86RF230 goes into full-blown RX_ON_NOCLK mode and a frame creeps
in while the microcontroller is snoozing, the AT86RF230 will produce an RX_START inter-
rupt request. The AT86RF230 will then restart the clock signal at its CLKM pin and fall into
the BUSY_RX state. When the dust settles and the incoming frame has been processed, the
AT86RF230 will issue a TRX_END interrupt request via its IRQ pin and the AT86RF230's
transceiver will enter the RX ON state.

At this point, to reenter the Rx_ON_NOCLK state from the RX_ON state, the SLP_TR
pin must be reset to a logical 0 (zero) before being raised again to a logical 1, which will
transition the AT86RF230 back into RX_ON_NOCLK state. As you have probably already
deduced, resetting the AT86RF230's SLP_TR pin to 0 (zero) while in the RX_ON_NOCLK
state will return the AT86RF230 to the RX ON state.

From the TRX_OFF mode's point of view, the PLL_ON state is the jump-off point for initiat-
ing a transmission. The PLL_ON mode is also an indirect path that can be taken from the
TRX_OFF mode to perform a receive operation as well. Once the PLL_ON state is entered, a
transmission can be started by raising the SLP_TR pin to a logical 1 or sending a TX_START
SPI command. No matter which way you go, the AT86RF230 will enter the BUSY_TX mode.
The AT86RF230 does its thing during the BUSY_TX mode and when the frame has been
transmitted, the AT86RF230 will return to the PLL_ON mode. If the SLP_TR pin was used
to kick off the transmit operation, then the SLP_TR pin must be reset to 0 (zero) before being
raised to a logical 1 to perform another transmit operation.

Stepping It Up a Notch
We've been talking about things like CSMA-CA and address filtering. Well, now is the time to
put some faces on those words and acronyms I've been bantering about in the previous chapters.

The AT86RF230 supports two additional extended automatic modes, TX_ARET_ON and RX_
AACK_ON, that augment the basic AT86RF230 modes we've just discussed. As you can see in
Figure 5.3, the TX_ARET_ON and RX_AACK_ON modes are accessed via the basic RX_ON
and PLL_ON states using SPI commands. The extended modes cma also be accessed directly
from the TRX_OFF basic mode using SPI commands. Return paths, which are also SPI com-
mands, from the AT86RF230's automatic modes return the AT86RF230 to basic mode operation.

68

Atmel Does IEEE 802.15.4 and ZigBee Too

TX_ARET_ON is Atmel-ese for transmit/auto-retry. The TX_ARET_ON extended mode
enables the transmission of a frame that has been, by way of the AT86RF230 MAC, auto-
matically appended with a CRC. If the channel is busy and a transmission is pending or an
expected ACK was not received following a transmission, the TX_ARET_ON mode will
use the unslotted CSMA-CA algorithms and retry the transmit operation. A TX_ARET_ON
interrupt request containing an exit code is issued upon the completion of a TX_ARET_ON
transaction. The interrupt request exit code indicates the status of the transaction (success, no
ACK, channel busy, etc.).

FORCE TRX OFF / \ i ~ - - ' - , ~ ~.~,~1!~:: RST=O

(All modes except SLEEP) (~ , I f , ,odes exce.p~ P.. ON)

RX ON

TX_START

z,

°1 ' " From ~' ~ ~ From
IX_OFF i ~ i ~ TRX_OFF

~..~ &.!

Legend
Dark: SPI Write to Register TRX__STATE (0x02)
Light,~ Control s~Tr~/s v~,:~ iC Pm
Reverse

Figure 5.3: All we've done here is to add entry and exit pathways between the RX_ON and
PLL_ON states to the AT86RF230"s extended operating modes.

As the RX implies, the RX_AACK_ON (receive/auto-acknowledge) extended mode has to
do with the reception of IEEE 802.15.4 frames. The RX_AACK_ON checks the CRC of

69

Chapter 5

incoming IEEE 802.15.4 frames and performs an address-filtering function. If the incoming
frame has a good CRC, passes address filtering and an acknowledgment for the frame was
requested, the RX_AACK_ON mechanisms will automatically transmit an ACK on behalf of
the received frame.

An interrupt request is issued if a frame successfully gets by the AT86RF230's address filter.
The automatic acknowledgment transmitted by the RX_AACK_ON mode is received by a peer
node that should be operating in the TX_ARET_ON mode. The peer receiving the automati-
cally generated ACK from the RX_AACK_ON node will check the incoming ACK for validity
using the incoming ACK's CRC and sequence number. The sequence number of the incoming
ACK frame should match the sequence number of the frame that requested the ACK.

Using the TX_ARET_ON and RX_AACK_ON extended modes is very much like using
the AT86RF230's basic modes. In the extended modes, the TRX_STATE and TRX_STA-
TUS registers are still the focal points of the SPI command structure. If you associate
the RX_ON mode with the RX_AACK_ON mode, the RX_ON_NOCLK state with the
RX_AACK_ON_NOCLK state, the PLL_ON mode with the TX_ARET_ON mode and
the BUSY_TX state with the BUSY_TX_ARET state in Figure 5.3, you will notice that
the results of using the SLP_TR pin logic levels in the basic mode and extended mode are
identical. Just as we did with the basic mode, let's stroll through the automatic (extended
operation) mode.

AT86RF230 Extended Mode
Recall that our very first pseudo-network using the ZMD44102 Starter Boards totally ignored
the address fields of the IEEE 802.15.4 frames. That wasn't because the ZMD44102 trans-
ceiver was not capable of address filtering. It was a result of our turning off the ZMD44102's
address-filtering capability in the application code. We actually loaded up all of the necessary
addressing information into the ZMD44102 registers but we never allowed the ZMD44102
to use it. We did, however, enable and use the automatic ACK capability of the ZMD44102
transceiver. The point I 'm trying to make here is that radios from differing manufacturers that
are truly IEEE 802.15.4-compliant will have similar knobs to turn and switches to throw to
allow them to interoperate on IEEE 802.15.4 and ZigBee networks. This is one of the reasons
why ZigBee will be an even bigger success story as time passes.

It's rather obvious that the AT86RF230's address-filtering engine is enabled as RX_AACK_
ON mode listens for incoming frames and parses incoming frames for frame type and
destination address. An AT86RF230 operating in RX_AACK_ON mode will reject any frames
with bad CRC bytes or an invalid destination address. An invalid destination address is like re-
ceiving mail that is not addressed to you. Hopefully, you give your incorrectly addressed mail
back to the postman instead of trashing it like IEEE 802.15.4-compliant radios do. If a frame
is accepted, a TRX_END interrupt request will be generated and the host microcontroller can
then upload the frame. If the frame is capable of being acknowledged under IEEE 802.15.4
rules and the frame has requested an acknowledgment, the RX_AACK_ON engine will auto-
matically send an ACK 12 symbol periods following the end of the received frame.

70

A tmel Does IEEE 802.15.4 and ZigBee Too

Transmission of IEEE 802.15.4 flames using the CSMA-CA algorithms that have been pre-
viously downloaded from the host microcontroller is the primary task of the TX_ARET_ON
mode. Raising the SLP_TR pin high for a minimum of 1 ps starts a CSMA-CA transmis-
sion in TX_ARET_ON mode. The wording in the AT86RF230 datasheet does not mention
the ability to kick off a CSMA-CA transmission in TX_ARET_ON mode using the SPI.
However, the AT86RF230 state table in Figure 5.3 clearly indicates that a TX_START SPI
command will also send the AT86RF230 into the BUSY TX ARET state from TX ARET
ON mode. In any case, it is recommended that the data to be transmitted be downloaded
from the host microcontroller before the CSMA-CA transmission process is started. You can
also hold off and download the data to be transmitted while the AT86RF230 is clocking out
the preamble bits if you have time to do so. If a clear channel is detected, the AT86RF230
will transmit the frame containing your preloaded data. If the surveillance of the transmit-
ting channel detects traffic, the AT86RF230 transceiver will execute the CSMA-CA back-off
algorithm and retry the transmission until the maximum number of retries has been exhaust-
ed. If the maximum retry count is reached and no successful transmission has occurred, the
AT86RF230 transceiver will abort the transmission and indicate a transmission failure via a
TRX_END interrupt request. The TRX_STATUS register's bits will be modified to convey
the reason for the failure to the host microcontroller, which in this case would be CHAN-
NEL_ACCESS_FAILURE.

As the AT86RF230 transceiver is transmitting the frame In TX_ARET_ON mode, it parses
the outgoing frame to determine if an ACK reply is expected. If an ACK reply is expected,
the transceiver switches into receive mode following the completion of the transmission and
waits a specified time for the ACK reply frame. If no ACK reply is received within the ACK
response time limitation, the entire CSMA-CA transmission process is repeated. Again, if
the maximum retry limit is reached without a successful transmission/ACK reply sequence,
the AT86RF230 aborts the transmission and posts a failure reason code of NO_ACK via a
TRX_END interrupt request. If all goes as designed, a TRX_END interrupt request is gener-
ated and the TRX_STATUS register will be updated with a SUCCESS bit pattem.

The RX_AACK_NOCLK mode of operation is identical to the basic RX_ON_NOCLK mode
with the exception of address filtering. In RX_AACK_NOCLK mode the AT86RF230's
transceiver listens for the Start-of-Frame-Delimiter within an IEEE 802.15.4 frame. When a
Start-of-Frame-Delimiter is detected, the AT86RF230 enters the BUSY_RX_AACK_NOCLK
State and begins to receive the incoming frame. At this time the AT86RF230's CLKM pin is
devoid of signal and if the host microcontroller is synchronizing with the AT86RF230 CLKM
signal, it is most likely sleeping at this time. If the incoming frame passes the address-filter
test, the AT86RF230 jumps into the BUSY_RX_AACK state, which enables the clock signal
out of the AT86RF230's CLKM pin and allows a synchronized host microcontroller to pro-
cess the incoming frame.

The AT86RF230 is a fascinating piece of IEEE 802.15.4 silicon. Although the opera-
tional concepts of the AT86RF230 are very easy to understand, to make sure that we have
a good foundation to build upon, the folks at Atmel have provided us with a very nice set

71

Chapter 5

of AT86RF230 IEEE 802.15.4 MAC drivers. Let's use the things we've learned about the
AT86RF230 and apply them to the Atmel IEEE 802.15.4 MAC firmware package.

Still, No Stack
I have five Atmel Z-Link modules, which are based on the AT86RF230. Instead of trying
to run before we learn to walk, we are still only going to base our IEEE 802.15.4 network
attempt on the pair of sublayers that are defined in the IEEE 802.15.4 standard, the PHY
sublayer and the MAC sublayer. The Atmel IEEE 802.15.4 MAC firmware I alluded to earlier
is called the Atmel IEEE 802.15.4 MAC. The functionality of the Atmel IEEE 802.15.4 MAC
firmware is contained within a library called lib12_rdk230. The Atmel IEEE 802.15.4 MAC
library follows the IEEE 802.15.4 standard and is aimed at providing services for the ZigBee
NWK layer, which lies just above the MAC sublayer in a ZigBee stack.

The Atmel IEEE 802.15.4 MAC can be utilized in both FFD and RFD nodes. To make that
happen, all you need are standard AVR programming/debugging tools to put the Atmel IEEE
802.15.4 MAC to work. I happen to have a set of those standard AVR tools and I 'm all about
putting the Atmel IEEE 802.15.4 MAC to work with the five Z-Link nodes in my possession.

It should be rather obvious that the Atmel IEEE 802.15.4 MAC is designed to support the
Atmel AT86RF230 IEEE 802.15.4-compliant transceiver IC. The Atmel IEEE 802.15.4 MAC
B IOS/HAL library code sets up the ATmega1281 microcontroller's general-purpose I/O and
SPI to directly interface to the AT86RF230's I/O configuration.

Microcont ro l l e r
t .

SEL SEL > SEL

MOSI ~ M O S I "- MOSI

M I S O ~" M I S O M I S O

SCLK ~ S C L K "- SCLK
.. . . . t

GPIO1/CLK ~" CLKM CLKM

GPIO2/IRQ ~" IRQ IRQ

GPIO3 SLP_TR "- SLP_TR

GPIO4 R S T > RST

A T 8 6 R F 2 3 0

ft.

Figure 5.4: The AT86RF230 operates as an 5PI slave. Two additional general-purpose I/0
signals are used in conjunction with the SPI signals by the AT86RF230 to determine what
mode the AT86RF230 will operate in.

The Atmel IEEE 802.15.4 MAC code communicates with the AT86RF230's internals via the
ATmega128 l's SPI engine as shown in Figure 5.4. AT86RF230 register programming and frame-
transfer operations are performed using the SPI interface. The AT86RF230 is equipped with an
internal 128-byte frame buffer, which allows the AT86RF230 to buffer one transmit or one receive
frame in a mutually exclusive manner. To those of you reading this book that are from my part of
the Southern United States, that mutually exclusive thing just means one at a time.

72

A tmel Does IEEE 802.15.4 and ZigBee Too

In addition to the SPI signals, the AT86RF230 requires four additional host microcontroller
general-purpose I/O lines to enable the full capability of the AT86RF230 IEEE 802.15.4-
compliant transceiver circuitry. As you already know, the AT86RF230 CLKM pin supplies a
clock signal that is generated by the AT86RF230. The CLKM signal can be used by the host
microcontroller as a system clock in synchronous mode or as a timing reference in asynchro-
nous mode.

The Atmel Z-Link radio modules are built around a combination of the AT86RF230 IEEE
802.15.4-compliant transceiver IC and the ATmega1281 microcontroller. The ATmega1281
can easily contain an entire IEEE 802.15.4 or ZigBee application within its 128 KB of self-
programmable program Flash memory. As IEEE 802.15.4 and ZigBee packet sizes max out
at 127 bytes, there is also more than enough room for IEEE 802.15.4 packet buffers and any
other of the application's volatile storage needs inside the ATmega1281's 8 KB of SRAM
space. ZigBee and IEEE 802.15.4 things such as 64-bit IEEE addresses and network-configu-
ration information sometimes need to be stored in nonvolatile storage areas. The ATmega1281
is a good choice for use in IEEE 802.15.4 and ZigBee networks as it has 4 KB of nonvolatile
EEPROM storage space. You can also burn the 64-bit IEEE 802.15.4 address into the AT-
mega128 l 's program Flash if your application calls for that.

The functionality provided by the Atmel IEEE 802.15.4 MAC firmware is contained within a
library file that we can access using API calls that are named after the primitives they repre-
sent. Figure 5.5 is a conceptual look at the Atmel IEEE 802.15.4 MAC library.

Figure 5.5: BIOS is short for Basic Input-Output System. One normally associates the term
BIOS with personal computers. However, a microcontroller can also wield a BIO5. HAL is
not the computer that you saw (and listened to a lot) in the movie 2001 : A Space Odyssey.
HAL means Hardware Abstraction Layer in the A T86RF230 universe. In the case of the
AT86RF230, the BIOS/HAL combination is the code that integrates the AT86RF230 and
the ATrnega 1281 at the hardware level.

73

Chapter 5

Just in case you're wondering why a PHY Layer box is embedded within a MAC library
block diagram, the Atmel IEEE 802.15.4 MAC contains PLME calls that perform PHY func-
tions like CCA (Clear Channel Assessment), ED (Energy Detection) and PHY PIB attribute
PLME SET and PLME GET requests.

The Atmel IEEE 802.15.4 MAC uses its internal Timer-Queue to give the AT86RF230 pro-
grammer access to timers that can be started and stopped on command. When a timer expires,
a callback function is invoked to notify the programmer that the timer has expired. It is the
responsibility of the programmer to service the timer callback function.

The message queue (Msg-Queue) lines up messages that are sent to the MAC sublayer. Mes-
sages arriving in the MAC layer can generate new messages, which get added to the message
queue, or kick off local operations. The wpan_task function is responsible for processing
messages in the message queue. Therefore, the wpan_task function must be called as often as
possible. Whenever the wpan_task function processes a message in the message queue, it will
return a Boolean TRUE. Otherwise, the wpan_task function will return a Boolean FALSE. All
wpan_-prefixed functions are generated outside of the MAC sublayer and usually come from
the application layer or another layer on top of the MAC sublayer.

Since most of the wpan_-prefixed function calls are associated with the methods of passing a
primitive, depending upon the service represented by the primitive, some type of primitive-like
confirmation response may be required. In many cases, when a request primitive is issued, a
confirmation primitive may be issued in response. If I say that in Atmel IEEE 802.15.4 MAC-
ese, when a wpan_-prefixed message is placed in the message queue that invokes a return
message, the return message will be in the form of a callback function prefixed by user_.

While we're on the subject of functions, the Atmel IEEE 802.15.4 MAC library supports three
types of functions:

• General Functions

• Request Functions

• Callback Functions

General Functions are used to initialize and process the Atmel IEEE 802.15.4 MAC. Access
to the Atmel IEEE 802.15.4 MAC library's timer entity is also a task handled by the General
Functions. Atmel IEEE 802.15.4 MAC General Functions include:

• wpan_init

• wpan_task

• wpan_start_timer

• wpan_stop_timer

• usr_timer_trigger

7 4

A tmel Does IEEE 802.15. 4 and ZigBee Too

Atmel IEEE 802.15.4 MAC initialization is performed by the wpan_init function. This func-
tion is called (and must be called) before any other function and initializes all of the library
resources.

The Atmel IEEE 802.15.4 MAC firmware requires that we constantly call the wpan_task
function as fast as we can, as the wpan_task function is in control of dispatching and ser-
vicing the message traffic that is flowing into the library's message queue. The wpan_task
function returns a Boolean TRUE when a message is processed.

The library timer entity is brought into the fray when the wpan_start_timer function is set into
motion. Upon invocation of the wpan_start_timer function, any of the individual timers iden-
tified by a number between 0 and 255 are started for a specified number of symbol periods as
called out in the wpan_start_timer function arguments. To stop any timer that has been started
with the wpan_start_timer function, a call to the wpan_stop_timer function must be issued.

The usr_timer_trigger function is a callback function that is called for each user-defined timer
that expires. The application stuffs this function with the necessary code needed to respond to
the timer expiration event. The individual timers are identified with a number in the range of
0-255.

All of the Atmel IEEE 802.15.4 MAC Request Functions, with the exception of a couple, are
MLME-oriented. Atmel IEEE 802.15.4 MAC Request Functions enable the programmer to
send messages within the Atmel IEEE 802.15.4 MAC.

There are two MCPS-related functions supported by the Atmel IEEE 802.15.4 MAC. Recall
that MCPS (MAC Common Part Sublayer) primitives represent data-handling services within
the MAC sublayer. The Atmel IEEE 802.15.4 MAC's

wpan_mcps_data_request function forms an MCPS Data Request message and inserts it into
the Atmel IEEE 802.15.4 MAC message queue. The other wpan_mcps_-prefixed function,
wpan_mcps_purge_request, creates an MCPS Purge Request message that gets dropped into
the Atmel IEEE 802.15.4 MAC message queue for round-robin servicing by the wpan_task
function.

These MLME messages, which are all prefixed by wpan_mlme_, may be used to control
connection establishment, scanning of the available channels, association and disassociation
of network nodes and disconnections from the network. There are also Atmel IEEE 802.15.4
MAC wpan_mlme_-prefixed functions that access and alter the MAC PIB database attributes.
There are many MLME functions supported by the Atmel IEEE 802.15.4 MAC. Rather than
try to rattle them all off here, we'll deal with them as we encounter them in the working net-
work code we're about to explore in Code Snippet 5.1.

An AT86RF230 PAN Coordinator Application
A PAN Coordinator application lies within the lines of code you see in Code Snippet 5.1.
There is a complementary End Device application that we will examine when we're finished
absorbing the intent of the PAN Coordinator application.

75

Chapter 5

Code Snippet 5.1

/* Coordinator Application */
defune _BV(x) (l<<(x))
#include "wpan_defunes.h"
#include "ieee_const.h"
#include "ieee_types.h"
#include "wpan.h"

/ * ====Macros
i fnde f RF_CHANNEL
define RF_CHANNEL (16)
warning "RF channel undefmed,
#endif

*/

using channel 16 as default"

#defune PANCOORD_SHORT_ADD (0xBABE)
#defune BROADCAST_SHORT_ADD (0xFFFF)
#define PANID (0xCAFE)

#defune PANCOORD_SCAN_CHANNELS ((uint32_t) 0x00000000)
#define SCANDURATION (3)
#de~ne BEACON_ORDER (15) /* NO Beacon * /
#defme SUPERFRAME_ORDER (15)
#define EMPTY_LONG_ADDRESS (- (uint64_t) 0)

#defune MAX_ENTRIES
#defune NO_ENTRY

(8)
(0xFF)

/* macro stores the state value and sets the state led to 0 */
#define SET_STATE (x) do { c_status, state= (x) ; \

PORTE I= (_BV((uint8_t) (x))) ;} while(0)

/*===Typedefs
typedef struct
{

bool associated;
uint64_t long_addr;

} association_entry_t;

*/

typedef enum
{

INIT_DONE,
PEND_RESET,
PEND_SET_SHORT_ADDR,
PEND_INITIAL_SCAN,
PEND_START,
PEND_ASSOC_PERMIT,
RUN,

} coord_state_t;

typede f struct

76

A tmel Does IEEE 802.15.4 and ZigBee Too

{
uint8_t handle ;
uint8_t led_value;
coord_state_t state;

} coord_status_t ;

/ *===StaticVariables
static coord_status_t c_status;
static association_entry_t association_table[MAX_ENTRIES];

*/

uint8_t data_buffer[127] ;

/* === Prototypes
void application_init (void) ;
void mac_do_reset (void) ;
void mac_active_scan (void) ;
void mac_start_pan (void) ;
vold mac_set_short_addr (uintl6_t addr) ;
void mac_set_assoc_permit (uint8_t permit) ;
vold mac_register_device (uint64_t DeviceAddress) ;
void mac_send_data (void) ;

*/

static void association_table_init(void) ;
static uint8_t get_empty_association_slot (void) ;
static uint8_t search_association_entry(uint64_t addr);

/* === Implementation
int main (void)
{

application_init () ;

*/

mac_do reset() ;

while (1)
{

while (wpan_task ())
{
}

}

void application_init (void)
{

c_status, led_value = 0 ;
c_status.handle = 0;
association_table_init () ;

77

Chapter 5

/* init IO ports */
DDRE = 0xDF; /* PE5 is input */
PORTE = 0x00; /* all LED's ON */

/* init mac layer */
wpan_init () ;
SET_STATE (INIT_DONE) ;

/* enable interrupts */
sei () ;
return;

void mac_do_reset ()
{

wpan_mlme_reset_request (true) ;
SET_STATE (PEND_RESET) ;

}

void mac_set_short_addr (uintl6_t addr)
{

wpan_mlme_set_request (macShortAddress, &addr, sizeof (addr)) ;
SET_STATE (PEND_SET_SHORT_ADDR);

}

void mac_set_assoc_permit (uint8_t permit)
{

wpan_mlme_set_request (macAssociationPermit, &permit, sizeof (permit)) ;
SET_STATE(PEND_ASSOC_PERMIT);

}

void usr_mlme_reset_conf (uint8_t status)
{

if ((status == MAC_SUCCESS) && (c_status.state == PEND_RESET))
{

mac_set_short_addr(PANCOORD_SHORT_ADD);
}

else
{

mac_do_reset();
}

return;

void usr_mlme_set_conf(uint8_t status, uint8_t PIBAttribute)
{

switch (c_status.state)

78

A tmel Does IEEE 802.15. 4 and ZigBee Too

{
case PEND_SET_SHORT_ADDR-

if ((status == MAC_SUCCESS) && (PIBAttribute ==

macShortAddress))
{

mac_active_scan();
}
break;

case PEND_ASSOC_PERMIT:
if ((status == MAC_SUCCESS) && (PIBAttribute ==

macAssociationPermit))
{

SET_STATE(RUN);
PORTE = 0xff; /* LED's off if we come to here */

}

default:
break;

return;

void mac_active_scan(void)
{

wpan_mlme_scan_request (MLME_SCAN_TYPE_ACTIVE, PANCOORD_SCAN_CHANNELS,
SCANDURATION);

SET_STATE(PEND_INITIAL_SCAN);
return;

}

void usr_mlme_scan_conf(uint8_t status, uint8_t ScanType, uint32_t
UnscannedChannels,

uint8_t ResultListSize, uint8_t *data, uint8_t data_
length)
{

if (c_status.state == PEND_INITIAL_SCAN)
{

/* We don't care about the confirm of the scan request because the
scan * /

*/
/* request just puts the MAC into the correct state for a pancoord.

mac_start_pan () ;
}
return;

void mac_start_pan (void)

79

Chapter 5

wpan_mlme_start_request

SET_STATE (PEND START) ;
return;

(PANID, RF_CHANNEL,
BEACON_ORDER, SUPERFRAME_ORDER,
true, false, false, false);

void usr_mlme_start_conf (uint8_t status)
{

if
{

(c_status. state == PEND_START)

if (status == MAC SUCCESS)
{

mac_set_assoc permit(1);
}
else
{

mac_start_pan();
}

}
return;

void association_table_init (void)
{

for(uintl6_t i = 0; i < MAX_ENTRIES; i++)
{

association_table[i] .associated = false;
association_table [i] . long_addr = EMPTY_LONG_ADDRESS ;

}
return;

uint8_t get_empty_association_slot (void)
{

uint8_t ret = NO_ENTRY, idx;

for(idx = 0; idx < MAX_ENTRIES; idx++)
{

if (association_table [idx] . long_addr == EMPTY_LONG_ADDRESS)
{

ret = idx;
break;

}

return ret;

80

Atmel Does IEEE 802.15.4 and ZigBee Too

uint8 t search association entry(uint64 t addr)
{

uint8_t ret : NO_ENTRY, idx;
/* Look for the address in the table. */
for(idx = 0; idx < MAX ENTRIES; idx++)

if (association table[idx] .long addr == addr)
{

ret : idx;
break;

}

return ret-

void usr_mlme_associate_ind
Capabi i i tyInformat ion,

(uint64_t DeviceAddress, uint8_t

uint8_t SecurityUse, uint8_t ACLEntry)

if (c_status.state == RUN)
{

macregister_device (DeviceAddress) ;
}

void mac register device (uint64 t DeviceAddress)
{

uint8 t entry index-

/* Search if device is already associated. */

entry index = search association entry(DeviceAddress) ;
if (entry_index == NO_ENTRY)
{

entry index = get empty_association slot() ;
}

if (entry_index :: NO_ENTRY)
{

wpan_mlme_associate_response (DeviceAddress, 0,
PAN_AT_CAPACITY, false);

}

else
{

association table[entry index].long addr = DeviceAddress;
wpan_mlme associate response(DeviceAddress, entry index,

ASSOCIATION_SUCCESSFUL, false);
}

return;

81

Chapter 5

void usr_mlme_comm_status_ind(wpan_commstatus_addr_t *pAddrInfo, uint8_t
status)
{

uintl6_t assoc_idx = NO_ENTRY;

if (pAddrInfo->PANId == PANID) /* if it is our PAN */

if (pAddrInfo->DstAddrMode == WPAN_ADDRMODE_SHORT)
{

assoc_idx = pAddrInfo->DstAddr;
}

else if (pAddrInfo->DstAddrMode == WPAN_ADDRMODE_LONG)
{

assoc_idx = search_association_entry(pAddrInfo->DstAddr);
}

if ((status == MAC_SUCCESS) && (assoc_idx < MAX_ENTRIES))
{

association_table[assoc_idx] .associated = true;
}

void usr_mcps_data_ind (wpan_mcpsdata_addr_t *addrInfo, uint8_t
mpduLinkQual i ty,

uint8_t SecurityUse, uint8_t ACLEntry,
uint8_t msduLength, uint8_t *msdu)

/* Determine if the indication comes from a device,
* that has previously associated.
*/

if (addrInfo->SrcAddrMode == WPAN_ADDRMODE_SHORT
&& association_table [(uint8_t) addrInfo->SrcAddr] .associated)

{
/* Mask the data byte with the address info. */
if (msdu [0])
{

c_status.led_value I = (i << (uint8_t)addrInfo->SrcAddr);
}

else
{

c_status.led_value &= -(i << (uint8 t)addrInfo->SrcAddr) ;
}

/* Show the address of the device on our LEDs. */
PORTE = -c_status. led_value;

/* Start sending data to all associated devices. */

82

Atmel Does IEEE 802.15.4 and ZigBee Too

mac_send_data () -
}
return-

void mac_send_data (void)

wpan_mcpsdata_addr_t addr_info ;

addr_info. SrcAddrMode : WPAN_ADDRMODE_SHORT;

addr_info. SrcPANId : PANID;

addr_info. SrcAddr : PANCOORD_SHORT_ADD;

addr_info. DstAddrMode : WPAN_ADDRMODE_SHORT;

addr_info.DstPANId : PANID;

addr_info. DstAddr : BROADCAST_SHORT_ADD;

wpan_mcps_data_request (&addr_info, c_status .handle++, WPAN_TXOPT_OFF,

(void *)&c status, led value,

sizeof (c_status. led_value)) ;
return;

}

Code Snippet 5. 1 This code comprises a full-blown IEEE 802.15.4 application. Following through
the flow of this code should drive home the principles behind primitives.

The PAN Coordinator application basically establishes and starts an IEEE 802.15.4 network.
Once the network is up and running, End Devices that desire to can join (associate with) the
newly founded IEEE 802.15.4 network. Each end device is running an end device application
that simply looks at the state of a pushbutton switch. The associated end devices will send a
frame to the PAN Coordinator every time a switch closure is detected. The PAN Coordinator
will in turn receive the switch data and disperse it to all of the associated end device nodes.
Let's tear down the code module by module and line by line.

Once you get the idea behind what the Atmel IEEE 802.15.4 MAC is actually doing, the code
is a bunch of fun to flow through, as essential IEEE 802.15.4 network concepts are revealed
with simple coding algorithms. The initial #include statements you see in Code Snippet 5.2
pull in all of the necessary IEEE 802.15.4 constant and type definitions that correspond to the
constants you find in the IEEE 802.15.4 standard document.

Studying the contents of the #include files will shed lots of light on IEEE 802.15.4 intentions
and the role of primitives. The really neat thing about the ieee_const.h file is that the location
of the corresponding IEEE 802.15.4 definition within the IEEE 802.15.4 standard document
is often bundled in with the associated C definition statement. An example of this is shown in
Code Snippet 5.2.

Code Snippet 5.2

/* Coordinator Application * /

include "wpan_de~nes. h"

include "i eee_cons t. h"

83

Chapter 5

include "ieee_types. h"
#include "wpan.h"

/* From ieee_const.h

#defme aMaxPHYPacketSize

#defune aMaxFrameOverhead

*/

(127) // maximum size of PHY packet

(25)

/* 7.4.1 MAC Layer Constants */
/**

* The maximum number of octets that can be

* transmitted in the MAC frame payload ~eld.

* @ingroup apiMacConst
*/

#defme aMaxMACFrameSize (aMaxPHYPacketSize -
aMaxFrameOverhead)

Code 5n~pet 5.2: If you browse ~e IEEE 802. 15.4 s~ndard document and sea<h for 7.4.1, you'fl
find you~elf m section 7.4 MAC cons~nS and EB attributes. Subsection 7.4.1 po~S you to a
~b~ of MAC cons~nS.

You'll find primitive definitions and their callback function definitions and descriptions in the
wpan.h include file. Again, to make it a bit easier to get on top of things, IEEE 802.15.4 stan-
dard document locations are supphed within the wpan.h function descriptions to augment the
information that is given in the text about the function. I've pulled out a wpan_mlme_set_re-
quest function and its associated callback function usr_mlme_set_conf as an example of this
in Code Snippet 5.3.

Code Snippet 5.3

* Forms an MLME SET REQUEST message and puts it in the message queue.
* @param PIBAttribute The PIB attribute to be set (see @ref apiMacMib) .
* @param PIBAttributeValue A void pointer which points to the value to be

stored in the PIB attribute.
* @param PIBAttributeValueSize The size of PIBAttributeValue.

* @return true = success, false = failed to add to message queue because of

overflow.
*/

bool wpan_mlme_set_request (const uint8_t PIBAttribute,
const void *PIBAttributeValue, const size_t PIBAttributeValueSize);

/**

* @brief Callback function for an mlme_set_conf message.

* This function has to be implemented by the application in order to
* process a message of the type mlme_set_conf_t coming from the stack.

* @param status
* The result code for the corresponding request (see 7.1.14.2.1 in

802.15.4-2003).

84

A tmel Does IEEE 802.15.4 and ZigBee Too

* @param PIBAttribute
* The identi~er of the PHY PIB attribute to get (see @ref apiMacMib).

* @return void
.

* @ingroup apiMacCb
*/

void usr_mlme_set_conf (uint8_t status, uint8_t PIBAttribute) ;

Code Snippet 5.3: A rare typo h~ the Atmel listing, 7. 1.14.2. 1 should be 7.1.13.2. 1 in this snippet
Putting the 13 in there takes you to the right place, which is the service primitive semantics subsection
of the MLME-SET. confirm section of the IEEE 802. 15. 4 standard document. Regardless of the typo,
I think you get the idea.

The PAN definitions in the Macros area of the Atmel IEEE 802.15.4 MAC are very creative.
After seeing the PANID and PAN short address in Code Snippet 5.4, I found myself trying to
assemble as many words as I could using only the hex letters A-F.

Code Snippet 5.4

/ *====Macros * /
i fnde f RF_CHANNEL
defune RF_CHANNEL (16)
warning "RF channel undefined, using channel 16 as default"
#endif

#defune PANCOORD_SHORT_ADD
#defme BROADCAST_SHORT_ADD
#define PANID

(0xBABE)
(0xFFFF)
(0xCAFE)

#defune PANCOORD_SCAN_CHANNELS ((uint32_t) 0x00000000)
#defune SCANDURATION (3)
#defune BEACON_ORDER (15) / * NO Beacon * /
#defane SUPERFRAME_ORDER (15)
#defune EMPTY_LONG_ADDRESS (- (uint64_t) 0)

#define MAX_ENTRIES
#defune NO_ENTRY

(8)
(0xFF)

/* macro stores the state value and sets the state led to 0 */
#defune SET_STATE(x) do { c_status, state= (x) ; \

PORTE I= (_BV((uint8_t) (x))) ;} while(0)

Code Snippet 5.4: You can't get tricky with the broadcast short address as OxFFFF is the only
option.

IEEE 802.15.4 short addresses are 16 bits in length. An official IEEE 802.15.4 address is 64
bits in length. By sending only 16 address characters, short addresses reduce transmission
time, thus saving power. Using short addresses also allows more payload data to be packed
into a 127-byte frame.

85

Chapter 5

Note that the Beacon order and superframe order definitions in Code Snippet 5.4 are set for
decimal 15. That disables the emission of periodic Beacons and thus eliminates superframe
generation, which means an unslotted network will be formed by this PAN Coordinator. We
could easily create a slotted network by reducing the superframe order and Beacon order
values below decimal 15.

The Typedefs area coded in Code Snippet 5.5 provides us with the data structures that ulti-
mately provide the SRAM holding areas for the association table and status variables. Note
the states that are enumerated in the coord_state_t typedef. These states are important as they
help guide the flow of the Atmel MAC firmware's task execution. We'll be able to see into the
variable values when we run the PAN Coordinator code in debug mode.

Code Snippet 5.5
**

/*===Typedefs */
typedef struct
{

bool associated;
uint64_t long_addr;

} association_entry_t;

typedef enum
{

INIT_DONE,
PEND_RESET,
PEND_SET_SHORT_ADDR,
PEND_INITIAL_SCAN,
PEND_START,
PEND_ASSOC_PERMIT ,
RUN,

} coord_state_t;

typedef struct
{

uint8_t handle;
uint8_t led_value;
coord_state_t state;

} coord_status_t;

Code Snippet 5.5: The enumerated (numbered) states are used to control the flow of the PAN
Coordinator application. If you're not a C coder, this may be intimidating. Once you see what the
variables hold in a debug window, the intimidation factor will fall to zero.

The actual SRAM tables are simple data structures that are built using the templates presented
in the PAN Coordinator's Typedefs code. The code in Code Snippet 5.6 defines a status data
structure (c_status) that will use the enumerated states of coord_state_t to provide us with the
current application run state among other things.

86

Atmel Does IEEE 802.15.4 and ZigBee Too

Code Snippet 5.6

/ *===StaticVariables * /
static coord_status_t c_status;
static association_entry_t association_table[MAX_ENTRIES] ;

uint8_t data_buffer [127] ;

Code Snippet 5. 6: These are simply SRAM definitions that will setup areas of SRAM according to
the data structure templates in the Typedefs code. Note the length of the data buffer. Does 127
bytes ring a bell?

According to Code Snippet 5.6, an association table array containing eight entries will be al-
located in the ATmega128 l 's SRAM. Each association table entry will include a TRUE/FALSE
indication of association and the official IEEE 802.15.4 64-bit address of the associated node.

Recall that the functionality provided by the Atmel IEEE 802.15.4 MAC firmware is con-
tained within a library file that we can access using API calls that are named after the
primitives they represent. Any API call beginning with wpan_ is aimed at the Atmel IEEE
802.15.4 MAC library and if any action generated by the API call needs to be handled by the
Atmel IEEE 802.15.4 MAC firmware, it will be given back to us in a callback function that
begins with user_.

The main function of the PAN Coordinator is coded up in Code Snippet 5.7. Following the ini-
tialization of the application variables and the MAC reset, the PAN Coordinator application spins
through the wpan_task function as fast as it can while servicing other tasks in a round-robin fashion.

Code Snippet 5.7

/* === Implementation */
int main (void)
{

application_init () ;

mac_do_reset () ;

while (1)
{

while (wpan_task ())
{

//low execution time tasks call from here
}

//longer execution time tasks call from here
}

}

Code Snippet 5.7: We want the wpan_task function to spin as much as possible. 5% Atmel
recommends that tasks that can be completed quickly be called from within the wpan_task function
braces. Tasks that require a bit more processing time should be called outside of the wpan_task
function's braces.

87

Chapter 5

Before we can turn on the wpan_task spin cycle, we need to make sure all of our ducks are
in a row on the hardware and SRAM fronts. That's why we call the application_init function

fight off the bat.

The very first thing we do in Code Snippet 5.8 is to initialize the c_status data structure. As
you can see, we basically set everything within the c_status data structure to 0 (zero) using the
numeric value of 0 (zero), the Boolean FALSE and EMPTY_LONQADDRESS definitions.

Code Snippet 5.8

/* = = - = . * /

void application_init (void)
{

c_status, led_value = 0 ;

c_status.handle = 0 ;
association_table_init () ;

/* init IO ports */
DDRE = 0xFF; /* all bits of PORT E are outputs */

PORTE = 0x00; /* all LED's ON */

/* init mac layer */

wpan_ini t () ;
SET_STATE (INIT_DONE) ;

/* enable interrupts */

sei () ;
return;

void association_table_init (void)

for(uintl6_t i = 0; i < MAX_ENTRIES; i++)
{

association_table[i].associated = false;
association_table [i] . long_addr = EMPTY_LONG_ADDRESS ;

}

return;
}
/. */

Code Snippet 5.8: This code clears the ATmega 1281 5RAM holding areas, initializes the MAC and
extinguishes the LEDs. We want to have all of the association tables and run states clean before
we start feeding the Atmel IEEE 802. 15.4 MAC's message queue.

According to Schematic 5.1, the Z-Link's ATmega1281 is hosting a trio of LEDs on its gen-
eral-purpose I/O pins PE2, PE3 and PE4 and a pushbutton switch on PE5. All of the LEDs are

turned on in the initialization routine.

88

A tmel Does IEEE 802.15.4 and ZigBee Too

From an earlier discussion we know that we must call the wpan_init function before we call
any other Atmel IEEE 802.15.4 MAC library function. After calling wpan_init, we can now
set the PAN Coordinator application state to INIT_DONE and enable the ATmega1281 's
interrupts.

It may be a good idea to make sure that the AT86RF230's MAC is ready to work as designed
before we start using it. So, let's follow the execution of the mac_do_reset function in Code
Snippet 5.9.

Code Snippet 5.9

void mac do_reset()
{

wpan_mlme_reset_request (true) ;
SET_STATE(PEND_RESET);

}

Code Snippet 5.9: This is the Atmel IEEE 802. 15.4 MAC's way of issuing a MLME-RESET.request
primitive. The PAN Coordinator application state is changed so that the callback function can use
the PAN Coordinator application's state in its decision as to the status of the execution of the
wpan_mlme_reset_request function.

The first thing the mac_do_reset function does is place an API call to wpan_mlme_reset_re-
quest with the function argument set to Boolean TRUE. The mime in the call stands for MAC
Layer Management Entity, which is the management part of the MAC layer that is accessed
via the management SAP (MLME-SAP). We have effectively used MLME-SAP to pass a
primitive to the MAC's management area (MLME) asking for the invocation of a service to
reset the MAC.

So that the PAN Coordinator application knows what was done prior, the PAN Coordina-
tor application's state is changed from INIT_DONE to PEND_RESET in the application.
Our callback function for the wpan_mlme_reset_request function is usr_mlme_reset_conf
(MLME-RESET.confirm in the IEEE 802.15.4 primitive form) and can be viewed in Code
Snippet 5.10. The conf is short for confirm, which is another common word from the IEEE
802.15.4 primitive language we've been speaking since you opened this book.

Code Snippet 5.10

void usr_mlme_reset_conf (uint8_t status)
{

if ((status == MAC_SUCCESS) && (c_status.state == PEND_RESET))
{

mac_set_short_addr (PANCOORD_SHORT_ADD) ;
}

else
{

mac_do_reset () ;
}

89

Chapter 5

return;

void mac_set_short_addr (uintl6_t addr)
{

wpan_mlme_set_request (macShortAddress, &addr, sizeof (addr));
SET_STATE (PEND_SET_SHORT_ADDR);

}

Code Snippet 5. 10: The PEND_RESET state tells the callback function that the wpan_mlme_
reset_request function was previously visited. The mac_do_reset function is the only place the
wpan_mlme_reset_request function is called and the only place PEND_RESET is set as a state. This
is beginning to be fun, isn't it? Why is it fun ? Because it all interlocks and makes sense.

I never assume, as it turns you into a donkey. So, let's pretend that things went as planned
within the wpan_mlme_reset_request function and the status returned by our wpan_mlme_
reset_request API call was MAC_SUCCESS. We have previously set the new state to
PEND_RESET, which satisfies the remainder of the "if" statement in the usr_mlme_re-
set_conf callback function and invokes the mac_set_short_addr function, which calls the
wpan_mlme_set_request function to set the PAN Coordinator's short address to 0xBABE. If
we pretend to let things go sour here, the MAC reset is attempted again.

Back at the ranch, the PAN Coordinator application's state gets changed to PEND_SET_
SHORT_ADDR within the mac_set_short_addr function. Got the idea? A request API call
will most always be answered by a user confirm callback function. IEEE 802.15.4 primitives
work in the same way.

The wpan_mlme_set_request function triggers the callback function usr_mlme_set_conf in
Code Snippet 5.11.

Code Snippet 5.11

void usr_mlme_set_conf(uint8_t status, uint8_t PIBAttribute)

switch (c_status.state)
{

case PEND_SET_SHORT_ADDR:
if ((status == MAC_SUCCESS) && (PIBAttribute == macShortAddress))
{

mac_active_scan();
}

break;

case PEND_ASSOC_PERMIT-
if ((status == MAC_SUCCESS) && (PIBAttribute == macAssociationPermit))
{

SET_STATE(RUN);
PORTE = 0xff; /* LED's off if we come to here */

}

default:

90

Atmel Does IEEE 802.15.4 and ZigBee Too

break;

return;
}

Code Snippet 5. 11 This piece of code shows you why the states within the PAN Coordinator
application are so important. The PAN Coordinator application will perform a channel scan or go into
RUN state depending on the PAN Coordinator application's state when this callback is executed.

Since our PAN Coordinator application state is currently set to PEND_SET_SHORT_ADDR,
the mac_active_scan function will be called in Code Snippet 5.11. The wpan_mlme_scan_re-
quest function will scan looking for inactive channels.

Code Snippet 5.12

void mac_active_scan (void)
{

wpan_mlme_scan_request (MLME_SCAN_TYPE_ACTIVE, PANCOORD_SCAN_CHANNELS,
SCANDURATION) ;

SET STATE (PEND INITIAL SCAN) •
return-

}

void usr_mlme scan conf(uint8 t status, uint8 t ScanType,
uint32_t UnscannedChannels,
uint8_t ResultListSize, uint8_t *data,
uint8_t data_length)
{

if (c_status.state :: PEND_INITIAL_SCAN)
{

/* We don't care about the cornSrm of the scan request because the scan */
/* request just puts the MAC into the correct state for a pancoord. */
mac_start_pan();

}
return;

void mac_start_pan (void)
{

wpan_mlme_start_request (PANID, RF_CHANNEL,

BEACON_ORDER, SUPERFRAME_ORDER,
true, false, false, false) •

SET STATE(PEND START) ;
return;

}

Code Snippet 5. 12: An active scan of the 2.4-GHz channel range will be performed, which really
gives us nothing to work with as the RF_CHANNEL is set to 11 and the 2.4-GHz frequency band is
defined in the Custom Compilation Options window of WinAVR. As you can see, we simply start
a PAN following the scan.

91

Chapter 5

Since we have previously defined ttle operating frequency band (2.4 GHz) and the channel
(11) we want to operate on in the WinAVR Custom Compilation Options window, we can
throw the rest of our definitions into the

wpan_mlme_start_request function's argument list and start a new PAN. The execution of the
wpan_mlme_start_request function generates the callback function usr_mlme_start_conf. If
we pretend that MAC_SUCCESS was returned by the wpan_mlme_start_request function in
Code Snippet 5.13, the wheels start turning to allow association with the newly crowned PAN
Coordinator.

Code Snippet 5.13

v o i d u s r m l m e _ s t a r t _ c o n f (u i n t 8 _ t s t a t u s)
{

if
{

(c_status. state == PEND_START)

if (status == MAC_SUCCESS)
{

mac_set_assoc_permit(1);
}
else
{

mac_start_pan () ;
}

}
return;

void mac_set_assoc_permit (uint8_t permit)
{

wpan_mlme_set_request (macAssociationPermit, &permit, sizeof (permit)) ;
SET_STATE (PEND_ASSOC_PERMIT) ;

}

void usr_mlme_set_conf(uint8_t status, uint8_t PIBAttribute)
{

switch (c_status.state)
{

case PEND_SET_SHORT_ADDR:
if ((status == MAC_SUCCESS) && (PIBAttribute == macShortAddress))
{

mac_active_scan();
}
break;

case PEND_ASSOC_PERMIT:
if ((status == MAC_SUCCESS) && (PIBAttribute == macAssociationPermit))
{

SET_STATE(RUN);
PORTE = 0xff; /* LED's off if we come to here */

}

92

Atmel Does IEEE 802.15.4 and ZigBee Too

default-
break;

return;
}

Code Snippet 5. 13: Just follow the chain. The wpan_mlme_set_request enables end device
association with the PAN Coordinator, which transitions the PAN Coordinator into the RUN state.
To give the user a visual that things are good up to this point, the LEDs turned on at the beginning
of the PAN creation process are extinguished.

The newly created PAN is ready for work at this point. The PAN Coordinator will constantly
be on the lookout for end devices to join its PAN. Nothing useful that the Daintree Networks
SNA can pull from the air from our new PAN has been transmitted yet. In fact, nothing will
happen that we can capture and interpret with the Daintree Networks SNA application until
an end device requests to be associated. And, the only way an end device can get to that point
is to run its application. So, let's let the new PAN Coordinator spin and pick up with the end
device application code in Code Snippet 5.14.

An AT86RF230 End Device Application
Right now, a new PAN Coordinator is waiting for an end device to request an association and
join the PAN. If you're wondering what the end device is up to, you won't be wondering long.

The Includes area of Code Snippet 5.14 is no surprise as the end device will eventually be-
come part of an IEEE 802.15.4 network. The IEEE 802.15.4 network that our end device will
attempt to join resides in the 2.4-GHz ISM band. So, there's no reason for the end device to
scan the 868-MHz and 915-MHz channels. That's why you see the 11 least-significant bits,
which represent 868-MHz and 915-MHz channels, zeroed out in the Macros area ALL_
HIGH_BAND_CHANNELS definition.

The Typedefs area needs little explanation as it parallels the PAN Coordinator's Typedef
definitions. If you really take your time and go through the device_status_t data structure,
you'll see that many of the data structure elements are provided by the PAN Coordinator dur-
ing association. Don't wor ry~i f that's not clear to you now, the fog will lift when you see the
association debug captures.

Code Snippet 5.14

/*===Includes */
#include <string.h>
#include <stdint .h>
include "wpan_deg_nes. h"
include "ieee_const. h"
#include "ieee_types. h"
#include "wpan. h"

93

Chapter 5

/* === Macros */
#ifndef RF_CHANNEL
defme RF_CHANNEL (16)
warning "RF channel undefmed, setting to 16"
#endif
defLne _BV (x) (I<< (x))
#defune ALL_HIGH_BAND_CHANNELS ((uint32_t) 0x07FFF800)
#define CHANNELMASK(a) (IUL<< (a))
#defune SCAN_DURATION (3) /* scan for 3 * symbol period = 48 Ds */

/* macro stores the state value and sets the state led to 0 */
#define SET_STATE(x) do { d_status, state= (x) ; \

PORTE I= (_BV((uint8_t) (x))) ; } while(0)

/* === Typedefs
typedef enum
{

INIT_DONE,
PEND_RESET,
PEND_SCAN,
PEND_ASSOCIATE,
PEND_SET_SHORT_ADDR,
PEND_START,
RUN,

} device_state_t;

*/

typedef struct
{

bool led;
bool switch_pressed;
uintl6_t device_short_address;
uint8_t coord_address_mode;
uint64_t coord_address;
uintl6_t pan_id;
uint8_t logical_channel;
uint8_t msdu_handle;
device_state_t state;

} device_status_t;

/* === Static Variables
static device_status_t d_status;

/* === Prototypes "
static void application_init(void) ;
static void switch_task(void);
void mac_do_reset (void) ;
static void mac_scan (void) ;
static void mac_associate (void) ;

/* === Implementation
int main (void)

*/

*/

./

94

Atmel Does IEEE 802.15.4 and ZigBee Too

application_init () ;

mac_do_reset () ;

while (1)
{

whi i e (wpan_task ())
{

/* only short running tasks are called here */
}
/* main user task */
switch_task();

static void application_init(void)
{

/* reset global application status variable */
memset (&d_status, 0, sizeof (d_status)) ;

/* init IO ports */
DDRE = 0xDF; /* PE5 is input */
PORTE = 0x00; /* switch all leds ON (inverse logic)

/* init mac layer */
wpan_init () ;
SET_STATE (INIT_DONE) ;

/* enable interrupts */
sei () ;
return;

*/

static void switch_task(void)
{

if (d_status.state == RUN)
{

bool send_data = false;

if
{

(!d_status. switch_pressed)

/* check if button is pressed. */
if ((PINE & 0x20) == 0x00)
{

d_status.switch_pressed = true;
d_status.led = !d_status.led;
send_data = true;

)

95

Chapter 5
}
else
{

/* check if button is released. */
if ((PINE & 0x20) == 0x20)
{

d_status, switch_pressed = false;
}

if
{

(send_data)

/* send data */
wpan_mcpsdata_addr_t addr_info;
addr_info. SrcAddrMode = WPAN_ADDRMODE_SHORT;
addr_info. SrcPANId = d_status.pan_id;
addr_info. SrcAddr = d_status.device_short_address;
addr_info.DstAddrMode = d_status.coord_address_mode;
addr_info.DstPANId = d_status.pan_id;
addr_info.DstAddr = d_status.coord_address;

}
}
return;

wpan_mcps_data_request (&addr_info,
d_status .msdu_handle++, WPAN_TXOPT_ACK,
(void *)&d_status.led, sizeof(uint8_t)) ;

void mac_do_reset ()
{

wpan_mlme_reset_request(true);
SET_STATE (PEND_RESET) ;

}

void usr_mlme_reset_conf (uint8_t status)
{

if ((status == MAC_SUCCESS) && (d_status.state == PEND_RESET))
{

mac_scan();
}

return;

static void mac_scan (void)
{

uint32_t chanmsk;
chanmsk = CHANNELMASK(RF_CHANNEL) ;
wpan_mlme_scan_request (MLME_SCAN_TYPE_ACTIVE, chanmsk, SCAN_DURATION) ;

96

A tmel Does IEEE 802.15.4 and ZigBee Too

SET_STATE (PEND_SCAN) ;

re turn;

void usr_mlme_scan_conf(uint8_t status, uint8_t ScanType,
uint32_t UnscannedChannels, uint8_t ResultListSize,
uint8 t *data, uint8_t data_length)

{

bool scan_success = false;

if
{

((status == MAC_SUCCESS) && (d_status.state == PEND_SCAN))

/* there should only be one PAN descriptor */
if (ResultListSize == i)
{

scan_success = true;
pandescriptor_long_t *pandesc = (pandescriptor_long_t *) data;

/* save information from the PAN Descriptor */
d_status, coord_address_mode = pandesc->CoordAddrMode;
d_status, coord_address = pandesc->CoordAddress ;
d_status.pan_id = pandesc->CoordPANId;
d_status, logical_channel = pandesc->LogicalChannel ;

/* associate to the PAN Coordinator */
mac_associate () ;

if
{

(! scan_success)

/* no success,
mac_scan () ;

scan again */

return;

static void mac_associate (void)
(

uint8_t capability_info;
capability_info = WPAN_CAP_FFD I WPAN_CAP_PWRSOURCE I\

WPAN_CAP_RXONWHENIDLE] WPAN_CAP_ALLOCADDRESS ;

wpan_mlme_associate_request (d_status. logical_channel,
d_status, coord_address_mode,
d_status.pan_id, d_status, coordaddress,
capability_info, false) ;

97

Chapter 5

SET_STATE (PEND_ASSOCIATE) ;
return;

void usr_mlme_associate_conf (uintl6_t AssocShortAddress, uint8_t status)
{

if ((status == MAC_SUCCESS) && (d_status.state == PEND_ASSOCIATE))
{

/* save the device short address */
d_status.device_short_address = AssocShortAddress;

/* mark that association is complete */
SET_STATE(RUN);

\

}

/* turn all LEDs off after successfull association */
PORTE = 0xFF;

}
else
{

/* somethig went wrong,
mac_associate();

}

try association again */

return;

void usr_mcps_data_ind (wpan_mcpsdata_addr_t *pAddrInfo,
uint8_t mpduLinkQuality, uint8_t SecurityUse,
uint8_t ACLEntry, uint8_t msduLength, uint8_t *msdu)

if
{

}
}

((d_status.state == RUN) && (pAddrInfo->DstPANId == d_status.pan_id))

/* Data packet contains LED information.
PORTE = - ((uintS_t) *msdu) ;

. /

Code Snippet 5.14: Here's your proof that the Atmel IEEE 802.15.4 MAC can be applied to an FFD
or an RFD as the same Atmel IEEE 802.15.4 MACAPI calls used in the PAN Coordinator appfication
are used here in the end device application.

The end device application looks a lot like the PAN Coordinator application until we get to
the wpan_mlme_reset_request's callback function. The code within the usr_mlme_reset_conf
callback function in Code Snippet 5.15 lets the end-device dog go huntin'.

98

A tmel Does IEEE 802.15.4 and ZigBee Too

Code Snippet 5.15

void mac_do_reset()
{

wpan_mlme_reset_request(true);

SET_STATE(PEND RESET) ;
}

void usr_mlme_reset conf (uint8 t status)
{

if ((status == MAC_SUCCESS) && (d_status.state := PEND_RESET))
{

mac_scan () ;
}

return •

static void mac_scan (void)

uint32_t chanmsk-

chanmsk : CHANNELMASK (RF_CHANNEL) ;

wpan_mlme_scan_request (MLME_SCAN_TYPE_ACTIVE, chanmsk, SCAN_DURATION) ;

SET_STATE (PEND_SCAN) -

return-
}

Code Snippet 5. 15. The end-device appfication is hardcoded to only scan channel 11 as RF_CHANNEL
has been predefined in WinAVR as 11.

I'm sure you can follow the logical flow in Code Snippet 5.15. The resulting action car-
fled out in Code Snippet 5.15 is the transmission of a Beacon Request message on channel
11. The Beacon Request message is transmitted as a broadcast and any PAN Coordinator in
earshot that is permitting association will answer with a Beacon frame describing the PAN it
is in charge of. The Beacon Request frame that the end device generated is shown in Sniffer
Capture 5.1.

Sniffer Capture 5.1

Frame 1 (Length : I0 bytes)

Time Stamp- Ii.01-25.000

Frame Length- i0 bytes

Capture Length- i0 bytes

Link Quality Indication- i16

IEEE 802.15.4

Frame Control- 0x0803

............. 011 = Frame Type- Command (0x0003)

............ 0 Security Enabled- Disabled

........... 0 : Frame Pending- No more data

99

Chapter 5

.......... 0 Acknowledgment Request: Acknowledgment
not required

......... 0 = Intra PAN: Not within the PAN

...... 00 0 Reserved

.... I0 Destination Addressing Mode: Address
~eld contains a 16-bit short address (0x0002)

..00 Reserved

00 Source Addressing Mode: PAN identi~er
and address ~eld are not present (0x0000)

Sequence Number: 144

Destination PAN Identi~er- 0xffff

Destination Address- 0xffff

MAC Payload

Command Frame Identi~er = Beacon Request. (0x07)

Frame Check Sequence: Correct

0000" 03 08 90 ff ff ff ff 07

Sniffer Capture 5. 1 This is akin to putting your message in a bottle and casting it out into the ocean.
However, the odds of getting a positive response from the Beacon Request are much greater than
getting a return note in a bottle on the beach.

The PAN Coordinator fired off a Beacon in response to the Beacon Request from the end
device. Sniffer Capture 5.2 holds the details contained within the Beacon that was transmitted
by the PAN Coordinator.

Sniffer Capture 5.2

Frame 2 (Length = 13 bytes)

Time Stamp: 11:01:25.007

Frame Length: 13 bytes

Capture Length: 13 bytes

Link Quality Indication: 208

IEEE 802.15.4

Frame Control: 0x8000

............. 000

• .o° o . . 0 o ° .

°°° o0 . . , o

. . . . o° 0o o ° , ,

not required

= Frame Type: Beacon (0x0000)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

. o , o . 0 o

...... 00 0

.... 00

identi~er and address ~eld are not present (0x0000)

..00 Reserved

i0 Source Addressing Mode: Address ~eld
contains a 16-bit short address (0x0002)

Sequence Number: 79

Source PAN Identi~er: 0xcafe

Source Address: 0xbabe

MAC Payload

= Intra PAN: Not within the PAN

= Reserved

= Destination Addressing Mode: PAN

100

Atmel Does IEEE 802.15.4 and ZigBee Too

Superframe Speci~cation: 0xcfff

a PAN Coordinator

............ iiii

........ iiii

.... Iiii

...0

• •0

.i

i

accepting Association Requests

GTS Speci~cation- 0x00

= Beacon Order (0x000f)

= Superframe Order (0x000f)

= Final CAP Slot (0x000f)

= Battery Life Extension- Disabled

= Reserved

= PAN Coordinator • Transmitter is

= Association Permit- Coordinator

Requests

..... 000

• 000 O...

O

= GTS Descriptor Count (0x00)

= Reserved

= GTS Permit • Coordinator not accepting GTS

Pending Address Speci~cation- 0x00

..... 000 = Number of short Addresses pending- 0

.... 0 Reserved

.000 Number of extended Addresses pending- 0

0 Reserved

Frame Check Sequence: Correct

0000: 00 80 4f fe ca be ba ff cf 00 00 O-J>:.O

Sniffer Capture 5.2: This collection of data tells the requesting device how to contact the PAN
Coordinator, what superframe logic to use, what addressing mode to use and if the PAN Coordinator
is accepting new applicants to its PAN via association.

As we have come to expect, the result of the channel 11 scan request is returned in a confir-
mation message, whose code is shown in Code Snippet 5.16. The data returned to the end
device in the identifying Beacon is used to populate the confirmation fields.

The end device in this situation has been limited to the single PAN we just spawned. So, the
only Beacon response was generated by the newly created PAN Coordinator. Since the end
device is destined to join our new PAN, it had better collect enough information to be able to
get an association ticket on the Beaconing PAN. So, the code in Code Snippet 5.16 collects
important information from the PAN Descriptor, which was transmitted inside the Beacon.

Code Snippet 5.16

void usr_mlme_scan_conf(uint8_t status, uint8_t ScanType,

uint32_t UnscannedChannels, uint8_t ResultListSize,

uint8_t *data, uint8_t data_length)
{

bool scan_success = false;

if ((status == MAC_SUCCESS) && (d_status.state == PEND_SCAN))
{

/* there should only be one PAN descriptor */

if (ResultListSize == I)

101

Chapter 5

scan_success = true;
pandescriptor_long_t *pandesc = (pandescriptor_long_t *) data;

/* save information from the PAN Descriptor */
d_status, coord_address_mode = pandesc->CoordAddrMode;
d_status, coord_address = pandesc->CoordAddress;
d_status.pan_id = pandesc->CoordPANId;
d_status, logical_channel = pandesc->LogicalChannel ;

/* associate to the PAN Coordinator */
mac_associate () ;

if (! scan_success)
{

/* no success, scan again */
mac_scan () ;

return;
}

Code Snippet 5.16: The Resul[istSize value reflects the number of PAN Coordinators that responded
to the end dewce's Beacon Request Note that after the end device gleans the Mfozmation it needs
for association, it attempts to a55ociate with the PAN Coordinator that transmitted the answering
Beacon.

I stopped the execution of the end-device code just before the end device attempted to as-
sociate with the PAN. I figured some of you would like to see how the data looks from the
ATmega1281's point of view. The contents of the d_status data structure lying within the
ATmega1281's SRAM are depicted in Screen Capture 5.1.

The end device now has enough real information to request association with the PAN that it
accepted the Beacon from. The necessary MLME primitive is passed in Code Snippet 5.17.

Code Snippet 5.17

static void mac_associate(void)
{

uint8_t capability_info;
capability_info = WPAN_CAP_FFD I WPAN_CAP_PWRSOURCE I\

WPAN_CAP_RXONWHENIDLE I WPAN_CAP_ALLOCADDRESS;

wpan_mlme_associate_request (d_status. logical_channel,
d_status, coord_address_mode,
d_status.pan_id, d_status, coord_address,
capability_info, false) ;

102

Atmel Does IEEE 802.15.4 and ZigBee Too

................. .c_,~ ... ,oC,.....i,....,cope

............... u,_°c.~.~.°".-~1.e :1°.~.....m.....'.?~
Pev iceAddress :Noc i n scope

~ d ~ ; ~ ... ~i;.:i ..
l e d O~O0 ' '

................................ ~~"";~e,,ed ~6'''~ ..
dev'£ce sh0z~ addeess OxO000
c o o e d addLcess m o d e 0 x 0 2 ' D '

c o o e d a~M~ess OxOOOOOOOOOOOOBABE

................................ p=~d .. ox.cA~ ...

.................... ~.0~,?'~-~.~ ~.°~ I..~.'.
msdu h a n d l e OxO0 "

......................... • .~ ~z.~Sc~ (.oxO~!

' f ~ c, cc t O ~ o

bool scan_success : false

if ((status -= MAC_SUCCESS) && (d_status.state =- PEND~AN))
{

/* there should only be one PAN descriptor */
if (ResultiistSize - = I) i
{

scansuccess = true; i
pandescriptor_long_t ~pande.~c = (pandescriptor_long~ ~)data;

.I

. / ~ save information f~om the PAN D~scriptor w/ i
d_status.coord_addressmode = pandesc->CoordAddrMode- i
d_status.coordaddress - pandesc->CoordAddress;
d..status.panid = pande~-c->CoordPANId ~
d_status.logical_channel = pandesc->~ogicaIChannel;

./* e ssociat.e to the PAN coordinator -/
mac_associate()-

if (!scan_success) I
{

/~ no ~ucce~s. scan aga~n ~ . /
macscan().

}

return;

ic void mac_associate(void)

uintS_t capability_info;
caRebility_info = WPAN_CAPFFD [WPAN_CAP._PWRSOURCE I\

Loaded ~ctfll,: c:~.~e%a.~~~u.~s0~-_,_~_.~_c0.~%~e~
ZJ ... ~I

~ ~ll,~ ~,~ i @ ~ ~ T ~ , I

Screen Capture 5.1 The idea behind showing you this shot is to provide a reference as to what is
going on inside the ATmega 1281 as it relates to what the end device code is doing.

SET_STATE(PEND_ASSOCIATE);

return;

}

Code Snippet 5. 17: Note that, in addition to the standard association request mumbo jumbo, the
end device is also passing along its capabilites to the PAN Coordinator. The A Tmega 1281 supporting
the AT86RF230 gives the end device enough compute power to be an FFD if the application calls
for it.

S n i f f e r C a p t u r e 5 .3

Frame 3 (Length : 21 bytes)

Time Stamp. ii-01.25.146

Frame Length- 21 bytes

1 0 3

Chapter 5

Capture Length: 21 bytes

Link Quality Indication: 128

IEEE 802.15.4

Frame Control: 0xc823

............. 011

.... 0...

.... 0 o...

...o .o.. ..I.

required

= Frame Type: Command (0x0003)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

......... 0 Intra PAN: Not within the PAN

...... 00 0 Reserved

.... I0 Destination Addressing Mode: Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

ii Source Addressing Mode: Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number: 145

Destination PAN Identi~er: 0xcafe

Destination Address: 0xbabe

Source PAN Identi~er: 0xffff

Source Address: 0x000425ffff170537

MAC Payload

Command Frame Identi~er = Association Request: (0x01)

Capability Information: 0x8e

....... 0 = Alternate PAN Coordinator: Not capable of

becoming PAN Coordinator

.... ..i.

. I..

alternating current mains

.... i...

when idle
..00

.0

= Device Type: FFD

= Power Source: Receiving power from

= Receiver on when idle: Enables receiver

= Reserved
= Security Capability: Not capable of using

security suite
= Allocate Address: Coordinator should o o

allocate short address

Frame Check Sequence: Correct

0000: 23 c8 91 fe ca be ba ff ff 37 05 17 ff ff 25 04 #H.~J>:..7 %.

0010: 00 01 8e

Sniffer Capture 5.3: This marks the first time we've seen the 64-bit IEEE address actually utilized
in an IEEE 802. 15.4 transaction. The Daintree Networks SNA application makes it all look so easy,
as you can gain an understanding of what is happening by simply reading through the Daintree
Networks 5NA trace text.

An acknowledgment has been requested (see Screen Capture 5.3 Frame Control) and the PAN
Coordinator replies in kind in Sniffer Capture 5.4.

104

Atmel Does IEEE 802.15.4 and ZigBee Too

Sniffer Capture 5.4

Frame 4 (Length = 5 bytes)

Time Stamp- 11-01.25.147

Frame Length: 5 bytes

Capture Length: 5 bytes

Link Quality Indication: 208

IEEE 802.15.4

Frame Control: 0x0002

............. 010

.

.

.

not required

= Frame Type- Acknowledgment (0x0002)

= Security Enabled- Disabled

= Frame Pending- No more data

= Acknowledgment Request- Acknowledgment

= Intra PAN: Not within the PAN

= Reserved

= Destination Addressing Mode- PAN

.

...... 00 0

.... 00

identifier and address field are not present (0x0000)

..00 Reserved

00 Source Addressing Mode. PAN identifier

and address field are not present (0x0000)

Sequence Number: 145

Frame Check Sequence- Correct

0000: 02 00 91

Sniffer Capture 54: Recall that the Sequence Number is the key here This acknowledgment pairs
with the association request message in 5niffer Capture 5 3

According to the IEEE 802.15.4 specification, if the end device doesn't get a warm fuzzy
about its association request within a specified response time, the end device will issue a
MLME-ASSOCIATE.confirm primitive with a status of NO_DATA. I'd say the end device
did just that in Sniffer Capture 5.5.

Sniffer Capture 5.5

Frame 5 (Length = 16 bytes)

Time Stamp: 11:01:25.644

Frame Length: 16 bytes

Capture Length: 16 bytes

Link Quality Indication: 112

IEEE 802.15.4

Frame Control: 0xc023

............. 011

. o .

.

.

required

.

. O0 0

= Frame Type: Command (0x0003)

= Security Enabled: Disabled

= Frame Pending. No more data

= Acknowledgment Request" Acknowledgment

= Intra PAN: Not within the PAN

= Reserved

105

Chapter 5

.... 00 Destination Addressing Mode: PAN

identi~er and address ~eld are not present (0x0000)

..00 Reserved

ii Source Addressing Mode- Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number- 146

Source PAN Identi~er. 0xcafe

Source Address- 0x000425ffff170537

MAC Payload

Command Frame Identi~er = Data Request. (0x04)

Frame Check Sequence- Correct

0000- 23 cO 92 fe ca 37 05 17 ff ff 25 04 00 04 #@.-J7 %

Sniffer Capture 5.5: Impatient little bugger, isn't it? Note the use of the end device's 64-bit IEEE
address here and the assumption of the PAN Identifier which the end device has not yet associated
with. The PAN Identifier is a must here as that is the only way for the requesting end device to
address the PAN at this point in time.

An acknowledgment with a Sequence Number of 146 is offered up by the PAN Coordinator
in Sniffer Capture 5.6 as requested in Sniffer Capture 5.5.

Sniffer Capture 5.6

Frame 6 (Length = 5 bytes)

Time Stamp: 11:01-25.645

Frame Length- 5 bytes

Capture Length: 5 bytes

Link Quality Indication: 208

IEEE 802.15.4

Frame Control- 0x0012

............. 010 = Frame Type: Acknowledgment (0x0002)

............ 0 Security Enabled- Disabled

........... 1 = Frame Pending: More data

.......... 0 Acknowledgment Request: Acknowledgment

not required

= Intra PAN. Not within the PAN

= Reserved

= Destination Addressing Mode: PAN

.

...... 00 0

.... 00

identi~er and address ~eld are not present (0x0000)

..00 Reserved

00 Source Addressing Mode- PAN identi~er

and address ~eld are not present (0x0000)

Sequence Number- 146

Frame Check Sequence. Correct

0000" 12 00 92

Sniffer Capture 5 6: The song remains the same sorta The only difference in this acknowledgment
and the acknowledgment in Sniffer Capture 54 is the Sequence Number

106

Atmel Does IEEE 802.15.4 and ZigBee Too

The PAN Coordinator determines that it does indeed have an available slot for the re-
questing end device and fires off the association response message in Sniffer Capture 5.7.
This is the end device's lucky day. The PAN Coordinator reveals its IEEE 64-bit address
(000425ffff170436) and confirms the association of the end device (000425ffffl 70537) with
the PAN.

Sniffer Capture 5.7

Frame 7 (Length : 29 bytes)

Time Stamp: 11:01:25.651

Frame Length: 29 bytes

Capture Length: 29 bytes

Link Quality Indication: 208

IEEE 802.15.4

Frame Control: 0xcc23

............. 011

.

.

required

: Frame Type- Command (0x0003)

: Security Enabled- Disabled

= Frame Pending. No more data

= Acknowledgment Request- Acknowledgment

......... 0 : Intra PAN- Not within the PAN

...... 00 0 Reserved

.... ii = Destination Addressing Mode. Address

~eld contains a 64-bit extended address (0x0003)

..00 = Reserved

ii Source Addressing Mode. Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number- 173

Destination PAN Identi~er- 0xcafe

Destination Address- 0x000425ffff170537

Source PAN Identi~er. 0xcafe

Source Address- 0x000425ffff170436

MAC Payload

Command Frame Identi~er : Association Response- (0x02)

Short Address" 0x0000

Association Status- Association Successful (0x00)

Frame Check Sequence- Correct

0000- 23 cc ad fe ca 37 05 17 ff ff 25 04 00 fe ca 36 #L--J7 %..-J6

0010- 04 17 ff ff 25 04 00 02 00 00 00 %

Sniffer Capture 5. 7. Note the choice to use the official IEEE 64-bit addressing scheme. Each of the
Z-Link modules is tagged with the 64-bit address and using the 64-bit addressing scheme makes
it a bit easier to keep up with which Z-Link module is doing what.

In the meantime, the PAN Coordinator is logging the association of the new end device as
shown in Screen Capture 5.2. The PAN Coordinator also issues an acknowledgment with a
Sequence Number of 173.

107

Chapter 5

Screen Captu~ 5.2: The end device ~atjust a ~ o c ~ d ~ bgged bto sbt 0 (zero) of ~e a~ociation_
~ble using ~e end dewce 3 IEEE 64-bit address.

Note that in Code Snippet 5.18 the sho~ address is retained. That's because the sho~ address-
ing mode will be used in the actual application, which is posted in Code Snippet 5.19.

Code Snippet 5.18

void usr_mlme_associate_conf (uintl6_t AssocShortAddress, uint8_t status)
{

if ((status == MAC_SUCCESS) && (d_status.state == PEND_ASSOCIATE))
{

/* save the device short address */
d_status.device_short_address = AssocShortAddress;

/ * mark that association is complete */
SET_STATE(RUN);

/* turn all LEDs off after successful association */
PORTE = 0xFF;

}
else
{

/* somethig went wrong, try association again */
mac_associate();

}

return;
}

Code Snippet 5. 18: When the LEDs turn off on the end device, things are good. Note that a
short address is also assigned to the end device at association time. We've already discussed the
inefficiencies of using the IEEE 64-bit address in our limited-space data transactions.

Unfortunately, I can't show you the LEDs illuminating and extinguishing. However, the
application code in Code Snippet 5.19, which is running on the end device, is very easy to
follow.

Code Snippet 5.19

static void switch_task(void)
{

if (d_status.state == RUN)
{

bool send_data = false;

if (!d_status.switch_pressed)
{

/* check if button is pressed. */
if ((PINE & 0x20) == 0x00)

108

A tmel Does IEEE 802.15.4 and ZigBee Too

}
else
{

d_status.switch_pressed = true;
d_status, led = !d_status. led;
send_data = true;

/* check if button is released. */
if ((PINE & 0x20) == 0x20)
{

d_status.switch_pressed = false;
}

if (send_data)
{

/* send data */
wpan_mcpsdata_addr_t addr_info;
addr_info. SrcAddrMode = WPAN_ADDRMODE_SHORT;
addr_info. SrcPANId = d_status.pan_id;
addr_info. SrcAddr = d_status.device_short_address;
addr_info.DstAddrMode = d_status.coord_address_mode;
addr_info.DstPANId = d_status.pan_id;
addr_info. DstAddr = d_status.coord_address;

wpan_mcps_data_reques t (&addr_info,
d_status .msdu_handle++, WPAN_TXOPT_ACK,

(void *)&d_status.led, sizeof(uint8_t)) ;
}

}
return;

Code Snippet 5. 19: The passing of the MCP5 Data Request primitive kicks off the transmission of
the switch status.

Thanks to the folks at Atmel, you should have a pretty good idea about how IEEE 802.15.4 can
be put to work for you using an Atmel AVR microcontroller. We've covered a lot of ground in
this chapter. So, let's recap what happened from the PAN Coordinator's point of view:

• SET MAC SHORT ADDRESS

• wpan_mlme_set_request

• usr_mlme_set_conf

• SCAN FOR LOWEST INACTIVE CHANNEL

• mac_active_scan

• wpan_mlme_scan_request

109

Chapter 5

• usr__mlme_scan_conf

• START NEW PAN ON CHOSEN CHANNEL

• mac_start_pan0

• wpan_mlme_start_request

• usr__mlme_start_conf

• PERMIT END DEVICES TO ASSOCIATE WITH NEW PAN

• mac_set_assoc_permit(1)

• wpan_mlme_set_request

• usr_mlme_set_conf

• NEW PAN ESTABLISHED WAITING FOR ASSOCIATION REQUESTS

• State machine state is set to RUN using SET_STATE(RUN)

• AN END DEVICE REQUESTS ASSOCIATION

• usr_mlme_associate_ind

• REGISTER END DEVICE BY IEEE LONG ADDRESS

• mac_register__device

• POSITIVE Acknowledgment TO ASSOCIATED END DEVICE

• wpan_mlme_associate_response

• WAIT FOR END DEVICE TO SEND DATA (BUTTON PUSH)

• usr_mcps_data_ind

• UPDATE LED PORT AND SEND BUTTON DATA TO ALL ASSOCIATED
END DEVICES

• mac_send_data

• REPEAT PROCESS FROM usr_mcps_data_ind

Now, let's compress the events as seen from the end device's point of view"

• SCAN FOR A PAN COORDINATOR

• wpan_mlme_scan_request

• GATHER SCAN INFORMATION

• usr_mlme_scan_conf

• REQUEST ASSOCIATION TO PREFERRED PAN

• wpan_mlme_associate_request

110

Atmel Does IEEE 802.15.4 and ZigBee Too

• ASSOCIATE AND RECEIVE SHORT ADDRESS

• usr_mlme_associate_conf

• EXECUTE MAIN TASK

• wpan_mcps_data_request

• REFLECT STATUS OF LEDs FROM RECEIVED DATA

• usr_mcps_data_ind

• REPEAT PROCESS FROM EXECUTE MAIN TASK

Yet One More Way
In this chapter I've presented to you the Atmel flavor of IEEE 802.15.4. You can download
the Atmel IEEE 802.15.4 MAC we've studied in this chapter from the Atmel website at www.

atmel .com.

About Atmel
Founded in 1984, Atmel is a worldwide leader in the design and manufacture of micro-
controllers, advanced logic, mixed-signal, nonvolatile memory and radio frequency (RF)
components. Atmel microcontrollers have also been the targets of some of my magazine
columns.

The Guy Lombardo of Halloween? Here's a hint:

They did the Mash.

Bobby "Boris" Pickett, other than being known as the Guy Lombardo of Halloween, is the
only active performer whose original recording charted in the top 100 three times. You know
the song~it ' s called "Monster Mash."

Let's move on to the next brick in the ZigBee/IEEE 802.15.4 wall and take a look at the
Texas Instruments/Chipcon art of IEEE 802.15.4. However, before you turn the page, a
beautiful teenager named Arlene should have kept her man when she had the chance instead
of laughing at him while swooning over an Elvis song. I literally grew up with this guy and so
did most of America. Who is he?

111

This Page Intentionally Left Blank

CHAPTER 6
They Do Everything BIG in Texas

Every ZigBee network has to ride on an IEEE 802.15.4 radio. Thus far, you've seen how
Atmel does IEEE 802.15.4 transceivers with their AT86RF230. You've also ridden with me in
the ZMD Cadillac, the ZMD44102, and while your hair was blowing in the wind (I have no
hair on my head, thank you) we saw how the ZMD folks do IEEE 802.15.4 radios. Here we
are and the clock is tickin'. So, let's take a look at how the folks at Texas Instruments/Chip-
con transmit those IEEE 802.15.4 chips.

One of Two
Well, in our little world this is one of two. The first Texas Instruments/Chipcon transceiver
IC we will examine is the CC2420. Thank goodness for specifications. At least, thank good-
ness for specifications that are adhered to by those that really must follow their threads for
reasons of compatibility. The Texas Instruments/Chipcon CC2420 follows in the path of all
of the other IEEE 802.15.4/ZigBee-ready transceivers we've experienced up to now. It will be
of no surprise to you that the CC2420 is a single-chip 2.4-GHz IEEE 802.15.4-compliant RF
transceiver. I could go down the list calling out and explaining I/Q-based receivers and trans-
mitters, 128-byte receive and transmit data buffeting, etc., and it would all sound the same.
And, in a sense, it would be all the same as the end result for all IEEE 802.15.4 radios is the
same. The good news is that no two IEEE 802.15.4 radios from differing manufacturers will
logically look exactly alike nor will they contain identical register sets and special features.
Another differentiation factor lies in the support packages that stand behind a transceiver IC.
In the case of Texas Instruments/Chipcon, the support packages are really top notch. The test
and prototyping/debugging hardware platforms from Texas Instruments/Chipcon aren't too
shabby either.

Let's begin by looking closely at the actual CC2420 hardware. So, please turn your attention
to Figure 6.1, which is an abbreviated block diagram representing the CC2420.

Let's take a walk down the CC2420's receive path first. The incoming RF signal is amplified
by the LNA (low noise amplifier) and down-converted in the quadrature (remember I and
Q?) stage. The down-converted 2-MHz IF I/Q signal is passed through a bandpass filter and
amplified before being digitized by an analog-to-digital converter. When the digitized signal
contents leave the analog-to-digital converter, all of the necessary magic is performed that
turns those chips into bytes that can be recognized as data by the host microcontroller.

113

Chapter 6

l

Figure 6.1Abbreviated block diagram of CC2420. Trust me. The more you see figures like
this, the more you will appreciate them, as because of them, IEEE 802.15.4 radio concepts
will become second nature to you.

The CC2420 has an SFD (Start of Frame Delimiter) pin that goes high when an SFD has been
detected. Incoming data is then piped into the CC2420's 128-byte receive FIFO. Just like the
previous IEEE 802.15.4 radios we've peeked at, the CC2420 silicon performs the incoming
CRC check. The CC2420 also sports a CCA (Clear Channel Assessment) pin that is available
to the host microcontroller during receive mode.

Taking the CC2420 internal components within Figure 6.1 left to fight, we begin with hex
data contained within the CC2420's 128-byte transmit FIFO being dusted with goo that turns
the hex bytes into chips. The CC2420 transmit circuitry generates the preamble and SFD,
which, as you already know, must go out before the data. Meanwhile, the chips are converted
to analog signals and fed into an analog lowpass filter. The output of the analog lowpass filter
is fed into the all-familiar I/Q quadrature mixer stage and is up-converted. The resultant up-
converted analog signal is then fed to the CC2420's PA (power amplifier), which pitches the
whole mess out of its differential RF interface and into the antenna. The CC2420's internal
TX/RX control circuitry uses the TXRX_SWITCH, RF_P and RF_N pins to provide bias to
the PA and LNA for automatic switching of the antenna between the PA and LNA inputs.

A crystal is required to provide the reference frequency for the CC2420's frequency synthe-
sizer. Power for the CC2420's internals is provided by an on-chip 1.8V voltage regulator,
which can be enabled or disabled via the CC2420's VREG_EN digital interface pin. Keeping

114

They Do Everything BIG in Texas

with IEEE 802.15.4 and ZigBee's low-power motto, the CC2420 also incorporates an on-chip
battery monitor if you choose to employ it.

The CC2420's differential RF I/O interface is high impedance. A common way of terminating
the CC2420's 50f~ RF interface is shown schematically in Figure 6.2. All of the components
from the antenna back to the RF_P, RF_N and TXRX_SWITCH pins make up what is called
a discrete balun.

3,3 V
P ~

-'~391 ~ 3 8 t

A a t ~

\ / C6~

Figure 6.2: I don't wear a pointy hat with stars and moons on it. So, don't expect a big
dissertation on the discrete balun. If you're considering building a CC2420 radio from
scratch, save yourself the trouble as Texas Instruments/Chipcon recommends you use their
layout, which is provided free for all.

Everything you and I will do that will directly affect the CC2420 will be done via the
CC2420's SPI portal. The CC2420 is configured as an SPI slave. CC2420 configuration
information and buffered data flow make up the traffic flowing across the CC2420's SPI
portal. The CC2420 contains 33 16-bit configuration and status registers, 15 command strobe
registers, and a pair of 8-bit FIFO access registers.

115

Chapter 6

A register read or write is a 24-bit transaction. Standard SPI protocol is employed with the
CC2420's CSn (Chip Select) pin kept logically low during the SPI transfer. The first eight bits
of a CC2420 SPI transaction consist of a RAM/Register select bit followed by a R/W (read/
write) bit and six bits of address information. Sixteen bits of data follows.

In addition to stuff we load into the CC2420's configuration registers and RAM, the CC2420
also responds to command strobes. A command strobe is a single-byte instruction that is ex-
ecuted by the CC2420. Command strobes do things like enable the crystal oscillator or enable
the receive mode. There are 15 command strobes.

The function of a command strobe is activated when the desired command strobe register
is accessed with a register-write operation. The exception is that no data is transferred to
the command-strobe register. The RAM/Register and R/W bits set to 0 (zero) and the six
command strobe address bits (ranging from 0x00 to 0x0E) are all that flow during a com-
mand-strobe register-write operation.

The CC2420 works around radio states in a similar manner to the Atmel AT86RF230. The
flow of CC2420 radio states and the command strobes that interact with the CC2420 radio
states are laid out for you in Figure 6.3.

The CC2420 contains a built-in state machine. Command strobes and internal events create
movement between the CC2420's many modes of operation. To assist in your understanding
of just how the CC2420 works, the state numbers contained within brackets in Figure 6.3 are
reflected in the CC2420's FSMSTATE status register. In addition, Texas Instruments/Chipcon
supplies a support program called SmartRF Studio, which will allow us to traverse the state
diagram shown in Figure 6.3 and see the physical results.

Before we fire up the SmartRF Studio application, you'll need to see what we're using for
CC2420 hardware. The Texas Instruments/Chipcon CC2400EB Evaluation Board, which is
part of the CC2420DK Development Kit, is shown in Photo 6.1.

s

Photo 6. 1" There's just enough
hardware here to allow us to
manipulate the CC2420 innards.
Note the absence of a recognizable
microcontroller. The interface
smarts are all contained within a
Xilinx SPARTAN FGPA.

116

They Do Everything BIG in Texas

v ~ ~ ~ .REo_E~set,ow

~EG_E,., set h,~,',
I Wa""r'"' v°'ta~e r '~u ' ' r~ , ,as ,--, . up

i Chip Reset
(pin or register)

SXOSCOFF ~ command strobe f~weower Do w n ~ Crystal oscillator disabled,
All States j - register access enabled,

FIFO / RAM access disabled

i SXOSCON
I.a,,-- s0.c,0.0 c sta, os.,,ator 1

start-up time, or poll the
XOSC16M STABLE status bit

Power Down ~ - ~ [1] ~ ~

~ ~,o÷ /~o%~

12 symbol penods I \ \ \ ' ~ . I 8or 12 symbol
later ~ ~'~¢,~., ~ periods later

~ ~ R _ C H ~ H ~ ~)9 ~ P r e s a ~ b l n e s am~dSFD

~ ~ \\'\%

:~;;r ow

[17] ~ ~ [48]
12 symbol [The transition from

periods late!~L___ TX_UNDERFLOW to
RX CALIBRATE is automatic,

P R E A ~ but SFLUSHTX must be used to
~ ~ , 5-0 and51] _j / reset underflow indication

- ; ~ ~ /Acknowledge

~ completc~l

Figure 6.3: Nothing happens here without having enabled the CC24203 voltage regulator
and crystal oscillator. Command strobes such as 5RXON and 5TXON move the CC2420
from an idle state to receive and transmit modes respectively

The CC2400EB looks pretty busy but we can clear all of that up rather quickly. Starting from
the far left, we see RS-232 and USB interface connectors, which are supported by a MAXIM
RS-232 converter IC and a Cypress EZ-USB IC. The Xilinx FPGA is supported by an IDT
memory module that is stationed directly to the fight of the FPGA, which is located at the
center of the CC2400EB. Believe it or not, the Cypress EZ-USB microcontroller and the
Xilinx FPGA are dumb until the load arrives via the USB connection. Thus, the CC2400EB
can't function without being attached to a personal computer. We can release the CC2420EM
radio module from the clutches of the FPGA by downloading an included FPGA codeset. Re-

117

Chapter 6

lieving the FPGA of command puts the CC2420EM radio module's digital signals on the Test
Port 1 pins. Test Port 2 is in parallel with Test Port 1 to allow the easy connection of logic
monitors to the Test Port 2 pin set. Oscilloscopes and signal generators can be attached to the
quad of SMA receptacles you see in the bottom fight of Photo 6.1.

Remember that discrete balun I refused to expound upon earlier? Well, you can see it close up
between the CC2420 and the antenna connector in Photo 6.2.

Photo 6.2: Here's a bird's-eye view
of the CC2420EM radio module
that you see mounted in its socket
on the CC2420EB in Photo 6.1. I've
removed the antenna for a clearer
shot at the component layout.

While the vision in Photo 6.2 is flesh in your mind (and close by), check out another man-
ufacturer's CC2420 radio in Photo 6.2. Can you see the discrete balun in Photo 6.2? Does
anything else look "familiar" between Photos 6.2 and 6.3?

Photo 6.3: This circuit's
c o m p o n e n t s and
layout are identical to
the CC2420 circuit you
see in Photo 6.2. Note
that you can simply
move C63 (to become
C62) to use the SMA
antenna connector.

118

They Do Everything BIG in Texas

There's really very little to talk about when it comes to the CC2420's external circuitry. With
the exception of the discrete balun, most of the CC2420's external circuitry consists of bypass
capacitors. Admiration time for the CC2420 hardware is over. Let's put all of this pretty
CC2420 hardware to work.

As you can see at the bottom of Screen Capture 6.1, I've just reset the CC2420. Note that all of
the CC2420's registers are cleared to 0x0000. If I had some fancy RF test equipment, I could
generate an unmodulated or modulated carrier signal from the CC2420EM by clicking on the
Start TX test bar at the bottom of this window. The really useful thing about this window is
that we can send and receive raw or IEEE 802.15.4 formatted messages between the pair of
CC2420EB dev board/CC2420EM radio board combinations that are part of the CC2420DK.

@.. MDMCTRLO 10~11 ~ 0~000
:~: MDMCTRL1 [0~12]. 0 ' ~
[~- RSSt [0x13~ 0~000
;i~. SYNCw'ORD [0x14~ O~K)00
L~? TXCTRL |6x15~ 0x00~
E~-. RXCTRL0 |0x16~, 0~000

~: FSCTRL [0~18~ 0~000
~.. SECCTRLO lOx19~
£+~. SEC~TRLt |I~IA]: Ox00Q0
~. BATTMON Io.le~. oxoooo
;:~. tOCF60 IO~tC1:0~000
L~ IOCFG1 {0~lO]: 0x0000
~I.. MANFIDL [0xlE]:. 0x0000
C+] MANFIDH [0xlF'l: 0x0O00
:~. FSMTC [0x,20]: 0x0000
}:~. IvtANAND [1~1]: I ~
C~:.,. ~IOR (0xZ2]: 0x0(X~
~*.~. AGCCTRL [0x23]: &,,,~O00
;~: AGCTST010~24J: 0x0(~0
~-. AGCTSTt 10x25]:
F.~. AGCTST210x2'~|'. 0~000

~? FSTST110~"0]: 0~000
,~ FSTST2[0x291:Ow0000
C~- FSTST3 [0x2A]: Ox000O
F~]. I':~'~F~ST [0xL~]: 0x0(300
~'.: FSMSTATE [0x2C]: 0z,¢0O00
~:{~. ADCTST [l],,dD]: OxO(](~

F.*:;:. TOPTST (0 '~ : 0x00l~
~;. RESERVED 1~30]: OxO000

....

Screen Capture 6. 1: There's not much to take away from this SmartRF Studio shot. This screen and
its properties are primarily used with RF test equipment to scrutinize the raw RF carrier components
generated by the CC2420. We can also use the Packet RX and Packet TX functions to send and
receive raw or IEEE 802. 15.4 formatted messages.

All of the CC2420 command strobes with the exception of SNOP, which is equivalent to a
microcontroller NOP, are represented by buttons across the bottom of Screen Capture 6.2.

119

Chapter 6

As you can see by the unchecked VREG_EN pin checkbox, I haven't powered up the
CC2420 yet.

m., NtAdN [0~10]: (~
~,~ MDMCTRL0 [0x11]~
~.~.. MDIdCTRL1 [0=!12]: 0~0000
r~. RSS111~13]: 0ldX)00

-~,. TXCTRL [Oxl~ 0=dl~0
~.-RXCTRL0 [0~1~ 0~000
E$}. FIXCTRL1 [0x17~ 0~0000
[~ FSCTRL [0~181~ 0~0000
~.- SECCTRLO [0xi$} OxOO00
~. SECCTRL1 [0xlA]: 0d)000
f~,i. BATTMON [0xlB~ 0~0000
~. IOCF~0 ~ C l : 0~0o
~. IOCR~I [O~lO} 0x00gO
~. MANRDL [0xlE~ Ik0000
~}. MANRDH 10xlF} 0~000
~+3-FSMTC [0~-----------------~ OxO000
.,.~. MANANO [0x21]: 0,O:)00
-~-MANOR [0x,Z21~ 0~0000
C,~2 AGCCTRL [0~3]: Old)O00
~.. AGCTSTO 10~241:

-AGCTST1 [0~25~ OxOl~O
~. ~6CTST2 IO~2S~ O~O00
.~}. FSTST010x27]: O~0Q00

{+2- FSTST110x28]: 0X0000
FSTST2 [0x29~ 0~0000

~ FSTST3[0v2~ 0x0COO
~. RXBPFTST [0v~} 0xlX)00
~-. FSMSTATE [O~C]: O~O00
ADCTST II~2D~ I~

~.. DACTST [0x2E]: (k0l:100
L~'> TOPTST IOx2F} O~OOO
r~. RESERVED lIk,30~ 0~I]000

• I i l i

MDMCTRL0 I0x111 ~ :~!| {0~ Rewa~l h ~ ~ li00. I

SYNCWORD 10~141

T~CTRL (0K15)

R:,CTRLO (O*~S)

.

p J: ~** , , ,=,~-o~ ~, ~ I 2

IO~ Lock OC level to be ~emoved~] [OZ IEEE 802.15.4 cocr¢lat m o (~ i i l t 0 ~ e,.~nJ,,,ode. ~., rX~FO i

(21:1.1 e~. ~,! : | [II: 12 ~ ~ [192 ,.=1

1o): 4 ~ iD~at)

Screen Capture 6.2: The CC2420 is totally inactive at this point as I haven't powered up the IC

We will follow down the path dictated by the CC2420 state diagram in Figure 6.3. So, I'll put
a check mark in both the VREG_EN and RESET_N checkboxes, which will power up and
reset the CC2420 mounted on the CC2420EM board.

The view in Screen Capture 6.2 showed the CC2420 register set and allowed us to enter
differing register values if we had wished to do so. We' re mainly interested in seeing how
the CC2420 is used to send and receive IEEE 802.15.4 messages. Diddling with the default
register values is not going to get us there at this moment. If register settings were something
we were studying, we could have initiated an RX or TX test, which would have set up the
registers correctly for us.

After engaging the CC2420's voltage regulator and reset pin, I switched to the SmartRF
Studio Memory View in Screen Capture 6.3. The SmartRF Studio Memory View lays out the

120

They Do Everyth ing BIG in Texas

CC2420 registers as well as the key CC2420 memory areas such as the TX and RX FIFOs.
We can't modify registers from this view, but we can modify the CC2420 memory areas. We
can also exercise the CC2420's command strobes from here. The current state of the CC2420
state machine and the current state of the CC2420's CCA and FIFOP pins are also provided
in this view.

~ N [0~mt. 0~0000
MOMCTRL010xl 1~ 0,~KKI0

~. MDMCTRL1 [0x121:0x0000
~. RS$t [~13~ 0 ~

SYNC~RD [0x14]: 0xOl:X~
~. TXCTRL 10x15~ 0~100O

RXCTRL0 [0x16~ 0x0000
~. R~TRL111~17~ 1 ~

FSCTRL [0xt8~ 0s~000
~. SECCTRL0 [0~1~ 0x0000
~. SECCTRLI [0xlA]: I~0000

8ATTMON lOWle~, oxoooo
IOCFGO [O~ICl: OxO000

~.tOCFG1 [0xlD]: &,¢0000
• .- tdANFIDL 10~lElc 0~Xt00
~. MANRDH |0xlF~, 0x~O00
• . FSMTC |0x20l:
m. I,ta, NANO [OwZ1~ O~OO00
+. MANOR 10~21:0~00

AGCCTRL 10~231:0x0000
m ,,~2;CTS TO 10~4]:
AGCTST110x25~. 0~0000
A~CTST2 I 0 ~ 0w0000

~. FSTST011~7~. 0~0o1~
FSTST1 10~?.8~ O~gO~
FSTST2 [0 ~ . 0~0000
FSTST3 [0~2A]: 0x0000
RXBPFTST [0x~l: 0x60~O
t~MSTATE [Ox2C]: 0s0000
• AOCTST [Ox2O]: 0~0000
DACTST [~2E]: 0x0000

m TOPTST [O~3FI: OxeOOO
-RESERVED [OX30]: OxO000

::]0x010 00 00 00 00 00 00 00 00 00 00 O0 00 O0 O0 00 00
'~0x020 00 00 00 00 00 00 00 00 00 00 O0 00 00 O0 00 00
:i'~0x030 00 00 00 00 00 00 00 00 00 00 00 00 O0 00 00 00
:I0x040 00 00 00 O0 00 00 00 00 00 00 00 00 00 00 00 00
::~o~oso oo oo oooooooo oo oo oo oooooo oooo oo oo
~,Ox060 00 00 O0 O0 O0 00 00 00 00 00 00 00 00 O0 00 00
::10x070 00 00 O0 O0 O0 O0 00 00 00 00 00 00 00 00 00 00 TXFIFO (l ~ s t)
~~0x080 00 00 00 O0 00 00 00 00 00 00 00 00 O0 00 00 00 RXFIFO (first)
10x090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
::10x0A0 00 00 00 00 00 00 00 00 00 00 00 O0 00 00 00 00
:~:I0x0B0 00 00 00 00 O0 00 00 00 00 O0 00 00 00 00 00 00
:.::~0x0C0 00 00 00 00 00 00 00 00 00 00 00 O0 00 00 00 00
|0x0D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
'.:|0x0E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10x0F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 RXFIFO (last)
: 10xl00 00 00 00 00 O0 00 00 00 00 00 00 O0 O0 O0 00 00 KEY0
:i0xll0 00 00 00 O0 00 00 00 00 00 00 00 00 O0 O0 00 00 RXNOHCE
'0X120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 SABUF
" +0x130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 I~EYI
'!0x140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 TXNONCE
• 0xlS0 00 00 O0 00 O0 00 00 00 00 00 00 00 00 00 00 00 CI~"STb, TE
-0x160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 IEEEADDR:PAII:SHORT

Screen Capture 6.3: This window is a great way to get your arms around what the data looks like
inside the CC2420's memory areas. The idea is to allow you to test drive the CC2420 without having
to build up a radio or write a CC2420 MAC driver

Let's throw convention to the wind and just send some bytes out of the CC2420EM's antenna.
In Screen Capture 6.4 1 typed some ASCII text into the Write TX FIFO window. Clicking on
the Write TX FIFO button and attempting to see the bytes show up in the TXFIFO memory
area yielded nothing.

According to the state-machine flow chart, the CC2420 is currently in Power Down mode.
In Power Down mode the CC2420's crystal oscillator is disabled and access to the CC2420's
FIFO and RAM is disabled. It looks like we need to move to IDLE mode and the only way
to get there is to issue the SXOSCON command strobe. A click on the SXOSCON button

121

Chapter 6

changes the CC2420's state to IDLE and opens up the FIFO and RAM area of the CC2420 in
Screen Capture 6.5.

~ M~N {0xl01:Ox~Xl0
~ MDMCTRL0 |0~11]: 0~
• .MDMCTRL1 |0xt 2]: I ~
• RSSt [0xl 3~ 0x0000
~. SYNC',A/ORD [0x14]: 0x0000
• TXt;TRL [0xt5]; 0x0000

~. RXCTRL010x16]: 0xO000
~. RXCTRL1 |0~17]: 0~0000
• . F$CTRL |0xlS]: 0x0000
~. SECCTRLO 11~t91~ 0x[1000
• , .SECCTRL1 [0~IA]: 0~000
~..BATTMON [0x18]: 0~I]00

~-~ IOL-'FG0 (0xt C]: (kOQl~
• , .IOCFG1 [OxlO]: 0~0000

MANF1DL [~IE]: 0xO0t~
~ MAHFIDH [OxlF~ OxO000
m FSMTC 10~t20]: 0~1)(O
~ . ~ 0 [0~2~t 0~000
~,-MANOR 10~.2~ 0x0000
~, AGCCTRL [0x23~ 0x0000
~..AGCTST0 [0x2.4]~ 0s001X)

AGCTST1 I0~5~ 0~0¢~
~ AGCTST2 p~2~ 0x~00
• ...FSTSTO [Ox2~ I]~000
~. F$TST1 [0~28]:
.~. FSTST2 [0x29]:

-FSTST3 [0~A]: 0x0000
~..RX~PFTST [0x28~ 0~d000
~.FSMSTATE [0~2C]: 0xO000
,e~OCT ST [O~2D]:

~OACTST {0x2E]: 0~[]~0
• . TOPTST [0x2F]: 0~0000
~. RESERVED [0x30]: 0xO000

0X010 00 00 0O 00 00 O0 00 00 00 00 00 00 00 00 00 00
0X020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OX030 0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 F
10X040 0O 00 00 0O 00 00 00 00 00 80 00 00 00 00 00 00
[0X050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0X060 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00
0X070 00 00 00 00-00 00 00 00 00 00 00 O0 O0 00 00 00 TXFIFO (l as t)
0x080 00 00 00 00 00 00 00 00 00 00 O0 00 00 00 00 00 RXFI~0 (f i r s t)
0x090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0A0 0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0B0 0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O
[0x0E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0F0 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 0O RXFZFO (l as t)
0x l00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 KEY0
0x110 00 00 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 RXNOI/CE r
;0x120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 SJd3UF
i0x130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 KEY1
;0x140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 TXItONCE
i0xlS0 00 00 00 0O 00 00 0O 00 00 00 00 00 00 00 00 00 CBCS"TATE
[Ox160 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 IEEEADDR:PAN:S~IORT

Screen Capture 6.4: After entering the string of ASCII characters, I expected to see my characters
inside the TXFIFO memory area. Hmmmrn...

The TXFIFO's first byte is the length of my unofficial message, which itself is six bytes in
length. The extra two bytes are the CRC bytes, which were inserted automatically by the
SmartRF Studio/CC2420 combo. Now that my little unofficial message is lodged inside of the
CC2420's TX FIFO, I should be able to do something with it.

According to the CC2420 state machine flow chart, I can issue an STXON command strobe to
transmit the contents of the TX FIFO. Before I click on the STXON command strobe button, I'll
prepare the Daintree Networks SNA to capture whatever spews out of the CC2420's antenna.
Following my click on the STXON command strobe button, the Daintree Networks SNA cap-
tured the IEEE 802.15.4 (if you want to call it that) frame shown in Sniffer Capture 6.1.

122

They Do Everything BIG in Texas

MDMCTRL0 [Oxl I t 0xO~2
~. MDMCTRLt 10x12~ 0x0500

RS5t [0~13]: OxE080
SYNC'.,v'ORD 10x141: 0xA70F
TXCTRL 10~t5}: 0xAI]FF
RXC:T RL0 [0xll~l: 0x12E5
RXCTRLt [0xl 7]'
FSCTRL [0xt8]: 0x4165

~. SECCTRL0 [0X19]: 0x03C4
~. SECCTRLI J0xtA]: 0x0000

BATTMON [L"IxIB]~ O~a~O,,10
IOC~G0 lOxlC) 0x0040

• -IOCFG1 [0xlD]: 0x0000

~, MANFIDH [0xl F]' 0x3000
FSMTC |0x~0]: 0xTA94
IdANANO [0~1~: 0~'FFF

.~. MANOR |0x22]: [Ix0000
AGI~TRL [0~2'3]: 0x07F3

~. AGCTSI0 [0x24]: 0x3549
AGCTST1 [0x25]: 0~0954
AGCTST2 [0x2~J: 0x01ZA

a FSTST0 lOx~7]: 0x0210
FSTST1 [0x28]: 0~

~. FS TST2 [~I: 0x06~
FSTST3 [0X?lAIC Ow82DD

~. RXBPFTST [Ox2~]: OxO000
FSMSTATE [Ox2C]: ~ 1
• ADCTST [0x2D): 0w(0)00
DACTST [~): Ch4)0(0)

• . TOPTST [0x2F}: 0x0010
RESEFrVED [Ox30]: 0~0000

W ~ , T X R m : i L,,,~.~ V - - ' 6 - - -

.~ 4~ ~ 42 4s 45

|0x010 2A 2F D8 38 8A DC 25 B4 6B BE 38 $F 89 kS D1 47
~0x020 76 AB 3A CF 73 36]:)3 01 56 97 23 08 2D 32 ~2 t8
10x030 4A FD 5E 5E E6 BF CA 05 51 F8 61 E3 7D 22 E9 23
10x040 57 2E C5 F8 3D 07 58 BA B9 88 0E 7D 91 F6 CA 9F
~0x050 B3 86 D5 5C 79 E9 AF El DF 84 24 A2 Al 6F 02 8F
:|0x060 18 F0 7B F9 88 5E 57 78 EF 36 06 E6 32 40 B5 82
|0x070 96 E0 02 AF 2D 9F 7J~ B4 85 5F AF 70 69 94 E7 BA TXFIFO (last)
|0x08O 9F BF 96 72 AA B5 8C 8A B4 IC 5F FA 87 61 IC B6 ~XFIFO (first)
10x090 7E 5B BA 5D 69 EE 9A 56 FD 98 93 43 65 F7 BA 0E
|Ox0A0 3A 04 FI 3F 53 I0 A3 32 9D 38 6C II EA 4E :35 46

~0xOB0 24 29 BA 4B FB F7 CF 62 7A 27 53 IA 97 92 0F AA
::i0x0C0 22 50 72 63 6? 26 IB 8F D5 9C EC 47 65 7E 54 CB
10x0D0 9E 89 FF AF 46 OF 7D AF 96 F5 EE 73 59 B0 FE 56
]0x0EO A7 CD 3E 49 C9 84 FC 82 82 F0 AF ID A2 39 BE C8
|0x0F0 41 2E BF 0C AF 50 6D B7 I? BF 0D A1 97 3B F2 BC RXFIFO (last)

i|0xi00 64 82 AF 05 F1 E9 AF 19 ?0 AD A7 0D 24 C7 31 33 KEY0
i|0xll0 7A 22 5B E3 10 E8 24 BF F9 51 06 A0 00 39 04 D1 RXNONCE
~Ox120 B6 6F 00 58 FB D0 F5 CC 37 05 21 45 2B F2 IC 29 SABUF
|0x130 46 F? AF 3A AC B5 49 ?2 C1 EA 29 4F 6B EA ED 3E KEY1
|0x140 B2 A0 2B 55 2C B6 6F 63 DD 65 DE 23 EA AC 20 63 TXNONCE
~0x150 07 37 AF AF 04 A1 67 E9 4C 4F 68 A3 BF 59 76 F5 CBCSTATE
I0x160 CA B3 E9 2E 95 AA FC 78 90 62 AE 67 78 D6 A2 08 IEEEADDR:PAN:S}IORT

Screen Capture 6.5: Everybody's awake now/After turning on the CC2420"s oscillator, I clicked on
the Write TX FIFO button one more time and my ASCII string is now part of the TXFIFO.

Sniffer Capture 6.1.

Frame 1 (Length : 8 bytes)

Time Stamp: 10:07:09.000

Frame Length: 8 bytes

Capture Length: 8 bytes

Link Quality Indication: 136

IEEE 802.15.4

Frame Control: 0x495a

............. 010

. 1...

. i

.

not required

= Frame Type- Acknowledgment (0x0002)

= Security Enabled- Enabled

: Frame Pending- More data

= Acknowledgment Request- Acknowledgment

. 1

...... 01 0

.... i0

~eld contains a 16-bit short address (0x0002)

= Intra PAN- Within the PAN

= Reserved

= Destination Addressing Mode. Address

123

Chapter 6

..00 Reserved
01 = Source Addressing Mode- Reserved

(0x0001)

Sequence Number- 71

Destination PAN Identi~er- 0x4542

Destination Address- 0xff45

Frame Check Sequence: Correct

0 0 0 0 - 5a 49 47 42 45 45 ZIGBEE..
*

Sniffer Capture 6. 1 How about that/Ignore everything in the IEEE 802. 15.4 Frame Control area
and beyond, as this is a bootleg IEEE 802. 15.4 message.

~..blAIN [0~10]: 0wFB00
~. MDMCTRLO [0xl t]: 0xOAE2
~..MDMCTRLt [0x12]: 0x0500

.RSSI [0~13J: 0xEOCB
~b-SYNCw'ORD [Ox't 4]; 0xA70F
~. TXCTRL 10x151: 0xAOFF
~. P~"CT RL0 (0~161: 0~12E 5

• i~CTRL1 [0xt7]: 0x0A56
~. F$CTRL [0xt8t: (kB565
~. SECCTRL0 IOw19];, 0w03C4

rSECCTRL1 [OwIA]: 0~300
BATTIdON [0xIB]: 0x0040

~..10CFG0 (0x1 cl 0~oo4o
• IOCFG1 [0xtO]: 0x0000

,~. MANFIDL [0xlE]: 0~233D
"~..NANRDH [0xlF]: 0x3000
~. F$ MT C [Ox2O]: ~7A94

M,z~IOR 10~22]: 0x0000
AGCCTRL [0x,?.3]:. 0x07E3
AGCTST0 [0x24]: 0x3~9

~ AGCTSI'I [~ t 0x0B~
@.. AGCTS T2 [0x26]: OxO12A

• FSTSTO {0x2,7]: 0~0~20E
,'~ FSTST1 [0x28]" 0x5002
~.. FSTST2 [0x,....291; OxOBIa
• FSTST3 [0x2A~ 0~.8.2DD

~.. R>(BF~:TST |~]:
,.rSMSTme [o~c~ o~ooo~
~ ADCTST [0"~D~ 0~2011
~.,DACTST [0x2El:, 0xO000
~to~tsr [o~z:~ o~oo~o
:,~ RESERVED 10~301', 0x[)0~

c

0X010 2A 2F D8 38 8%, DC 2S B4 6B BE 38 6F 89 A~ D1 17
:0x020 76 AB 3A CF 73 36 D3 01 S6 97 23 08 2D 32 F2 18
0x030 4A FD 5E SE E6 BF C~ 05 51 F8 61 E3 7D 22 E9 23
0z040 57 2E C5 F8 3D 07 58 BA B9 88 0E 7D 91 F6 CA 9F
;0x050 B3 86 DS 5C 79 E9 AF El DF 84 24 A2 A1 6F 02 8F
0x060 18 F0 7B F9 88 SE 57 78 EF 36 06 E6 32 40 B5 82
0x070 96 E0 02 AF 2D 9F ?A ~4 8~ SF AF 70 69 94 E7 BA TXFIFO (last)
0x080 9F BF 96 72 AA BS 8C 8A B4 1C 5F FA 87 61 1C B6 RXFI¥O (first)
0x090 7E 5B BA 5D 69 EE 9A 56 FD 9% 93 43 65 F7 BA 0E
0xOA0 3A 04 F1 3F 53 I0 A3 32 9D 38 6C 11 EA 4E 3~ 46
0x0B0 24 29 BA 4B FB F7 CF 62 7A 27 53 IA 9? 92 OF AA
0x0C0 22 SO 72 63 67 26 IB 8F D5 ?C EC 47 65 7E 54 CB
0x0D0 9E 89 FF AF 46 OF 7D AF 96 F5 EE 73 59 B0 FE 56
0x0E0 A7 CD 3E 49 C9 84 FC 82 82 F0 AF 1D A2 39 BE C8
i0x0F0 41 2E BF 0C AF ~0 6D B7 17 BF 0D At 97 3B F2 BC RXFIFO (last)
0x100 64 82 AF 05 F1 E9 AF 19 70 AD A7 0D 24 C7 31 33 KEY0
0xll0 7A 22 5B E3 I0 E8 24 BF F9 51 06 A0 00 39 04 D1 RXNONCE
0x120 B6 6F 00 58 FB DO FS CC 37 05 21 45 2B F2 IC 29 SABOF
Qxl30 46 F7 AF 3A AC BS 49 72 C1 EA 29 4F 6B EA ED 3E KEY1
0x140 B2 A0 2E 55 2C B6 6F 63 DD 65 DE 23 EA AC 20 63 TXNONCE
0xl~0 07 37 AF ~? 04 A1 67 E9 4C 4F 68 A3 BF 59 7& F5 CBCSTATE
0x160 CA B3 E9 2E 95 AA FC 78 90 62 AE 67 78 D6 A2 08 IEEEADDR:PAN:SHORT

Screen Capture 6.6: Note also that the CCA and LOCK checkboxes are positive in this shot LOCK
indicates that the CC2420"s PLL has locked. If you still don't know what the CCA box represents,
sell this book to your sister.

Even though we succeeded in sending a renegade message from our CC2420EB/CC2420EM
evaluation board/radio combination, think about what would happen next in a real IEEE
802.15.4 or ZigBee scenario. Normally, the sending node would want an acknowledgment

124

They Do Everything BIG in Texas

~ MOMCmLOi~111:~2
• .. MDMCTRL1 [0x12~ Od)500
• RSSi |0x13]: 0~E0~0
+ SYNCWORD 10H'~4]: 0~70F
= • TXCTRL IOx15~, 0=d~]FF
,.R>CTm0 fO.lSL 0~12E5
.~.., RRCTRL1 10xtT]:

• FSCTRL [i~16]: 0x4165
,~. SECCTRL010~19]: 0=03:4
=.. SECCTRL1 [0~IA]: 0x0OO0

eaTTMO. [0.ml:
• m ~OCrG0 !0.1C]: O.OO4O

• 10t~'61 [~10]: (bOO00
+ ~ R D L t~El~
~.MANRDH [0xlF]: 0x3000

FSMTC [Oxm]; I~rA$4
~,. l, ta/,lmdo [o~,1]: 0,FFFF

i $ AGCCTRL [0~1~ 0~07F3
+. ASCTST0 t o ~ 4 1 : ~ 9

• ..AGCTST2 ~26]: 0~2A
• ..FSTST0 [0x27~ (R0210

FSTST1 |0:t28]: 0~5002
,,e,. FS TST2 | 1 ~ 0x0620
~.FSTST3 ~] ~ O~B2DD
+ R~eFTST t0aS~ o,am
m., PSMSTATE [0x2C]: 0d]001
• .~CrST t~ o, ax~
,~.-DACTST [0x2E]: 0x0000
tin,. TOPTST lOx2F'J: ~ 0
~. RESERVED [0¢30]~ 0d)l~

,~, ~ s ~ , ~ , ~ . r ~ , = = , , M ~ O o ~ . , ~ , ~ _ ~ , , , . t , o o k , , e J , ~ _ r t ~ t ~ , , , ~ , ~ .

Screen Capture 6.7: This is an easy way to send IEEE 802.15.4 and "unofficial IEEE 802.15.4" data
between the pair of nodes that make up the CC2420DK development kit. Note that I dumped the
received data to a file in this session. The CC2420 register settings for receive mode are shown on
the far right of the shot.

returned from the receiving node. Thus, after a required number of symbol periods the
transmitting node would expect to receive an acknowledgment from the receiving node. That
means the transmitting node would go into receive mode and await the acknowledgment.
Take another look at the CC2420 state-machine diagram in Figure 6.3 and you'll see that the
CC2420's state flows from transmit mode to receive mode after the completion of a trans-
mission. This change of states is reflected in the lower left comer of Screen Capture 6.6 as
the CC2420's FSM State is listed as [6]RX_SFD_SEARCH, which directly correlates to the
CC2420 state-machine flow chart in Figure 6.3.

As you would logically conclude, we can circumnavigate the CC2420's states by simply
issuing the appropriate command strobes from the SmartRF Studio windows. The beauty
of SmartRF Studio is that you can assemble any type of message that you want and send it
along. With the assistance of Sniffer programs like Daintree Networks SNA, you can see what
the receiver would get and determine if the IEEE 802.15.4 frame you're sending is bogus

125

Chapter 6

,~,. MDMCTRLO p]x11]: OxOAE2

;:.,. [121 PAN COORDINATOR: 0
.... [111ADDR_DECODE: [11: Ad~
i " 110:8] CCA I-ff'ST[2:.O]: 2
i , I/:Sl E ~ MODE[I:0]: [31: CCA,
i ' [SIAUTOCRC: 1
i ' 141AUTOACK: 0
~.... [3,0] PREAMBLELENGTH: [2]:

~2 MDMCTRL1 [0x12]: 0n~SO0

~., $YNCWORD [l]x14]: 0~70F
~i.2.. TXCT RL [0x15]: ~ F
~+~,. RXCTRL0 [0x16]: 0x12E5
~}., RXETRL1 1~17]: I:Ix1~56
.~., FSCTRL [0x18]: 0x6565
~.],. SECCTRL0 [C~19]: OxO.~4
~,.-SECCTRL1 [OxlA]: OxO000
~,~., BATTMON [Oxl B]:
~'~.. IOCFG0 [OxlC]: OxO040
~. IOCFG1 [0xIDl: 0x00~
i~.. MANFIDL [0xl El:, 0x2331:)
~j., MANFtOH [0~IF]:. 0x3000
~,~.. FSMTC [~.20k 0x7A94
~,-MANAND [0x21]: 0xF'FFF

ICCA H.vstemsi: ~ dB. value= 0 Ii'wough 7

I ~:~,~]~! i i~i !~i! i i i i i l " ... ~"~ ~ ~ ~ i ' i i" ! ' :~i i !~!i i ! !~i! i ,~i:

Screen Capture 6.8: Here's a look at the 5martRF Studio transmit session. Everything done here
cascades down into the deeper views. For instance, you can go to the memory view and look at
the contents of the TXFIFO in raw hex format. Again, note the CC2420 register assistance offered
by 5martRF Studio in the far right of this shot.

or IEEE 802.15.4 compliant. SmartRF Studio also provides the basic CC2420 register set-
tings for the cartier, transmit and receive modes in a window next to the test area window.
For instance, Screen Capture 6.7 represents a receive test session that I set up on one of the
CC2420EB/CC2420EM development platforms, while Screen Shot 6.8 represents the trans-
mit side of the CC2420 equation.

If you're feeling froggy, go on out there and buy yourself one of those pointy moon and star-
studded hats the RF guys wear. You've been exposed to the innards of the CC2420 and I hope
that you have concluded that if you can set up an SPI interface on your favorite microcon-
troller, you can communicate with IEEE 802.15.4 using a CC2420. Keep in mind that ZigBee
is really a means of providing compatibility at the application levels. There are many ZigBee
stack implementations out there that may or may not work in a similar manner. However,
every IEEE 802.15.4 implementation that supports a ZigBee stack must work in the same
manner. A ZigBee stack exploits the commonality of every IEEE 802.15.4 network. That's

126

They Do Everything BIG in Texas

why I 'm pounding you with more IEEE 802.15.4 stuff than ZigBee stuff right now. If you
understand what is going on in the IEEE 802.15.4 part of a ZigBee implementation, you'll be
more able to understand why things are the way they are in a ZigBee stack.

Two of Two
What could be better than a CC2420 in an IEEE 802.15.4 or ZigBee network? That's easy. A
CC2430. Take everything you've learned about the CC2420 and add an 8051 microcontroller into
the mix. The spy satellite was floating overhead of the CC2430 module you see in Photo 6.4.

Photo 6.4: No discrete balun?? What gives?

Matching up what you see in Photo 6.4 with the graphic in Figure 6.4 reveals that that little
loopy antenna thingie is a folded dipole.

Since there's a microcontroller embedded in the mix, the CC2430's development mother-
board is a bit different as well. As you can see in Photo 6.5, the FPGA is gone.

I 'm not going to repeat what we did with the CC2420 using the CC2430 as it would look the
same. The same development tools I used to make the CC2420 chirp will make the CC2430
chirp as well.

127

Chapter 6

.].. l,ii r

Figure 6.4: This looks absolutely too easy to be RF stuff. I think it says something when the
RF components have to be separated from the logic components. Note that all of the RF
stuff is to the right of the figure and all of the 8051 st~ff is over to the left. That proves
my point that RF is evil.

128

They Do Everything BIG in Texas

Photo 6.5: Just about anything you want to hook up to a CC2430 is included on this
development board. Think about this. All of the smarts for this photo are contained within
the CC2430. ALL of them/

About Texas Instruments
It's the Mirrors...I love my DLP television. Thank you, Texas Instruments. Sometimes Texas
Instruments milestones:

• The first transistor radio in 1954

• The first integrated circuit circa 1958

• TTL logic circa 1.960

• Invented the hand-held calculator 1967

• Invented the single-chip microcomputer 1971

• Invented the single-chip microprocessor 1973

Remember that Texas Instruments calculator that had the magnetic card reader? I had one of
those. That rascal cost me about $300 back in the 1970s.

Enough said.

129

Oh, yes...Arlene. Well, it seems that Arlene was tiding around on a date with a young man.
She was one year his senior. This wasn't their first date and the young man was behind in
the batting count, if you know what I mean. Elvis was the rage and Arlene let her date know
it when Elvis's current record was played on the car radio. Wanting to see Arlene again, a
young Ricky Nelson turned to Arlene and said, "I 'm gonna' make a record, too." Arlene just
laughed. The click line and title of one of Ricky's first hits, "I 'm Walkin'", is probably what
he should have said to Arlene after she shut up.

This one is easy. Where did the Merseybeat sound originate and what band used it to catapult
them into history?

CHAPTER 7
Maxstream/XBee

Believe it or not, you've been doing some pretty heavy lifting in the previous chapters. I've
thrown all kinds of IEEE 802.15.4 and ZigBee acronyms at you and you've run through
MAC and PHY hell with me. We even went caveman and unlocked the key to IEEE 802.15.4
primitives.

Fortunately, you don't have to be a member of the WWE (that's World Wrestling Entertain-
ment for the wrestling-challenged of you out there) or be able to spout specific pieces of
the IEEE 802.15.4 and ZigBee specifications on demand to put ZigBee to work for you in a
real-world application. Think of it this way. Do you ever really give much thought to what
is going on in the bowels of a conversation between your personal computer's USB port and
that new Best Buy gadget you just plugged in? How about some serious thoughts about what
is going on within that Ethernet cable modem/access point that is enabling your view into the
EDTP Electronics web site? Ever really consider pulling your own checksums against that
new program you're downloading via FTP? For those of you reading that are ancient enough
to remember the reign of the BBS (Bulletin Board System), did you really give a darn about
that 300-bps datastream that was being passed between your personal computer's serial port
and the modem? NO! Then why should you be excited about the binary exchange within a
ZigBee PAN?

You may have your reasons, as it's rather obvious that I do, to delve into the bits and bytes
that make up IEEE 802.15.4 and ZigBee conversations. However, in every instance I ref-
erenced in the previous paragraph, the ultimate goal is moving the desired data to the next
carrier in the communications chain until the data is delivered to the targeted node or end-
point. All you as a user really care about is that what you typed in or uploaded gets to its final
destination and if you're on the incoming side of the datastream, you don't want to lose any
bytes along the way between your hard drive and the hard drive on the other end of the link.
Once your data payload reaches its intended node or endpoint, all you care about is getting a
positive response through the same virtual and physical communication paths you pushed the
initial request through.

To an engineer, the concepts of USB and Ethernet are easily grasped, as the engineer has
been forced to understand the protocols at the bit levels. I 'm here to tell you that you really
don't have to be a full-blown electrical or software engineer to get your hands around USB,
Ethernet, IEEE 802.15.4 or ZigBee. You obviously feel that way too because, engineer or
not, you're reading this book, and when you're finished you'll be able to do more with IEEE

131

Chapter 7

802.15.4 networks than just talk about them at the cocktail party. Whether you're a highly
skilled engineer or just a guy or gal that wishes to do something with your protocol of inter-
est, try explaining USB enumeration to someone that only knows that you plug in the USB
device and it automatically comes online. Or, better yet, tell that same nontechnical end user
about all of the wonderful technical stuff going on inside a TCP/IP transaction and how that
all relates to that Ethernet cable he or she just plugged into their DSL box. Let's get even
closer to home" try to describe IEEE 802.15.4 primitives to a guy or gal project manager that
is only interested in getting those temperature readings back from the potato-chip cook tank.

The bottom line is that, in the end, all anyone wants is to get their data and receive their data
without having to understand the nuances of every software algorithm and hardware device
the data had to traverse. That's the idea behind the MaxStream's XBee and XBee-Pro ZigBee
modules.

The XBee ZigBee Module
ZigBee's intended mission is to cut the traditional wires between sensors, traditional wired
slave devices and the microcontrollers and microprocessors they serve. Thus, if ZigBee is
to emulate a wire, what goes in must come out without any significant change. Unlike the
SPI-reliant IEEE 802.15.4-compliant transceivers we've covered thus far, the XBee ZigBee
modules employ a UART interface, which allows any microcontroller or microprocessor to
immediately use the services of the ZigBee protocol. All the ZigBee hardware designer has
to do in this case is make sure that the host's serial-port logic-levels are compatible with the
XBee's 2.8-3.4V logic levels. The logic-level conversion can be performed using either a
standard RS-232 IC or with logic level translators such as the 74LVTH125 or 74HC125 when
the host is directly connected to the XBee UART. Note that I didn't require the host micro-
controller to have an on-chip UART. That's because it is a simple thing to emulate a basic
UART with firmware. In fact, the Custom Computer Services C compiler has built-in UART
emulation facilities aimed at Microchip's PIC microcontrollers. A typical XBee communica-
tions link is depicted in Figure 7.1.

CMOS Logic (2.8- 3.4V) , ~ ~ / CMOS Logic (2.8- 3.4V)
~ ,, ,, ,,

DI (data in) gl (data in),,.._ : ~"~°' ~'"~""

[~ 1 ~) 0 (data out) : DO (data out)._

RTS

Figure 7. 1: Typical XBee communications link. Since ZigBee networks operate at low speeds, the use
of a standard RS-232 serial port at each end of a ZigBee or IEEE 802.15.4 network communications
link is well within reason.

132

Maxstream/XBee

Data is presented to the XBee module through its DIN pin and must be in the asynchronous
serial format, which consists of a start bit, 8 data bits and a stop bit. The XBee modules
require the incoming serial signal to idle at a logic high state. Since the input data is going
directly into the input of a UART within the XBee module, no RS-232 bit inversions are
necessary within the asynchronous serial data stream. If you had a chance to check out my
first book, Networking and Internetworking with Microcontrollers, you recall that when an
asynchronous digital signal is converted to RS-232 signal levels, a "1" is logically high on the
digital side and a negative voltage of at least-3V on the RS-232 side. The negative swing can
range from-3V to-15V according to the RS-232 specification. The negative state of the RS-
232 signal is called a MARK. Conversely, a logical "0" on the digital side is low and termed
a SPACE (positive voltage +3V to + 15V) on the RS-232 interface. All of the required timing
and parity checking is automatically taken care of by the XBee's UART.

As you would expect, the XBee module produces a received data asynchronous serial data
stream for the host on its DOUT pin. So, all you need is a simple 3-wire (DIN, DOUT,
Ground) serial connection to put ZigBee to work with the XBee and XBee-Pro modules. Just
in case you are producing data faster than the XBee can process and transmit it, both XBee
modules incorporate a CTS (Clear To Send) function to throttle the data being presented to
the XBee module's DIN pin. You can eliminate the need for the CTS signal by sending small
data packets at slower baud rates. If you're using the XBee modules in a true ZigBee fashion,
the slower speeds and small frames should be automatic.

A simplified view of the XBee internals is represented in Figure 7.2. Incoming data flow-
ing through the DIN pin is buffered by the DIN Buffer until it can be transmitted. You as the
programmer and commander have the option to send characters as they enter the DIN pin or
buffer up a number of characters to send as a packet. When the XBee module is not send-
ing characters, it can rest in idle mode, enter receive mode, process a command or just sleep
it off. The default mode of operation is called Transparent Mode. In Transparent Mode the
XBee modules simply act as a serial line replacement. All data passing through the DI pin is
queued up for RF transmission and all incoming RF data is piped out of the XBee's DO pin.

Data is automatically buffered in the DI buffer unless the Packetization Timeout (RO) is set
to 0 (zero). If RO is set to 0 (zero), data coming into the DI pin is immediately packetized.
Otherwise, the incoming data will be buffered in the DI buffer and remain there until:

• No serial characters are received within the RO time-out period.

• The maximum number of characters that will fit into an RF packet (100) is buffered.

• A Command Mode Sequence of (GT + CC + GT) is received.

Hardware flow control for the DI buffer is implemented using the XBee's CTS pin. When the
DI buffer is 17 bytes from being full, the CTS line will go logically high to signal the host to
cease sending data. When the receiving microcontroller has pulled enough data from the DI
buffer to clear 34 bytes, the CTS line is returned to a logical low state, indicating to the trans-
mitting node that the DI buffer can accept more data.

133

Chapter 7

Incoming RF data is placed in the DO buffer before being pushed out of the XBee's DO pin.
Hardware flow control for the DO buffer is handled by the RTS pin. Data will not flow from
the DO buffer to the host when RTS is logically high.

The bulk of the subsystem boxes shown in Figure 7.2 are contained within two physical ICs,
a Freescale Semiconductor MC9S08GT60 microcontroller and a Freescale Semiconductor
MC 13193 802.15.4 RF transceiver IC.

DI (

CTS (

VCC (

GND (
DO (

o, 1 _
Buffer 1 "-

DO

Processor

RF TX
Buffer

RF RX
Buffer

Transmitter

Receiver

RF Switch

Antenna
Port

Figure 7.2: Hey/You've run through MAC and PHY heft. You can easily handle this. XBee modules
are designed to run right out of the box.

I popped the hood on one of the XBee ZigBee modules to put some meaning behind the
boxes in Figure 7.2. The Freescale Semiconductor M9S08GT60 microcontroller and the Fre-
escale Semiconductor MC 13193 RF transceiver parts are pretty obvious in Photo 7.1, as they
are both clearly marked with the B2 Bomber-like Freescale logo.

Photo 7. 1: If you had a chance to read
my other book, Implementing 802. 11
with Microcontrollers, you will recall
that I used a can opener on some
802.1 l b CompactFlash Wi-Fi cards just
as I have here with the XBee module.
RF is black magic and I still contend
that if you have to shield something,
there's something amiss going on
behind the metal.

1 3 4

Maxstream/XBee

The XBee module's 16-MHz clock source is nestled into the bottom right corner directly
under the Freescale MC13193. The MaxStream and Freescale engineers reading this are roll-
ing on the floor laughing at us. Here we are performing SWAGs (call me directly if you don't
know what a SWAG is) against obscure electronic components in a picture. They're having
fun on us as they really know what the rest of the parts are. Since I only have my intuition to
guide me and I don't belong to the pointy-hat-with-moons-and-stars club, I'll put forth my
best RF guess that the pair of 6-pin devices just above the Freescale Semiconductor MC 13193
are transmit and receive matching transformers. In that there is only one antenna, I'd ven-
ture to say that the little 6-pin device just above the Freescale Semiconductor M9S08GT60
microcontroller is an antenna switch, as it is the last active component between the antenna
connector and the rest of the RF circuitry. I happen to know that the Freescale Semiconductor
MC 13193 is really a Freescale Semiconductor MC 13192 with an integral ZigBee protocol
stack. I also happen to know that the Freescale Semiconductor MC 13193 contains receive and
transmit buffers to allow the use of smaller microcontrollers like the Freescale Semiconductor
M9S08GT60. However, that doesn't exclude the possibility that the Freescale Semiconductor
M9S08GT60 microcontroller is also holding a pair of transmit and receive buffers of its own.

The XBee-Pro is basically the same integrated Freescale M9S8GT60/Freescale MC13193
ZigBee radio as the XBee with some extras. I used an electronic can opener (a soldering iron)
to pop the hood on the XBee-Pro you see in Photo 7.2.

Photo 7.2: The XBee-Pro is a standard XBee
module with an additional adjustable RF
power amp, an LNA (low noise ampfifier)
and an analog-to-digital converter voltage
reference switch. The XBee-Pro's RF power
amp boosts the XBee-Pro's effective
output power to 100 m W.

In Photo 7.2 you can see the 6-pin analog-to-digital converter voltage reference switch IC in
the bottom left comer just under the Freescale Semiconductor M9S08GT60 microcontroller.
The 50K digital potentiometer that is used to adjust the RF power amp output is the 8-pin
package just above the Freescale Semiconductor M9S08GT60 microcontroller. Hopefully,

135

Chapter 7

the MaxStream and Freescale RF engineers have dried their laughter-filled eyes as I posi-
tively IDed the analog-to-digital converter switch and digital pot devices against the unknown
device's datasheets using their package markings. At this point, I would bet that the 16-pin
IC just above the Freescale Semiconductor MC13193 is the RF PA (power amplifier) and the
4-lead package to its upper fight is the LNA (low noise amplifier) that aids the receiver sub-
system of the Freescale Semiconductor MC 13193.

Now that you know that a standard Freescale microcontroller and an off-the-shelf Freescale
Semiconductor 802.15.4 ZigBee radio are the main ingredients of the XBee module, you
realize that since a microcontroller is involved, you have the capability to customize the
XBee module's operation. MaxStream also came to that realization and provides some
direction as to how to roll your own XBee application. If you're not set up to develop with
the HC08 family of Freescale Semiconductor microcontrollers, prepare to dig into the
piggy bank. Developing your custom XBee application with the Freescale SMAC can be
accomplished with the "free" version of the Metrowerks CodeWarrior Development Stu-
dio coupled with the MaxStream Bootloader, which is part of the XBee module's factory
firmware. If you decide to go with the Freescale 802.15.4 PHY and MAC development
method or the Figure 8 ZigBee stack, you'll need to get a serious copy of the Metrowerks
CodeWarrior Development Studio. Hints, libraries and auxiliary files needed to adapt the
Freescale SMAC, Freescale 802.15.4 PHY and MAC, and Figure 8 ZigBee stack applica-
tion methods to the MaxStream PHY are available from the MaxStream web site for a
download.

No matter which way you go in XBee development, the MaxStream X-CTU software, which
is also a free download from the MaxStream site, allows you to use your personal computer
to program the XBee modules serially using the XBee DIN, DOUT, RTS and DTR pins.
If you're hardcore, the P&E Microsystems, Inc. USB HCS08/HCS 12 Multilink program-
mer/debugger can also be used to program the XBee modules. The caveat of using the P&E
programmer is that you'll overwrite the bootloader code. Losing the bootloader code will
also erase the factory calibration information, which allows the XBee-Pro ZigBee modules
to attain 18 dBm power output. You'll be limited to 12 dBm output power without the factory
calibration info.

Transparent Mode operation using XBee modules may not always be the best choice for an
application. We've already seen the usefulness of API calls and how they can take the com-
plication out of writing ZigBee and IEEE 802.15.4 application firmware. To that end, XBee
modules can also be controlled via API calls. In the XBee environment, the API mechanism is
deployed using structured frames.

For instance, Figure 7.3 is a byte layout of an AT Command API type. The AT Command DL
is used to query the lower 32 bits of the XBee modules's 64-bit address. In 16-bit addressing
mode (DH = 0x00000000), the DL AT Command queries the XBee module's short address.
See, all of the running through hell stuff and introductory ZigBee and IEEE 802.15.4 nomen-
clature stuff that you've experienced in the previous chapters of this book comes in handy,

136

Maxstream/XBee

doesn't it? You'll find that once you've mastered the language and logistics of IEEE 802.15.4
and ZigBee, you will be able to travel to all of the differing ZigBee and IEEE 802.15.4
manufacturer's worlds. Let's use some of our knowledge of IEEE 802.15.4 to assemble a two-
man PAN using the XBee modules.

Byte 1 Byte 2-3 Byte 4 Byte 5 Byte 6-7 Byte 8

ro:o:jo ' I oxo8 ii l 1-o-x44-io' -lox4-c--i.;-ii i !;
Start Delimiter Length* API Identifier Frame ID** AT Command Checksum

Figure 7.3: This figure is a simple OxO8-Type API, which allows the reading or writing of
the target module parameter. In this example, we're simply reading the lower 32 bits of
the destination address. The Length is computed from a total of the bytes including the
API Identifier up to Checksum. The Frame ID is a randomly selected number.

It always helps to know what you're working with. Photos 7.3 and 7.4 are XBee module
interface boards that are provided with the XBee Professional Developer Kit. The XBee USB
interface board is shown in Photo 7.3 and the RS-232 version of the XBee interface board can
be seen in Photo 7.4.

Photo 7.3: Don't get too excited
about all of this as there is just
enough stuff on this board to
power everything and allow the
XBee module to communicate with
the FTDI RS-232-USB converter
IC. Power is supplied via the USB
connection.

137

Chapter 7

Photo 7.4: This is the R5-232 version
of the XBee interface board. The same
idea goes for this board as it does for
the USB interface board. There's just
enough goo on the board to power
the electronics and provide an R5-
232 interface to the 9-pin female
connector. Note that this board has a
power jack.

Both of the XBee interface boards contain nothing fancy and are only designed to make it
easy for the XBee programmer to connect the selected XBee module to the outside world.

The XBee interface boards are designed to allow the use of a personal computer in the develop-
ment of the XBee application. To that end, an XBee personal computer-based control program
called X-CTU is provided to eliminate the need to write XBee control routines from scratch.
The X-CTU application also provides a debug view of all of the XBee registers and acts as an
XBee module programmer. X-CTU even provides a built-in RS-232 terminal emulator.

I found that we can run two instances of X-CTU side by side as you see in Screen Capture

7.1.

As you can see in Screen Shot 7.1, key register values can be changed within the X-CTU win-
dows and written to the XBee modules mounted on the XBee interface boards. I designated
the COM3 XBee module as the coordinator and the COM1 XBee module as an end device by
setting the XBee module's CE (Coordinator Enable) register to a 1 and 0 (zero), respectively.
To keep the pair of IEEE 802.15.4 nodes from jumping around all over the available 2.4-GHz
channels, I stuffed a 0x0001 into each of the XBee module's SC (Scan Channels) registers.
The single bit in the SC registers only allows channel 11 (0x0B) to be scanned and used. I
then assigned a PAN ID of 0xCAFE in the coordinator X-CTU window. The XBee can run in

one of three MAC modes:

138

Maxst ream/XBee

I r ~ t ~ : : : l : t ~ ~ c ~ ~ 1

Xe24 ~ lxBEE 802.15.4

: " It lel CH- Chan~el e l E ~
It {CAFE] ID-PAN ID

• II {0} DH - be~;!in..~ic, n ,~,dd~e.-:::; Hi~.~}'t
• ~ [0] DL- Desiinafion Add.~e¢::; Lo,Jv

i I i [1}MY-16-bitSou~ceAdd~e~s
i I I {13A200} SH- Serial Number High

I I {400014&3} SL- Serial Numbe~ Low
i II {0} F;R-::'<~:ee F:et~ie~:

I I {3} RN- Random Delay Slot,~
• It {2} raM-Mac M~e
: I I {3C} NT- Node Oi:~cover Time

I I {1 } CE- Coordinate Enable
I {1 } SC- Scan Channels
I i {3} SD- Scar, D~ation

.... ~ {O}.&!- End Device .~,ss,:;,cia~ic, n
• II {7} A2- Coo~dinato~ A,~ociation

I I {0} AI- Association Indication
' ~ [0} EE -AES Enctyp~ on Er,,,~bie

II {OK} KY- AES Enc~yl~ion Key
:~sJL

~ E E F _ ~ S ~ i ! ~

~i ~ Networking & Security
• ~ [B} CH- Channel ,~
It {CAFE} IO- PAN IO ~E~---~'E~

I I I {1 } DL- Destination Add~e.~.~ Low
t I [FFFE} MY. 1 G-bit So,.nee Addre.~

• I t {13A200} SH. S~ial Number High
• I I {4000105D} SL- Serial Number Low

I t iO} FIR. X~ee Re~ie;:
I t {3} RN- Random Delay Slol~

• It {2) MM. MAC m~e
• It {3C} NT • Node Discover Time
It {0} C:E • C :~o,~din~o~ En.~bP:-

• It [I} SC- Scan ChanneI~
l i {3} SD- Scan Du~'ation
I t {7} At - End Device A~sociation
t i i0} h 2 ,, !::o,:,~,:jin,~,'.o,, A~,~.~..o,.ci~,'.io;~
I I {0} AI- As~ocial~ion Indication

•' It {0! EE -.AES Enc~vp~ion En~£--~e
I I [OK} KY- AES Enc~pfion Key

V e f ~

Screen Capture 7. 1 The COM3 instance of X-CTU is running against a USB driver that emulates a
standard personal computer COM port. In this case, the emulated port is COM3.

• 802.15.4 +MaxStream Header

• 802.15.4 without ACKs

• 802.15.4 withACKs

I selected 802.25.4 with ACKs for both the coordinator and end device XBee devices by writ-
ing a 2 to the XBee's MM (MAC Mode) register. As you well know, association is a key part
of assembling a useful PAN. So, on the coordinator side I adjusted the bit pattern within the
A2 (Coordinator Association) register to allow association. On the end device side I selected
a bit pattern for the A1 (End Device Association) register that instructed the end device XBee
module to auto associate.

After writing the changes to both of the potential PAN candidates, I held both of the XBee
interface board's reset pins in reset position and released the coordinator's reset pin before
releasing the end device's reset pin seconds later. As you have come to expect, I had the Dain-
tree Networks SNA application running the whole time sniffing on channel 11. Following the
release of the end device from reset, I watched the packets ripple by in a very familiar pattern
in the Daintree Networks SNA Packet List window.

1 3 9

Chapter 7

I knew we were on the fight track when I saw the coordinator post a Beacon Request to check
out the availability of channel 11. The Beacon Request issued by the coordinator is detailed in
Sniffer Capture 7.1.

Sniffer Capture 7.1

Frame 206 (Length : i0 bytes)

Time Stamp- 10-01-56.459

Frame Length: i0 bytes

Capture Length: i0 bytes

Link Quality Indication: 168

IEEE 802.15.4

Frame Control: 0x0803

............. 011

.

.

.

not required

: Frame Type- Command (0x0003)

: Security Enabled. Disabled

: Frame Pending- No more data

: Acknowledgment Request- Acknowledgment

......... 0 : Intra PAN: Not within the PAN

...... 00 0 Reserved

.... i0 : Destination Addressing Mode" Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

00 Source Addressing Mode- PAN identi~er

and address ~eld are not present (0x0000)

Sequence Number- 93

Destination PAN Identi~er- 0xffff
Destination Address: 0xffff
MAC Payload

Command Frame Identi~er = Beacon Request- (0x07)

Frame Check Sequence- Correct

0000: 03 08 5d ff ff ff ff 07]

5niffer Capture 7. 1" Nothing new here. The coordinator is simply blasting away on channel 11 and
seeing if someone shoots back.

Once the new PAN was established on channel l 1, the end device's active scan of channel
11 led to the release of a Beacon frame from the new PAN Coordinator. If you haven't been
chapter hopping, you know that the Beacon frame in Sniffer Capture 7.2 is intended to convey
the rules and regulations of the PAN, identify the PAN Coordinator and let the end device
know that the PAN has a vacancy.

Sniffer Capture 7.2

Frame 209 (Length : 13 bytes)

Time Stamp: 10-01-56.745

Frame Length- 13 bytes

Capture Length: 13 bytes

140

Maxstream/XBee

Link Quality Indication- 232

IEEE 802.15.4

Frame Control: 0xe000

............. 000

.

.

.

not required

= Frame Type: Beacon (0x0000)

= Security Enabled- Disabled

= Frame Pending: No more data

= Acknowledgment Request- Acknowledgment

......... 0 = Intra PAN" Not within the PAN

...... 00 0 = Reserved

.... 00 Destination Addressing Mode- PAN

identi~er and address field are not present (0x0000)

..00 Reserved

i0 Source Addressing Mode. Address field

contains a 16-bit short address (0x0002)

Sequence Number- 173

Source PAN Identifier: 0xcafe

Source Address: 0x0001

MAC Payload

Superframe Specification- 0xcfff

............ Iiii

........ iiii

.... iiii

. . .0

. . 0

.1

a PAN Coordinator

: Beacon Order (0x000f)

= Superframe Order (0x000f)

= Final CAP Slot (0x000f)

= Battery Life Extension- Disabled

= Reserved

= PAN Coordinator: Transmitter is

= Association Permit- Coordinator

accepting Association Requests

GTS Specification- 0x00

. 0 0 0

• 0 0 0 O . .

0

= GTS Descriptor Count (0x00)

= Reserved

: GTS Permit- Coordinator not accepting GTS

Requests

Pending Address Specification: 0x00

..... 000 : Number of short Addresses pending- 0

.... 0... = Reserved

.000 Number of extended Addresses pending. 0

0 : Reserved

Frame Check Sequence- Correct

0000- 00 80 ad fe ca 01 00 ff cf 00 00 --J...0

Sniffer Capture 7.2: This is what the XBee End Device was looking for. Now there's enough
information for the end device to join the PAN.

The XBee End Device has seen enough and writes the check to join the PAN in Sniffer Cap-
ture 7.3.

141

Chapter 7

Sniffer Capture 7.3

Frame 210 (Length = 21 bytes)

Time Stamp: 10:01:57.058

Frame Length: 21 bytes

Capture Length: 21 bytes

Link Quality Indication- 168

IEEE 802.15.4

Frame Control: 0xc823

............. 011

. °o 0 . ° °

.

. i

required

= Frame Type- Command (0x0003)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request : Acknowledgment

......... 0 = Intra PAN: Not within the PAN

...... 00 0 Reserved

.... I0 Destination Addressing Mode- Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

Ii Source Addressing Mode: Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number: 96

Destination PAN Identi~er- 0xcafe

Destination Address- 0x0001

Source PAN Identi~er: 0xffff

Source Address: 0x0013a2004000105d

MAC Payload

Command Frame Identi~er = Association Request- (0x01)

Capability Information- 0x02

....... 0 = Alternate PAN Coordinator- Not capable of

becoming PAN Coordinator

. i.

.°

alternating current mains

. o

when idle

..00

.0

= Device Type- FFD

= Power Source- Not receiving power from

= Receiver on when idle- Disables receiver

= Reserved

= Security Capability- Not capable of using

security suite

= Allocate Address- Coordinator should not

allocate short address

Frame Check Sequence- Correct

0000: 23 c8 60 fe ca 01 00 ff ff 5d i0 00 40 00 a2 13 #H'-J]..@.".

0010: 00 01 02

Sniffer Capture 7.3: You already know the drill. This association request provides the end device's
vital information to the coordinator whose PAN it wishes to join.

142

Maxstream/XBee

Following the PAN Coordinator's acknowledgment, the end device issues an "empty" data
request command in Sniffer Capture 7.4, which is followed by yet another acknowledgment
from the PAN Coordinator.

Sniffer Capture 7.4

Frame 212 (Length = 18 bytes)

Time Stamp: 10-01-57.553

Frame Length: 18 bytes

Capture Length: 18 bytes

Link Quality Indication- 172

IEEE 802.15.4

Frame Control: 0xc863

............. 011

.

. ° . . .

. i

required

= Frame Type. Command (0x0003)

= Security Enabled- Disabled

= Frame Pending- No more data

= Acknowledgment Request- Acknowledgment

......... 1 = Intra PAN- Within the PAN

...... 00 0 Reserved

.... i0 Destination Addressing Mode" Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

ii Source Addressing Mode- Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number- 97

Destination PAN Identi~er: 0xcafe

Destination Address- 0x0001

Source Address- 0x0013a2004000105d

MAC Payload

Command Frame Identi~er = Data Request- (0x04)
Frame Check Sequence- Correct

0000: 63 c8 61 fe ca 01 00 5d i0 00 40 00 a2 13 00 04 cHa-J..]..@."...

0010:

Sniffer Capture 7.4: By "empty" I mean that the Frame Pendh~g bit i5 h~dicating no more data.

The acknowledgment to Sequence Number 97 in Sniffer Capture 7.5 informs the end device
that there is indeed more data.

Sniffer Capture 7.5

Frame 213 (Length : 5 bytes)

Time Stamp- 10:01-57.554

Frame Length: 5 bytes

Capture Length: 5 bytes

Link Quality Indication. 232

IEEE 802.15.4

Frame Control: 0x0012

143

Chapter 7

not required

............. 010

. 0 . . .

.

.

= Frame Type : Acknowledgment (0x0002)

= Security Enabled: Disabled

= Frame Pending: More data

= Acknowledgment Request: Acknowledgment

......... 0 Intra PAN- Not within the PAN

...... 00 0 Reserved

.... 00 Destination Addressing Mode: PAN

identi~er and address ~eld are not present (0x0000)

..00 = Reserved

00 Source Addressing Mode: PAN identi~er

and address ~eld are not present (0x0000)

Sequence Number: 97

Frame Check Sequence: Correct

0000- 12 00 61 a..

Sniffer Capture 7.5: Not so fast, end device. I'm still working on this association request you
submitted.

Seems that the XBee End Device's check cleared and the PAN Coordinator hands over a key
to a room in the PAN in Sniffer Capture 7.6.

Sniffer Capture 7.6

Frame 214 (Length = 27 bytes)

Time Stamp- 10-01:57.557

Frame Length: 27 bytes

Capture Length- 27 bytes

Link Quality Indication: 232

IEEE 802.15.4

Frame Control: 0xcc63

............. 011 = Frame Type- Command (0x0003)

............ 0 Security Enabled: Disabled

........... 0 = Frame Pending: No more data

.......... 1 = Acknowledgment Request: Acknowledgment

required

......... 1 = Intra PAN: Within the PAN

...... 00 0 Reserved

.... ii Destination Addressing Mode: Address

~eld contains a 64-bit extended address (0x0003)

..00 Reserved

ii Source Addressing Mode: Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number: 83

Destination PAN Identi~er- 0xcafe

Destination Address: 0x0013a2004000105d

Source Address- 0x0013a20040001493

MAC Payload

Command Frame Identi~er = Association Response: (0x02)

Short Address: 0xfffe

144

Maxstream/XBee

Association Status- Association Successful (0x00)

Frame Check Sequence. Correct

0000" 63 cc 53 fe ca 5d 1O 00 40 O0 a2 13 0O 93 14 00 cLS-J]..@.".

0010- 40 00 a2 13 00 02 fe ff 00
@.ii...~

Sniffer Capture 7. 6. Everybody's happy here. Think about this. Most of the bytes that make up this
frame are IEEE address bytes.

I often wonder if the Hayes modem folks ever in their wildest dreams expected to see their
"AT" command interface tacked onto ZigBee radios. Well, if you don't have a need to roll
your own XBee embedded application using a full-blown ZigBee stack such as Figure 8, the
venerable XBee "AT" command set can be used to modify and read the XBee module pa-
rameters. The XBee's "AT" command set and its use of the RS-232 protocol make the XBee
and XBee-Pro prime candidates for use with a UART-equipped microcontroller. So, I threw
together a little microcontroller-based board complete with an RS-232 serial port to collect
the data payloads from the IEEE 802.15.4 packets flying between the XBee modules.

The overall long-distance ZigBee/IEEE 802.15.4 scheme I concocted is simple. An XBee
node is either running an embedded application or is under control of a host microcontroller,
which is also most likely running an embedded application. Either way, data is passed from
the remote XBee node to a central collection XBee node, which passes the received ZigBee/
IEEE 802.15.4 node data to the microcontroller on the printed circuit board you see in Photo
7.5. The receiving microcontroller can then process the data or just pass it along to the Eth-
ernet engine encapsulated within a UDP datagram. By adding Ethernet and UDP, small data
payloads can now flow from PAN to LAN to WAN and vice versa.

Photo 7.5: This is really an Ethemet development board. However, this tittle piece of electronic
wizardry contains a realtime clock, a serial port, a dual-voltage logic power supply and a debugging/
programming port for its PIC18LF8722 microcontrotler. The idea is to pipe serial data in from the
XBee module and push it out of the Ethernet development board's Ethernet port.

145

Chapter 7

Let's examine what it takes to perform the PAN-to-LAN data transfers. To keep things easy,
I put the XBee modules into Transparent Mode in which the serial datastream that enters the
XBee module DIN input is not held in a buffer and is transmitted as quickly as possible. The
microcontroller on my ZigBee/IEEE 802.15.4-to-Ethemet bridge is programmed to catch
every incoming serial character by way of interrupt and stuff the captured characters into a re-
ceive buffer. The buffered characters are then punched into the data area of a UDP datagram,
which is preconstructed and lying in wait in the microcontroller's SRA7. The details of the
construction of the UDP datagram and its ultimate transmission are laid out in Listing 7.1. If
you're not familiar with UDP, I've provided a UDP Primer on the CD-ROM just for you.

Listing 7.1
**

//* This function sends UDP packet with user defuned payload
**

void send_udp_datagram()
{

char temp;
unsigned int buffer_addr, i, tx_end, tx_cnt;

tx_end = TXSTART;
//load beginning page for transmit buffer
banksel (EWRPTL) ;
wr_reg (EWRPTL, LOW_BYTE (TXSTART)) ;
wr_reg (EWRPTH, HIGH_BYTE (TXSTART)) ;

//write ENC28J60 control byte
wr_sram (tx_control_byte) ;
+ + tx_end;
//build destination MAC address
udp_packet [enetpacketDest0] =remotemacaddrc [0] ;
udp_packet [enetpacketDestl] =remotemacaddrc [1] ;
udp_packet [enetpacketDest2] =remotemacaddrc [2] ;
udp_packet [enetpacketDest3] =remotemacaddrc [3] ;
udp_packet [enetpacketDest4] =remotemacaddrc [4] ;
udp_packet [enetpacketDest5] =remotemacaddrc [5] ;
tx_end += 6;
//build source MAC address
udp_packet [enetpacketSrc0] =macaddrc [0] ;
udp_packet [enetpacketSrcl] =macaddrc [1] ;
udp_packet [enetpacketSrc2] =macaddrc [2] ;
udp_packet [enetpacketSrc3] =macaddrc [3] ;
udp_packet [enetpacketSrc4] =macaddrc [4] ;
udp_packet [enetpacketSrc5] =macaddrc [5] ;
tx_end += 6;
//build packet type (IP)
udp_packet [enetpacketType0] = 0x08 ;
udp_packet [enetpacketTypel] = 0x00 ;
tx_end += 2;
//build version, length, tos,packet length

146

Maxstream/XBee

udp_packet[ip vers len] = 0x45;

udp_packet[ip tos] = 0x00;

udp_packet [ip_pktlen] = 0x00 ;

udp_packet [ip_pktlen+l] = 0x24;

tx_end += 4;

//build packet ID

++cntri ;

udp_packet[ip id] = make8(cntri,0) ;

udp_packet[ip_id+l] : make8(cntri,l) ;

tx_end += 2;

//build fragment offset

udp_packet[ip frag offset] = 0x00;

udp_packet[ip frag offset+l] = 0x00;

tx_end += 2;

//build time to live, UDP protocol ID

udp_packet[ip ttl] = 0x80;

udp_packet [ip_proto] = 0xll ;

//build IP source and destination addresses

for (i=0; i<4; ++i)
{

udp_packet[ip srcaddr+i]=ipaddrc[i] ;

udp_packet [ip destaddr+ i] =remoteipaddrc [i] ;

tx end += 2-
}
//calculate the IP header checksum

udp_packet[ip hdr cksum]=0x00;

udp_packet[ip hdr cksum+l]=0x00;

hdr chksum =0-

hdrlen = (udp_packet[ip vers len] & 0x0F) * 4;

addr = &udp_packet[ip vers len] ;

cksum () -

chksuml6= - (hdr_chksum + ((hdr_chksum & 0xFFFF0000)
udp__packet[ip_hdr_cksum] : make8 (chksuml6,1) ;

udp_packet[ip hdr cksum+l] = make8(chksuml6,0) ;
tx_end +: 4-

//build UDP source port address

udp_packet[UDP_srcport] : 0x13;
udp_packet[UDP srcport+l] = 0x88;
tx_end +: 2;

//build UDP destination port address

udp_packet[UDP destport] = 0x00;

udp_packet[UDP destport+l] = 0x07;

tx end += 2;

//build UDP packet length

udp_packet[UDP len] = 0x00-

udp_packet[UDP len+l] = 0xl0;

tx_end += 2;

//udp_packet[UDP cksum] goes here
tx_end +: 2 ;

//UDP data goes here
for (i=0 ; i<8 ; ++i)

udp_packet[UDP data+i] = 0x30 + i;

>> 16));

147

Chapter 7

tx_end += 8;
//calculate the UDP checksum
udp_packet [UDP_cksum] = 0x00 ;
udp_packet [UDP_cksum+l] = 0x00 ;
hdr_chksum =0 ;
hdrlen = 0x08;
addr = &udp_packet [ip_srcaddr] ;
cksum () ;

hdr_chksum = hdr_chksum + udp_packet[ip_proto] ;
hdrlen = 0x02;
addr = &udp_packet[UDP_len] ;
cksum () ;

hdrlen = makel6 (udp_packet [UDP_Ien], udp_packet [UDP_len+l]) ;
addr = &udp_packet [UDP_srcport] ;
cksum () ;
chksuml6= - (hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16)) ;
udp_packet [UDP_cksum] = make8 (chksuml6, i) ;
udp_packet [UDP_cksum+l] = make8 (chksuml6,0) ;

//mark end of UDP datagram
banksel (ETXNDL) ;
wr_reg (ETXNDL, LOW_BYTE (tx_end)) ;
wr_reg (ETXNDH, HIGH_BYTE (tx_end)) ;
tx_cnt = tx_end- TXSTART;
//write UDP datagram to ENC28J60 Transmit Buffer
for (buf fer_addr=0 ; buf fer addr<tx_cnt+l ; ++buf fer_addr)

wr_sram(udp_packet [enetpacketDest0 + buffer_addr]) ;
//send the contents of the transmit buffer onto the network
if(l :: (rd_reg8(EIR) & EIR_TXERIF))
{
bfc_reg (EIR, EIR_TXERIF) ;
bfs_reg (ECONI, ECONI_TXRTS) ;
bfc_reg (ECONI, ECONI_TXRTS) ;

}
bfc_reg (EIR, EIR_TXIF) ;
bfs_reg (ECONI, ECONI_TXRTS) ;
while(l :: (rd_reg8(ECONl) & ECONI_TXRTS)) ;
+ + tx_end;

banksel (ERDPTL) ;
wr_reg (ERDPTL, LOW_BYTE (tx_end)) ;
wr_reg (ERDPTH, HIGH_BYTE (tx_end)) ;
for (i=0 ; i<7 ; ++i)

tx_status[i]: rd sram() ;
/ / temp = rd_reg8 (ESTAT) ;
if(l := (rd_reg8(ESTAT) & ESTAT_TXABRT))

printf ("\r\nUDP Datagram Transmission Aborted.. ") ;

)

Listing 7. 1 Don't worry. The complete code listing is on the CD-ROM. The code is intended to
control the functionality of the EDTP Frame Thrower II development board shown in Photo 7.5. If
UDP is a foreign word to you, take a look at the UDP Primer on the CD-ROM.

1 4 8

Maxstream/XBee

The new Microchip ENC28J60 is the Ethernet engine that drives the ZigBee/IEEE 802.15.4
bridge board. The ENC28J60's 8K of internal packet-buffer area can be carved up by loading
certain extent registers with the buffer extent values. I allocated 1K of transmit-buffer area,
which left the remaining 7K for receive-buffer duty. TXSTART represents the beginning of
the transmit-buffer area within the ENC28J60. Rather than tie up ENC28J60 buffer space, I
assembled a UDP datagram within the microcontroller memory with the send_udp_datagram
function shown in Listing 7.1. A UDP datagram is a very simple collection of destination/
source hardware and IP addresses, checksums, destination/source logical port addresses and
data. I build a complete UDP datagram from top to bottom and send it within the send_udp_
datagram function's code. The data area of the UDP datagram is shown as static values in
Listing 7.1.

Before we can send that little UDP datagram and do something useful with the data it carries,
we must have a defined destination. So, I've cooked up a little code module to seek out and
map the destination Ethernet station. The arp_request function shown in Listing 7.2 writes the
contents of an ARP request packet directly into the ENC28J60's transmit buffer area. There
is no reason to build the ARP request packet up in microcontroller memory as it is only used
once at the beginning of the process.

Listing 7.2
**

//* Perform ARP Request
//* This routine uses a known remote IP address to get a remote
//* Ethernet modules' s MAC (hardware) address.

void arp_request (void)
{

/ / char temp;
unsigned int i, tx_end;

clr_arp~ag;
tx_end = TXSTART;
//load beginning page for transmit buffer
banksel(EWRPTL);
wr_reg(EWRPTL,LOW_BYTE(TXSTART));
wr_reg(EWRPTH,HIGH_BYTE(TXSTART));

//write control byte
wr_sram(tx_control_byte);
++tx_end;
//build destination MAC address
for (i=0; i<6; ++i)
{

wr_sram (0xFF) ;
++tx_end;

}

//build source MAC address

149

Chapter 7

for (i=0 ; i<6 ; ++i)
{

wr_sram (macaddrc [i]) ;
+ + tx_end;

)

wr_sram (0x08) ;
wr_sram (0x06) ;
tx_end +=2 ;
wr_sram (0x00) ;
wr_sram (0x01) ;
tx_end +=2 ;
wr_sram (0x08) ;
wr_sram (0x00) ;
tx_end +=2 ;
wr_sram (0x06) ;
wr_sram (0x04) ;
tx_end +=2 ;
wr_sram (0x00) ;
wr_sram (0x01) ;
tx_end += 2;
//build source MAC address
for (i=0; i<6; ++i)
{

wr_sram (macaddrc [i]) ;
++tx_end;

)
//build source IP address
for (i=0 ; i<4 ; ++i)
{

wr_sram (ipaddrc [i]) ;
+ + tx_end;

)

//ARP packet type

//hardware type = 10Mb Ethernet

//IP protocol

//hardware addr len (06)
//hardware protocol addr len (04)

//ARP request

//build unknown target MAC address area
for (i=0; i<6; ++i)
{

wr_sram (0x00) ;
+ + tx_end;

)
//build target IP address
for (i=0 ; i<4; ++i)
{

wr_sram (remoteipaddrc [i]) ;
++ tx_end;

)
//mark end of ARP request packet
banksel (ETXNDL) ;
wr_reg (ETXNDL, LOW_BYTE (tx_end)) ;
wr_reg (ETXNDH, HIGH_BYTE (tx_end)) ;
//send the contents of the transmit buffer onto the network
while ((rd_reg8 (ECONI) & ECONI_TXRTS) == 1) ;

150

Maxstream/XBee

if((rd_reg8(EIR) & EIR_TXERIF) :: i)
{

bfc_reg(EIR, EIR_TXERIF) ;
bfs_reg (ECONI, ECONI_TXRTS) ;
bfc_reg (ECONI, ECONI_TXRTS) -

}
//bfc_reg (EIR, EIR_TXIF) ;
bfs reg(ECONl, ECONI_TXRTS) ;

}

Listing 7.2: Again, don't worry. If you don't speak ARP, you can get a first hand ARP tutorial from
the ARP Primer I've included on the CD-ROM for you.

The method of updating and sending the ZigBee or IEEE 802.15.4 data inside the UDP da-
tagrams is dependent on your application. I've included real-time clock hardware as well as
a real-time clock driver in the ZigBee/IEEE 802.15.4 bridge application code to allow you to
send the UDP datagrams at timed intervals. You may also choose to kick off a UDP datagram
after collecting a certain amount of data. For demonstration purposes, I coded my ZigBee/
IEEE 802.15.4 bridge application skeleton to send a UDP datagram every minute.

I used the null modem adapter that came with the XBee Professional Developer Kit to attach
the RS-232-equipped XBee development pod to the serial port of my ZigBee/IEEE 802.15.4
bridge printed circuit board. In lieu of a microcontroller/XBee module lashup at the remote
end of the PAN, I used the XBee Development Kit's USB-attached XBee development pod
and my laptop to simulate the remote data collecting ZigBee node. The experimental lashup
is shown in Photo 7.6.

Photo 7. 6: The null modem adapter crosses the R5-232 lines to satisfy the communication
port needs of both the Frame Thrower II and the XBee interface board, which are both
wired as DCE devices.

151

Chapter 7

Although very powerful when coupled with an external host microcontroller, the XBee and
XBee-Pro modules can be used effectively as stand-alone PAN devices, as the Freescale
Semiconductor microcontroller at the heart of the XBee modules is capable of doing other
microcontroller things such as analog-to-digital conversion and general-purpose I/O. The
XBee command set includes directives to manipulate these analog and digital resources.

About MaxStream
MaxStream and its products have been featured in cover stories and special reports of
magazines read throughout the world. That's right. I've done a few MaxStream magazine
columns myself. Here's another company that listens and responds. During my time writing
this chapter, I "killed" one of my MaxStream XBee modules. Well, at least I thought I had
killed it. So, I got online and went to the MaxStream site looking for help. After I couldn't
figure it out on my own (I know, that's sad isn't it?), I clicked onto their online support line.
Within a minute I was chatting with an engineer that walked me through reviving my seem-
ingly dead XBee module. MaxStream was also one of the very first responders with content
for this book.

You now have a very good idea of what the XBee radios are all about. Let's move on and take
the XBee technology one step further by mating an XBee module with a Rabbit.

Wait, don't you want to know about the Merseybeat sound? Well, it seems that these young
men were doing time in Germany. Not that kind of time, musical time. They had progressed
from being The Quarrymen, to the Silver Beatles, to just the Beatles by the time they were
honing their chops in the red-light district of Hamburg, Germany. Believe it or not, the
Beatles were just another Liverpool band before they went to Hamburg. However, when they
returned as a really tight band called the Beatles, the folks in the Merseyside area that fre-
quented the Cavern Club listened to their Merseybeat sound night after night.

Here's a guitar question for you. George Harrison was considered "the" guitar player for the
Beatles. Which very unlikely guitar did George cherish as a young Beatle?

152

CHAPTER 8
Hopping Down the Bunny Trail

As many of you know, I've been putting words and pictures into print for quite some time
now. I was brought into this business rather unexpectedly when my friend, the late Bill Green
of Radio Electronics and Popular Electronics fame, helped me to get my first real magazine-
writing gig some 23 years ago. Long before the email and internet craze began, Bill and I
would spend evenings at his place going over the day's editorial happenings. Usually, we
would discuss the reader feedback he had received that day and wonder why some of the
things readers were thinking got onto a piece of paper and into our hands. I learned quickly
that as a technical writer there are a few folks out there spending their reading time in an
effort to discredit you. Usually, those guys would send nasty notes to the magazine editor or
fire off a really nasty and degrading letter to the author. Bill's technology was sound and he
was a student of electronics. As a consequence, the naysayers never won a battle with Bill and
moved on to what they thought would be an easier target. Fortunately, I learned from Bill and
I do my research as best I can before committing my ideas to print. However, I came upon an
internet forum discussion about me that really hurt. One of the forum members was com-
menting on how I "like everything" and never write negatively about the stuff I evaluate in my
columns. He went on to say that "this guy even likes Rabbit microcontrollers." He followed
up that statement by disparaging the Rabbit Semiconductor microcontroller and its technol-
ogy. That's one of the reasons why I don't participate regularly in forums to this day. I sucked
it up just as Bill would have and moved on. Despite the forum member's attack on Rabbit
Semiconductor and me, Rabbit Semiconductor's business model and microcontrollers are still
going strong and I 'm still here writing books and magazine columns. As far as "liking every-
thing I write about," I will never waste your time or mine by writing about things that don't
work and shouldn't be given the time of day.

Say what you will about Rabbit microcontrollers. However, if you really want to understand
how something works, purchase an associated Rabbit Development kit. In my opinion, the
most comprehensive 802.1 lb development kit in the world is sold by Rabbit Semiconductor. If
you want to learn to use the internet protocols and post web pages with a microcontroller, get
a Rabbit Semiconductor's Ethemet development kit and learn how to do it the fight way. My
reasons for feeling this way involve the way that the Rabbit code and libraries are structured.
Rabbit libraries are not compiled object files, Rabbit libraries are actual source code files that
you can open with an editor, read and study. Another Rabbit plus in my book is that every Rab-
bit development kit I've ever come into contact with works as designed with no compromises.
The Rabbit ZigBee/802.15.4 Application Kit is no exception to the rule of the Rabbit.

153

Chapter 8

I purposely put the XBee chapter before this one as the Rabbit ZigBee/802.15.4 Application
Kit is built around XBee IEEE 802.15.4 radio technology. I also wanted to expose you to the
X-CTU tool and the ways of the XBee modules, so you would be able to immediately transfer
that knowledge to the concepts to be offered up in this chapter.

Let's take a look at the Rabbit ZigBee/802.15.4 Application Kit hardware. The XBee RF
Module interface board that is standard equipment with the Rabbit ZigBee/802.15.4 Applica-
tion Kit is shown in Photo 8.1.

i [Mi~x ~ t re,, a m -" ~ ~

X B e e - "

{: ~: ~t 4, ;:X]Re,
.(

il : e ~ -

....... ; g } .~ :1 ;? 'i " O T E E r ~ e b t e

, ~ g : , , 2 ; : ; : ;~-:Z 2 ,,, ~ • : ~ & " E - S i ~

. 7 .F,232 111 ~I
....... ,7,{:;) B

Photo 8.1: XBee RF Modu le
interface board. The only thing
you don ' t see is the voltage
regulator, which is nestled under
the XBee module. Otherwise,
there's an R5-232 converter IC,
the basic interconnects and some
user switches and LEDs.

The Rabbit ZigBee/802.15.4 Application Kit XBee RF Module interface board is very simple
in design as it is only intended to provide easy access to the XBee module's serial inter-
face and power. A well-heatsinked voltage regulator resides underneath the XBee module
with nothing mounted on the back side of the XBee RF Module interface board. There's
just enough on the XBee RF Module interface board to allow the programmer access to the
XBee's serial interface and power connections. The serial connector to the far left is connect-
ed directly to the XBee serial I/O pins while the RS-232 connector at the bottom of the shot is
buffered by the RS-232 converter IC to its left. The Rabbit ZigBee/802.15.4 Application Kit
XBee RF Module interface board can accommodate the XBee-Pro radio module as well.

Photo 8.2 is an assemblage of a RabbitCore RCM3720 mounted on a RabbitCore RCM3720
Prototyping Board. The Rabbit ZigBee/802.15.4 Application Kit XBee interface module
is simply sitting in for the photo shoot. The Rabbit ZigBee/802.15.4 Application Kit XBee
interface module connects to the RabbitCore RCM3720 via the RS-232 connector at the far

154

Hopping Down the Bunny Trail

right of the RabbitCore RCM3720 Prototyping Board. Power for the XBee interface module
is stolen from the RabbitCore RCM3720 Prototyping Board power rail. I 'm not going to get
deep into a discussion of the RabbitCore RCM3720 but I will tell you it is a Rabbit 3000-
based microcontroller platform with 512K of Flash and 512K of SRAM. The RabbitCore
RCM3720 also includes a fully functional 10-Mbps Ethernet interface, which is based on
the RTL8019AS. The RabbitCore RCM3720 offers 33 general-purpose I/O lines and 4 serial
ports. Although we have the luxury of mounting our RabbitCore RCM3720 on a RabbitCore
RCM3720 Prototyping Board, the RabbitCore RCM3720 is really designed to have its .1-inch
2 x 20 dual-row IDC header plugged onto a user-unique production motherboard.

Photo 8.2: RabbitCore RCM3720 on a RabbitCore RCM3720 Prototyping Board. The
RabbitCore RCM3720 is primarily used in Ethemet applications. However, since the XBee is
a serial device and the RabbitCore RCM3720 sports 4 serial ports, the RabbitCore RCM3720
can offer some really interesting XBee application options.

The XBee module in Photo 8.2 connects to the RabbitCore RCM3720's serial port by way of
ribbon cable. Rabbit firmware is written using Rabbit Semiconductor's Dynamic C compiler,
which also integrates the microcontroller debugging environment. The XBee application firm-
ware that runs on the Rabbit microcontroller is based on the XBee AT command set and not
the XBee API. The Rabbit ZigBee/802.15.4 Application Kit includes libraries that have taken
all of the XBee AT commands and assembled them into simple function calls. The parameters
of the XBee AT command set are entered as function call arguments in the Dynamic C source

155

Chapter 8

code. Effectively, the XBee AT command set has been converted to function calls that return
values solicited by the AT commands. Let's wander through a simple Rabbit ZigBee/802.15.4
Application Kit Dynamic C-based XBee application and see if we can figure out what's going
on behind the scenes.

The first order of business is to use X-CTU to configure the XBee module I/O to match the
RF Module interface board hardware. The Rabbit ZigBee/802.15.4 Application Kit RF Mod-
ule interface boards are physically configured as follows"

• DIO0 = Output DS1 LED

• DIO1 = Output DS2 LED

• DIO2 = Input S1 pushbutton switch

• DIO3 = ADC BAT battery voltage monitor

• DIO4 = Input $2 pushbutton switch

Thus, we can use X-CTU to set up the XBee module's I/O pins this way:

• D O - DIO0 Configuration = 4 (output low)

• D 1 - DIO1 Configuration = 4 (output low)

• D 2 - DIO2 Configuration = 3 (input)

• D3 - DIO3 Configuration = 2 (ADC)

• D 4 - DIO4 Configuration = 3 (input)

Rather than babble along trying to explain the numbers behind the DIOX Configurations, I
captured an X-CTU session in Screen Capture 8.1 for you.

Only the XBee End Device gets the general-purpose I/O configuration treatment via the
X-CTU. The XBee coordinator is set up using X-CTU to allow devices to join the PAN and
the XBee End Device is configured via X-CTU to automatically join the PAN. To make sure
things were not out of my control, the PAN ID is preset to 0xAAAA in both the PAN Coor-
dinator and end device. I also shut down every channel except channel 11 by setting the SC
(Scan Channels) parameter to 0x0001.

One of the non-IEEE 802.15.4 things that can be configured on an XBee module is a Node
ID. In the XBee world a Node ID (NI) is an ASCII name that is associated with the node.
In our little peer-to-peer network the PAN Coordinator has an NI of DIO-COORD and I
reached into my Parliament-Funkadelic bag and assigned an NI of STARCHILD-1 to the
end device. (For those of you asking what the heck is a Parliament-Funkadelic, they are two
bands in one formed by George Clinton in the late 1960s. You can hear Star Child speak
about his preference for funk music on Parliament's 1975 release "Mothership Connection."
I wore out two copies of this album.) OK...Everything is set up hardware-wise and you have
a new album to buy.

156

Hopping Down the Bunny Trail

i!~ ~i ! I x~24 ~ i~ XBEE BOZlS4

i I / ST- Time before Sleep
...... I I SP- C.,uclic Sleep Period
...... I I DP- Disassociated Cyclic Sleep Period

[-~ , .~ Serial Interfacing
i I I BD-interlace Data Rate
i ~ RO-Packetization Timeout

! ~ PR- Pull-up Resistor Enable
~-!., ~ I/O Settings

i ~ D8- DI8 Configuration
i ~1 D7-DIO7 Configuration
i ~i D6-DIO6 Configuration
i I I D5- DIO5 Configuration
! I I D4-DIO4 Configuration
i ~ D3- DIO3 Configuration
ii Il l D2 -DIO2 Configuration
i I I D1 -DIO1 Configuration ...

L.%. I

Screen Capture 8. 1" Just in case you don't have your Rabbit ZigBee/802.15.4 Application
Kit and X-CTU application handy, this shot should clear up any XBee general-purpose I/0
configuration questions.

I'll use Dynamic C's STDIO window to show you the results of the execution of the XBee
library function calls. The application we will be examining uses the RabbitCore RCM3720's
D serial port.

Code Snippet 8.1

#defme ATCMDRSP_SP D //set to serial port A, B, C, D, E, or F

#defme DINBUFSIZE 255 //PC1 = RxD -- XBee pin 2 = Dout

#defune DOUTBUFSIZE 127 //PC0 = TxD -- XBee pin 3 = Din

#defme SERD_RTS_PORT PCDR //RTS is output ~owcontrol

#defune SERD_RTS_SHADOW PCDRShadow

157

Chapter 8

#defune SERD_RTS_BIT 2 //PC2
#defnne SERD_CTS_PORT PCDR //CTS is input flowcontrol
#define SERD_CTS_BIT 3 / / PC3
#defme DEFAULTBAUD 9600L //xbee factory default baud rate

Code Snippet 8.1Another big plus for Rabbit is that their code is really easy to read and understand.
For instance, ATCMDRSP_SP or AT CoMmanD RESponse_Serial Port is assigned to serial port D on
Rabbit general-purpose I/0 Port C.

If you've never programmed in Dynamic C, you've probably never closely examined the
layout of the Rabbit microcontrollers' general-purpose I/O logic. Figure 8.1 is a graphical
depiction of the RabbitCore RCM3720's Port C, which is synonymous with PCDR in Code
Snippet 8.1.

Figure 8.1: Graphical depiction
of RabbitCore RCM3720"s Port C.
The code in Code Snippet 8. 1 is
written around the capabilities of
the PCD8. Don't worry--if you're
Rabbit challenged, I've provided
a Rabbit microcontroller system
reference poster on the CD-ROM.

The next step in the chain involves setting the initial baud rate of the Rabbit microcontroller's
serial port, enabling the flow control (RTS/CTS) and flushing the serial port buffers. That's all
done in Code Snippet 8.2.

Code Snippet 8.2

brdInit () ;
serOpen (ATCMDRSP_SP, DEFAULTBAUD) ;
serFlowCtrlOn (ATCMDRSP_SP) ; //enable flow control

serWrFlush (ATCMDRSP_SP) ;
serRdFlush (ATCMDRSP_SP) ;

Code Snippet 8.2: The brdlnit function has been present in every other Rabbit development kit I've
had experience with. The initial operational states of the Rabbit microcontroller's general-purpose
I/0 are established within the brdlnit function's code. I'm rather sure that the rest of the code in
this snippet is self-explanatory.

158

Hopping Down the Bunny Trail

The next piece of code uses one of the XBee library functions, xb_atModeOn, in an attempt
to contact the XBee PAN Coordinator module, which is serially attached to the RabbitCore
RCM3720. The idea behind Code Snippet 8.3 is to send the initial "AT <Enter>" and get the
"OK" response, which will verify that the correct baud rate is being used. Baud rates of 9600
bps and 115200 bps are attempted. If things blow up during the process, the application will
halt in its tracks.

Code Snippet 8.3

printf ("Trying DEFAULTBAUD (%id) ",DEFAULTBAUD) ;
if (xb_atModeOn(1500) <0) // if fails try 115200
{ printf("FAILED, trying (I15200L) ") ;
serOpen (ATCMDRSP_SP, I15200L) ;

serWrFlush (ATCMDRSP_SP) ;
serRdFlush (ATCMDRSP_SP) ;

if (xb_atModeOn (1500) <0)

{ printf ("\nTried 9600 baud and 115200 baud and Failed\n") ;
exit(0) ;

}
}printf ("SUCCESSkn") ;

**

Code Snippet 8.3: The 1500 in the XBee_atModeOn argument is the time required to expire before
placing the XBee module in AT command mode. A "1 " is returned if the xb_atModeOn function
completes successfully.

Just for grins, let's execute a bunch of XBee library functions and see what they do. I've cap-
tured the results of the execution of the functions in Code Snippet 8.4 as well.

Code Snippet 8.4

xb_getCH () ; // get the channel number
_atCmdRsp : Tx=ATCH
_atCmdRsp : Rx=B

xb_setDH(0) ; // set destination to 0 so no API's packets are sent out
_atCmdRsp: Tx=ATDH 00000000
_atCmdRsp : Rx=OK

xb_setDL(0) ; // set destination to 0 so no API's packets are sent out
_atCmdRsp: Tx=ATDL 00000000
_atCmdRsp : Rx=OK

xb_getMY () ;
_atCmdRsp : Tx=ATMY
_atCmdRsp : Rx=0

xb_getSH () ;
_atCmdRsp : Tx=ATSH
_atCmdRsp : Rx=I3A200

159

Chapter 8

xb_getSL () ;
_atCmdRsp : Tx=ATSL
_atCmdRsp : Rx=4008DD8D

xb_getRN () ;
_atCmdRsp : Tx=ATRN
_atCmdRsp : Rx=0

xb_setNI ("DIO-COORD\r") ; // setup a node id
_atCmdRsp : Tx=ATNI DIO-COORD
_atCmdRsp : Rx=OK

xb_getVR () ;
_atCmdRsp : Tx=ATVR
_atCmdRsp: Rx=IOAI

xb_ge t HV () ;
_atCmdRsp : Tx=ATHV
_atCmdRsp: Rx=1706

// setup I/O for the RF Module Interface Board
xb_setD0(5) ; // out high
_atCmdRsp: Tx=ATD0 05
_atCmdRsp : Rx=OK

xb_setDl(5); // out high
_atCmdRsp: Tx=ATDI 05

_atCmdRsp- Rx=OK

xb_setD2 (3) ; // Sl pushbutton
_atCmdRsp : Tx=ATD2 03
_atCmdRsp : Rx=OK

xb_setD3 (2) ; // ADC3 for battery monitoring
_atCmdRsp : Tx=ATD3 02
_atCmdRsp : Rx=OK

xb_setD4 (3) ; // S2 pushbutton
_atCmdRsp: Tx=ATD4 03
_atCmdRsp : Rx=OK

xb_atModeOff () ;
_atCmdRsp : Tx=ATCN
_atCmdRsp : Rx=OK

Code Snippet 8.4: The _atCmdRsp lines are showing what actually is being offered up on the
serial port.

160

Hopping Down the Bunny Trail

Note that in Code Snippet 8.4 we are matching up the PAN Coordinator's RF Module in-
terface board configuration to the application's hardware configuration using a series of
xb_setDX function calls. We also could have foregone using X-CTU to assign a Node Identi-
fier as the xb_setNI function call in Code Snippet 8.4 does that for us.

The next code sequence shown in Code Snippet 8.5 is exclusive to XBee modules operat-
ing in a network. The xb_getND function fires off the data sequence I captured in Sniffer
Capture 8.1.

Code Snippet 8.5

int rval, samples, chi, dio, adc;
char data[1024] ; // must be large enought to hold all discovered nodes
char *ptr ;

printf("Discovering Nodes... in");
xb_atModeOn (1500) ;
waitfor ((rval=xb_getND (data))) ;
if (rval>0)
{ printf(" Found nodes.in");
ptr = strtok(data,"\r'); // ~rst call to strtok needs buffer
while(ptr != NULL)

{ printf(" MY- %s",ptr);
printf(" SH: %s",strtok(NULL,"\r"));
printf(" SL. %s",strtok(NULL,"\r"));
printf(" DB- %s",strtok(NULL,'\r"));
printf(" NI- %s",strtok(NULL,"\r"));
prlntf("\n");

ptr = strtok(NULL,"\r"); // see if there is another node
}

printf("End\n");

Code 5n/ppet 8.5: The AID (Node D~¢ove~ ~nct/on searches ~e network ~rXSee modules and if ~und
~turns ~ek sho~ address, ~ek 64-bit IEEE address, ~e s~nal streng~ and ~e# Node Idenfifie~

Naturally, the IEEE 802.15.4 stuff in Sniffer Capture 8.1 makes sense as the XBee modules
are IEEE 802.15.4-compliant. The data in the MAC Payload is definitely proprietary as I
could not locate any reference to the byte sequence anywhere in the XBee documentation.

Sniffer Capture 8.1

Frame 1 (Length = 24 bytes)
Time Stamp: 15:12"19.000
Frame Length- 24 bytes
Capture Length. 24 bytes
Link Quality Indication. 168

IEEE 802.15.4
Frame Control- 0xc841

............. 001 = Frame Type: Data (0x0001)

............ 0 Security Enabled: Disabled

161

Chapter 8

not required

........... 0 = Frame Pending: No more data

.......... 0 = Acknowledgment Request: Acknowledgment

......... 1 = Intra PAN: Within the PAN

...... 00 0 = Reserved

.... i0 Destination Addressing Mode: Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

ii = Source Addressing Mode: Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number: 252

Destination PAN Identi~er: 0xaaaa

Destination Address- 0xffff

Source Address- 0x0013a2004008dd8d

Frame Check Sequence. Correct

MAC Payload: 05-01.00:01-b5-49:19

0000. 41 c8 fc aa aa ff ff 8d dd 08 40 00 a2 13 00 05 AHI**...].@."...

0010: 01 00 01 b5 49 19 5I...

5niffer Captu~ 8. 1 By letting ~e code cycle ~rough ~e Node D~cover function, I found ~at on~
~e very first byte of ~e MAC Payload mcremen~d every o~er transmission.

When a node is discovered, it associates with the PAN Coordinator in the standard IEEE
802.15.4 fashion and ships back the data package I captured in Sniffer Capture 8.2.

Sniffer Capture 82

Frame 27 (Length = 52 bytes)

Time Stamp: 15:13:29.267

Frame Length: 52 bytes

Capture Length- 52 bytes

Link Quality Indication: 176

IEEE 802.15.4

Frame Control: 0xcc61

............. 001 = Frame Type- Data (0x0001)

............ 0... = Security Enabled: Disabled

........... 0 = Frame Pending: No more data

.......... 1 = Acknowledgment Request: Acknowledgment

required

= Intra PAN- Within the PAN

= Reserved

= Destination Addressing Mode: Address

.

...... 00 0

.... ii

~eld contains a 64-bit extended address (0x0003)

..00 = Reserved

ii Source Addressing Mode: Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number: 50

Destination PAN Identi~er- 0xaaaa

Destination Address- 0x0013a2004008dd8d

Source Address- 0x0013a2004008dd58

162

Hopping Down the Bunny Trail

Frame Check Sequence- Correct
MAC Payload- 01-81.00-81-b5-c9-ff.fe-00-13.a2-00-40-08-dd.58-28-53.54.41-52-

43 - 48 - 49 • 4c- 44 - 2d- 31 • 00

0000: 61 cc 32 aa aa 8d dd 08 40 00 a2 13 00 58 dd aL2**.].@."..X]

000f: 08 40 00 a2 13 00 01 81 00 81 b5 c9 ff fe 00 .@." 5I.-.

001e: 13 a2 00 40 08 dd 58 28 53 54 41 52 43 48 49 .".@.]X(STARCHI

002d: 4c 44 2d 31 00 LD-I...

Sniffer Capture 8.2. The end device's Node identifier i5 obvious in the hex dump portion of this
CalOture. The MAC Payload, which contains the end-device information, begins at offset OxO07 5.

Let's see if we can figure out what is going on here. Here's the Dynamic C STDIO printout:

Discovering Nodes...
Found nodes.
MY- FFFE SH- 13A200 SL- 4008DD58 DB- 28 NI- STARCHILD-I

End

And, here's the hex dump of the data array gleaned from the response frame sent by the XBee
End Device"

dbf2- 46 46 46 45 0D 31 33 41 32 30 30 0D 34 30 30 38 FFFE[313A200134008
dc02- 44 44 35 38 0D 32 43 0D 53 54 41 52 43 48 49 4C DD58132CfqSTARCHIL
dcl2" 44 2D 31 0D 00 00 00 00 00 00 00 00 00 00 00 00 D-I[3

We can once again hang the proprietary tag on the first six bytes of the MAC Payload as they
have no meaning to us at this point. All of the data fields in the data array are delimited by a
carriage-return character (0x0D- "~r"). The strtok (string token) function in Code Snippet 8.5
is used to parse the data fields of the data array using the carriage return as the delimiter. The
only piece of data that may not be obvious is the signal-strength value, which is converted to
decibels before being output to the Dynamic C STDIO debugging window. A NULL (0x00)
indicates the end of an end device's data structure. Multiple end-device data structures can be
held in the data array, which is allocated as 1024 bytes.

Now, let's look at the code that produced the PAN Coordinator input samples. The sequence
of events taking place in Code Snippet 8.6 work on the general-purpose I/O set-up we pro-
grammed into the PAN Coordinator XBee node in Code Snippet 8.4.

Code Snippet 8.6

printf("Forcing input samples for the local XBee... \n");
xb getIS(data) ; // force sample, get ADC
samples = axtoi(strtok(data,"\r")) •
chi = axtoi(strtok(NULL, "\r')) ;
dio = axtoi(strtok(NULL,"\r")) ;
adc = axtoi(strtok(NULL, "\r")) ;

printf(" samples(%04X) channel Indicator(%04X) active IOs(%04X)

163

Chapter 8

ADC3 (%04X) \n\n", samples, chi, dio, adc) ;
xb_atModeO f f () ;

Code Snippet 8. 6: This code really has nothing to do with IEEE 802.15.4 or figBee. Its purpose is to
demonstrate that the XBee module can do more than just participate in an IEEE 802. 15.4 PAN.

Here's what the data gathered from the PAN Coordinator's general-purpose I/O pins looks
like in Rabbit microcontroller memory:

dbf2: 31 0D 31 30 31 37 0D 30 30 30 0D 31 45 37 0D 00 I[31017D000OIE7D

And, here's the resultant pnntout in the Dynam/c C STDIO debugging window:

Forcing input samples for the local XBee...
samples(0001) channel Indicator(1017) active I/Os(0000) ADC3(01E7)

You can readily see the relationship between the data fields in the hex dump, the argument
fields of the printf function in Code Snippet 8.6 and the Dynamic C STDIO printout. This
data was not presented to the RF portion of the XBee and therefore there's no Daintree
Networks SNA capture to show. So, let's figure out how the data in the Dynamic C STDIO
window came to be.

The first two data indicators are easily explained with a look at Figure 8.1.

Header

[Byte I Byte 2-3 (Channel Indicator)]
I Total number of samples ~1 na/ A5[A4 /A3[A3 /AI~A0/D81D7/D6[D51D4 [D3 /D2 I DIlD0~

bit 15 Bit set to '1 ' i f channel is act ive bit 0

Figure 8.2: Nothing to it. Just match up the bits in the channel indicator to the bits in this figure.

If you simply match up 0x 1017, which is the channel indicator value, to the bit layout in
Figure 8.1 you'll find that in Code Snippet 8.4 we actually defined and set up every one of the
active general-purpose I/O channels in our code.

Pushbutton switches on the XBee RF Module interface board are connected to DIO lines D2
and D4. Thus far, I have pressed no buttons as the active I/O's value is equal to 0 (zero).

To provide you with a better example of how the DIO fields work, I captured a session in
which I depressed the S 1 and $2 pushbuttons on the XBee RF Module interface board respec-
tively. Here's what the Dynamic C STDIO window showed:

Discovering Nodes...
Found nodes :
MY: FFFE SH: 13A200 SL: 4008DD58 DB: 32 NI: STARCHILD-I

1 6 4

Hopping Down the Bunny Trail

End
Forcing input samples for the local XBee...

samples (0001) channel Indicator (1017) active I/0s(0004) ADC3(01E7)

Discovering Nodes...
Found nodes-
MY: FFFE SH- 13A200 SL: 4008DD58 DB- 43 NI- STARCHILD-I

End
Forcing input samples for the local XBee...

samples(0001) channel Indicator(1017) active I/Os(0010) ADC3(01E6)

If you match up the 0x0004 with the DIO layout in Figure 8.2 and then correlate that back to
the code in Code Snippet 8.4, you'll see that I was holding down the S 1 pushbutton, which is
tied to DIO2. Depressing $2 produced an active I/O value of 0x0010 that directly relates to
DIO4 in Figure 8.2.

___-------Sample Data-------__
I DIO Line Data is first (if enabled) ADC Line Data]

X X X X X X X 8 7 6 5 4 3 2 I1 0 i I .. ADCnMSB ... l ... A DCnLSB .. !
I I / E

Figure 8.3: Again, nothing to it. The analog-to-digital converter value speaks for itself here.

It's pretty obvious that the firmware loaded on the XBee modules is an official IEEE 802.15.4
MAC and PHY implementation rolled in with some proprietary XBee functionality. The
XBee modules are designed to work fight out of the box and so are the Dynamic C-backed
Rabbit RF interface modules. Although it is always good to have some background knowl-
edge, no prior IEEE 802.15.4 or ZigBee experience is necessary to assemble a PAN using
XBee modules and Rabbit microcontrollers.

Rabbit Semiconductor
Rabbit Semiconductor is a fabless semiconductor company specializing in high-performance
8-bit microprocessors and development tools for embedded control, communications, and
Ethernet connectivity. I actually cut my adult Ethernet teeth with a Rabbit Ethernet devel-
opment kit. A sister division of single-board computer and software manufacturer Z.World
(I've done a few Z.World columns in my time), Rabbit Semiconductor introduced the Rabbit
2000® microprocessor in 1999 and the Rabbit 300009 in 2002 (I was all over these micropro-
cessors). You can see all of my column links on the Rabbit Semiconductor site but all of the
documents behind them are AWOL. Hmmmm...That's OK. As long as Rabbit Semiconductor
and Z.World keep producing products, I'll keep on writing about them.

George Harrison played a variety of guitars during his stint as a Beatle, including a solid
rosewood Fender Telecaster. You probably remember him chiming on a Rickenbacker 360
12-string. What you probably don't remember is George's 1962 Chet Atkins "Country
Gentleman," which he favored on stage.

165

Chapter 8

The next chapter will take us down South to Duluth, Georgia where Tim Cutler and the folks
at Cirronet perform their IEEE 802.15.4/ZigBee magic.

Hey, hey! Don't turn that page yet. Since we're on our way to Georgia, do you know the name
of the band that hails from Athens, Georgia and is considered the world's greatest party band?
Hint: The frontman's name is Fred and one of the female singers has my wife's first name of
Cindy.

166

CHAPTER 9
Cirronet Adds Southern Flavor to

IEEE 802.15.4 and ZigBee
One of the biggest pushes behind ZigBee is industrial use. There is nothing in the Zig-
Bee specification that states that a ZigBee radio can't effectively radiate more than 1 mW.
What I 'm saying is, don't confuse low-power operation with the radiated power of an IEEE
802.15.4-compliant radio. A previous example of this line of thought is the XBee-Pro RF
module, which can warp the electromagnetic surroundings with 100 mW of effective radi-
ated power versus the 1 mW of power radiated by the standard XBee RF module. Tim Cutler
and the folks at Cirronet are also part of the high-power industrial ZigBee congregation. Let's
take a look at the Cirronet hardware we're about to examine.

We happen to have a Cirronet ZN241Z, which is factory programmed to act as a ZigBee
Coordinator. As you can see in Photo 9.1, the ZN241Z is a ruggedized version of the Cirronet
ZMN2400HP high-power IEEE 802.15.4-compliant radio.

Photo 9. 1: Cirronet ZN241Z.
This baby is ready to rock and
roll on the shop floor. A serial
port connector and a mains
power receptacle are mounted
on the right quarterpanel.

I opened up the ZN241Z in Photo 9.2. What we have here is essentially a ZMN2400HP trans-
ceiver mounted on a motherboard with a hefty regulated power supply and a serial interface.
The ZMN2400HP is designed to be soldered into place just like an IC. The IC comparison
follows though as to how the ZMN2400HP is used as well.

There is no external access to the ZN241Z's ZMN2400HP radio other than the RF output
and the serial port. That's fine as this module is intended to be the ZigBee Coordinator. Any

167

Chapter 9

important data transfers involving the ZN241Z can be accessed via the serial port. Note also
the absence of any battery receptacles, which adheres to the thought of powering a ZigBee
Coordinator from a mains supply.

We have another two-man PAN here. The device you see in Photo 9.3 is capable of being
either a router or end device, which means it can operate as an FFD or an RFD.

Photo 9.2: I removed the top cage so you could get a look at the Cirronet ZMN2400HP and
the voltage regulator. The R5-232 converter IC is mounted top center of this shot. Power,
Link and Data indicator LEDs are mounted at the lower right quarter.

Photo 9.3: The idea behind this development board is to give the ZMN2400HP all of the
necessary basic support it needs to operate, along with some sensin 9 devices, which are
tied to the ZMN2400HP's on-board Atmel ATmega 128L.

168

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

The ZMN2400HP development board uses FTDI logic to emulate a serial port via USB.
There is also a true RS-232 port available, which is accessed by a standard 6-pin RJ-11
jack. The USB and RS-232 ports are mutually exclusive in terms of usage. Power to the
ZMN2400HP development board can be supplied by a mains wall wart or by way of a 9V
battery, which snaps in on the opposite side of the board.

All of the ZMN2400HP's general-purpose I/O pins with the exception of RESET are pinned
out along both sides of the ZMN2400HP transceiver module. For demonstration purposes,
the ZMN2400HP development board is also fitted with a thermistor and potentiometer, which
are tied to the ZMN2400HP's ADCX and ADCY lines, respectively. Jumpers are in place to
allow the ZMN2400HP programmer to disconnect the on-board thermistor and potentiometer
so that external devices can be wired into the ZMN2400HP's general-purpose I/O. A pair of
active-low pushbutton switches is also available. The Atmel ATmega128L is capable of being
debugged and programmed via its JTAG interface. To that end, the ZMN2400HP develop-
ment board includes a standard ATmega128L JTAG interface that can be activated for special
programming needs.

A bird's-eye view of the ZMN2400HP sits within the four comers of Photo 9.4. As you have
already logically deduced, the ZMN2400HP's general-purpose I/O is actually Atmel ATme-
ga128L general-purpose I/O. The Cirronet ZigBee stack code resides in the ATmega128L's
program Flash and the RF duties are performed by a Texas Instruments/Chipcon CC2420.

Photo 9.4: That discrete balun is a bit hard to pull from this shot. That's because there
are quite a few more components between the CC2420"s RF output pins and the actual
antenna connector.

169

Chapter 9

I initially fired up the ZN241Z ZigBee Coordinator module and looked for any signs of life
with the Daintree Networks SNA. After a couple of tries, I switched channels. I finally found
some life on channel 12. Again, to keep things under control, I connected the ZN241Z's serial
port to my personal computer and kicked off the ZBDemo application. My intent was to set
the operating channel to channel 11. I did just that in Screen Capture 9.1. I followed suit with
the ZMN2400HP development board using the same process you see in Screen Capture 9.1 to
select only channel 11.

Screen Capture 9. 1: This window is accessed via the Config button on the main ZBDemo window.

After making the channel changes, I retired the ZigBee Coordinator module and then applied
some power to the ZMN2400HP development board. The ZigBee Coordinator performed
an active scan that I saw as a Beacon Request via Daintree Networks SNA and established a
PAN. I know a PAN was established because the ZMN2400HP development board associated
with the ZigBee Coordinator module. I fiddled with the ZMN2400HP development board's
potentiometer and punched at the pair of pushbutton switches. I couldn't make heads or tails
of what was going on via the Daintree Networks SNA. So, I figured I'd change the configura-
tion a bit. Maybe that would throw me a bone.

The ZMN2400HP development board comes from the factory programmed to act as a ZigBee
Router. A trio of programs is included on the ZMN24HPDK-Basic CD-ROM that allows the
Cirronet transceiver modules to be programmed as a ZigBee Coordinator, a ZigBee Router or a

170

Cirronet Adds Southern Flavor to IEEE 802.15. 4 and ZigBee

ZigBee End Device. A program to load the code into the ZMN2400HP's ATmega128L is also
part of the code package. I opted to change the ZMN2400HP development board's role from
a ZigBee Router to a ZigBee End Device. After a few tries, I found that the bootloader pro-
gram would not work directly from the development kit CD-ROM. I transferred the bootloader
program and the three ZigBee component files over to my personal computer's hard drive and
successfully converted the ZMN2400HP development board to a ZigBee End Device. I again
powered everything down and brought up the ZigBee Coordinator module first. The newly
crowned ZigBee End Device associated as it should and began to transmit ZigBee data messages.

The key to interpreting the ZigBee messages flowing between the ZN241Z and ZMN2400HP
lies in the understanding of the Cirronet Standard Module (CSM) Profile API. In the case
of the Cirronet RF modules, the CSM profile is a Cirronet-specific application profile that
defines the messaging scheme used by Cirronet ZigBee radios. A combination of the mes-
saging elements contained with the CSM profile make up the ZigBee module's (the Cirronet
radio module's) resident application. This puts the CSM profile in the application area of the
ZigBee stack. In fact, you'll see that the Daintree Networks SNA decodes the CSM profile
messages in the ZigBee APS and ZigBee AF areas.

Interestingly, the CSM profile used by the Cirronet ZigBee modules uses a serial packet mes-
sage/command protocol to communicate through the module's UART or via RF messages.
The protocol commands can be used to set configuration parameters, issue commands or
transfer data. To keep it simple (the way I like it), all of the packets follow a common layout.
The actual message contained within the packet is defined by a field within the packet. The
generic packet format is depicted in Figure 9.1.

SOP
(OxFD)

~ ~), ~ " ~

Length
(in bytes)

TransID
MSG
Type

Arguments

Figure 9. 1: Generic packet format. The MSG Type byte is the key to what lies in the Arguments
area.

The SOP (Start Of Packet) byte is a constant 0xFD. You'll find that 0xFD is an easy marker
to find in hex dumps of these serial packets. The SOP byte is not counted in the packet-length
byte that follows it.

When an ACK is not received in time by the sender of a packet, the sender will try up to
seven times to resend it. Just because the ACK was not sensed in time does not always mean
that the data was not delivered. So, to help keep these ACK disagreements at a minimum, the
TransID field is included in the Cirronet serial packet format. It is recommended that the ap-
plication auto-increment the TransID value to allow for the applications on both ends to figure
out what data is new and what data is old in the data-acknowledgment cycles.

The fun begins with the MSG Type byte, which determines what type of operation is being
performed or what type of data is being manipulated. Here's a look at all of the MSG Types
used by the CSM profile:

171

Chapter 9

• 0x01" Set Field

0x05: Get Field

0x0A: Send String

0x0C: Send SPI

• 0xl0: Get IEEE Address

0xl 1: Get NWK Address

• 0x64: Discovery Request

• 0x65: Discovery End

0x81: Set Reply

• 0x85: Get Reply

• 0x8A: Send String Reply

• 0x8C: Send SPI Reply

0x8E: Receive String

0x90: Get IEEE Address Reply

• 0x91: Get NWK Address Reply

0x95: Receive Field Event

• 0xD0: Link Announce

• 0xE4: Discovery Reply

• 0xF0: Device Registration

0xFF: Error

The CSM profile packet ends with the Arguments field. Figure 9.2 shows how the subfields
are defined within the Arguments field.

..... ~ : ' ~ ' ~ i , ! r.'~ ~ ~ " ~ , ~ i ~ : ® ~ Z ~ ~ ~ i ~ : ' ~ ~ : ~ : ~ , ~ ' ~ : " ' ~ : ~ ' ~ ° , ~i~. z ,~ z . - , ~

._

M A C ~ K
ProfilelD Endpoint Cluster Offset Length Data

Address**

Figure 9.2: Filling out these fields is easier than it looks. The ProfilelD is a constant, the Endpoint
has only one value and the Cluster is one of the aforementioned CSM profile dusters I listed for
you.

The MAC/NWK address field is used for the standard IEEE 64-bit address of the short 16-
bit address. Regardless of which address length is used, the MAC/NWK length of 64 bits is
always honored. That keeps the packet format intact. Cirronet's IEEE-assigned address prefix
is 00:30:66, which always puts a 0x00 in the most significant byte of the Cirronet 64-bit ad-

172

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

dress. To distinguish a 16-bit address, the most significant byte of the MAC/NWK field must
be set to 0x80 with the two least significant bytes of the MAC/NWK field containing the 16-
bit address value. The remaining five bytes are set to 0x00.

Right now, the Cirronet ProfilelD value is constant at 0xC000. The constant idea can also be
applied to the Endpoint field, as the CSM profile only supports an endpoint of 0x01.

The CSM profile groups its operational parameters within a set of clusters, which are stored
in NVRAM. The data elements and devices such as ADC X and ADC Y are addressed
as offsets into the respective cluster that is associated with the data element or device. A
cluster is a collection of memory locations containing configuration parameters. The func-
tionality of a ZigBee device is defined by the contents of its clusters. Here's a list of the
CSM profile clusters:

Module I/O Cluster (ID OxO 1)

Configuration Cluster (ID 0x02)

Reset Cluster (ID 0x03)

Network Cluster (ID 0x07)

RF Cluster (ID 0x08)

Security Cluster (ID 0x09)

All of the cluster offsets begin at 0x0000. ADC X is a good example as its 2-byte value re-
sides in the Module I/O Cluster at offset 0x0000. To gain access to the Cirronet transceiver's
SPI portal, you would access offset 0x0010 in the Module I/O Cluster. The UART is at offset
0x0011. Get the idea?

The Configuration Cluster is the place for network set-up. You define the role of the Cirronet
RF module (Coordinator, Router, End Device) by writing a 0x00, 0x01 or Cirronet 0x02 re-
spectively to offset 0x0002 of the Configuration Cluster. Change the Cirronet ZMN2400HP's
baud rate by writing a value to the Serial Mode parameter located at offset 0x0003 of the
Configuration Cluster. The ZMN2400HP also incorporates what it calls a Friendly Name (as
compared to the Node Identifier used by the XBee modules), which is a 16-byte ASCII value
that can be stuffed into offset 0x0007 of the Configuration Cluster.

The Reset Cluster has only two offsets. Offset 0x0000 needs a value of 0x5A to enable the
reset of the ZMN2400HP's ATmega128L microcontroller. Writing a 0x5A to offset 0x0001 of
the Reset Cluster resets all of the cluster parameters to factory default values and then resets
the ATmega 128L microcontroller.

Want to see the factory-programmed MAC address? All you have to do is read the 8 bytes that
make up the IEEE MAC address at offset 0x0000 of the Network Cluster. The PAN ID can be
set by writing 2 bytes of PAN ID information to offset 0x0013.

Recall that I used the ZBDemo RF configuration window to set up the network for channel
11. The same function can be performed by entering a value in the Channel List parameter at

173

Chapter 9

offset 0x0000 of the RF Cluster. The current channel being used by the ZMN2400HP can be
obtained from the value of offsef 0x0004.

I've not mentioned security and I won't start now. Depending on the documents you read
about ZigBee security, you'll find that some of them declare it null and void while others of-
fer up their views of how to apply it. I'll leave security and the application thereof up to you,
as we won't be discussing it in the pages of this book.

Values are written to a cluster using the Set Field command. Conversely, Get Field commands
retrieve data from cluster elements. As you have already deduced, the ZMN2400HP is con-
trolled by Set Field commands. For instance, the Get Field command is used to harvest the
values of the ZMN2400HP's general-purpose I/O lines from the Module I/O Cluster.

The Length byte of the packet layout in Figure 9.2 represents the number of bytes in the Data
area that follows it. In a reply packet, the LQI value is included as an extra parameter.

The ZBDemo program is simply an interface that sends and receives the formatted serial
packets to the ZMN2400HP it is connected to via a physical personal computer serial port.
Tapping into the ZBDemo's serial link would be a great, albeit manual, way of examining the
CSM profile API. However, it's bunches of more fun to dig through hex dumps and captures.
So, I've employed Daintree Networks SNA to capture the data transfers between the Cirronet
ZigBee Coordinator and ZigBee End Device. Let's bust up the Daintree Networks SNA Zig-
Bee capture I've pulled out of the air in Sniffer Capture 9.1.

Sniffer Capture 9.1

Frame 21 (Length = 48 bytes)

Time Stamp- 18:14:45.577

Frame Length: 48 bytes

Capture Length- 48 bytes

Link Quality Indication- 216

IEEE 802.15.4

Frame Control: 0x8861

............. 001 = Frame Type: Data (0x0001)

............ 0... = Security Enabled- Disabled

........... 0 = Frame Pending- No more data

.......... 1 = Acknowledgment Request : Acknowledgment

required

: Intra PAN: Within the PAN

= Reserved

= Destination Addressing Mode- Address

. 1

...... 00 0

.... i0

~eld contains a 16-bit short address (0x0002)

..00 = Reserved

i0 = Source Addressing Mode- Address ~eld

contains a 16-bit short address (0x0002)

Sequence Number- 31

Destination PAN Identi~er- 0x307d

Destination Address: 0x0000

174

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

Source Address: 0x796f

Frame Check Sequence: Correct

ZigBee NWK

Frame Control: 0x0044

.............. 00

.......... 00 01..

........ 01

(0x01)

• oo 0 °

oooo .o0o oo°

0000 00

Destination Address: 0x0000

Source Address: 0x796f

Radius = 7

Sequence Number = 3

ZigBee APS

Frame Control: 0x00

...... 00

.... 00..

° ° ° 0

oo0

.0 °

°°°

Destination Endpoint: 0x01

Cluster Identifier: (0x0001)

Profile Identifier: (0xc000)

Source Endpoint: 0x01

ZigBee AF

AF Header: 0x21

= Frame Type: NWK Data (0x00)

= Protocol Version (0x01)

= Discover Route: Enable route discovery

= Reserved

= Security: Disabled

= Reserved

= Frame Type: APS Data (0x00)

= Delivery Mode: Normal Unicast Delivery (0x00)

= Indirect Address Mode: Ignored

= Security: False

= Ack Request: Acknowledgment not required

= Reserved

.... 0001 = Transaction Count: (0x01)

0010 Frame Type: MSG (0x02)

Transaction 1

Transaction Sequence Number = 0x01

ZigBee MSG

Transaction Length: 20

Transaction Data: fd:12:01:95:6f:79:00:00-00:00:00:80:0

0:c0:01:01:0b:00:01:00

0000: 61 88 if 7d 30 00 00 6f 79 44 00 00 00 6f 79 07 a..}0..oyD...oy.

0010: 03 00 01 01 00 cO 01 21 01 14 fd 12 01 95 6f 79 @.!..}...oy

0020: 00 00 00 00 00 80 00 cO 01 01 0b 00 01 00 @

Sniffer Capture 9. 1 Thanks to the ZMN2400HP~ buH~m ZigBee stuck, we've reached out a coup~
of ZigBee s~ck laye~ above ~e MAC layer m ~ capture.

I've made this statement many times in the pages of this book. If you see something new
in Sniffer Capture 9.2, sell this book or give it to your sister. I can tell you something about
Sniffer Capture 9.2 you may not know. The Destination PAN Identifier is the default value,
which is stored in the Network Cluster at offset 0x0013.

175

Chapter 9

Sniffer Capture 9.2

Frame 21 (Length = 48 bytes)

Time Stamp: 18-14:45.577

Frame Length: 48 bytes

Capture Length: 48 bytes

Link Quality Indication: 216

IEEE 802.15.4

Frame Control: 0x8861

............. 001

.

.

.

required

= Frame Type: Data (0x0001)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

......... 1 = Intra PAN- Within the PAN

...... 00 0 = Reserved

.... i0 Destination Addressing Mode: Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

i0 Source Addressing Mode: Address ~eld

contains a 16-bit short address (0x0002)

Sequence Number. 31

Destination PAN Identi~er- 0x307d

Destination Address: 0x0000

Source Address: 0x796f

Frame Check Sequence: Correct

Sniffer Capture 9.2: No~bg new he~. Th~ ~ busbess as usual b ~e ZigBee/IEEE 802.15.4 world.

You've not seen many if any NWK sniffs. However, even though it is a necessary ZigBee
component, it is uneventful in this scenario. The Radius value in Sniffer Capture 9.3 has to
do with how many hops the message may be able to take in this network. Since we only have
two nodes, you can talk about the Radius value amongst yourselves.

Sniffer Capture 9.3

ZigBee NWK

Frame Control: 0x0044

.............. 00

.......... 00 01..

........ 01

= Frame Type: NWK Data (0x00)

= Protocol Version (0x01)

= Discover Route: Enable route discovery

= Reserved

= Security" Disabled

= Reserved

(0x01)
. o

. O ° . o o o

0000 00

Destination Address: 0x0000

Source Address: 0x796f

Radius = 7

Sequence Number = 3

Sniffer Capture 9.3: Repeat after me "There are no hops b ~ two-man network..

176

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

Sniffer Capture 9.4 is the APS portion of the original Sniffer Capture 9.1. Keep in mind that
the ZigBee Coordinator and ZigBee End Device applications are communicating with each
other using their respective endpoints numbered 0x01.

The Cluster Identifier and Profile Identifier should not be strange concepts.

Sniffer Capture 9.4

ZigBee APS

Frame Control. 0x00

...... 00 = Frame Type- APS Data (0x00)

.... 00.. = Delivery Mode: Normal Unicast Delivery (0x00)

...0 = Indirect Address Mode- Ignored

..0 Security. False

.0 Ack Request. Acknowledgment not required

0 Reserved
Destination Endpoint- 0x01

Cluster Identi~er: (0x0001)

Pro~le Identi~er- (0xc000)

Source Endpoint: 0x01

Sniffer Capture 9.4. No b~ine~ The CSM profile ~ identified by OxCO00 and it on~ supports
endpomt OxO 1.

This is where the serial packet payload resides. However, we have to dig just a bit farther to
get at the data. The first byte of Sniffer Capture 9.5 should be calling your name.

Sniffer Capture 9.5

ZigBee AF

AF Header- 0x21

.... 0001 = Transaction Count: (0x01)

0010 Frame Type- MSG (0x02)

Transaction 1

Transaction Sequence Number = 0x01

ZigBee MSG

Transaction Length: 20

Transaction Data. fd-12-01-95:6f-79-00-00-00-00-00.80-0
0:c0:01:01:0b:00-01:00

Sniffer Capture 9.5: A ZigBee message doesn't have to follow any s~ndard guMelines. Aft ~at
necessary ~ ~at bo~ ends of ~e conve~afion unde~nd each o~er

Let's break down the bytes in the Transaction Data. The 0xFD is a given as it is the SOP
byte. There are 18 bytes (0x12) that follow in the packet. The application has assigned a
TranslD of 0x01.

Now, here's where it gets interesting. The MSG Type is 0x95, which is defined in the CSM
profile documentation as a Receive Field Event. A Receive Field Event signals a message
that is not generated by a field device in response to a Coordinator-initiated message. In this

177

Chapter 9

case I pressed a pushbutton on the ZMN2400HP development board that prompted the trans-
mission of the general-purpose I/O change. I've posted the Receive Field Event byte layout
in Figure 9.3.

MAC
Address
(8 bytes)

ProfilelD
(2 bytes)

Endpoint
(1 byte)

Cluster
(1 byte)

Offset
(2 bytes)

Length
(1 byte)

[Data]
(LSB First)

Figure 9.3: Receive Field Event byte layout. You're already stuffing those Transaction Data bytes
into these fields, aren't you?

We've been told in the sniff that 16-bit addresses are in use. That means that the most sig-
nificant byte of the MAC Address field will be 0x80 and the 16-bit address will reside at the
least-significant pair of bytes. Note that the MAC Address bytes are arranged in least-signifi-
cant-byte-first order. In other words, read backwards 8 bytes from the 0x80 byte to get the
MAC Address value.

The ProfilelD should be a no-brainer as it can only assume the value of 0xC000 as dictated by
the CSM profile. The same duh-huh (that's Southern for uh-huh) goes for the Endpoint value,
which can only be 0x01.

Cluster 0x01 does indeed have an offset of 0x000B, which happens to be designated as the
GP I/O 1 parameter. GP I/O 1 represents the ZMN2400HP pin that is connected to the push-
button I put my big fat finger on. The length of the data payload is 1 byte and that data byte is
0x00, which says the pushbutton is depressed presenting a logical low to the ZMN2400HP's
GP I/O 1.

Let's generate some ZigBee fun of our own. The Cirronet ZMN2400HP development package
also comes with a personal computer-based program called WinCom. We'll use WinCom to
assemble and transmit a Discovery Request message and a Get IEEE Address message. This
is merely an exercise to demonstrate how the CSM profile API functions. You already know
that during the association process all of the data we' re gathering has already been passed
between the PAN Coordinator and the end device. The messages we're about to generate are
typically used to discover unknown Cirronet nodes that are capable of communication in the
ZigBee Coordinator's operating space. This could come in handy if one needed to gather a list
of active Cirronet nodes for management purposes.

The Discovery Request message looks for any device within radio range with a profile that
matches the Coordinator's profile. If such a device is present and hears the request, it will
respond with a Discovery Reply message containing its network address. The ZigBee Co-
ordinator can then use the newly found network address to obtain the remote device's IEEE
address with the Get IEEE Address message.

The layout of the Discovery Request message lies in Figure 9.4. The only entry you really
have to think about is the Timeout value, which is entered in seconds.

178

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

~@~..~..- .o. ~ ~ ~ ",~~""~

ProfileID
(2 bytes)

" ~ .; ".~ii ~.~ ~ .~ " ' " ~ . , . . .,'~

Endpoint Timout
(1 byte) (1 byte)

Figure 9.4: Hmmmm...LeUs see, hexadecimal 00C0 01 03 sounds good to me.

Screen Capture 9.2 is a view of the WinCom window I used to generate the Discovery Re-
quest message.

File

.... l~tacd Setting ...
Tran~t~u'~ !

C WIT2410A~T910 i

WIT2411 I
... i

Data

Data Size

1- Add $ ~ e Number 1",,7 Single Transmit ~ Data in Hex Format

i-" Receive Data
Packet Transmit Count

1

II .

Screen Capture 9.2. The packet I entered follows the CSM profile's serial packet layout and
includes the argument list for the Discovery Request message.

The 0xFD tells us that this is a CSM profile serial packet. Six bytes will follow the length
byte with the first byte, 0x00, being the transaction ID (TransID). The Discovery Request
arguments require the CSM profile ProfileID of 0xC000 to be followed by the CSM pro-
file-supported Endpoint of 0x01. Just for grins, we'll set the Timeout value at 0x03 seconds.
That simply means that after 3 seconds, the ZigBee Coordinator that generates the Discovery
Request message will cease to accept Discovery Reply messages. You can bet your booty that
I 'm running the Daintree Networks SNA application and the content of Sniffer Capture 9.6
are what I got after clicking the Transmit button.

179

Chapter 9

Sniffer Capture 9.6

Frame 1 (Length = 52 bytes)

Time Stamp- I0-20:21.000

Frame Length: 52 bytes

Capture Length: 52 bytes

Link Quality Indication: 220

IEEE 802.15.4

Frame Control: 0x8841

............. 001

.o.

• .o 0

.

not required

= Frame Type: Data (0x0001)

= Security Enabled: Disabled

= Frame Pending- No more data

= Acknowledgment Request- Acknowledgment

= Intra PAN. Within the PAN

= Reserved

= Destination Addressing Mode: Address

. i

...... 00 0

.... i0

~eld contains a 16-bit short address (0x0002)

..00 = Reserved

i0 Source Addressing Mode: Address ~eld

= Frame Type: NWK Data (0x00)

= Protocol Version (0x01)

= Discover Route: Suppress route

= Reserved

= Security: Disabled

= Reserved

contains a 16-bit short address (0x0002)

Sequence Number: 78

Destination PAN Identi~er: 0x307d

Destination Address. 0xffff

Source Address: 0x0000

Frame Check Sequence: Correct

ZigBee NWK

Frame Control: 0x0004

.............. 00

.......... 00 01..

........ 00

discovery (0x00)

. . . ° . . . 0

. . o . o°0

0000 00

Destination Address: 0xffff

Source Address: 0x0000

Radius = 7

Sequence Number = 17

ZigBee APS

Frame Control: 0x08

...... 00

.... i0..

o o ° 0 o ° o °

o ° 0 o o o ° o

°0

.

Destination Endpoint: 0x00

Cluster Identi~er: MatchDescReq (0x0006)

Pro~le Identi~er: ZDP (0x0000)

Source Endpoint: 0x00

= Frame Type- APS Data (0x00)

= Delivery Mode: Broadcast (0x02)

= Indirect Address Mode- Ignored

= Security- False

= Ack Request: Acknowledgment not required

= Reserved

180

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

ZigBee AF
AF Header: 0x21

.... 0001 = Transaction Count: (0x01)
0010 Frame Type: MSG (0x02)

Transaction 1
Transaction Sequence Number = 0x0c

ZigBee MSG
Transaction Length: 24

Transaction Data: ff:ff:00-c0:09:01:02:03:04"07:08:09:0

5:06-09:01:02-03-04-07:08-09-05-06

ZigBee ZDO
NWK Address Of Interest: 0xffff

Profile Id: (0xc000)
Number of Input Clusters: 9
Input Cluster List

Cluster Identifier i:
Cluster Identifier 2:
Cluster Identifier 3:
Cluster Identifier 4.
Cluster Identifier 5-
Cluster Identifier 6:
Cluster Identifier 7:

Cluster Identifier 8:
Cluster Identifier 9:

Number of Output Clusters: 9
Output Cluster List

Cluster Identifier i:
Cluster Identifier 2:
Cluster Identifier 3:
Cluster Identifier 4:
Cluster Identifier 5:
Cluster Identifier 6:
Cluster Identifier 7:
Cluster Identifier 8:
Cluster Identifier 9:

(0x01)
(0x02)
(0x03)
(0x04)
(0x07)
(0x08)
(0x09)

(0x05)
(0x06)

(0x01)
(0x02)
(0x03)
(0x04)
(0x07)
(0x08)
(0x09)
(0x05)
(0x06)

0000: 41 88 4e 7d 30 ff ff 00 00 04 00 ff ff 00 00 07
A.N}0

0 0 1 0 : 1 1 0 8 0 0 0 6 0 0 0 0 0 0 2 1 0 c 1 8 f f f f 0 0 cO 0 9 0 1

. ! @ . .

0020: 02 03 04 07 08 09 05 06 09 01 02 03 04 07 08 09
0030 : 05 06

Sniffer Capture 9.6: This is a ZigBee MatchDescReq (Match Description Request) message. Note
that it is not a CSM profile API call as the duster identifier is not one of the CSM profile dusters.
That's OK. That's why we have Daintree Networks SIVA.

The physicals of the ZigBee PAN must be satisfied no matter what we do. So, note the impor-
tant clues given to you in Sniffer Capture 9.7.

181

Chapter 9

Sniffer Capture 9.7

Frame 1 (Length = 52 bytes)

Time Stamp: 10:20:21.000

Frame Length: 52 bytes

Capture Length: 52 bytes

Link Quality Indication: 220

IEEE 802.15.4

Frame Control: 0x8841

............. 001

oooo °,,, ,,,° 0oo,

ooo° ,o°, ,,,0 o,.,

.0.. °o.° ..0. 0000

not required

= Frame Type: Data (0x0001)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

......... 1 Intra PAN: Within the PAN

...... 00 0 Reserved

.... i0 Destination Addressing Mode: Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

i0 Source Addressing Mode: Address ~eld

contains a 16-bit short address (0x0002)

Sequence Number: 78

Destination PAN Identi~er: 0x307d

Destination Address: 0xffff

Source Address: 0x0000

Frame Check Sequence: Correct
*

Sniffer Capture 9.7: Th~ ~ a broadcast message emanating for the 0x307D ZigBee PAN that was
g e n e ~ d by the ZigBee PAN Coordinator at address 0x0000.

Once the physic~ ZigBee components are inline, the next step up the stack must be satired.
Sniffer Capture 9.8 represents the logic~ addressing needs of the NWK layer of the ZigBee
stack. Note the logic~ NWK sequence number in Sniffer Capture 9.8 is not at ~1 related to
the physical IEEE 802.15.4 sequence number in Sniffer Capture 9.7.

Sniffer Capture 9.8

ZigBee NWK

Frame Control: 0x0004

.............. 00 = Frame Type: NWK Data (0x00)

.......... 00 01.. = Protocol Version (0x01)

........ 00 = Discover Route: Suppress route

discovery (0x00)

....... 0 = Reserved

...... 0 = Security: Disabled

0000 00 = Reserved

Destination Address: 0xffff

Source Address: 0x0000

Radius = 7

Sequence Number = 17
*

182

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

Sniffer Capture 9.8: You didn't think I would let you go without telling you what the Radius
parameter really is, did you? Officially, Radius is defined as the distance, in hops, that a frame will
be allowed to travel through the network.

Moving on up the George Jefferson way bnngs us to the next level of the ZigBee stack, the
APS (Application Suppo~ Sublayer). Let's use whm we know to figure out whm the ZigBee
APS sniff in Sniffer Capture 9.9 is telling us.

Sniffer Capture 9.9

ZigBee APS
Frame Control: 0x08

...... 00 = Frame Type: APS Data (0x00)

.... I0.. = Delivery Mode: Broadcast (0x02)

...0 Indirect Address Mode: Ignored

..0 = Security: False

.0 = Ack Request: Acknowledgment not required
0 Reserved

Destination Endpoint- 0x00

Cluster Identi~er: MatchDescReq (0x0006)

Pro~le Identi~er: ZDP (0x0000)

Source Endpoint: 0x00

Sniffer Capture 9.9: Knowing simp~ and bas~ ~mgs ~ads to unde~mnding ~rge and complex
~mgs.

Let's begin by identifying the Profile Identife~ ZDP is sho~ for ZigBee Device Profile. The
active elements of the ZDP interact directly with the ZigBee stock's ZDO (ZigBee Device
O~ects). The ZDO is accessed exclusively via endpoint 0x00. The Cluster Identifier in Sniffer
Capture 9.9, 0x0006, indeed represents the Match_Desc_req primitive c~led out in the ZigBee
specification. The Match_Desc_req is generated ~om a loc~ device wishing to find remote
devices that have matching criteria representative of that listed in Sniffer Capture 9.10.

Sniffer Capture 9.10
* * t t * * * * t * t * t t t * * * t * * * t * * * * t * * * * * * t t * * t t t t * t * * * t t t t t t t t t t t t t t t t * t t t t t t * t * t t *

ZigBee AF
AF Header: 0x21

.... 0001 = Transaction Count: (0x01)

0010 Frame Type: MSG (0x02)
Transaction 1

Transaction Sequence Number = 0x0c

ZigBee MSG

Transaction Length: 24

Transaction Data:
ff-ff-00:c0:09:01-02:03-04-07-08-09"05:06:09:01:02:03:04:07:08:09:05:06

ZigBee ZDO

NWK Address Of Interest: 0xffff
Pro~le Id: (0xc000)
Number of Input Clusters: 9

Input Cluster List

183

Chapter 9

Cluster Identi~er i:
Cluster Identi~er 2:
Cluster Identi~er 3:
Cluster Identi~er 4:

Cluster Identi~er 5:

Cluster Identi~er 6:
Cluster Identi~er 7:
Cluster Identi~er 8:

Cluster Identi~er 9:

Number of Output Clusters: 9

Output Cluster List
Cluster Identi~er I:
Cluster Identi~er 2:
Cluster Identi~er 3:
Cluster Identi~er 4:

Cluster Identi~er 5:

Cluster Identi~er 6:
Cluster Identi~er 7:

Cluster Identi~er 8:

Cluster Identi~er 9:

(0x01)
(0x02)
(0x03)
(0x04)

(0x07)

(0x08)

(0x09)
(0x05)

(0x06)

(0x01)
(0x02)
(0x03)
(0x04)

(0x07)

(0x08)
(0x09)
(0x05)

(0x06)

Sniffer Capture 9.10: This is basically a list that the receiving device needs to match. Note the bdusion
of the Cirronet CSM profile clusters plus a couple that probably come from within the ZDR

The contents of Sniffer Capture 9.10 are reaching out to any remote device that can match
up with its ProfilelD and cluster list. That's going to be a given in our situation as the remote
device is indeed a bonafide Cirronet ZigBee module, which answers accordingly in Sniffer
Capture 9.11.

Sniffer Capture 9.11

Frame 2 (Length = 33 bytes)
Time Stamp: 10:20:21.007
Frame Length: 33 bytes
Capture Length: 33 bytes
Link Quality Indication: 176

IEEE 802.15.4

Frame Control: 0x8861
............. 001 = Frame Type: Data (0x0001)
............ 0... = Security Enabled: Disabled
........... 0 = Frame Pending: No more data
.......... 1 = Acknowledgment Request : Acknowledgment

required
= Intra PAN- Within the PAN

= Reserved
= Destination Addressing Mode: Address

. olo° o°.°

...... 00 0

.... i0
~eld contains a 16-bit short address (0x0002)

..00 = Reserved

i0 = Source Addressing Mode- Address ~eld

contains a 16-bit short address (0x0002)
Sequence Number: 38
Destination PAN Identi~er: 0x307d

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

Destination Address: 0x0000

Source Address: 0x796f

Frame Check Sequence: Correct

ZigBee NWK

Frame Control: 0x0004

.............. 00

.......... 00 01..

........ 00

discovery (0x00)
.

.

0000 00

Destination Address- 0x0000

Source Address- 0x796f

Radius = 7

Sequence Number = I0

ZigBee APS

Frame Control: 0x40

...... 00

.... 00..

. . . 0

• .0

ol

.

Destination Endpoint- 0x00

Cluster Identi~er. MatchDescRsp (0x0086)

Pro~le Identi~er- ZDP (0x0000)

Source Endpoint. 0x00

ZigBee AF

AF Header • 0x21

.... 0001 = Transaction Count- (0x01)

0010 Frame Type- MSG (0x02)

Transaction 1

Transaction Sequence Number = 0x0c

ZigBee MSG

Transaction Length: 5

Transaction Data- 00-6f-79-01-01

ZigBee ZDO

Status = Success. (0x00)

NWK Address Of Interest: 0x006f

Match Length: 1

Match List

Endpoint i. 0x01

= Frame Type: hYWK Data (0x00)

= Protocol Version (0x01)

= Discover Route- Suppress route

= Reserved

= Security- Disabled

= Reserved

= Frame Type- APS Data (0x00)

= Delivery Mode: Normal Unicast Delivery (0x00)

= Indirect Address Mode" Ignored

= Security • False

= Ack Request. Acknowledgment required

= Reserved

0000: 61 88 26 7d 30 00 00 6f 79 04 00 00 00 6f 79 07 a.&}0..oy oy.

0010. 0a 40 00 86 00 00 00 21 0c 05 00 6f 79 01 01 .. .@ !...oy...

0020: . .

Sniffer Capture 9. 11 Everything up to the ZigBee AF sniff data should be old hat. Note that the
Transaction Sequence Numbers match the ZigBee AF sniff request in Sniffer Capture 9. 10 to the
ZigBee AF sniff response in Sniffer Capture 9. 11.

185

Chapter 9

Let's cut to the chase. The ZigBee APS sniff data tells us that this ~ame is a Match_Desc_
resp. A status of 0x00 is returned indicating a successful request. The receiving Ci~onet
ZigBee node found itself in a matching situation and returned its 16-bit network address and
matching endpoint (0x01) to the ZigBee Coordinator.

Sniffer Capture 9.12

ZigBee APS

Frame Control: 0x40

...... 00 = Frame Type: APS Data (0x00)

.... 00.. = Delivery Mode- Normal Unicast Delivery (0x00)

...0 = Indirect Address Mode: Ignored

..0 = Security: False

.i Ack Request: Acknowledgment required

0 = Reserved

Destination Endpoint: 0x00

Cluster Identi~er: MatchDescRsp (0x0086)

Pro~le Identi~er- ZDP (0x0000)

Source Endpoint- 0x00

ZigBee AF

AF Header. 0x21

.... 0001 = Transaction Count: (0x01)

0010 : Frame Type: MSG (0x02)

Transaction 1

Transaction Sequence Number = 0x0c

ZigBee MSG

Transaction Length: 5

Transaction Data: 00:6f:79:01:01

ZigBee ZDO
Status = Success: (0x00)

NWK Address Of Interest: 0x796f

Match Length: 1

Match List

Endpoint i: 0x01

Sniffer Capture 9. 12: The figBee specification calls for a Unicast response and ~at~ exactly what
~e Grronet ZMN2400HP d~.

Before we move on, I would like to show you something that is very impo~ant. Here's the
IEEE 802.15.4 acknowledgment to the Match_Desc_resp message:

Frame 3 (Length = 5 bytes)

Time Stamp: 10-20-21.008

Frame Length: 5 bytes

Capture Length: 5 bytes

Link Quality Indication: 220

IEEE 802.15.4

Frame Control: 0x0002
............. 010 = Frame Type: Acknowledgment (0x0002)

............ 0... = Security Enabled: Disabled

186

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

not required

........... 0 = Frame Pending- No more data

.......... 0 = Acknowledgment Request. Acknowledgment

......... 0 = Intra PAN- Not within the PAN

...... 00 0 : Reserved

.... 00 : Destination Addressing Mode- PAN

identi~er and address ~eld are not present (0x0000)

..00 Reserved

00 : Source Addressing Mode- PAN identi~er

and address ~eld are not present (0x0000)

Sequence Number- 38

Frame Check Sequence- Correct

0000 02 00 26 &

And, here's the APS application acknowledgment to the Match_Desc_resp message:

Frame 4 (Length = 25 bytes)

Time Stamp 10-20-21.012

Frame Length: 25 bytes

Capture Length: 25 bytes

Link Quality Indication: 220

IEEE 802.15.4

Frame Control: 0x8861

............. 001

.

.

. i

required

= Frame Type- Data (0x0001)

: Security Enabled Disabled

= Frame Pending No more data

= Acknowledgment Request Acknowledgment

......... 1 = Intra PAN- Within the PAN

...... 00 0 = Reserved

.... i0 : Destination Addressing Mode: Address

~eld contains a 16-bit short address (0x0002)

..00 : Reserved

I0 Source Addressing Mode- Address ~eld

contains a 16-bit short address (0x0002)

Sequence Number- 79

Destination PAN Identi~er- 0x307d

Destination Address- 0x796f

Source Address- 0x0000

Frame Check Sequence- Correct

ZigBee NWK

Frame Control- 0x0044

.............. 00

.......... 00 01..

........ 01

.

.

0000 00

Destination Address: 0x796f

= Frame Type: NWK Data (0x00)

= Protocol Version (0x01)

= Discover Route Enable route discovery

= Reserved

= Security Disabled

= Reserved

(OxOl)

187

Chapter 9

Source Address: 0x0000

Radius = 7

Sequence Number = 18

ZigBee APS

Frame Control: 0x02

...... i0 = Frame Type: APS Ack (0x02)

.... 00.. = Delivery Mode: Normal Unicast Delivery (0x00)

...0 Indirect Address Mode: Ignored

..0 = Security: False

.0 = Ack Request: Acknowledgment not required
0 Reserved

Destination Endpoint: 0x00

Cluster Identi~er: MatchDescRsp (0x0086)

Pro~le Identi~er: ZDP (0x0000)

Source Endpoint: 0x00

This ZigBee stack stuff is kinda like algebra. What is done to one side must be done to the other.
In order for the application to keep itself in sync with what's flowing through the ZigBee stack
layers, checkpoints in the form Of application and network acknowledgments must exist.

Now that we have obtained the lone remote device's network address, let's get greedy and see
if we can assemble a message to assimilate its IEEE 802.15.4 address as well. A good begin-
ning is the WinCom window and the data therein shown in Screen Capture 9.3.

Screen Capture 9.3: The main ingredient of this mix is the network address we just obtained.

188

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

Again, cutting to the chase, the MSG Type is 0x 10, Get IEEE Address. We are looking for
the IEEE address of the network node addressed as 0x796F and only want the MAC address
returned. There is no list to index. The Get IEEE Address argument list is notated in Figure 9.5.

Network Address
(2 bytes)

Request Type
(1 byte)

Start Index
(1 byte)

Figure 9.5: The Start Index value allows the retrieval of a number of devices at differing indexes into
a list of devices that may be too long and overrun the limit of a single ZigBee packet size of 127
bytes.

A click on the Transmit button sends the packet in Sniffer Capture 9.13 along on its way.

Sniffer Capture 9.13

Frame 6 (Length = 32 bytes)

Time Stamp- 10-23-09.381

Frame Length: 32 bytes

Capture Length: 32 bytes

Link Quality Indication- 212

IEEE 802.15.4

Frame Control: 0x8861

............. 001

.

.

.

required

= Frame Type- Data (0x0001)

= Security Enabled- Disabled

= Frame Pending: No more data

= Acknowledgment Request- Acknowledgment

: Intra PAN- Within the PAN

= Reserved

= Destination Addressing Mode: Address

.

...... 00 0

.... i0

~eld contains a 16-bit short address (0x0002)

..00 Reserved

i0 Source Addressing Mode: Address ~eld

= Frame Type- NWK Data (0x00)

= Protocol Version (0x01)

= Discover Route: Suppress route

contains a 16-bit short address (0x0002)

Sequence Number: 80

Destination PAN Identi~er: 0x307d

Destination Address- 0x796f

Source Address: 0x0000

Frame Check Sequence: Correct

ZigBee NWK

Frame Control: 0x0004

.............. 00

.......... 00 01..

........ 00

discovery (0x00)

.

.

0000 00

Destination Address: 0x796f

= Reserved

= Security. Disabled

= Reserved

189

Chapter 9

Source Address: 0x0000

Radius = 7

Sequence Number = 19

ZigBee APS

Frame Control: 0x00

...... 00

.... 00..

• ••0 o•oo

• •0o ••••

°0•o oo°°

.•• .•..

= Frame Type: APS Data (0x00)

= Delivery Mode: Normal Unicast Delivery (0x00)

= Indirect Address Mode: Ignored

= Security: False

= Ack Request: Acknowledgment not required

= Reserved

Destination Endpoint: 0x00

Cluster Identi~er: IEEEAddrReq (0x0001)

Pro~le Identi~er: ZDP (0x0000)

Source Endpoint: 0x00

ZigBee AF

AF Header: 0x21

.... 0001 = Transaction Count: (0x01)

0010 Frame Type: MSG (0x02)

Transaction 1

Transaction Sequence Number = 0x0d

ZigBee MSG

Transaction Length: 4

Transaction Data: 6f:79:00:00

ZigBee ZDO

NWK Address Of Interest: 0x796f

Request Type = Single Device Response:

Start Index: 0

(0x00)

0000: 61 88 50 7d 30 6f 79 00 00 04 00 6f 79 00 00 07 a.P}0oy oy...

0010: 13 00 00 01 00 00 00 21 0d 04 6f 79 00 00 :..oy

Sniffer Capture 9.13: See, this ZigBee stack stuff isn't so complicated when you can see what the
layers are really doing.

The ZigBee APS and ZigBee AF sniff contents tell the whole story from the application point
of view. The Cirronet ZigBee Coordinator application (our little Get IEEE Address message)
wants the 64-bit IEEE 802.15.4 MAC address of the remote Cirronet node with a NWK ad-
dress of 0x796F and nothing more. Here's what Cirronet node 0x796F returned:

ZigBee APS

Frame Control : 0x40

...... 00 = Frame Type: APS Data (0x00)

.... 00.. = Delivery Mode: Normal Unicast Delivery (0x00)

...0 Indirect Address Mode: Ignored

• . 0 Security: False

• 1 Ack Request : Acknowledgment required

0 = Reserved

Destination Endpoint : 0x00

Cluster Identi~er: IEEEAddrRsp (0x0081)

190

Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee

Profile Identi~er: ZDP (0x0000)

Source Endpoint: 0x00

ZigBee AF
AF Header: 0x21

.... 0001 = Transaction Count: (0x01)

0010 Frame Type: MSG (0x02)
Transaction 1

Transaction Sequence Number = 0x0d
ZigBee MSG

Transaction Length: 13

Transaction Data: 00:ca:0a:00:00:03:66:30:00:6f:79:00:0

ZigBee ZDO

Status = Success: (0x00)
IEEE Address of Remote Device: 0x0030660300000aca

Nework Address of Remote Device: 0x796f

Number of Associated Device: 0

Start Index: 0

I eliminated the IEEE 802.15.4 and NWK portions of the sniff as you're familiar with their
contents. The data our little one-line application desires is embedded within the ZigBee AF
portion of the Daintree Networks SNA sniff. In addition to the IEEE 802.15.4 acknowl-
edgments, a final APS acknowledgment was issued, just as it was for the Match_Desc_req
message.

About Cirronet
Headquartered in North Metro Atlanta, Cirronet has over 17 years of success in the develop-
ment of innovative wireless products. Cirronet maintains regional sales offices throughout the
U.S.

If you're interested in ZigBee, I can assure you that Cirronet is interested in you as my contact
inside of Cirronet is the Vice President of Marketing, Tim Cutler. Tim didn't "delegate" me to
one of his staff and was directly responsible for providing the Cirronet content for this book.
Tim returns calls and answers emails even while he's doing that VP stuff. Thanks, Tim.

I'll bet Tim knows the band from Athens. Let's see, some of their hits include:

• Rock Lobster

• Love Shack

Still stumped? Fred and Cindy's band is named after a very famous military jet, the B52. Ath-
ens, Georgia, just happens to be the home of the University of Georgia. What a place to form
the world's greatest party band.

What musical band of brothers, all hailing from the South, ended up in the North and in the
musical history books?

191

This Page Intentionally Left Blank

CHAPTER 10
Silicon Laboratories

In our look at the ZMD 900-MHz IEEE 802.15.4-compliant/ZigBee-ready transceiver, we
saw what Silicon Laboratories brings to the IEEE 802.15.4 and ZigBee table as far as micro-
controllers go. In this chapter, we'll take yet another look at yet another Silicon Laboratories
microcontroller, the Silicon Laboratories C8051F121. This time, however, the Silicon Labo-
ratories C8051F121 joins in with a Silicon Laboratories CP2101 USB-to-UART bridge and a
Chipcon CC2420 transceiver to form a 2.4-GHz/ZigBee node. Photo 10.1 is a pixilation of a
full-blown Silicon Laboratories 2.4-GHz ZigBee node.

Photo 10. 1 This is Silicon Laboratories" version of a ZigBee node. This design is very clean
and easy to follow.

The Silicon Laboratories 2.4-GHz ZigBee node is built around the C8051F121. The
C8051F121 is a high-performance 8051-derivative with mixed-signal capabilities. The
C8051FI21 has all of the attributes one would want in a high-end microcontroller with
some extras. On-chip analog-to-digital converters have become commonplace. However,
not many microcontrollers are equipped with a pair of on-chip DACs (digital-to-analog-con-
verters). Temperature sensors aren't something you see as an on-chip peripheral either. The
C8051F121, shown at low altitude in Photo 10.2, has both a pair of DACs and a temperature
sensor embedded in its silicon.

193

Chapter 10

Xl I ~ m

i ~'~t~ '' Q I : t E S E T ¢

.... , : = 6c ... ro ,

® ~ ' ,!~ ~ , _,'_ r l r e . --NSS c,
, ~ , , ~'~.. .-.. S C L K e ~MOS I ~'

.-. - " MI SO~ c2:

" ~ o o = o 99=-. 2 - ~

, ~o'~ ~'-~ ~'.~ ~ ' ~

Photo 10.2: The S/I/con Laboratories 2.4-GHz ZigBee/IEEE 802.15.4 development board is
very nicely laid out with the intention of teaching the user about the nuances of ZigBee
and IEEE 802.15.4 hardware. Note the CC2420 signal trace tap point to the right of the
C8051F 121 in this shot.

There are no accessible RS-232 serial ports to be found on the Silicon Laboratories ZigBee
development boards. Instead, the Silicon Laboratories engineers included a lone USB port,
which is based on the Silicon Laboratories CP2101 USB-to-UART bridge. I got as close as I
could to the CP2101 USB-to-UART bridge in Photo 10.3.

~ ~q ~t ~ ~

~,~ ~ CI , , ¢

.... n2 ~-~c2_ ~ (

..... ~ C 4

~ 2 6 . ..~ "

' - " U I

U~8
x) ~o
"4 G)

. " c ~ E S E T C ~ I u 4 ,,
. ,~ U ~ E 6 , ",," • .,-~.t~¢¢:¢¢;--, : c.*~

c,:: ; , : e , S F D " ~ - - , _
. . . . ' C C R~, ~':":-" _ ~ ; L L

Photo 10.3: There isn't much you have to surround the CP2101 USB-to-UART bridge with
to make it go. The USB port is used extensively with the personal computer-based demo
packages that come with the Silicon Laboratories ZigBee development kit.

194

Silicon Laboratories

Can you find the discrete balun in Photo 10.4? Do you see it in Photo 10.5? To prove a point,
the component layouts in both Photo 10.4 (Silicon Laboratories ZigBee development board
radio) and Photo 10.5 (Texas Instruments/Chipcon's CC2420 ZigBee radio) are strikingly
similar for good reason. Why try to beat up and improve something that the original manufac-
turer has perfected and told you to use?

Photo 10.4: Here's a low-level shot of the Silicon Laboratories CC2420 radio layout.

Photo 10.5: Here's a shot of the original manufacturer's CC2420 radio layout. Texas
Instrurnents/Chipcon advises users of the CC2420 to use their RF, layout as it has been
extensively tested and proven.

The C8051F121's peripheral set is nice, but we've got ZigBee things to do. Once we get on
the air, then the C8051F121 's on-chip mixed-signal peripherals could be put to use to provide
the data that will ride in the ZigBee packets.

195

Chapter 10

The concept of primitives is conveyed in the IEEE 802.15.4 specification. However, you and I
have already found that the implementation of the primitive principle can differ from manu-
facturer to manufacturer. The Silicon Laboratories ZigBee node in Photo 10.1 was supplied
with a library package specifically targeted at the NWK layer of the ZigBee stack called the
Silicon Laboratories ZigBee Network Layer Interface. The Silicon Laboratories ZigBee Net-
work Layer Interface utilizes function calls and a globally shared buffer scheme to implement
primitives.

Messages flowing between the application and network layers use function calls or a shared
buffer as transport. Primitive traffic originating at the application layer that is aimed at the
NWK layer tides on function calls. Network traffic flowing upstream to the application layer
uses indication primitives, which are stored in the shared buffer. The application layer must
interrogate the shared buffer to check for incoming traffic from the network layer.

Depending upon the type of confirmation primitive, there may be one or multiple pieces of
data tiding within the primitive's data structure. For confirmation primitives with a single
parameter, which is normally a status indicator, the confirmation pfimitive's parameter is
passed as a return value of the function call. If a confirmation primitive contains multiple
parameters, the function will store the pfimitive's parameters in the shared buffer. It is then up
to the requester to check for and retrieve the confirmation parameters. In the Silicon Labo-
ratories ZigBee Network Layer Interface framework, all primitive requests are initiated with
a function call. Now that you have been familiarized with the Silicon Laboratories ZigBee
Network Layer Interface rules and regulations, let's walk through converting an NWK-gener-
ated message into RF particles.

Before we begin our mission to send a message from the NWK layer, I must bring to your
attention that Silicon Laboratories also provides a similar library of functions for the MAC
layer called the 802.15.4 MAC Layer Application Programming Interface. As you have
quickly deduced, the 802.15.4 MAC API is aimed at the MLME and MCPS MAC primitives.
The Silicon Laboratories ZigBee Network Layer Interface library contains the MAC API
functionality. However, the Silicon Laboratories NWK library is provided in a package that
does not allow the programmer direct access to the MAC primitives.

The Silicon Laboratories ZigBee NWK library contains a series of system initialization
function calls that are necessary to execute before embarking on the use of the ZigBee NWK
library resources in an application. Here is a list of the system initialization calls in the correct
run order:

• DISABLE_GLOBAL_INT0

• Systemlnit 0

• CC2420Init0

• EINT_Init0

• MAC_Init0

Disable Global Interrupts

Initialize the System Hardware

Initialize the Transceiver

Initialize the Transceiver Interrupt

Initialize the MAC

196

Silicon Laboratories

• maclnitEnv() Set Default PIB settings

• mlmeResetRequest(FALSE) Reset the mac

• netlnit() Initialize the NWK layer

• ENABLE_GLOBAL_INT() Enable Global Interrupts

The Silicon Laboratories ZigBee NWK library combines all of the system initialization steps
into a single function call, InitAllSystem. Unfortunately, the source code for the Silicon
Laboratories library is not something that I have access to. So, we won't be breaking down the
system initialization code as walking through 8051 assembler won't be any fun for you or me.

If you've trusted me (and the ZigBee specification and the IEEE 802.15.4 specification) thus
far, you know that we can apply the Silicon Laboratories ZigBee NWK library to a PAN
Coordinator, a ZigBee Router and a ZigBee End Device. So, let's synchronize at this moment
and declare the Silicon Laboratories ZigBee PAN Coordinator powered up and initialized.

In this scenario, you and I are the application as we are sending commands to the NWK
layer from above. We've got a brand new shiny Silicon Laboratories ZigBee module that we
need to do something with. However, we can't do anything ZigBee without first establish-
ing a PAN. But, before we can form a PAN we must assign a PAN Coordinator. Our Silicon
Laboratories ZigBee hardware has the punch needed to be a PAN Coordinator. So, we'll issue
a Silicon Laboratories ZigBee NWK function call to crown our Silicon Laboratories ZigBee
hardware king of a PAN. The network formation function, which represents the NLME-NET-
WORK-FORMATION primitive, looks like this:

nlmeNetworkFormationRequest(0x00000800, 5, 15, 15, 0x0002, FALSE)

The prerequisites for issuing the nlmeNetworkFormationRequest function call are that the
target device be an FFD that is not already engaged with another network and that NLME-
RESET be issued prior to the nlmeNetworkFormationRequest function call. Both of the
prerequisites have been fulfilled as NLME-RESET was issued in the netlnit system initializa-
tion function and our target Silicon Laboratories C8051F121-based ZigBee hardware is more
than capable of taking on a ZigBee PAN Coordinator role.

In the nlmeNetworkFormationRequest function's arguments I have limited the channel scan
to channel 11 and declared a nonBeacon network with a PAN ID of 0x0002. As long as I
didn't go hog wild on the hold time, scan duration here is irrelevant as I've effectively for-
bidden a multiple channel scan by signaling out channel 11. In the true fashion of ZigBee
Coordinators, the Silicon Laboratories ZigBee Coordinator hardware needs no battery-life
extension support and I've reflected that with a FALSE in the battery life extension argument.

Following the execution of the nlmeNetworkFormationRequest function, the Daintree Net-
works SNA posted the expected Beacon Request frame followed by a totally unexpected
Coordinator Realignment frame, which I've posted for you in Sniffer Capture 10.1. After
some careful investigation of the Silicon Laboratories 802.15.4 library documentation, I

197

Chapter 10

found that the coordRealignment bit within the MLME-START primitive's data structure was
set to TRUE. The reasoning behind this is to provide a person using a Sniffer (that's us) a
positive visual notification that the new PAN has indeed been created. Hopefully, you're not
wondering how an MLME-START process got into the NWK mix. Remember, everything
flows downhill (top to bottom) in the ZigBee stack when the application kicks off a request
and each layer performs its part of the job before sending the data out of the RF pipe or pro-
viding the stuff that the application requested.

Sniffer Capture 10.1

Frame 2 (Length = 27 bytes)

Time Stamp: 15:53:00.509

Frame Length: 27 bytes

Capture Length: 27 bytes

Link Quality Indication: 208

IEEE 802.15.4

Frame Control: 0xc803

............. 011

o o o o °o °° 0 o o °

o ° ° ° °° o0

. ° ° 0 o ° o ° °

not required

= Frame Type: Command (0x0003)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

......... 0 = Intra PAN: Not within the PAN

...... 00 0 Reserved

.... i0 = Destination Addressing Mode: Address

~eld contains a 16-bit short address (0x0002)

..00 = Reserved
ii Source Addressing Mode: Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number: 13

Destination PAN Identi~er: 0xffff
Destination Address: 0xffff
Source PAN Identi~er: 0x0002

Source Address: 0x000b5700000009c6

MAC Payload
Command Frame Identi~er = Coordinator Realignment: (0x08)

PAN Identi~er: 0x0002

Coordinator Short Address: 0x0000

Logical Channel: ii

Short Address: 0x0000

Frame Check Sequence: Correct

0000: 03 c8 od ff ff ff ff 02 00 c6 09 00 00 00 57 0b .Hd W.

0010- 00 08 02 00 00 00 0b 00 00

Sniffer Capture 10. 1 This is an optional frame to fire off following the creation of a ZigBee PAN.
It's a good idea in this sense as it totally identifies the new PAN and its Coordinator to the person
observing the Sniffer capture (that be you).

198

Silicon Laboratories

Now that the Silicon Laboratories MAC code has made sure that we know a valid ZigBee
PAN was created, let's have a new PAN party and "associate" with some friends. Before we
can party we have to send some invitations. Our ZigBee PAN party invites all look alike and
are based on the NLME-PERMIT-JOINING primitive. The final invitation looks like this:

nlmePermi tJoiningReques t (0xFF)

The 0xFF indicates that the ZigBee PAN Coordinator is open for accep6n g requests to join
the PAN as Ion g as there's room for new guests. And, the invites are never really sent out as
the n]mePernJt]oiningRequest function is a signal [o set internal flags in upper |ayers [o allow
the MAC to set a flag to a|]ow nodes to join the PAN.

At this point, let's turn on one of those "guests" and stun our ZigBee PAN party. We']] use
another Silicon Laboratories ZigBee module that is idendca| in build [o our Silicon Laborato-
ries ZigBee module that is currently acting as the ZigBee PAN Coordinator. However, we will
pretend (not assume) that the Silicon Laboratories ZigBee module we're bringing up cannot
function as an FFD, which means it will be relegated to ZigBee End Device service. All of
the things we did to initialize the Silicon Laboratories ZigBee Coordinator are also performed
within the C8051F121 on the up-and-coming ZigBee End Device. However, instead of start-
ing a ZigBee PAN, which it can't do as an RFD, the newly initialized Silicon Laboratories
ZigBee hardware executes the following function"

nlmeNetworkDiscoveryRequest (0x00000800, 5)

The n]meNetworkDiscoveryRequest func6on is derived from the NLME-NE~ORK-DIS-
COVERY primitive. We have just told the not-yet-associated ZigBee End Device to search
the sky for networks. Instead of forcing the soon-to-be ZigBee End Device to search all of
the available 2.4-GHz channels, I forced the scan to channel 11 only. A confirmation (NLME-
NETWORK-DISCOVERY.confirm in primitive speak) was returned to the shared buffer,
which I just happened to have an eye on in Screen Capture 10.1.

The first byte in the nlmeconfirm buffer is the NetworkCount, whose value represents how
many network descriptor structures the buffer is holding. All of the bytes that follow will
fall nicely into the slots of the NETWORK_DESCRIPTOR structure in Code Snippet 10.1.
A search status byte follows the securityLevel byte in the dump shown in Screen Capture
10.1. What you don't see in Code Snippet 10.1 is the passing of the confirmlD byte that is
used as a signal and descriptor to let other layers know that the data is related to a network
discovery operation.

199

Chapter 10

8 nlmeconfkm.buffer,OxlO
i [o]

i [2]
i p]
i [4]
......... [51
i [Sl
i [7]
! [8]

i [9]
i [~o]
i [111

Ox01 ~ i ~iiiiii

Ox02 ~; ~ ii

OxOF
o.oo

Ox01

e.oo

nvnn
Watch #2 i

Screen Capture 10.1: I stopped the C8051F121 's execution when the nlmeNetworkDiscoveryRequest
function completed to get this view of the globally shared nlmeconfirm buffer.

C o d e S n i p p e t 10.1

typedef struct{
BYTE NetworkCount;
NETWORK_DESCRIPTOR nwkDescriptor[MAX_USE_CHANNEL_COUNT];
MAC_ENUM Status;
}NLME_NETWORK_DISCOVERY_CONFIRM;

typedef struct {
WORD panID;
BYTE logicalChannel ;
BYTE stackPro~le ;
BYTE zigBeeVersion;
BYTE BeaconOrder;
BYTE superFrameOrder;
BOOL permitJoining;
BYTE securityLevel ;
} NETWORK_DESCRI PTOR;

Code Snippet 10. 1" This is what you don't see in the Daintree Networks SIVA traces because this
kind of stuff is going on between the layers and is not transmitted. This represents the Silicon
Laboratories ZigBee NWK library's use of the shared buffer primitive passing technique.

A search status byte that is equal to 0x00 (SUCCESS) means that at least one network was
discovered. That's good because there is only one network in operation, ours. Now that a
functioning ZigBee PAN has been located, the ZigBee End Device can request to join the
ZigBee PAN party by issuing this function call:

nlmeJoinRequest(0x0002, FALSE, FALSE, 0x00000800, 5, i, TRUE, FALSE) ;

200

Silicon Laboratories

The nlmeJoinRequest function is a derivative of the NLME-JOIN primitive. I'm sure you
can figure out most of what the nlmeJoinRequest function call is doing by the PANID and
channel arguments. Basically, we're asking to join a PAN IDed as 0x0002 on channel 11 as a
ZigBee End Device using a mains power supply because we will leave the receiver on when
the ZigBee node is idle. And, by the way, hold the security. Here's what goes down:

(Note that I will not post the acknowledgment sniffs in this thread of events. I will, however,
make you aware of their locations in the thread.)

The wanna-be ZigBee End Device actively scans channel 11 by issuing a Beacon Request
frame.

Frame 3 (Length = i0 bytes)

Time Stamp- 09-29:17.288

Frame Length: i0 bytes

Capture Length: i0 bytes

Link Quality Indication: 152

IEEE 802.15.4

Frame Control: 0x0803

............. 011

.

• 0

.

not required

= Frame Type- Command (0x0003)

= Security Enabled- Disabled

= Frame Pending- No more data

= Acknowledgment Request: Acknowledgment

......... 0 Intra PAN: Not within the PAN

...... 00 0 Reserved

.... i0 Destination Addressing Mode- Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

00 Source Addressing Mode: PAN identi~er
and address ~eld are not present (0x0000)

Sequence Number. 167

Destination PAN Identi~er- 0xffff

Destination Address- 0xffff

MAC Payload

Command Frame Identi~er = Beacon Request: (0x07)

Frame Check Sequence- Correct

0000: 03 08 a7 ff ff ff ff 07 '

The ZigBee PAN Coordinator (ID = 0x0002) replies by transmitting an informational Beacon.

Frame 4 (Length = 19 bytes)

Time Stamp- 09:29:17.294

Frame Length: 19 bytes

Capture Length: 19 bytes

Link Quality Indication: 212

IEEE 802.15.4

Frame Control: 0x8000

201

Chapter 10

not required

............. 000

.

.

.

= Frame Type: Beacon (0x0000)

= Security Enabled: Disabled

= Frame Pending- No more data

= Acknowledgment Request: Acknowledgment

......... 0 = Intra PAN: Not within the PAN

...... 00 0 Reserved

.... 00 Destination Addressing Mode: PAN

identifer and address feld are not present (0x0000)

..00 Reserved

i0 Source Addressing Mode- Address feld

contains a 16-bit short address (0x0002)

Sequence Number- 177

Source PAN Identifer- 0x0002

Source Address: 0x0000

MAC Payload

Superframe Specifcation- 0xcfff

a PAN Coordinator

............ iiii

........ iiii

.... iiii

. . . 0

. . 0

.1

i

accepting Association Requests

GTS Specification: 0x80

= Beacon Order (0x000f)

= Superframe Order (0x000f)

= Final CAP Slot (0x000f)

= Battery Life Extension: Disabled

= Reserved

= PAN Coordinator. Transmitter is

= Association Permit: Coordinator

Requests

..... 000

• 000 0...

.

= GTS Descriptor Count (0x00)

= Reserved

= GTS Permit- Coordinator accepting GTS

Pending Address Specifcation- 0x00

..... 000 = Number of short Addresses pending- 0

.... 0... = Reserved

.000 = Number of extended Addresses pending: 0

0 = Reserved

Beacon Payload

MAC Payload • 00:0f'0f-00:00:00

Frame Check Sequence: Correct

0000- 00 80 bl 02 00 00 00 ff cf 80 00 00 Of Of 00 00 ..i 0

0010: 00
**

The wanna-be ZigBee End Device issues an Association Request.

Frame 5 (Length = 21 bytes)

Time Stamp: 09:29:28.836

Frame Length: 21 bytes

Capture Length: 21 bytes

Link Quality Indication- 156

IEEE 802.15.4

202

Silicon Laboratories

Frame Control: 0xc823

............. 011

. 0 . . .

.

. i

required

. 0

...... 00 0

.... i0

= Frame Type- Command (0x0003)

: Security Enabled- Disabled

: Frame Pending- No more data

: Acknowledgment Request- Acknowledgment

: Intra PAN- Not within the PAN

= Reserved

: Destination Addressing Mode- Address

field contains a 16-bit short address (0x0002)

..00 Reserved

ii Source Addressing Mode- Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number- 168

Destination PAN Identi~er- 0x0002

Destination Address- 0x0000

Source PAN Identi~er- 0xffff

Source Address. 0x000b570000000987

MAC Payload

Command Frame Identi~er = Association Request- (0x01)

Capability Information" 0x8c

....... 0 : Alternate PAN Coordinator. Not capable of

becoming PAN Coordinator

.

. i..

alternating current mains

.... i . . .

when idle

..00

.0

security suite

: Device Type- RFD

= Power Source- Receiving power from

= Receiver on when idle- Enables receiver

= Reserved

= Security Capability- Not capable of using

I

allocate short address

Frame Check Sequence. Correct

= Allocate Address- Coordinator should

0000- 23 c8 a8 02 00 00 00 ff ff 87 09 00 00 00 57 0b #H(........... W.

0010. 00 01 8c

The ZigBee PAN Coordinator transmits the required acknowledgment (Frame 6) and the
wanna-be ZigBee End Device transmits a Data Request.

Frame 7 (Length = 18 bytes)

Time Stamp: 09:29:29.332

Frame Length: 18 bytes

Capture Length: 18 bytes

Link Quality Indication- 156

IEEE 802.15.4

Frame Control: 0xc863

............. 011

............ ...
: Frame Type- Command (0x0003)

= Security Enabled: Disabled

203

Chapter 10

required

........... 0 = Frame Pending: No more data

.......... 1 = Acknowledgment Request : Acknowledgment

......... 1 = Intra PAN: Within the PAN

...... 00 0 Reserved

.... i0 = Destination Addressing Mode: Address

~eld contains a 16-bit short address (0x0002)

..00 = Reserved

ii = Source Addressing Mode: Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number: 169

Destination PAN Identi~er: 0x0002

Destination Address: 0x0000

Source Address: 0x000b570000000987

MAC Payload

Command Frame Identi~er = Data Request: (0x04)

Frame Check Sequence: Correct

0000: 63 c8 a9 02 00 00 00 87 09 00 00 00 57 0b 00 04 cH) W...

0010-

Again, the ZigBee PAN Coordinator returns an acknowledgment (Frame 8) as requested and
follows the acknowledgment up with an Association Response.

Frame 9 (Length = 27 bytes)

Time Stamp: 09:29:29.337

Frame Length: 27 bytes

Capture Length: 27 bytes

Link Quality Indication: 212

IEEE 802.15.4

Frame Control: 0xcc63

............. 011

. o 0 . o o

o ° o o ° o o ° ° ° . 0 o ° ° o

. ° o ° l o ° o ° °

required

= Frame Type: Command (0x0003)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

......... 1 = Intra PAN: Within the PAN

...... 00 0 = Reserved

.... ii = Destination Addressing Mode: Address

~eld contains a 64-bit extended address (0x0003)

..00 = Reserved

ii = Source Addressing Mode: Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number- 254

Destination PAN Identi~er- 0x0002

Destination Address: 0x000b570000000987

Source Address: 0x000b5700000009c6

MAC Payload

Command Frame Identi~er = Association Response: (0x02)

Short Address: 0x155a

204

Silicon Laboratories

Association Status- Association Successful (0x00)

Frame Check Sequence- Correct

0000: 63 cc fe 02 00 87 09 00 00 00 57 0b 00 c6 09 00 cL-. W..F..

0010: 00 00 57 0b 00 02 5a 15 00 W...Z

The wanna-be ZigBee End Device has been accepted (Association Status: Association Successful
(0x00)) into the ZigBee PAN and transmits the requested acknowledgment frame (Frame 10).

When it all goes down as planned, you can put 0x00, 0x02 and 0x00 in the first three bytes of
the nlmeconfirm buffer dump in Screen Capture 10.1 and consider the Silicon Laboratories
ZigBee End Device node as part of the ZigBee PAN party.

The next thing a new ZigBee End Device might want to do is send along some data to its new
boss. Since we're pretending here, let's put some data in the payload that you can readily pick
out of the Daintree Networks SNA sniff. I've coded up a function in Code Snippet 10.2 that
will send my name from the ZigBee End Device to the ZigBee PAN Coordinator.

Code Snippet 10.2

void SendData (void)
{

NLDE_DATA_REQUE ST xda ta N1 deDa taReque s t ;

unsigned char xdata dataLen;

DataBuffer[0] = 'F';

DataBuffer[l] = 'R' ;

DataBuffer[2] = 'E' ;

DataBuffer[3] = 'D';

dataLen = 0x04;

NldeDataRequest.dstAddr

NldeDataRequest.nsduLength

NldeDataRequest.pNsdu

NldeDataRequest.nsduHandle

NldeDataRequest.broadcastRadius

NldeDataRequest.discoverRoute

NldeDataRequest.securityEnable

= 0x0000;

= dataLen;

= DataBuffer;

= i;

= i;

= FALSE;

= FALSE;

nldeDataRequest ((NLDE_DATA_REQUEST*) & (NldeDataRequest. dstAddr)) ;
}

Code Snippet 10.2: This is the Silicon Laboratories function version of passing an NfDE-DATA.request
primitive. The presence of the data request to the layers that need to process the primitive data in
the shared buffer is indicated by a confirmlD value of N_DATAIND.

Here's what happened when I executed the SendData function:

Frame Ii (Length = 23 bytes)

Time Stamp- i0-05:19.389

205

Chapter 10

Frame Length: 23 bytes

Capture Length: 23 bytes

Link Quality Indication: 128

IEEE 802.15.4

Frame Control: 0xaa61

............. 001

° . . ° .o °. 0 . o °

° o o ° o . ° 0 . . . o

° . . ° ° i ° . . o o

required

= Frame Type: Data (0x0001)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

= Intra PAN: Within the PAN

= Reserved

= Destination Addressing Mode: Address

. o o ° ° 1 o , o . o .

...... i0 0

.... i0

~eld contains a 16-bit short address (0x0002)

..00 = Reserved

i0 Source Addressing Mode: Address ~eld

= Frame Type: NWK Data (0x00)

= Protocol Version (0x01)

= Discover Route: Suppress route

contains a 16-bit short address (0x0002)

Sequence Number: 99

Destination PAN Identi~er: 0x0002

Destination Address: 0x0000

Source Address: 0x155a

Frame Check Sequence: Correct

ZigBee NWK

Frame Control: 0x0004

.............. 00

.......... 00 01..

........ 00

discovery (0x00)
.

.

0000 00

Destination Address: 0x0000

Source Address: 0x155a

Radius = 1

Sequence Number = 113

NWK Payload: 46:52:45:44

= Reserved

= Security: Disabled

= Reserved

0000: 61 aa 63 02 00 00 00 5a 15 04 00 00 00 5a 15 01 a*c Z Z..

0010: 71 46 52 45 44 qFRED..

This is a good time to see how our wanna-be ZigBee End Device, now a full-fledged ZigBee
End Device, gracefully leaves the ZigBee PAN party. The formal way to exit the ZigBee PAN
party is to call upon the NLME-LEAVE.request primitive in this Silicon Laboratories func-
tion form:

nlmeLeaveRequest (deviceAddress) ;

where deviceAddress = 0x000B570000000987

206

Silicon Laboratories

The deviceAddress happens to be our ZigBee End Device's 64-bit IEEE address. The confir-
miD that is passed in the primitive indication is N_LEAVE_IND. Here's what happened when
the ZigBee End Device stud goodbye to the ZigBee PAN party:

Frame ii (Length = 21 bytes)

Time Stamp- 14:31:42.266

Frame Length: 21 bytes

Capture Length: 21 bytes

Link Quality Indication: 112

IEEE 802.15.4

Frame Control- 0xaa41

............. 001 = Frame Type: Data (0x0001)

............ 0 Security Enabled- Disabled

........... 0 Frame Pending. No more data

.......... 0 Acknowledgment Request: Acknowledgment
not required

: Intra PAN: Within the PAN

= Reserved

= Destination Addressing Mode- Address

.

...... i0 0

.... i0

~eld contains a 16-bit short address (0x0002)

..00 Reserved

i0 Source Addressing Mode: Address ~eld

= Frame Type: NWK Command (0x01)

= Protocol Version (0x01)
= Discover Route- Reserved (0x03)

= Reserved

= Security: Disabled

= Reserved

= Reserved

= Rejoin: True

= Request/Indication. The device plans to

= Remove Children: Children of the device

contains a 16-bit short address (0x0002)

Sequence Number: 75

Destination PAN Identi~er: 0x0002

Destination Address: 0xffff

Source Address: 0x155a

Frame Check Sequence: Correct

ZigBee NWK

Frame Control: 0x00c5

.............. 01

.......... 00 01..

........ ii

. °

.

0000 00

Destination Address: 0xffff

Source Address: 0x155a

Radius = 0

Sequence Number = 60

NWK Payload

NWK Command Identi~er = Leave: (0x04)

Options: 0xb0

...i 0000

o , i

. 0 , . ° . o °

leave the network (0x0)

, , . ° , o .

will be removed (0xl)

0000: 41 aa 4b 02 00 ff ff 5a 15 c5 00 ff ff 5a 15 00 A*K Z.E...Z..
0010: 3c 04 b0 <.0..

207

Chapter 10

You're very good at reading Daintree Networks SNA traces by now and there's not much
more that needs to be said.

OK...You're spec-ed up on NWK operations, thanks to the folks at Silicon Laboratories. I
must say that I thoroughly enjoyed working with the Silicon Laboratories development tools.
I blended the Silicon Laboratories USB Debug Adapter (Photo 10.6) with a full version of
Keil's uVision3 to produce the RF you read through in this chapter.

Photo 10. 6: Remember this? I've worked
with lots of debug devices in my time and
this unassuming little box rates in the Top 10
for its ease of use and lack of unnecessary
complexi~

If you're an 8051 type, working with the C8051F121 and uVision3 will be a pleasant surprise,
as I was able to flow effortlessly between the uVision3 debug and edit modes.

The Silicon Laboratories development kit I used in this chapter comes with a total of six
C8051F121-based ZigBee development boards. Just for grins, I loaded another one of the
Silicon Laboratories ZigBee development boards as a ZigBee End Device and fired it up.
Screen Capture 10.2 gives you an idea of the fun I was having while piloting Daintree Net-
works SNA and the Silicon Laboratories ZigBee modules.

About Silicon Laboratories
Silicon Laboratories is based in Austin, Texas, and designs and develops analog-intensive,
mixed-signal integrated circuits. Although Silicon Laboratories does lots of things well, their
8051 products are among the best you will find anywhere.

The Elgins, under the watchful eye of Berry Gordy, became The Temptations. Can you name
all of the "Classic 5" Temps and which song vaulted them into stardom?

208

Silicon Laboratories

~ ; ~ • ,&"
• p;" >j~c DaintreeNetworks

,/
• ' / \ \

,//
<55~ ED 155b ED

' : Time $~alm@: I0:05:19.389 i~

i ' Frame Leng~: 23 bytes ~

Capr.,ure Length: 23 bye.~s

Link OUeL~l~y I nd i c~e ion : 128 ~!~
IZZE: 802. IS. 4 ~'-''';~

;5 F~aae ConC.tol: Oxaa61 ~

, 0 = Fz:~z.e Pending: No zw~e de, r.~
" 1 = kcknowled~l~en~ Re~esc : A¢ i~ov ledgemen~ ~eqp~ired

• l.. In~:~a P,I~: ~ir.h~n rJ'~e PAIl

1O 0 Rescued

i I0 - Des~inacion Add~esslng Kode: Addre~ field contains a I!~

oooo : 61 aa 63 02 oo oo oo Sa 15 04 O0 O0 O0 5e 15 O1 a~c Z, Z . .
O010: 71 46 52 45 44 qFRE]D

(- }Dev ice: 155a (0006570000000987) 0 .00 3 1 OOO0 (OOObS?O000OO0.. " " . - " " . , " . % , " , " , . " .
~ $ c r e I $ I a C y - l I 155b (OOOb570000000. " * . " " " . " " " ,, "

:4~ 10: 52:46, 55Z ~-O0:O0:O0. OOS OxO000 [EEE 8E2,,LS.4 E~e~c-on; BO: 1.5, 30~ IS, 9C" i , &~:': i ,

:43 10 :52 :47 .056 '4"0O:00:OO.O01 IE£t~ 802 .1 .5 .4 Acknov ledgz~ent
44 10: $2:4"1..5.52 ÷.O0: 00: OF.'. 4~6 O:~0.gObS?,.';'OOOOOOga;.~ ~×E,';;.O0 IZZE 6,,?.2, L.S, ~ Command: D~a ~'.~,~.:e~.
45 10 :5Z :47 ,$53 +00:00:OO.0Ol IEEE 802 .15 ,4 Ackno~Zed~en~

47 lO: 52: 4"t. 558 +OO: OO: OO.O01 IEEZ 802 .15 .4 Ackno~ led~ len~
48 10 :52 :47 . .563 + 0 0 : 8 0 : 0 0 . 0 0 5 Oxl.55b OxO00O OXl55b OXO800 Z i g b e e ~ ~ D a ~ ::..,|
49 lO : 52 :47 ,564 +OO: 00 :00 ,001 ~ 802. ~5.4 &c~oviedgnent

Screen Capture 10.2: Note the ZigBee PAN Coordinator and its two ZigBee End Device moons in
the Visual Device Tree window. Daintree Networks SNA is a wonderful ZigBee tool.

209

This Page Intentionally Left Blank

CHAPTER 11
Renesas

From the time you sifted through the very first Daintree Networks SNA sniff, you have been
experiencing the power of the Renesas M 16C series of 16-bit microcontrollers. A Renesas
M30280FA sailing with a Texas Instruments/Chipcon CC2420 IEEE 802.15.4-compliant/Zig-
Bee-ready transceiver has been (and still is) performing the hardware portion of the Daintree
Networks SNA Sniffer duty.

The Renesas M30280FA is a formidable 16-bit microcontroller. With 8K of on-chip SRAM
and 96K of program Hash, the M30280FA is a very good choice for commanding ZigBee
and IEEE 802.15.4 nodes. There is ample general-purpose I/O (up to 71 I/O lines) available to
drive the ZigBee radio and perform ZigBee sensor shepherding. In addition to easily handling
IEEE 802.15.4 and ZigBee chores, the M30280FA has the ability to speak via a number of
UART ports, SPI channels and even I2C. I put the macro lens on one of the Renesas ZigBee
development boards in Photo 11.1.

Photo 11.1: This unassuming microcontroller is really a 16-bit monster on the loose. The
M30280FA is shown here in its command and control position along with its first officer
and first mate.

There are currently two variants of the Renesas M30280FA-based ZigBee development boards.
The only difference in the boards is the frequency and manufacturer of the IEEE 802.15.4-compli-
ant/ZigBee transceivers. Photo 11.2 is a macro-lens view of the 900-MHz Renesas M30280FA
variant. There should be something very familiar about the transceiver IC in Photo 11.2.

211

Chapter 11

Photo 11.2: The 900-MHz vari-
ant of the Renesas M30280FA-
based ZigBee/IEEE 802.15.4
development board is powered
on the RF side by a ZMD44102
900-MHz IEEE 802. 15. 4-compli-
ant/ZigBee-ready transceiver IC.

If you didn't get here on the chapter-hopping red-eye flight, you're already spec-ed up on the
inner workings of the ZMD44102 900-MHz IEEE 802.15.4-compliant/ZigBee-ready trans-
ceiver. And, if you didn't sleepwalk through the Texas Instruments/Chipcon chapter, the IEEE
802.15.4-compliant/ZigBee-ready transceiver IC from Texas Instruments/Chipcon in Photo
11.3 should elicit some sentimental thoughts as well.

Photo 11.3: This implementa-
tion of the CC2420 differs ever
so slightly from the Texas Instru-
ments/Chipcon CC2420 layout
template. I ran this Renesas
M30280FA configuration for
24 hours per day for months
with absolutely no problems or
failures.

212

Renesas

Now that you've been introduced to all of the Renesas M30280FA ZigBee development-
board players, a composite shot of the Renesas M30280FA-based ZigBee/IEEE 802.15.4
development board lies in Photo 11.4.

Photo 11.4: The Renesas
M30280FA-based ZigBee de-
velopment board also includes
on-board light and thermal
sensors that are attached to
the M30280FA's analog-to-
digital converter module.

The Renesas M30280FA-based ZigBee development board is supported by a pair of dongles,
both of which connect to the M30280FA-based ZigBee development board via the 10-pin
male header you see in the upper left quadrant of Photo 11.4. For packet-sniffing purposes,
the Renesas M30280FA development board is loaded with Renesas packet-sniffer firmware
that interfaces via the Sniffer dongle to the Daintree Networks SNA application running on a
personal computer. The Renesas packet Sniffer dongle is shown in Photo 11.5.

Support for firmware loading and debugging is provided by a similar-looking dongle. Yes, I
did take them apart. The electronics inside the case in Photo 11.5 are identical to the electron-
ics buried inside of the plastic in Photo 11.6. The RF Sniffer Interface label was plastered
over the original silkscreen you see in Photo 11.6. Only the firmware running on a Renesas
Mitsubishi-era microcontroller differentiates the two dongles.

The RTA-FoUSB-MON dongle is used by both the debugging side of the Renesas High-per-
formance Embedded Workshop (HEW) IDE and the Flash Over USB (FoUSB) programming
application, which I've captured as a screen shot in Screen Capture 11.1.

213

Chapter 11

Photo 11.5: What you don't see is a mini-USB connector on the left panel of this tittle device.
When things are popping around the PAN, the LEDs in the recess are flickering like mad.

.

TARGET usa N ES/ jL -.
P o w e r M o d e .,

USB
(PC) STOP r" .

a

:~ RUN
1

STATUS
i~: POWER i
:~ RTA-FoUSB-MON

Flash Programmer & In-Circuit !T~,;~"~:";;~;;;~er TARGET

Photo 11.6: The names have been changed to protect the innards.

Screen Capture 11.1 The FoUSB window gives us all of the pertinent information about
the file that is loaded in its buffer.

214

Renesas

FoUSB is a necessary component of the M30280FA ZigBee development system, as it is
used to download the Renesas ZigBee stack and RTOS to the M30280FA. Once the stack and
RTOS are successfully installed in the M30280FA program Flash, we can use the Renesas
ZigBee API to call upon the ZigBee stack's functionality.

The Renesas ZigBee stack is comprised of everything except the user application. Every other
layer of the ZigBee stack is realized within the Renesas ZigBee stack code. All we have to
do is access the services of the Renesas ZigBee stack using the Renesas ZigBee API calls.
As we have seen in our ZigBee travels, everyone has a spin on the way they execute the laws
of the ZigBee specification. To keep the application from having to concern itself with the
relationship between request primitives and confirm primitives, the Renesas application-layer
interface performs the relationship check for the programmer by providing a blocking API
function to the upper layer. In other words, instead of the asynchronous primitive interface
called out in the ZigBee specification, the Renesas application-layer interface provides a
synchronous lock-step primitive interface. Despite this minor difference in operation, the
Renesas API calls listed for you in Table 11.1 correspond to a related ZigBee specified primi-
tive in name and parameter content. The Renesas API calls are relatively few in number but
are all useful tools in real-world ZigBee applications. All of the Renesas API calls in Table
11.1 are NWK related.

Network primitive
related API function

Callback function

ZbReset Initialization

ZbDiscoverNetwork Discover network

ZbFormNetwork Form network

ZbStartRouter Start router

ZbPermitJoining Permit joining

ZbJoin Join to network

ZbDirectJoin Direct join

ZbLeave Leave from Network

ZbDataSnd Send data

ZbSync Polling data

ZbSet Set attribute

ZbGet

ZbDatalndication

ZbJoinlndication

ZbLeavelndication

Refer attribute

Data receive indication

Child join indication

Leave indication

215

Chapter 11

Other API function
ZbMacAddr_Get

ZbShortAddr Get

Get MAC address

Get short address

Table 11.1" Instead of a zillion seldom-used API calls, the Renesas API set is short and sweet, making
it very easy to get your arms around.

By now we are all very familiar with what it takes to establish and join a ZigBee PAN. After
all, that's the whole idea behind this book, bringing an ocean of ZigBee and IEEE 802.15.4
information together in one small space, culling out the fat and providing you with ideas
and stuff you can use to do your own ZigBee or IEEE 802.15.4 thing. Let's see if we can cut
through the clutter and put a ZigBee PAN together using the Renesas API calls.

The first order of business in any ZigBee application is the initialization of the system. In the
case of the M30280FA, a call to the M30280FA's Systemlnit function not only sets up the
M30280FA general-purpose I/O and M30280FA internal peripherals, the ZbReset function is
also invoked as follows:

result = ZbReset(0) ;

The value of 0 (zero) in the ZbRese[function argument ca]Is for a COLD reset Here's what
happens dunnz the course of a COLD reset

• An MLME-RESET.requesffTRUE) is sent to the MAC layer

• The NWK NIB information entries are set to default values

• All control tables (neighbor tables, routing table, etc.) are cleared

If a WARM reset (function argument = 1) were requested, the only difference in execution
is that the NIB information and control tables are left untouched. As indicated by the vari-
able "result," the ZbReset function retums a result code. We are looking for a result code
of 0x00, which says everything went down as it should during the reset operation. If you're
wondering about the Renesas ZigBee stack and the RTOS components, they were initial-
ized and started before the Systemlnit function was called. The Systemlnit function and
everything else we will do with the application lies inside of a task, which is serviced by
the RTOS.

We need to establish a PAN and to do that we first need to bring up a ZigBee Coordinator.
However, first things first. You can't build a house without first buying some land. So, we call
upon the ZbDiscoverNetwork API call, which is issued inside of a function called App_Dis-
cover, as follows:

result = App_Discover (SCAN_CHANNELS, s_LocalPanId, &found) ;

216

Renesas

which results in calling"

result : ZbDiscoverNetwork (ScanChannelsMap, / / DWORD ScanChannels

ZB_DEFAULT_SCAN_DURATION, / / BYTE ScanDuration

Descs, // ZbPanDescriptor pDesc[]

MAX_DESCRIPTOR_ENTRIES, / / BYTE DescSize

&NetworkCount) ;// BYTE *pCount (number of entries ~lled by function)

We are looking for existing networks here. As you know, [here are none. (At |east there
should be none, as I don't have any running in the lab.) You also have figured out that I have
limited the SCAN_CHANNELS value to channel 11 (0x00000800). The App_Discover func-
tion looks for a particular Panld. In our case the Panld we're searching for is the Panld we
want to use for our PAN, which is 0xlACE. If Panld 0xlACE is found, the channel it was
found on will be placed in the "found" variable. Since I'm rather sure we won't find a net-
work at all, there will be no network count and no network descriptor entries this time around.
The ZbDiscoverNetwork function will scan channel 11 for approximately 500 ms as the
ZB DEFAULT SCAN DURATION value is set for 0x05.

The ZbDiscoverNetwork API function will internally place a call to the MAC layer primitive
MLME-SCAN.request and wait for a MLME-SCAN.confirm primitive. Any error returned
by MLME-SCAN.confirm will be returned to the application. The Beacon Request shown in
Sniffer Capture 11.1 was generated by the MAC scan as expected.

Sniffer Capture 11.1

Frame 1 (Length : i0 bytes)

Time Stamp" 15- 22.43.000

Frame Length- i0 bytes

Capture Length- i0 bytes

Link Quality Indication. 216

IEEE 802.15.4

Frame Control. 0x0803

............. 011 = Frame Type- Command (0x0003)

............ 0... = Security Enabled- Disabled

........... 0 : Frame Pending- No more data

.......... 0 : Acknowledgment Request: Acknowledgment

not required

= Intra PAN: Not within the PAN

= Reserved

= Destination Addressing Mode- Address

.

...... 00 0

.... i0

~eld contains a 16-bit short address (0x0002)

..00 Reserved

00 Source Addressing Mode- PAN identi~er

and address ~eld are not present (0x0000)

Sequence Number- 167

Destination PAN Identi~er- 0xffff

Destination Address- 0xffff

MAC Payload

217

Chapter 11

Command Frame Identi~er = Beacon Request: (0x07)

Frame Check Sequence: Correct

0000: 03 08 a7 ff ff ff ff 07 '

Sniffer Capture 11.1: No rocket sconce here ~at you don't al~ady unde~nd.

No networks were found. Thus, the next step is to start our ZigBee PAN on channel 11 and
call it 0xlACE. Here's the call:

result = App_Start(DESIRED_CHANNEL,s_LocalPanId);

Which results in calling:

result = ZbFormNetwork(ScanChannels, // DWORD ScanChannels

ZB_DEFAULT_SCAN_DURATION, // BYTE ScanDuratio

ZB_DEFAULT_BEACON_ORDER, // BYTE BeaconOrder (15=non-Beacon)

ZB_DEFAULTSUPERFRM_ORDER, // BYTE SuperFrameOrder(15=non-Beacon)

PANId, // ZbPANId PANId

TRUE); // BOOL ZbBatLifeExt

The ZbFormNetwork API function creates a PAN specified in PANId and the node that
executes this API function assumes the ZigBee Coordinator position. A channel scan is per-
formed by ZbFormNetwork to determine the best channel of the bunch to play in and to see
if another PAN already exists on the channel. Thus, a second Beacon Request is issued and
captured in Sniffer Capture 11.2.

Sniffer Capture 11.2

Frame 2 (Length = i0 bytes)

Time Stamp: 15:22:44.019

Frame Length: i0 bytes

Capture Length: i0 bytes

Link Quality Indication: 216

IEEE 802.15.4

Frame Control: 0x0803

............. 011 = Frame Type: Command (0x0003)

............ 0... = Security Enabled: Disabled

............ 0 = Frame Pending: No more data

.......... 0 = Acknowledgment Request: Acknowledgment

not required

= Intra PAN: Not within the PAN

= Reserved

= Destination Addressing Mode: Address

o o o . o o o . o 0 o o . o o o

...... 00 0

.... I0

field contains a 16-bit short address (0x0002)

..00 = Reserved

00 = Source Addressing Mode: PAN identi~er

and address ~eld are not present (0x0000)

218

Renesas

Sequence Number: 168

Destination PAN Identi~er: 0xffff

Destination Address: 0xffff

MAC Payload

Command Frame Identi~er = Beacon Request: (0x07)

Frame Check Sequence: Correct

0000- 03 08 a8 ff ff ff ff 07 (.......

Sniffer Capture 11.2: Don't fall asleep. The sequence numbers could be important if you're chasing
through a sniff looking for a problem.

The newly anointed ZigBee Coordinator also broadcasts a Coordinator Realignment frame.
That's sorta like a lion squirting on all of the trees in his territory. Frank Zappa, used to say
"Don't eat the yellow snow." The yellow snow was captured by Daintree Networks SNA in
Sniffer Capture 11.3.

Sniffer Capture 11.3

Frame 3 (Length = 27 bytes)

Time Stamp. 15-22.44.530

Frame Length: 27 bytes

Capture Length: 27 bytes

Link Quality Indication- 216

IEEE 802.15.4

Frame Control: 0xc803

............. 011

.

.

.

not required

= Frame Type- Command (0x0003)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request- Acknowledgment

......... 0 = Intra PAN- Not within the PAN

...... 00 0 Reserved

.... i0 Destination Addressing Mode- Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

ii Source Addressing Mode- Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number- 169

Destination PAN Identi~er- 0xffff

Destination Address- 0xffff

Source PAN Identi~er: 0xlace

Source Address- 0xl1223344240000f6

MAC Payload

Command Frame Identi~er = Coordinator Realignment. (0x08)

PAN Identi~er. 0xlace

Coordinator Short Address: 0x0000

Logical Channel- ii

Short Address- 0xffff

Frame Check Sequence: Correct

219

Chapter 11

0000: 03 c8 a9 ff ff ff ff ce la f6 00 00 24 44 33 22 .H) N.v..$D3"
0010: ii 08 ce la 00 00 0b ff ff N

Sniffer Capture 11.3: This is totally unnecessary. However, it is a cool thing to do when a Sniffer is
involved. Usually, this is sent to assist in rounding up orphan ZigBee nodes.

If a wanna-be ZigBee node can stand the smell and can tolerate yellow snow, the new ZigBee
Coordinator is accepting guests as the following Renesas API function is initiated next:

r e s u l t = Z b P e r m i t J o i n i n g (0 x F F) ; / / (0xFF i s a l w a y s p e r m i t t i n g)

You know the story. Right now, the new ZigBee PAN Coordinator is basking in the sun on
his/her channel, holding court to wanna-be ZigBee nodes. If a wanna-be ZigBee node wants
to come to the court of the crimson king, it must have initialized in the same manner as the
ZigBee PAN Coordinator. I've got a Renesas M30280FA-based development board loaded
with the Renesas ZigBee stack and the Renesas RTOS. Let's fire it up, turn it into a ZigBee
End Device, and see if we can't wander into the king's court.

If we want to drop in on the king or queen, we must first find the castle. In this case, the castle
is the PAN we know as 0xlACE. I've already narrowed the channel search to make sure I
catch everything flying about with the Daintree Networks SNA. The song remains the same
as the wanna-be ZigBee End Device must scan channel 11 looking for an active ZigBee PAN.
We can use the same Renesas API function we used as a ZigBee Coordinator to discover a
network as a ZigBee End Device:

result = A p p _ D i s c o v e r (S C ~ _ C ~ E L S , s _ L o c a l P a n I d , & f o u n d) ;

which results in calling:

result = ZbDiscoverNetwork(ScanChannelsMap, // DWORD ScanChannels
ZB_DEFAULT_SCAN_DURATION, // BYTE ScanDuration
Descs, // ZbPanDescriptor pDesc[]

MAX_DESCRIPTOR_ENTRIES, // BYTE DescSize
&NetworkCount) ; // BYTE *pCount (number of entries ~lled by function)

The Beacon Request I captured in Sniffer Capture 11.4 was generated by the wanna-be Zig-
Bee End Device as a result of the ZbDiscoverNetwork API call.

Sniffer Capture 11.4

Frame 4 (Length = i0 bytes)
Time Stamp: 15:22:48.495
Frame Length: i0 bytes

Capture Length: i0 bytes
Link Quality Indication: 224

IEEE 802.15.4

220

Renesas

Frame Control: 0x0803

............. 011

.

. 0

.

not required

.

...... 00 0

.... I0

: Frame Type. Command (0x0003)

: Security Enabled- Disabled

: Frame Pending: No more data

: Acknowledgment Request- Acknowledgment

: Intra PAN- Not within the PAN

= Reserved

= Destination Addressing Mode- Address

~eld contains a 16-bit short address (0x0002)

..00 = Reserved

00 = Source Addressing Mode- PAN identi~er

and address ~eld are not present (0x0000)

Sequence Number- 106

Destination PAN Identi~er- 0xffff

Destination Address- 0xffff

MAC Payload

Command Frame Identi~er = Beacon Request- (0x07)

Frame Check Sequence- Correct

0000: 03 08 6a ff ff ff ff 07 j

Sniffer Capture 11.4: London Calling...(A must-have album released by The Clash in the UK in
1979).

The ZigBee Coordinator is accepting nodes into the PAN and responds with the informational
Beacon caught in Sniffer Capture 11.5.

Sniffer Capture 11.5

Frame 5 (Length : 16 bytes)

Time Stamp: 15:22:48.497

Frame Length: 16 bytes

Capture Length: 16 bytes

Link Quality Indication: 216

IEEE 802.15.4

Frame Control: 0x8000

............. 000

.

.

.

not required

: Frame Type- Beacon (0x0000)

= Security Enabled- Disabled

: Frame Pending: No more data

= Acknowledgment Request. Acknowledgment

= Intra PAN. Not within the PAN

= Reserved

= Destination Addressing Mode" PAN

.

...... 00 0

.... 00

identi~er and address ~eld are not present (0x0000)

..00 Reserved

i0 = Source Addressing Mode. Address ~eld

contains a 16-bit short address (0x0002)

Sequence Number: 180

Source PAN Identi~er- 0xlace

221

Chapter 11

Source Address: 0x0000

MAC Payload

Superframe Specification: 0xdfff

a PAN Coordinator

............ iiii

........ iiii

.... iiii

° o o i ° ° ° ° ° ° ° ° ° ° ° °

° ° 0 ° . ° ° ° . ° ° ° ° o ° °

° i ° o o°

.

accepting Association Requests

GTS Specification: 0x80

= Beacon Order (0x000f)

= Superframe Order (0x000f)

= Final CAP Slot (0x000f)

= Battery Life Extension: Enabled

= Reserved

= PAN Coordinator: Transmitter is

= Association Permit: Coordinator

Requests

..... 000

.000 0...
.

= GTS Descriptor Count (0x00)

= Reserved

= GTS Permit: Coordinator accepting GTS

Pending Address Specifcation: 0x00

..... 000 = Number of short Addresses pending: 0

.... 0... = Reserved

.000 Number of extended Addresses pending: 0

0 Reserved

Beacon Payload

Protocol ID: ZigBee NWK (0x00)

Frame Check Sequence: Correct

NWK Layer Information: 0x8411

............ 0001

........ 0001

...... O0

.

.000 0

I o o . ° °.o

= Stack Pro~le (0xl)

= nwkcProtocolVersion (0xl)

= Reserved (0x0)

= Router Capacity: True

= Device Depth (0x0)

= End Device Capacity: True

0000: 00 80 b4 ce la 00 00 ff df 80 00 00 Ii 84 4N

Sniffer Capture 11.5: The most important portion of this message to a needy ZigBee End Device is
the very last line of this sniff.

This time around, a ZigBee PAN is operational on channel 11, the informational Beacon was
transmitted by the ZigBee Coordinator, and the "found" variable is filled with the value of the
channel on which the discovered ZigBee PAN is operating. Normally, the s_LocalPanld value
would be the PAN ID of the ZigBee PAN the ZigBee End Device has chosen to join follow-
ing a discovery. The concept is important here and to keep it simple (the way I like it), we'll
use the well-known Panld value of 0xlACE (which just happens to be the same as the discov-
ered value) and call the ZbJoin API function like this:

result = App_Join (found, s_LocalPanId) ;

Which results in calling:

222

Renesas

result = ZbJoin(s_LocalPanId,

FALSE,

FALSE,

ScanChannels,

ZB_DEFAULT_SCAN_DURATION,

0,

rxonidle,

0);

/ / ZbPANId PANId

/ / BOOL JoinAsRn

/ / BOOL RejoinNet

// DWORD ScanChannels

// BYTE ScanDuration

// BYTE PowerSrc(0: mains, l:alt)

// BOOL RxOnWhenIdle

// BOOL MacSec

The parameters that are stuffed into the ZbJoin API call are rather easy to comprehend. We're
not joining the ZigBee PAN as a Router, thus that parameter is FALSE and we're not rejoin-
ing the PAN, which requires a FALSE value as well. The ScanChannels and scan duration
values have not changed from the previous values you were given and security is a no-go.
Since we formed a nonBeacon network, we can leave the receiver on to accept messages
whenever they are sent our way. It helps to let the ZigBee PAN Coordinator know our inten-
tions and we do so in Sniffer Capture 11.6.

Sniffer Capture 11.6

Frame 6 (Length = 21 bytes)

Time Stamp- 15-22-49.008

Frame Length: 21 bytes

Capture Length: 21 bytes

Link Quality Indication- 224

IEEE 802.15.4

Frame Control: 0xc823

............. 011

.

. 0

. i

required

= Frame Type- Command (0x0003)

= Security Enabled- Disabled

: Frame Pending- No more data

: Acknowledgment Request: Acknowledgment

= Alternate PAN Coordinator- Not capable of

: Device Type- RFD

......... 0 : Intra PAN- Not within the PAN

...... 00 0 = Reserved

.... i0 : Destination Addressing Mode- Address

~eld contains a 16-bit short address (0x0002)

..00 : Reserved

ii : Source Addressing Mode- Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number- 107

Destination PAN Identi~er- 0xlace

Destination Address. 0x0000

Source PAN Identi~er- 0xffff

Source Address- 0xl1223344240000f5

MAC Payload

Command Frame Identi~er = Association Request. (0x01)

Capability Information- 0x88

. 0

becoming PAN Coordinator

.

223

Chapter 11

.

alternating current mains

. . . . i . • .

when idle

security suite

• .00

o0

i

= Power Source: Not receiving power from

= Receiver on when idle: Enables receiver

= Reserved

= Security Capability: Not capable of using

= Allocate Address. Coordinator should

allocate short address

Frame Check Sequence: Correct

0000- 23 c8 6b ce la 00 00 ff ff f5 00 00 24 44 33 22 #HkN u..$D3"

0010: ii 01 88

Sniffer Capture 11.6: The most important pan of ~ message as ~r as ~e ZigBee End Dewce
concerned ~ ~e AIIoca~ Address request. Once an addre~ ~ a ~ n e d to ~e wanna-be ZigBee
End Devic~ ~e party m ~e coun of ~e crimson king ~ on.

If you actually read the sniff carefully, you know that an acknowledgment flame is coming
and here it is:

Frame 7 (Length = 5 bytes)

Time Stamp: 15:22:49.009

Frame Length: 5 bytes

Capture Length: 5 bytes

Link Quality Indication: 216

IEEE 802.15.4

Frame Control: 0x0002

............. 010

.••

.

.

not required

= Frame Type- Acknowledgment (0x0002)

= Security Enabled: Disabled

= Frame Pending • No more data

= Acknowledgment Request: Acknowledgment

= Intra PAN: Not within the PAN

= Reserved

= Destination Addressing Mode- PAN

.

...... 00 0

.... 00

identi~er and address ~eld are not present (0x0000)

..00 Reserved

00 = Source Addressing Mode: PAN identi~er

and address ~eld are not present (0x0000)

Sequence Number: 107

Frame Check Sequence: Correct

0000: 02 00 6b k..

The ZigBee End Device is still waiting for a confirmation of the association and deals out a
Data Request frame like this:

Frame 8 (L e n g t h = 18 b y t e s)

224

Renesas

Time Stamp: 15:22:49.502

Frame Length: 18 bytes

Capture Length: 18 bytes

Link Quality Indication: 224

IEEE 802.15.4

Frame Control: 0xc863

............. 011

.

.

.

required

: Frame Type: Command (0x0003)

: Security Enabled- Disabled

= Frame Pending- No more data

: Acknowledgment Request. Acknowledgment

......... 1 : Intra PAN- Within the PAN

...... 00 0 Reserved

.... i0 Destination Addressing Mode: Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

ii Source Addressing Mode- Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number: 108

Destination PAN Identi~er- 0xlace

Destination Address- 0x0000

Source Address: 0xl1223344240000f5

MAC Payload

Command Frame Identi~er = Data Request- (0x04)

Frame Check Sequence- Correct

0000" 63 c8 6c ce la 00 00 f5 00 00 24 44 33 22 ii 04 cHIN...u..$D3"..

0010 •

One more acknowledgment:

Frame 9 (Length : 5 bytes)

Time Stamp: 15.22:49.503

Frame Length: 5 bytes

Capture Length: 5 bytes

Link Quality Indication- 216

IEEE 802.15.4

Frame Control: 0x0012

............. 010

.

.

.

not required

= Frame Type- Acknowledgment (0x0002)

= Security Enabled. Disabled

: Frame Pending- More data

= Acknowledgment Request- Acknowledgment

.

...... 00 0

.... 00

identi~er and address ~eld are not present (0x0000)

..00 Reserved

00 Source Addressing Mode. PAN identi~er

a n d address ~eld are not present (0x0000)

Sequence Number- 108

: Intra PAN- Not within the PAN

: Reserved

= Destination Addressing Mode. PAN

225

Chapter 11

Frame Check Sequence- Correct

0000: 12 00 6c I..

And, the wanna-be ZigBee End Device, now known as 0x1558, is now a courtier of the king"

Frame i0 (Length = 27 bytes)

Time Stamp: 15:22-49.504

Frame Length: 27 bytes

Capture Length: 27 bytes

Link Quality Indication: 216

IEEE 802.15.4

Frame Control: 0xcc63

............. 011 = Frame Type: Command (0x0003)

............ 0 Security Enabled: Disabled

........... 0 Frame Pending: No more data

.......... 1 = Acknowledgment Request: Acknowledgment

required

......... 1 = Intra PAN- Within the PAN

...... 00 0 Reserved

.... ii Destination Addressing Mode- Address

~eld contains a 64-bit extended address (0x0003)

..00 Reserved

ii = Source Addressing Mode: Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number- 170

Destination PAN Identi~er: 0xlace

Destination Address: 0xl1223344240000f5

Source Address: 0xl1223344240000f6

MAC Payload

Command Frame Identi~er = Association Response: (0x02)

Short Address: 0x1558

Association Status. Association Successful (0x00)

Frame Check Sequence- Correct

0000: 63 cc aa ce la f5 00 00 24 44 33 22 ii f6 00 00 cL*N.u..$D3".v..

0010" 24 44 33 22 ii 02 58 15 00 $D3"..X

We need to acknowledge the acknowledgment as there is more"

Frame ii (Length = 5 bytes)

Time Stamp: 15-22:49.505

Frame Length- 5 bytes

Capture Length: 5 bytes

Link Quality Indication: 224

IEEE 802.15.4

Frame Control- 0x0002

............. 010 = Frame Type: Acknowledgment (0x0002)

............ 0 Security Enabled: Disabled

........... 0 Frame Pending: No more data

226

Renesas

.......... 0 : Acknowledgment Request- Acknowledgment

not required

......... 0 : Intra PAN. Not within the PAN

...... 00 0 Reserved

.... 00 : Destination Addressing Mode- PAN
identi~er and address ~eld are not present (0x0000)

..00 : Reserved

00 Source Addressing Mode- PAN identi~er

and address ~eld are not present (0x0000)

Sequence Number- 170

Frame Check Sequence- Correct

0000- 02 00 aa *..

Let's throw some data around to see how the ZbDataSnd API function works. We'll send
three bytes of information to the ZigBee Pan Coordinator in an announcement message
intended to let provide some information for the ZigBee Pan Coordinator to store away in a
database for later use. Here's the M30280FA code:

tx_buffer[0] = i; // 1 means a new device has joined

tx_buffer [i] = (unsigned char) (my_nwk_address >> 8) ;

tx_buffer[2] = (unsigned char)my_nwk address;

result : ZbDataSnd(55,

0x0000,

tx_buffer,

3,

15,

i,

// ZbNsduHandle handle,

// pZbShortAddr pDstAddr,

// BYTE FAR *pData,

// int len,

// BYTE Radius,

// BYTE RouteDiscovery (0: Along Tree,

l-Discover if needed, 2- Force Discovery)

FALSE, // BOOL Security,

0) ; // BYTE option=0x00) ;

The ZbNsduHandle value is an arbitrary value intended to be used when multiple calls come
in from differing tasks. This version of the Renesas API doesn't support the multiple-call
functionality and you won't see the ZbNsduHandle value in the sniff. If you're wondering
where my_nwk_address value came from, it was retrieved immediately following the suc-
cessful association with this line of code:

ZbShortAddr_Get (&my_nwk_address) ; / / Retrieve short address from stack

The ZigBee frame is transmitted by the new ZigBee End Device and, as you can see in
Sniffer Capture I 1.7, I was ready for it.

Sniffer Capture 11.7

Frame 12 (Length = 22 bytes)

Time Stamp- 15- 22-49.523

227

Chapter 11

Frame Length: 22 bytes

Capture Length: 22 bytes

Link Quality Indication: 236

IEEE 802.15.4

Frame Control: 0x8861

............. 001

.oo 0 . . .

. o . . . 0 . o . .

. o . i °

required

= Frame Type: Data (0x0001)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request : Acknowledgment

......... 1 = Intra PAN: Within the PAN

...... 00 0 = Reserved

.... i0 Destination Addressing Mode: Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

i0 Source Addressing Mode: Address ~eld

contains a 16-bit short address (0x0002)

Sequence Number: 109

Destination PAN Identi~er: 0xlace

Destination Address: 0x0000

Source Address: 0x1558

Frame Check Sequence: Correct

ZigBee NWK

Frame Control: 0x0044

.............. 00

.......... 00 01..

........ 01

(0x01)

= Frame Type: NWK Data (0x00)

= Protocol Version (0x01)

= Discover Route: Enable route discovery

= Reserved

= Security: Disabled

= Reserved

o o . o . o , 0 . o oo

o o o o . . 0 o o . o

0000 00

Destination Address: 0x0000

Source Address: 0x1558

Radius = 15

Sequence Number = 133

NWK Payload: 01:15:58

0000: 61 88 6d ce la 00 00 58 15 44 00 00 00 58 15 Of a.mN...X.D...X..

0010: 85 01 15 58 X..

Sniffer Capture 11.7: I think you see how you can put your data into a ZigBee frame that is generated
from a simple little application talking to the NWK layer. Our three bytes of data are decoded at
the end of this sniff.

In this chapter, we crossed over ever so slightly into the land of ZigBee. The Renesas API set
made that a relatively easy trip. You are now NWK qualified. You and I have proven that we
can indeed generate a message from above the IEEE 802.15.4 clouds.

228

Renesas

About Renesas
When I see the name Renesas, I immediately think high-performance microcontrollers. I was
pleasantly surprised with the quality and quantity of IEEE 802.15.4 and ZigBee stuff Renesas
is offering. Tim Dry of Renesas was also one of the very first contributors to the content of
this book. Thank you, Tim. In fact, Renesas's early contributions in the writing cycle allowed
me to see the worth of the Renesas IEEE 802.15.4-compliant/ZigBee-ready solutions, as I
used the Renesas RF Sniffer board to capture 99% of the 2.4-GHz sniffs in the pages of this
book.

My teen years (yes, I 'm old) were inundated with the music of Motown. The Temptations I
grew up with were made up of Melvin Franklin, Eddie Kendricks, Otis Williams, Paul Wil-
liams, and the baddest man on the planet at that time, David Ruffin. David mesmerized the
world with the Temps 1965 hit, "My Girl."

If you can't answer this musical question, give this book to your sister. What female vocal
group became the very first group to have four number-one singles in a row? Hint: They also
made a record or two with the Temps.

229

This Page Intentionally Left Blank

CHAPTER 12
Freescale

I love Freescale Semiconductor. All of the Freescale Semiconductor development kits I've had
the pleasure of evaluating lately have come in very pretty "drop-me, spill-crap-on-me" cases.
One such example is the MC13213-based IEEE 802.15.4/ZigBee development platform I shot
(shot in this sense is photographed for those of you that hunt) for you in Photo 12.1.

Photo 12. 1:MC13213-based IEEE 802.15.4/ZigBee development platform. A peek through
the looking glass. Everything in this shot is under control of the components inside the
little outlined box directly under the BDM connector.

The big black square within the silkscreened box to the top fight of the LCD is a Freescale
Semiconductor MC13213. The MC13213 RF transceiver is a full-blown IEEE 802.15.4-
compliant radio operating in the 2.4-GHz ISM frequency band. The transceiver includes
a low-noise amplifier, 1-mW nominal output power, voltage controlled oscillator (VCO),
integrated transmit/receive switch, on-board power supply regulation, and full spread-spec-
trum encoding and decoding. Nothing unlike what we've seen up to this point as far as IEEE
802.15.4-compliant transceivers are concerned. However, the MC13213 is not only an IEEE
802.15.4/ZigBee radio. There's a Freescale Semiconductor microcontroller in there too. The
microcontroller portion of the MC 13213 is based on the Freescale Semiconductor HCS08
family of microcontrollers. The MC 132 l x family is Freescale Semiconductor's second-genera-
tion ZigBee platform. The MC13213 contains 60K of Flash and 4 KB of RAM and is intended

231

Chapter 12

for use with the Freescale fully compliant 802.15.4 MAC. Some say (including Freescale
Semiconductor) that the concept behind the official IEEE 802.15.4 PHY we've been running
through is a product of Freescale Semiconductor engineering. Running up the ZigBee stack,
the next layer is...say it...the MAC, and guess what? Freescale Semiconductor and Royal
Philips (I love kingsy and queensy stuff the British do--the food ain't bad either) provided the
basis for the official IEEE 802.15.4 MAC as we know it.

It's rather obvious that the Freescale Semiconductor development platform in Photo 12.1 is
assuming the role of PAN Coordinator. No single-node PAN is an island. So, the electronics-
in-a-box in Photo 12.2 holds up the Router and ZigBee End Device sector of the PAN.

Photo 12.2: There's not much difference in this unit versus the unit you see in Photo 12.1.
As you can see, this unit does not include an R5-232 interface.

Regardless of the functionality of the IEEE 802.15.4/ZigBee platforms you see in Photos 12.1
and 12.2, the show is under the control of MC13213, which you see enclosed in a silkscreen
box in Photos 12.1 and 12.2 and up close in Photo 12.3.

One other goody I found handy while working with the MC13213-based development plat-
forms was the PEmicro USB Multilink Interface. During my initial experimentation with the
MC13213 development platforms, I managed to "lose" some of the code while attempting to
upload an application from my laptop to the MC13213-based PAN Coordinator. After some
number of futile attempts to regain control without the PEmicro USB Multilink Interface pod,
I finally broke down and installed the PEmicro B DM unit and successfully brought myself
back to a place of comfort within the Freescale Semiconductor IEEE 802.15.4 framework.
My hero posed for the shot in Photo 12.4.

Freescale Semiconductor's hardware-development platforms are always beautiful to behold.
However, there's code that accompanies the designer hardware. So, let's go see how the folks
at Freescale Semiconductor do IEEE 802.15.4 networking.

232

Freescale

Photo 12.3: I love the B2 Bomber logo.

Photo 12.4: I've been a
fan of this tittle guy's big
brother for quite some
time. I've done many a
magazine column using
the PEmicro Cyclone Pro.

Instead of tracking the code and matching it up to a Daintree Networks SNA capture, let's do
something different this time around. Let's take a complete Daintree Networks SNA capture
and match up the frames to the SMAC (Simple MAC) primitive calls that spawned them. The
PAN Coordinator scanned the entire 2.4-GHz range of channels. I managed to finally find the
PAN it established on channel 26 and obtained a full capture of the events that transpired. In
that I did not see any Beacon Requests generated while the PAN Coordinator was searching
the 2.4-GHz channel set for a suitable channel to start its PAN, I must assume that a passive
ED (Energy Detect) scan was used instead of an active scan. It found the operational channel

233

Chapter 12

by searching for an End Device association frame sequence. The End Device used an active
scan technique to find the PAN Coordinator. Sniffer Capture 12.1 is a textual depiction of the
initial End Device Beacon Request frame I captured on channel 24"

Sniffer Capture 12.1

Frame 1 (Length = i0 bytes)

Time Stamp: 12:21:17.000

Frame Length: i0 bytes

Capture Length: i0 bytes

Link Quality Indication: 152

IEEE 802.15.4

Frame Control: 0x0803

............. 011

. o

.

.

not required

= Frame Type: Command (0x0003)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

......... 0 = Intra PAN: Not within the PAN

...... 00 0 Reserved

.... I0 Destination Addressing Mode: Address

~eld contains a 16-bit short address (0x0002)

..00 = Reserved

00 Source Addressing Mode: PAN identi~er

and address ~eld are not present (0x0000)

Sequence Number. 237

Destination PAN Identi~er: 0xffff
Destination Address: 0xffff
MAC Payload

Command Frame Identi~er = Beacon Request: (0x07)

Frame Check Sequence- Correct

0000: 03 08 ed ff ff ff ff 07 m

Sniffer Capture 12.1 No bit has been left unturned. Without Daintree Networks SIVA, this would
be an "unknown" as the radio isn't going to send you an email telling you which channel it has
selected.

As my doctor would say, there's nothing remarkable about the Beacon Request that is Frame
1 of this exploratory capture. However, the response frame from the PAN Coordinator gives us
some clues as to what the PAN is capable of. Examine the contents of Sniffer Capture 12.2:

Sniffer Capture 12.2

Frame 2 (Length = 13 bytes)

Time Stamp: 12:21:17.004

Frame Length: 13 bytes

Capture Length: 13 bytes

Link Quality Indication: 136

234

Freescale

IEEE 802.15.4

Frame Control: 0x8000

............. 000

.

.

. 0

not required

.

. O 0 0

. . . . O 0

= Frame Type: Beacon (0x0000)

= Security Enabled • Disabled

= Frame Pending- No more data

= Acknowledgment Request- Acknowledgment

= Intra PAN. Not within the PAN

= Reserved

= Destination Addressing Mode- PAN

identi~er and address ~eld are not present (0x0000)

..00 Reserved

i0 = Source Addressing Mode- Address ~eld

contains a 16-bit short address (0x0002)

Sequence Number- 84

Source PAN Identi~er- 0xaaaa

Source Address- 0xcafe

MAC Payload

Superframe Speci~cation- 0xcfff

a PAN Coordinator

............ Iiii

........ iiii

.... iiii

. . .0

. .0

oi

1

accepting Association Requests

GTS Speci~cation: 0x00

= Beacon Order (0x000f)

= Superframe Order (0x000f)

= Final CAP Slot (0x000f)

= Battery Life Extension- Disabled

= Reserved

= PAN Coordinator • Transmitter is

= Association Permit- Coordinator

Requests

..... 000

• 000 O...

.

= GTS Descriptor Count (0x00)

= Reserved

= GTS Permit- Coordinator not accepting GTS

Pending Address Specification: 0x00

..... 000 = Number of short Addresses pending- 0

.... 0 Reserved

.000 Number of extended Addresses pending- 0

0 Reserved

Frame Check Sequence • Correct

0000" 00 80 54 aa aa fe ca ff cf 00 00 T**-J.O

Sniffer Capture 12.2: Don't expect an email with all of this hoformation either. If the End Device
wants to join this PAN, it has the keys to the door.

Just a cursory look at the capture data in Frame 2 tells us that the PAN identifier is 0x0AAAA
and we may address the PAN Coordinator as 0x0CAFE. The Beacon Order and Superframe
Order bytes indicate a nonBeacon network, which is accepting the possible association of
applicants.

235

Chapter 12

Let's stop here and catch the MC13213 code execution up with the Daintree Networks SNA
sniffs. Code Snippet 12.1 is the code behind the PAN identifier and the PAN Coordinator's
Source Address:

Code Snippet 12.1

/* We want the coordinators short address to be 0xCAFE. */
const uint8_t shortAddress[2] = { 0xFE, 0xCA };

/* PAN ID is 0xAAAA */

const uint8_t panId[2] = { 0xAA, 0xAA };

Code Snippet 12.1 Nothing fancy here. Just simple C constant declarations.

The code behind the capture is based on a simple state machine concept. Before any execu-
tion of code statements that reside in the application's main loop, the initial state is coded to
stateInit. The states are traversed as shown in Code Snippet 12.2"

Code Snippet 12.2

enum
{

stateInit,

stateScanEdStart,
stateScanEdWai tCornSrm,
stateStartCoordinator,
stateS tar tCoordinat orWai t C ornSrm,
stateListen,
s tateTerminate

};

Code Snippet 12.2: I really get perturbed when readers tell me that C source code is hard to follow
and understand. The code here not only tells you it is a "state, " but it spells out the state type in
plain English.

My Daintree Networks SNA Packet List window is empty at this point. The basic initializa-
tion tasks must first be performed and that is done while the application state is statiInit. As
you can see in the Code Snippet 12.3, the 802.15.4 stack in initialized and the state machine
is advanced:

Code Snippet 12.3

switch (state)
{

case stateInit-
/* Initialize the 802.15.4 stack */

Init 802_15 4() ;

/* Goto Energy Detection state. */

236

Freescale

state : stateScanEdStart;

break;

Code Snippet 12.3: No rocket science here.

The Init_802_15_4 function resets state machines and initializes internal module variables.
When the dust settles, the MAC and PHY layer services are available to the application. The
main application loop will eventually return and walk through the Select statement tree to the
case of the current state, which is stateScanEdStart as shown in Code Snippet 12.4:

Code Snippet 12.4

case stateScanEdStart •

/* Start the Energy Detection scan, and goto wait for con~rm state. */

ret = App StartScan(gScanModeED c) ;

if(ret == errorNoError)
{

state = stateScanEdWaitCon~rm;
}
break;

Code Snippet 12.4 This piece of code begins the process of finding some RF out there.

The App_StartScan functions passes the scanType argument to a message that will be sent to
the MAC via the management SAP that interfaces the NWK and MAC layers. The applica-
tion has taken upon itself to act as an NWK layer when necessary. In the App_StartScan code
that follows, note that the SCAN_CHANNELS value is predefined to allow the MC13213 to
scan all of the 2.4-GHz channel space. The ED scan checks for radiation levels on all of the
scanned channels. The application will take the returned radiation data and choose the chan-
nel with the amount of radiated energy as the PAN Coordinator's spawn channel. I've been
dancing around scan duration figures since they were not relevant, as I locked in on a single
channel for scanning. The App_StartScan code in Code Snippet 12.5 provides a good look at
the match behind the scan duration parameter:

Code Snippet 12.5

#define SCAN_CHANNELS 0xO7FFF800

uint8_t App_StartScan(uint8 t scanType)
{

mlmeMessage_t *pMsg;

mlmeScanReq_t *pScanReq;

/* Allocate a message for the MLME (We should check for NULL). */
pMsg : MSG_AllocType (mlmeMessage_t) ;
if(pMsg !: NULL)
{

237

Chapter 12

/* This is a MLME-START.req command */
pMsg->msgType = gMlmeScanReq_c;
/* Create the Start request message data. */
pScanReq = &pMsg->msgData.scanReq;

/* gScanModeED_c, gScanModeActive_c, gScanModePassive_c, or
gScanModeOrphan_c */

pScanReq->scanType = scanType;

/* ChannelsToScan & 0xFF - LSB, always 0x00 */

pScanReq->scanChannels[0] = (uint8_t) ((SCAN_CHANNELS) & 0xFF);
/* ChannelsToScan>>8 & 0xFF */

pScanReq->scanChannels[l] = (uint8_t) ((SCAN_CHANNELS>>8) & 0xFF);

/* ChannelsToScan>>16 & 0xFF */

pScanReq->scanChannels[2] = (uint8_t) ((SCAN_CHANNELS>>16) & 0xFF);

/* ChannelsToScan>>24 & 0xFF - MSB */

pScanReq->scanChannels[3] = (uint8_t) ((SCAN_CHANNELS>>24) & 0xFF);

/* Duration per channel 0-14 (dc). T[sec] = (16"960"((2^dc)+i))/i000000.
A scan duration of 5 on 16 channels approximately takes 8 secs. */

pScanReq->scanDuration = 5;

/ * Send the Scan request to the MLME. * /
if (MSG_Send(NWK_MLME, pMsg) == gSuccess_c)
{

return errorNoError ;
}

}
}

Code Snippet 12.5: As you can see, scanning around the spectrum takes quite a bit of time in the
802.15.4 domain.

Along the way we have learned that primitives can have up to three states of existence,
which are:

• Request

• Confirm

• Indication

We just kicked off an MLME-SCAN.request primitive and you can bet that a confirmation
originating from the MLME is in the works. The primitive messages are double queued
(queued in both directions) between the NWK and MLME layers to avoid bogging down the
system. The SAP handler performs the queueing and does not process the primitive messages
it is passing in any way.

Once the NWK message with a message type of gNwkScanCnf_c is received, the scan confir-
mation message can be processed. The code in Code Snippet 12.6 performs the channel scan
and chooses a suitable channel on which to establish the PAN:

2 3 8

Freescale

Code Snippet 12.6

case s tateScanEdWai tCorn%rm:

/* Stay in this state until the MLME Scan cornSrm message arrives,

and has been processed. Then goto Start Coordinator state. */
ret = App_WaitMsg (pMsgIn, gNwkScanCnf_c) ;
if(ret == errorNoError)
{

/* Process the ED scan con~rm. The logical
channel is selected by this function. */

App_HandleScanEdCon~rm (pMsgIn) ;
state = stateStartCoordinator;

}
break;

Code Snippet 12.6: This is where 5pock would say "Scanning, Captain."

The downside to using energy detection instead of active scanning is that the channel could
be occupied by a sleeping PAN Coordinator. We could have also scanned at just the fight time
when everyone on the PAN was silent. That's why the length of the scan duration is important
when using the energy detection scan method. If you persist on the channel for long enough,
you will most likely hear someone if they are really there.

The channel select code in Code Snippet 12.7 is rather clever. Once a real message has been
detected by the App_WaitMsg function, here's what transpires"

Code Snippet 12.7

void App_HandleScanEdCorugrm (nwkMessage_t *pMsg)
{

uint8_t n, minEnergy;
uint8_t *pEdList ;

/* Get a pointer to the energy detect results */
pEdList = pMsg->msgData, scanCnf, resList.pEnergyDetectList ;

/* Set the minimum energy to a large value */
minEnergy = 0xFF;

/* Select default channel */
logicalChannel = ii;

/* Search for the channel with least energy */
for(n=0; n<16; n++)
{

if (pEdList [n] < minEnergy)
{

minEnergy = pEdList[n] ;

/* Channel numbering is ii to 26 both inclusive */
logicalChannel = n + ii;

239

Chapter 12
}

)

/* The list of detected energies must be freed. */
MSG_Free (pEdList) ;

}

Code Snippet 12.7: This is like television channel surfing but instead of looking a really good program
or a great signal, we're looking the channel with the least amount of signal.

The MLME-SCAN.confirm primitive returns a list of the scanned channels' energy levels
ordered from channel 11 (pEdList[0]) through channel 26 (pEdList[15]). Each channel energy
level in the list is compared and the channel with the least detected energy is selected by ap-
plying its list offset to the default (beginning) channel of 11. The quiet channel then becomes
the logicalChannel. With the operational channel officially selected, the application can move
into the next state, which is coded up in Code Snippet 12.8, stateStartCoordinator:

Code Snippet 12.8

case stateStartCoordinator :
/* Start up as a PAN Coordinator on the selected channel. */

ret = App_StartCoordinator () ;
if(ret == errorNoError)
{

/* If the Start request was sent successfully to
the MLME, then goto Wait for confirm state. */

state = stateStartCoordinatorWaitConfirm;
}
break;

Code Snippet 12.8: Let her rip!

Some examples of PAN initiation we have seen reverberated a Coordinator Realignment
frame to announce the new PAN attributes and allow us a preview of them on a Daintree
Networks SNA sniff. In this case, Frame 2 is a validation of the App_StartCoordinator code
in Code Snippet 12.9"

Code Snippet 12.9

uint8_t App_StartCoordinator (void)
{

/* Message for the MLME will be allocated and attached to this pointer */

mlmeMessage_t *pMsg;

/* Allocate a message for the MLME (We should check for NULL). */

pMsg = MSG_AIIocType (mlmeMessage_t) ;
if(pMsg l= NULL)
{

240

Freescale

/* Pointer which is used for easy access inside the allocated message */

mlmeStartReq_t *pStartReq;
/* Return value from MSG_send - used for avoiding compiler warnings */

uint8_t ret;

/* Boolean value that will be written to the MAC PIB */

uint8_t boolFlag;

/* Set-up MAC PIB attributes. Please note that Set, Get,

and Reset messages are not freed by the MLME. */

/* We must always set the short address to something

other than 0xFFFF before starting a PAN. */

pMsg->msgType = gMlmeSetReq_c;

pMsg->msgData.setReq.pibAttribute = gMacPibShortAddress_c;

pMsg->msgData.setReq.pibAttributeValue = (uint8_t *)shortAddress;

ret = MSG_Send(NWK_MLME, pMsg);

/* We must set the Association Permit Bag to TRUE

in order to allow devices to associate to us. */

pMsg->msgType = gMlmeSetReq_c;

pMsg->msgData.setReq.pibAttribute = gMacPibAssociationPermit_c;

boolFlag = TRUE;

pMsg->msgData.setReq.pibAttributeValue = &boolFlag;

ret = MSG_Send(NWK_MLME, pMsg);

/* This is a MLME-START.req command */

pMsg->msgType = gMlmeStartReq_c;

/* Create the Start request message data. */

pStartReq = &pMsg->msgData.startReq;

/* PAN ID - LSB, MSB. The predefunition shows a PAN ID of 0xAAAA. */

memcpy(pStartReq->panId, (void *)panId, 2);
/* Logical Channel - the default of II will be overridden */

pStartReq->logicalChannel = logicalChannel;

/* Beacon Order - 0xF = turn off Beacons */

pStartReq->BeaconOrder = 0x0F;

/* Superframe Order - 0xF = turn off Beacons */

pStartReq->superFrameOrder = 0x0F;

/* Be a PAN Coordinator */

pStartReq->panCoordinator = TRUE;

/* Don't use battery life extension */

pStartReq->batteryLifeExt = FALSE;

/* This is not a Realignment command */

pStartReq->coordRealignment = FALSE;

/* Don't use security */

pStartReq->securityEnable = FALSE;

/* Send the Start request to the MLME. */

if (MSG_Send(NWK_MLME, pMsg) == gSuccess_c)
(

241

Chapter 12

return errorNoError ;
}

}
}

Code Snippet 12.9: You should be able to match up the Frame 2 Daintree Networks 5NA capture
text with the logic of the code you see here.

This should be ringing some bells. All we're doing here with the first NWK message is setting
up the PAN Coordinator's short address in the MAC PIB. The second NWK message (another
MAC PIB SET) we send sets up the allowance of association by the PAN Coordinator. The
final message in the sequence starts the PAN Coordinator with all of the listed network attri-
butes, which just happen to match up to the Frame 2 Daintree Networks SNA sniff.

The new PAN Coordinator will remain in the stateStartCoordinatorWaitConfirm state until
a valid message of type gNwkStartCnf_c is returned. Of course, in Code Snippet 12.10, all
along we are pretending that all of the return codes are positive

Code Snippet 12.10

case stateStartCoordinatorWai tConfirm:

/* Stay in this state until the Start confirm message

arrives, and then goto the Listen state. */

ret = App_WaitMsg (pMsgIn, gNwkStartCnf_c) ;

if(ret == errorNoError)
{

state = stateListen;
}
break;

Code Snippet 12.10: Most of successful coding comes as a result of a positive attitude.

The new PAN Coordinator is now sitting and waiting for association requests in a state called
stateListen. On the other side of the 802.15.4 world, the End Device's sun is rising.

The code is similar, but the ZigBee End Device has a totally different agenda as you can see
in the End Device state list that follows in Code Snippet 12.11"

Code Snippet 12.11

enum
{

stateInit,

stateScanActiveStart,

s tat e S canAc t iveWai t C onfirm,

stateAssociate,

s tat eAs s oc i a teWai t C ornSrm,

stateListen,

242

Freescale

stateTerminate
};

Code Snippet 12.11 DOj~ vu, almost...

Since the PAN Coordinator and End Device are both MC13213-fed, the initialization process
for the PAN Coordinator is identical to that of the End Device. You can also rest assured that
the stateScanActiveStart code executed by the End Device is identical to that of the PAN Co-
ordinator, with the only exception being the active scan argument passed by the End Device.

The events occurring within the stateScanActiveWaitConfirm state are worth taking a look at.
So, please follow along with the stateScanActiveWaitConfirm code in Code Snippet 12.12"

Code Snippet 12.12

case stateScanActiveWai tCon/Srm-

/* Stay in this state until the Scan confirm message arrives, and then

goto the associate state or do a rescan in case of invalid short address.
*/

/* ALWAYS free the Beacon frame contained in the Beacon notify

indication.*/

rc = App_WaitMsg(pMsgIn, gNwkBeaconNotifyInd_c);
if(rc == errorNoError)
{

MSG_Free(((nwkMessage_t *)pMsgIn)-msgData. BeaconNotifyInd.

pBufferRoot);
}

/* Handle the Scan Confirm message. */

rc : App_WaitMsg (pMsgIn, gNwkScanCnf_c) ;
if(rc == errorNoError)
{

rc = App_HandleScanActiveConfirm(pMsgIn);

if(rc == errorNoError)
{

state = stateAssociate;
}
else
{

/* Restart scanning */

App_WaitBusy (WAIT_INTERVAL_SEC) ;

state = stateScanActiveStart;
}

}

break;

Code Snippet 12.12: This is akin to sitting in a shuttle craft with Spock while he is performing a
"short range" scan.

243

Chapter 12

The gNwdBeaconNotifylnd_c message type must be received and processed as it must be
removed from the message queue (that's a Freescale Semiconductor thing, not an 802.15.4
thing). Recall that indication primitives are used to notify layers of resultant primitive activity
that may affect them.

When the active scan is complete, a confirmation is returned and handled by the App_Handl-
eScanActiveConfirm function you see in Code Snippet 12.13"

Code Snippet 12.13

uint8_t App_HandleScanActiveConfirm(nwkMessage_t *pMsg)
{

uint8_t panDescListSize = pMsg->msgData.scanCnf.resultListSize;
panDescriptor_t *pPanDesc = pMsg->msgData.scanCnf.resList.

pPanDescriptorList;
uint8_t rc = errorNoScanResults;

/* Check if the scan resulted in any coordinator responses. */
if(panDescListSize != 0)
{

/* Initialize link quality to very poor. */
uint8_t i, bestLinkQuality = 0;

/* Check all PAN descriptors. */
for(i=0; i<panDescListSize; i++, pPanDesc++)
{

/* Only attempt to associate if the coordinator
accepts associations and is non-Beacon. */

if((pPanDesc->superFrameSpec[l] & gSuperFrameSpecMsbAssocPermit_c) &&
((pPanDesc->superFrameSpec[0] & gSuperFrameSpecLsbBO_c) == 0x0F))

{
/* Find the nearest coordinator using the link quality measure. */
if(pPanDesc->linkQuality > bestLinkQuality)
{

/* Save the information of the coordinator candidate. If we
fund a better candidate, the information will be replaced. */

memcpy(&coordInfo, pPanDesc, sizeof(panDescriptor_t));
bestLinkQuality = pPanDesc->linkQuality;
rc = errorNoError;

)
)

/* ALWAYS free the PAN descriptor list */
MSG_Free (pMsg->msgData. scanCnf, resList, pPanDescriptorList) ;

return rc ;
}

Code Snippet 12.13: End Devices can be programmed to be picky about which PAN they join.

244

Freescale

The App_HandleScanActiveConfirm code parses a list of PAN Coordinator Beacon responses
looking for the best link quality (highest radiation) figure of those in the list. This will be the
closest or most powerful Coordinator in the End Device's POS (Personal Operating Space).
If a suitable PAN Coordinator is detected, the application advances the state machine to the
stateAssociate state. The End Device association process begins with this code sequence
depicted in Code Snippet 12.14"

Code Snippet 12.14

case stateAssociate-

/* Associate to the PAN Coordinator */

rc = App_SendAssociateRequest () ;

if(rc == errorNoError)

state = stateAssociateWaitConfirm;

break;

Code Snippet 12.14: This is the one/

You should be getting the hang of the Freescale Semiconductor methods by now. Sniffer
Capture 12.3 is the next frame in the Daintree Networks SNA sniff sequence associated with
our fledgling network:

Sniffer Capture 12.3

Frame 3 (Length = 21 bytes)

Time Stamp: 12:21:17.647

Frame Length: 21 bytes

Capture Length: 21 bytes

Link Quality Indication: 152

IEEE 802.15.4

Frame Control: 0xc823

............. 011

. 0 . . .

.

. i

required

: Frame Type: Command (0x0003)

: Security Enabled- Disabled

= Frame Pending- No more data

= Acknowledgment Request: Acknowledgment

......... 0 Intra PAN- Not within the PAN

...... 00 0 = Reserved

.... i0 : Destination Addressing Mode- Address

~eld contains a 16-bit short address (0x0002)

..00 Reserved

ii Source Addressing Mode- Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number. 238

Destination PAN Identi~er- 0xaaaa

Destination Address- 0xcafe

Source PAN Identi~er. 0xffff

Source Address- 0x9d2804b037c25000

MAC Payload

245

Chapter 12

Command Frame Identi~er = Association Request : (0x01)
Capability Information: 0x80

....... 0 = Alternate PAN Coordinator: Not capable of
becoming PAN Coordinator

.... ,.0.

.... ,0..

alternating current mains

.... 0...

when idle

..00

.0..

security suite

= Device Type: RFD

= Power Source: Not receiving power from

= Receiver on when idle: Disables receiver

= Reserved

= Security Capability: Not capable of using

ioo. .o..

allocate short address

Frame Check Sequence: Correct

= Allocate Address: Coordinator should

0000: 23 c8 ee aa aa fe ca ff ff 00 50 c2 37 b0 04 28 #Hn**-J...PB70. (

0010: 9d 01 80

Sniffer Capture 12.3: The End Device is screaming "Associate me and gimme an address so I can
play on your PAN. "

The active scan information was parsed for the most eligible PAN Coordinator according to
link qu~ity. The lucky PAN Coordinator's information was pushed into a glob~ PAN Coordi-
n~or buffer for use by the App_SendAssociateRequest function in Code Snippet 12.15:

Code Snippet 12.15

uint8_t App_SendAssociateRequest(void)
{

mlmeMessage_t *pMsg;
mlmeAssociateReq_t *pAssocReq;

/* Allocate a message for the MLME message. */
pMsg = MSG_AllocType(mlmeMessage_t);
if(pMsg I= NULL)
{

/* This is a MLME-ASSOCIATE.req command. */

pMsg->msgType = gMlmeAssociateReq_c;

/* Create the Associate request message data. */

pAssocReq = &pMsg->msgData.associateReq;

/* Use the coordinator info we got from the Active Scan. */

memcpy(pAssocReq->coordAddress, coordInfo.coordAddress, 8);
memcpy(pAssocReq->coordPanId, coordInfo.coordPanId, 2);
pAssocReq->coordAddrMode = coordInfo.coordAddrMode;
pAssocReq->logicalChannel = coordInfo.logicalChannel;

pAssocReq->securityEnable = FALSE;
/* We want the coordinator to assign a short address to us. */

pAssocReq->capabilityInfo = gCapInfoAllocAddr_c;

246

Freescale

/* Send the Associate Request to the MLME. */

if (MSG_Send(NWK_MLME, pMsg) == gSuccess_c)
{

return errorNoError;
}

}
}

Code Snippet 12. 15: Remember, data doesn "tjust fall out of the sky. Something or someone always
generates data. You'll find that if you catch the right bytes, you can use them to fill holes such as
what channel are we on or what was that Coordinator's address.

The capabilityInfo changes included only a single bit, which asked to have the PAN Coo~
dinator assign the End Device address. This change was indicated in the Frame 3 D~n~ee
Networks SNA sniff. Let's fast forward, as we've seen plenty of acknowledgment ~ames and
we should be familiar with the association sequence. Frame 4 of the Daintree Networks SNA
sniff sequence is the expected acknowledgment ~ame, which is followed by a Data Request
~ame in Frame 5 and another acknowledgment in Frame 6. The sniff data in Frame 7 (Sniffer
Capture 12.4) is what the End Device is waiting for:

Sniffer Capture 12.4

Frame 7 (Length = 27 bytes)

Time Stamp: 12:21:18.146

Frame Length- 27 bytes

Capture Length- 27 bytes

Link Quality Indication- 136

IEEE 802.15.4

Frame Control: 0xcc63

............. 011 = Frame Type- Command (0x0003)

............ 0 Security Enabled: Disabled

........... 0 Frame Pending: No more data

.......... 1 = Acknowledgment Request: Acknowledgment

required

......... 1 = Intra PAN: Within the PAN

...... 00 0 Reserved

.... ii = Destination Addressing Mode: Address

~eld contains a 64-bit extended address (0x0003)

..00 Reserved

ii Source Addressing Mode- Address ~eld

contains a 64-bit extended address (0x0003)

Sequence Number- 13

Destination PAN Identi~er: 0xaaaa
Destination Address. 0x9d2804b037c25000

Source Address: 0x820b04b037c25000

MAC Payload
Command Frame Identi~er = Association Response- (0x02)

Short Address- 0x0001
Association Status: Association Successful (0x00)

Frame Check Sequence: Correct

247

Chapter 12

0000. 63 cc 0d aa aa 00 50 c2 37 b0 04 28 9d 00 50 c2 cL.**.PB70. (..PB

0010: 37 b0 04 0b 82 02 01 00 00 70

Sniffer Capture 12.4: Look at all of the "dam" we collect including our new short address.

The Frame 7 sniff satisfies the obstacles laid down by the stateAssociateWaitConfirm state
and the End Device application advances into the stateListen state in the code you see in
Code Snippet 12.16:

Code Snippet 12.16

case s tateAssociateWaitConfirm •

/* Stay in this state until the Associate conf~rm message

arrives, and then goto the Listen state. */

rc = App_WaitMsg (pMsgIn, gNwkAssociateCnf_c) ;

if (rc == errorNoError)
{

/* Check for coordinator at full capacity error */

if (App_HandleAssociateCornSrm(pMsgIn) == gSuccess_c)
{

state = stateListen;
}
else
{

/* Restart scanning */

App_Wai tBusy (WAIT_INTERVAL_SEC) ;

state = stateScanActiveStart;
}

}
break;

Code Snippet 12.16: Again, we're taking a positive attitude that the code won't fail out here and
start a rescan process.

If something goes wrong in the association sequence, the End Device will attempt to associ-
ate again, following a rescan of the ether.

OK...That does it for getting the PAN established and getting an End Device to join it. What
you' re really here for is the sending and receiving party. So, let's put some code together that
matches the Daintree Networks SNA sniff in Sniffer Capture 12.5"

Sniffer Capture 12.5

Frame 2300 (Length = 12 bytes)

Time Stamp: 12:26:16.271

Frame Length: 12 bytes

Capture Length: 12 bytes

Link Quality Indication: 152

IEEE 802.15.4

Frame Control: 0x8861

248

Freescale

required

............. 001

.

.

. 1

= Frame Type: Data (0x0001)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

......... 1 = Intra PAN: Within the PAN

...... 00 0 Reserved

.... i0 = Destination Addressing Mode- Address

~eld contains a 16-bit short address (0x0002)

..00 = Reserved

i0 Source Addressing Mode: Address ~eld

contains a 16-bit short address (0x0002)

Sequence Number- 128

Destination PAN Identi~er: 0xaaaa

Destination Address: 0x0001

Source Address: 0xcafe

Frame Check Sequence- Correct

MAC Payload: 01

0000: 61 88 80 aa aa 01 00 fe ca 01 a..**..-J...

Sniffer Capture 12.5. Can you pick out the payload? Who's sending this? If you couldn't answer
either question, get some help from your baby sister.

OK...This little bugger is coming from the PAN Coordinator and is aimed at the End Device.
So, let's get our data in place first. We do just that in Code Snippet 12.17"

Code Snippet 12.17

deviceAddress = 0x0001;

dataBuffer[0] = 0x01;

msduLength = i;

Code Snippet 12. 17: None of this should be foreign to you by now.

The next step involves creating an MCPS-Data Request message containing the data we want
to send. I've inserted the corresponding Daintree Networks SNA sniff data within the lines of
code that follow in Code Snippet 12.18:

Code Snippet 12.18

//Frame Type: Data (0x0001)

pPacket->msgType = gMcpsDataReq_c;

// Copy data to be sent to packet

memcpy(pPacket->msgData.dataReq.msdu, (void *)dataBuffer,msduLength) ;

//Destination Address: 0x0001

pPacket->msgData, dataReq dstAddr [0] = deviceAddress ;

pPacket->msgData, dataReq, dstAddr [1] = 0 ;

249

Chapter 12

//Source Address : 0xcafe
memcpy (pPacket->msgData. dataReq, srcAddr, (void *) shortAddress, 2) ;

//Destination PAN Identifier: 0xaaaa
memcpy (pPacket->msgData. dataReq, dstPanId, (void *) panId, 2) ;

// const uint8_t panId[2] = { 0xAA, 0xAA };
memcpy (pPacket->msgData. dataReq, srcPanId, (void *) panId, 2) ;

//Destination Addressing Mode
//Address field contains a 16-bit short address (0x0002)
pPacket->msgData, dataReq, dstAddrMode = gAddrModeShort_c ;

//Source Addressing Mode
//Address field contains a 16-bit short address (0x0002)
pPacket->msgData.dataReq, srcAddrMode = gAddrModeShort_c;

//msduLength = i;
pPacket->msgData.dataReq.msduLength = msduLength;

//Acknowledgment Request : Acknowledgment required
pPacket->msgData.dataReq, txOptions = gTxOptsAck_c I gTxOptsIndirect_c;

//msduHandle is arbitrary but associated with this message
pPacket->msgData.dataReq.msduHandle = msduHandle++ ;

// Send the Data Request to the MCPS
NR MSG_Send (NWK_MCPS, pPacket) ;

Code Snippet 12.18: This is how I've been trying to get you to thbk.

Wanna send it in the other direction? No worries. Just turn the addresses around and send it
from the End Device. The basic operational code in the End Device is identical to that in the
PAN Coordinator. I hard-coded the data byte in this example. However, that data byte could
be any data that you want to send. It could come from an analog-to-digital converter read of
a sensor or a simple switch closure. The key is packaging it correctly and being aware of the
proper primitives to employ in the transmit operation.

What we don't see in the Daintree Networks SNA sniff sequence is the reception and sub-
sequent processing of the received data. The whole idea of how you process incoming data
depends on what you do with it when you pull it out of the radio's buffer. The C source in
Code Snippet 12.19 is the Freescale Semiconductor way of organizing some of the 802.15.4
frame data contents:

Code Snippet 12.19

/* Pointer for storing the messages from MLME, MCPS, and ASP. */
void *pMsgIn;

250

Freescale

void App_HandleMessage (mcpsToNwkMessage_t *pMsgIn)
{

uint8_t val = *(pMsgIn->msgData.dataInd.msdu);
uint8_t len = *(pMsgIn->msgData.dataInd.msduLength);
uint8_t hex = *(pMsgIn->msgData.dataInd.mpduLinkQuality);

}

Code Snippet 12.19: Just take a deep breath and read each line left to right. It will make sense.

You can make it as simple or as complex as your mind will allow you to. If you make it hard,
you're on your own as Freescale Semiconductor's ZigBee methodology has really eliminated
the complexity.

Unfortunately, I got the new release of Freescale Semiconductor's BeeKit a bit too late to
expound upon its features in the pages of this book. However, I can tell you that the Fre-
escale Semiconductor BeeKit application will work with the Freescale Semiconductor IEEE
802.15.4/ZigBee components we discussed earlier. The idea behind the BeeKit is to allow
you to define your IEEE 802.15.4 or ZigBee application in the BeeKit template environment.
BeeKit then takes all of the stuff you fed it and assembles a project that you can export from
the BeeKit environment. The exported project is then loaded into the Freescale Semiconduc-
tor CodeWarrior IDE, where it can be edited and compiled.

About Freescale Semiconductor
You knew them as Motorola. However, Freescale Semiconductor is a totally different animal.
This isn't my first Freescale Semiconductor diatribe, as I've done a few Freescale Semicon-
ductor magazine columns. Freescale Semiconductor's efforts in the IEEE 802.15.4/ZigBee
arena are obvious as within the pages of this book you've already seen Freescale Semicon-
ductor IEEE 802.15.4-compliant/ZigBee-ready radios used in other manufacturers' IEEE
802.15.4/ZigBee products.

You also knew them as the Supremes, Diana Ross, Mary Wilson and Florence Ballard. Here
are the hits in their order of appearance:

• Where Did Our Love Go

• Baby Love

• Come See About Me

Stop! In the Name of Love

I hope your sister isn't reading this fight now. OK...So you aren't real good with R&B
(rhythm and blues) groups. How about this? What very famous country artist loved Billy Joel
and what Billy Joel song did he perform regularly?

251

This Page Intentionally Left Blank

CHAPTER 13
Panasonic

You've had a pretty thorough introduction to the Freescale Semiconductor way of doing busi-
ness with IEEE 802.15.4 applications. In this chapter, we will step through the procedures
that I had to execute to get my pair of Panasonic PAN802154HAR00 IEEE 802.15.4-compli-
ant/ZigBee-ready modules to talk intelligently to each other.

The Panasonic PAN802154HAR00 is based on Freescale Semiconductor technology. Look-
ing at Figure 13.1, you can see that the Panasonic PAN802154HAR00 is a combination of a
Freescale Semiconductor MC9S08GT60CFB microcontroller and a Freescale Semiconductor
MC 13193 IEEE 802.15.4-compliant transceiver.

T

Tx

Balun/
LPF

Rx

Balun/
LPF

4 Pins I Voltage

RF+BB
MC13193

32QFP

i, z i

Standby

I swl]

Flash 60K
RAM 4K
MPU 44QFP o~

MC9S08GT60CFB ~;~ ~ o~5" ~

Serial i

LED1 RS232C

z • DC 2.2-3.4V for radio communication
DC 3.0-3.4V for radio communication + RS232 operation

Figure 13. 1 Note the twin antennae. I can see lots of you putting this tittle bugger to real-
world use, as it is very compact and easy to work with. I had a blast with these radios.

The only frills included with the Panasonic PAN802154HAR00 hardware are a user-available
LED and pushbutton switch. To accommodate RS-232-capable devices that use the official
RS-232 voltages, the Panasonic PAN802154HAR00 is also equipped with a true RS-232 se-
rial port, which is pinned out to a 10-pin male header as shown in Figure 13.2.

All you need to do to ready the Panasonic PAN802154HAR00 module hardware is to build up
the serial cable (if you have RS-232 in your IEEE 802.15.4 or ZigBee application) and pro-
vide power to the module. I made up an RS-232 cable for my Panasonic PAN802154HAR00
modules and I fabricated a removable power connector like the one you see in Photo 13.1.

2 5 3

Chapter 13

GND

- ©

9 pins D-Subminiature female connector
AFS09G-ND or AFL09K-ND

GND

RS232-TX

RS232-RX

I

i

Figure 13.2: Don "t worry about
following the schematic here,
as all you have to do is point
both of the connector's pins
up just as you see them in
the figure and stamp in a l O-
position ribbon cable between
them. It's automatic.

Photo 13.1: This is nothing more than
a standard waft-wart power jack. I
chopped off a piece of a double-row
header and attached it to the power
jack across two pins on each side. Pins
1 and 3 (right) are grounded while
pins 2 and 4 (left) are positive voltage
(+3.3 VDC). And yes, each and every
one of these in that 1,000-piece bag is
marked "MADE IN CHINA. " Amazing,
isn't it?

The method to my madness with the power jack can be seen in the next photo, Photo 13.2,
which is a side shot of the Panasonic PAN802154HAR00 with the power jack assembly
mounted.

The RS-232 cable is the final optional attachment that needs to be made to make the Panason-
ic PAN802154HAR00 module battlefield-ready. I flipped the Panasonic PAN802154HAR00
onto its back to give you a Panasonic-ramic view in Photo 13.3.

OK...Now that you've been indoctrinated, a low-level reconnaissance photo of the Panasonic
PAN802154HAR00 is captured in Photo 13.4.

254

,. - {j-!~

,?

Panasonic

Photo 13.2: The PEmicro USB Multilink Interface pins (BDM pins) are visible directly in
front of the power jack pins. Two sets of 10-pin headers behind the power jack and BDM
(Background Debug Mode) pins take on the R5-232 port and provide general-purpose I/0
access.

Photo 13.3: The TX and RX antennae are just under their silkscreen names. The radio is
under the shielding. Imagine that! That's an R5-232 cable at the bottom left. I'll bet you
can tell me what the IC to its right is doing.

The overall concept of the Panasonic PAN802154HAR00 is very simple. Fortunately, if you
follow the rules, the firmware that drives the Panasonic PAN802154HAR00 is just as easy to
comprehend. I didn't follow the rules, which is a good thing in this case. I can show you what
not to do.

You'll need a couple of other things to be successful with the Panasonic PAN802154HAR00.
The Freescale Semiconductor IEEE 802.15.4/ZigBee development tool chain is a must. And,

255

Chapter 13

Photo 13.4: This little puppy measures in at only 1.375" x 1.325". You can put metal
screws in every hole except the holes at the TX and RX silkscreen legends, which must be

don't count on getting far with the "special" editions of the CodeWarrior compiler. You'll
need to open the wallet for the full version to open up the full ZigBee capabilities of the Pana-
sonic PAN802154HAR00 hardware. It is possible to get by with the low-code-count compiler
packages if you're only doing IEEE 802.15.4 or Freescale Semiconductor SMAC stuff.

The other must-have is the nifty tool in Photo 13.5, the PEmicro USB Multilink Interface
B DM module. You can use the PEmicro B DM in conjunction with the HI-WAVE applica-
tion and the CodeWarrior IDE without having to load bootloader firmware and use personal
computer-based bootloader applications to program the Panasonic PAN802154HAR00
microcontroller's Flash. The module in Photo 13.5 will also act as a Ford tractor and pull your
butt out of the ditch when you erase too much in the Panasonic PAN802154HAR00 micro-
controller's program Flash.

I r "~ - ~

USB *--

Photo 13.5: This dongle has saved my butt
many times during the writing of the Freescale
Semiconductor-based chapters of this book.
It is reliable and easy to put into play even
when you're in the ditch. I like the way the
Panasonic PAN802154HAR00 application note
puts it: "For serious application the BDM tool is
recommended. "

256

Panasonic

Here's how it all went down with the Panasonic PAN802154HAR00 modules. After applying
power to both Panasonic PAN802154HAR00 modules, I turned on the Daintree Networks
SNA application and attempted to sniff out anything that may have been coming out of either
Panasonic PAN802154HAR00 module. No luck.

The Panasonic PAN802154HAR00 modules are very similar to the Freescale Semiconductor
SARD development platform. You've been reading about IEEE 802.15.4 and ZigBee theory
for a while now (and I've been writing about it for a while now). So, I want to show you
something that could be very useful to you right out of the box.

Let's begin by putting some PAN Coordinator code into one of the Panasonic PAN-
802154HAR00 modules. If one were to actually take some time and look, he or she would
find a program file called HIWAVE.EXE in the CodeWarrior prog directory. I clicked on that
bugger and what you see in Screen Capture 13.1 is what I saw.

0000
0008

0010

00 i8

0020 .

0028

0030
0038

0040 .

0048
Nr l~N ...

Mode is In-Circuit Debug.

10 ~egis~e~s loaded fo~ }Icg~08GT60 £~o~ C: \Progr
No Link To Targe~

in>

Screen Capture 13.1 This program is also called from the CodeWarrior /DE when you enter debug
mode. We only need it to interact with the PEmicro BDM.

257

Chapter 13

The ball begins to roll fight here. I 'm in the throes of establishing the initial connection to the
B DM and it is essential that I select HCS08 in relation to the obvious for the connection in
Screen Capture 13.2.

Screen Capture 13.2: I went
the wrong way the first time
and chose HC08 instead
of HC508. Trust me, you'll
get a different path with
HC08.

Finally, I got the window you see in Screen Capture 13.3. The good news is that the BDM has
been detected and recognized by the HI-WAVE application.

Screen Capture 13.3: I got a blank-filled window like this when I went down the dead-end wrong
path with my incorrect selection of the HC08. There was nothing I could enter to get any satisfaction
from the blank-filled window.

258

Panasonic

The "Target Ready" in Screen Capture 13.4 brought a sigh of relief. I am now poised on the
verge of success.

Loading Target ...
Windows lit detected.
Device is 9$08GT60,
Mode is In-Cizcuit Debug.

10 registers loaded foz Ncgs08GT6O f~om C:\P~og~ Files\Freescale\CW08 V5.0\prog\REG\HCUI006.REG
No Link To Target
Loading Tazget ...
Wlndows NT d e ~ e c t e d .
USB HCS08/HCSI2 HULTILINK d e t e c t e d - Flash Version 5.55
F~equenc~/change to -4160256hz,
USB HCSOS/HCSI2 RULTILINK detected - Flash Version 5.55
Device is 9508GT60,
Mode is In-Circuit Debug.

10 registers loaded for Mcgs08GT60 fKom C:\Pzog~am Files\F~eescale\CW08 VS~0\p~og\R~G\MCUI006.REG
S~artup command file does not exist.
Target Ready

Screen Capture 13.4: Even the microcontroller on the Panasonic PAN802154HARO0 was detected
correctly.
The Panasonic web site offered up a couple of Jiffy-Cornbread-Mix ZigBee applications. For

those of you that are not familiar with Jiffy Cornbread Mix, it is a sweet cornbread mix used
by many young and single Southern women on unsuspecting young and single Southern men.
Once the man is clinched, the Jiffy mix gets replaced by the real thing. That's sorta like put-
ting the Modem Coordinator code into a blank Panasonic PAN802154HAR00 module. The
window in Screen Capture 13.5 is a result of selecting the Load Application option from the
HI-WAVE File dropdown menu.

259

Chapter 13

~19

I~hLing_demo_device_ 13192_EVB loader.S19
lighting..demo ..device 13192 ..5ARD _loader. 519
lighting..demo..device_13203_Axm0308c loader. 519
lighting..demo..device_13213 NCB loader. 519
UC,~g_demo_dev~:e_ 1 ~ 13 _SRB _loader .519

i • i ~ ! ¸¸II ̧̧ ii ̧ ¸~ i • i i

Screen Capture 13.5: The
secret to getting your desired
hex file into this window
is to place it into the s19
directory of the Freescale
Semiconductor Test Tool
directory.

After clicking on the Open button in Screen Capture 13.5, I was presented with the choices in
Screen Capture 13.6.

Screen Capture 13.6: Wanna give me a gun so I can shoot myself in the foot, or do I
just say YES here?

260

Panasonic

Duh huh, as Bubba would say. I punched in a YES in Screen Capture 13.6 and then proceeded
to repeat the entire process we just walked through to put the End Device code into the sec-
ond Panasonic PAN802154HAR00 module in my possession. The Jiffy Cornbread Mix for
the End Device is shown in Screen Capture 13.7.

$19

Hodem_EndDevice2.sl9
Hodem..EncDevk:e3. s 19
PER_rx_I 319x Axm0308c loader, 519
PER rx_t3192 EVB loader.St9
PER rx t 3192 5~D_loader, 519

Modem_EndDevice1.s19

Motorola S-Record 1%~1

Screen Capture 13.7: As you can
see here, we can open up to
three boxes of End Device Jiffy
Cornbread Mix.

Things are good. I fired up the Panasonic PAN802154HAR00 PAN Coordinator and received
a Beacon Request according to Daintree Networks SNA. That means that, more than likely,
the PAN Coordinator has scanned the channel and established a PAN there. The Panasonic
PAN802154HAR00 documentation indicated that I may want to be on channel 11 when I
fired up the Panasonic PAN802154HAR00 PAN Coordinator.

To make any sense of the application, you'll need to know the official 64-bit IEEE 802.15.4
addresses of each node. The easy way to show you that information is to simply show you the
association response capture, which follows"

Frame 24 (Length : 27 bytes)
Time Stamp: 16:18:34.666
Frame Length: 27 bytes
Capture Length: 27 bytes

261

Chapter 13

Link Quality Indication: 80

IEEE 802.15.4

Frame Control: 0xcc63

............. 011

.

. o . . 0

..o o o i

required

o o , , i

...... 00 0

.... ii

= Frame Type: Command (0x0003)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

= Intra PAN: Within the PAN
= Reserved
= Destination Addressing Mode: Address

feld contains a 64-bit extended address (0x0003)

..00 Reserved
ii Source Addressing Mode: Address field

contains a 64-bit extended address (0x0003)
Sequence Number: 0

Destination PAN Identifer: 0xlll0

Destination Address: 0x2726252423222120

Source Address: 0x1716151413121110

MAC Payload

Command Frame Identifer = Association Response: (0x02)

Short Address: 0x796f

Association Status: Association Successful (0x00)
Frame Check Sequence: Correct

0000: 63 cc 00 i0 Ii 20 21 22 23 24 25 26 27 i0 ii 12 cL... !"#$%&'...

0010: 13 14 15 16 17 02 6f 79 00 oy...
**

I get the feeling that the IEEE 802.15.4 addresses here aren't very official. That's OK, as
we're just playing around in the pages of a book. The applications that are currently running
on both the Panasonic PAN802154HAR00 PAN Coordinator and the Panasonic PAN-
802154HAR00 End Device take in a specially formatted hex message from the serial port and
ship it across the IEEE 802.15.4 link to the remote node. I'm using a personal computer as
the serial input device but, as you will quickly see, the source serial device can easily be your
favorite microcontroller running a very simple characters-out-of-the-serial port routine that
transfers whatever data you want to transmit to any active node in the PAN.

Figure 13.3 is how the RS-232 packet must be formatted. Now you can see why it is im-
portant for you to know the 64-bit address of the node you wish to contact. We see it here
physically via the Daintree Networks SNA sniff. However, you already know that you can
obtain the address you need programmatically as well.

Tera Term Pro allows me to send a binary stream out of the personal computer's serial port.
So, all I need to do is build up a message using the format outlined in Figure 13.3. No wor-
ries. Check out the hex message I created with HHD's free hex editor in Screen Capture 13.8.

I fired off the message in Screen Capture 13.8 at 38400 bps. The Panasonic PAN-
802154HAR00 Coordinator's UART picked it up and turned it into IEEE 802.15.4 RF,
resulting in the IEEE 802.15.4 frame you see in Sniffer Capture 13.1.

262

Panasonic

!00000010: 4f 4e 49 43 20 52 4f 43 4b 53 21 aa BB ONIC ROCKS'"~ ~i i

Screen Capture 13.8: Sixteen bytes of payload data is ready to go.

SOP

0x02

CMD

0x07

Dest MAC Addr

0x2726252423222120

Len Payload

0xA 0xB 0xC 0xD

EOP

0xAA

Figure 13.3:R5-232 packet format. This is pretty straightforward. This should be no problem to
generate using a microcontroller and its UART.

Sniffer Capture 13.1

Frame 302 (Length = 53 bytes)

Time Stamp: 16-19.03.736

Frame Length: 53 bytes

Capture Length: 53 bytes

Link Quality Indication: 116

IEEE 802.15.4

Frame Control: 0x8861

............. 001

. 0 . . .

. 0

.

required

: Frame Type- Data (0x0001)

: Security Enabled: Disabled

: Frame Pending- No more data

: Acknowledgment Request- Acknowledgment

......... 1 Intra PAN- Within the PAN

...... 00 0 Reserved

.... i0 : Destination Addressing Mode- Address
~eld contains a 16-bit short address (0x0002)

..00 Reserved

I0 Source Addressing Mode- Address ~eld

contains a 16-bit short address (0x0002)

Sequence Number: 1

Destination PAN Identi~er: 0xlll0

Destination Address- 0x796f

Source Address: 0x0000

Frame Check Sequence- Correct

ZigBee NWK

Frame Control- 0x0004

.............. 00 = Frame Type- NWK Data (0x00)

.......... 00 01.. = Protocol Version (0x01)

263

Chapter 13

........ 00 Discover Route: Suppress route

discovery (0x00)

....... 0 Reserved

...... 0 Security: Disabled

0000 00 Reserved

Destination Address: 0x796f

Source Address: 0x0000

Radius = 7

Sequence Number = 1

NWK Payload: 40:0c:01:05:0f:0b:21:00:19:17:16:15:14:13:12:ll:10:10:50:41:4e:

41:53:4f:4e:49:43:20:52:4f:43:4b:53:21

0000: 61 88 01 i0 ii 6f 79 00 00 04 00 6f 79 00 00 07 a oy oy...

0010: 01 40 0c 01 05 Of 0b 21 00 19 17 16 15 14 13 12 .@ !

0020: ii I0 i0 50 41 4e 41 53 4f 4e 49 43 20 52 4f 43 ...PANASONIC ROC

0030: 4b 53 21 KS!..

Sniffer Capture 13. 1 The R5-232 wrapper is removed by the application and the received data is
in the same format as the transmitted data. Therefore, the receiving application can simply parse
into the message to pick up the payload.

The transmitting station actually replaces the 64-bit destination with its 64-bit address in the
message body. Thus, as the received message is in the format indicated by Figure 13.3, the
receiving station can simply parse the incoming message, retrieve the payload and retrieve
the sender's address. Pretty danged cool!

About Panasonic
The Panasonic PAN802154HAR00 was suggested to me by a ZigBee programmer in South
Florida. He really liked the Panasonic PAN802154HAR00 and so do I. There are many things
to like about the Panasonic PAN802154HAR00 and being able to leverage your recently ac-
quired Freescale Semiconductor knowledge against the Panasonic PAN802154HAR00 is one
of them. Robert Nguyen also answers the phone and responds to email. During the course of
talking to Robert, I really messed up his last name in an email address snafu. Robert, expect-
ing to hear from me, probably figured I was a bit flakey as I hadn't responded to his emails.
As it turned out, not hearing from Robert prompted me to take another look at his original
email. I saw the error of my ways and corrected the email address. Robert immediately
answered and was still willing to help me get the Panasonic PAN802154HAR00 word out.
That's spelled N-g-u-y-e-n.

Hopefully, you answered the Motown questions correctly, or at least your sister has given
the book back to you by now. The Billy Joel song is "Shameless." Do you have the country
artist's name yet? How about Garth Brooks? Enough said.

Let's keep it country. Who is Bill Monroe?

264

CHAPTER 14
DLP Design

Freescale Semiconductor's IEEE 802.15.4-compliant/ZigBee-ready radios are seemingly
everywhere. Don Powrie at DLP Design has based a series of DLP Design IEEE 802.15.4-
compliant/ZigBee-ready devices on the Freescale Semiconductor MC 13193/MC9S08GT60
combination.

The differentiating factor of DLP Design's set of IEEE 802.15.4/ZigBee products is the
inclusion of a proprietary application called SIPP that rides over the top of Freescale Semi-
conductor's SMAC. The SIPP firmware comes preprogrammed and ready to run in all of the
DLP Design IEEE 802.15.4-compliant/ZigBee-ready radios. SIPP allows access to the DLP
Design transceiver's functions by way of simple serial calls. The SIPP-equipped DLP-RF1-Z
can be used in conjunction with other DLP-RF1-Z/DLP-RF2-Z transceivers, as well as other
MC13193-based transceivers, to form point-to-point and star networks.

If SIPP is not your thing, you can use the DLP Design radios as raw Freescale Semiconductor
IEEE 802.15.4/ZigBee platforms. Each DLP Design IEEE 802.15.4/ZigBee radio is equipped
with a 6-pin BDM connector that can accommodate development tools such as the PEmicro
USB Multilink Interface you're familiar with.

The first DLP Design IEEE 802.15.4-compliant/ZigBee-ready module we will talk about is
the DLP-RF1-Z-Z, which you can marvel at in Photo 14.1.

The preprogrammed SIPP firmware allows the DLP-RF1-Z-Z to be used in point-to-point and
star network configurations consisting of other DLP-RF1-Z-Z and/or DLP-RF2-Z modules.
When used with the SIPP firmware, both the DLP-RF1-Z and the DLP-RF2-Z can serve as
host/system controllers. The DLP-RF1-Z acting as a host requires a USB-capable desktop
personal computer, embedded single-board computer, PDA or laptop running Windows,
Linux, or Mac PC. If your application requires a microcontroller instead, the DLP-RF2-Z is
your choice. All that is required to interface to the microcontroller is a 3-wire serial interface
consisting of TX, RX, and ground connections. However, the DLP-RF2-Z can operate with-
out a host processor. The SIPP firmware within the DLP-RF2-Z can be used to gain access to
the MC9S08GT60's port pins for basic digital I/O.

Each transceiver running the SIPP firmware has a unique 16-bit ID, which is used in the
transmission and reception of packets. Every SIPP data packet contains the number of bytes
in the packet, the destination transceiver ID, the source transceiver ID, and a command byte
as shown in Figure 14.1.

265

Chapter 14

Photo 14.1: This is the USB
version of the DLP Design IEEE
802.15.4-compliant/ZigBee-
ready radio line. The DLP-RF1-
Z-Z is intended to be tied to a
personal computer.

]yte Description Comment,,
Number of bytes in the packet
following byte 0:5-124

Destination ID MSByte
ID Range: 1-65535"

Destination ID LSByte
Source ID MSByte
Range: 1-65535
Source ID LSByte
Command Byte
Command Range: 0xA0-0xDF
Data Byte(s)

Each packet must contain (as a minimum) the
number of bytes, a destination ID, Source ID
and a command byte.
ID:I default for new DLP-RF1 transceivers
ID:2 default for new DLP-RF2 transceivers
ID:0 reserved for broadcast to all transceivers

Both Command Packets and Reply Packets.
Every packet must have a command byte.
0-119 bytes of data are allowed in the packet.

Figure 14. 1: Each SIPP packet must consist of at least five of the seven bytes shown in this figure.

The DLP-RFI-Z does not require that the network/application designer have any IEEE
802.15.4 or ZigBee knowledge (like you now possess). The reason for that is partially embed-
ded within the partial command list I've posted in Figure 14.2.

266

DLP Design

0xA0
0xA1

0xA2

0xA3
0xA4

0xA5
0xA6

0xA7

0xA8

0xA9

0xAA

0xAB

0xAC

0xAD

0xAE

0xAF
0xB6

0xB7

MC9S08GT60
MC9S08GT60

MC9S08GT60

MC9S08GT60
MC9S08GT60

MC9S08GT60
MC9S08GT60

MC9S08GT60

MC9S08GT60

MC9S08GT60

MC9S08GT60

MC9S08GT60

MC9S08GT60

MC9S08GT60

MC9S08GT60

MC9S08GT60
MC9S08GT60

MC9S08GT60

Ping (no data)
Set Transmit Power Level
1 Data Byte; Range" 0-15
Set Transceiver Channer
1 Data Byte; Range: 0-15
Set RF2 Baud Rate (RF2 only)
Release immediately to Sleep
(DLP-RF2 only) (no data)
Measure energy on all channels (no data)
Return all packets received to host
(Packet Watch Mode--no data)
Return only packets with correct ID to host
(Default mode) (no data)
Read EEPROM
1 Data Byte; Address" 0-31
Write EEPROM and update checksum
2 Data Bytes; Address" 0-30; Data: 0-255
Read I/O pin, 1 Data Byte: Port: 0-7
(RF2 only)
Set I/O pin direction, 2 Data Bytes:
Port: 0-7, Direction: 1=Out, 0=In (RF2 only)
Set/Clear I/O pin, 2 Data Bytes: Port: 0-7,
State: 0/1 (RF2 only)
Setup A/D 2 Data Bytes: Port: 0-6,
Mode: 0=Off, 1=On (RF2 only)
Read A/D, 1 Data Byte Channel" 0-6
(RF2 only)
Read VBAT (no data) (RF2 only)
Request Board Type (DLP-RF1, RF2),
ROM and RFIC versions (no data)
Return Board ID (not available through
RF transceiver, physical connection only)
(destination ID ignored) (no data)

OxCO
OxCO

OxCO

OxCO
0xC0

OxC3
0xC0

OxCO

OxC4

0xC5

0xC6

0xC7

0xC8

OxC9

0xCA

OxCB
OxOD

OxOF

Figure 14.2: There are a couple of primitive related commands here, as well as some general-purpose
I/0 commands. The only difference is that you really don't have to know what a primitive is or how
it works to control things with the DLP Design radios and SIPP firmware.

The DLP-RFI-Z uses a USB interface design that is backed by VCP (Virtual COM Port) drivers
that reside on the personal computer computing platform. Once the VCP drivers are installed,
the DLP-RFI-Z appears to the host PC as a standard RS-232 COM port. The VCP drivers
intercept the application's data packets on their way to the RS-232 COM port and reroute them
to the USB interface. Incoming USB traffic is converted to RS-232-compatible data by an FTDI
USB-to-RS-232 IC and transferred directly to the DLP-RFI-Z microcontroller's UART.

267

Chapter 14

The DLP-RF1-Z's alter ego is the DLP-RF2-Z you see in Photo 14.2. The DLP-RF2-Z is de-
signed to interface to an external microcontroller if your application requires that. Otherwise,
the DLP-RF2-Z's general-purpose I/O can be manipulated remotely using only the DLP-RF2-
Z's on-chip SIPP firmware.

Photo 14.2: What you don't see here is a 20-pin dual-row header on the other side of the
DLP-RF2-Z The actual MC13193 is under the hood to the right of the shot.

I 'm sure that you noticed that there are some SIPP commands that only the DLP-RF2-Z can
handle. To that end, I've posted the remainder of the SIPP command set in Figure 14.3.

0xAC MC9S08GT60

0xAD

0xAE
0xAF
0xB6

0xB7

0xB8

0xB9

0xC0

Set/Clear I/O pin, 2 Data Bytes: Port: 0-8 0xC8
(Port 8 is PTC0), State: 0/1

MC9S08GT60 Setup A/D, 2 Data Bytes: Port: 0-6, Mode: 0xC9
0=Off, 1 =On

MC9S08GT60 Read A/D, 1 Data Byte: Channel: 0-6 0xCA
MC9S08GT60 0xCB
MC9S08GT60

MC9S08GT60

MC9S08GT60

Read VBAT (no data)
Request Board Type (DP-RF1, RF2-Z),
ROM and RFIC versions (no data)
Return Board ID (not available through RF
transceiver, physical connection only)
(destination ID ignored) (no data)
Pulse high/low with delay while high (For
DLP-RF2-ZRELAY only; additional
hardware required) 2 Data Bytes: Relay
Number: 1/2, State: 0/1 (RST/SET)
Read Temperature and Humidity (DLP-
RF2-Z only; additional hardware required)
(no data) Refer to RFTestAP source code
for data processing details
Generic Reply or "ACK" for selected
non-broadcast commands

0xCD

0xCF

0xC0

0xCC MC9S08GT60

Serial/USB

268

DLP Design

0xC1

0xC2

0xC3

0xC4

0xC5
0xC6
0xC7
0xC8
oxc9
0xCA

Serial/USB

Serial/USB

Serial/USB

Check-in from DLP-RF2-Z due to monitored
port pin input change. 2 Data Bytes:
Current I/O pin state (A6, B6:0), Bit-field
with bits set for the port pins that changed
state (A6, B6:0)

Check-in from DLP-RF2-Z due to wake
from sleep (no data)
Measured energy data, 16 Data ByTes:
Channel 0 - channel 15 energy levels,
Refer to RFTestAp source code for data
processing details

Serial/USB EEPROM read reply, 1 Data Byte:
EEPROM Read data

Serial/USB Write EEPROM reply (no data)
Serial/USB Read I/O pin reply, 1 Data Byte: pin state
Serial/USB
Serial/USB

Set direction reply (no data)
Set/Clear I/O pin reply (no data)

Serial/USB Setup A/D reply (no data)
MC9S08GT60

0xCB Serial/USB

0xCC Serial/USB

Read A/D reply, 2 Data Bytes: ATD1RH,
ATD1 RL, voltage result =
((ATD1RH << 8) I ATD 1RL) * Vref / 1024
Read VBAT reply, 2 Data Bytes: ATD1RH,
ATD1RL, Refer to RFTestAp source code
for data processing details
Read Temperature & Humidity reply, Refer
to RFTestAp source code for data
processing details

Figure 14.3: The reason the DLP-RF2-Z can seemingly outdo the DLP-RF1-Z is that the 20-pin
female header sockets on the DLP Design sensor and relay modules can only accommodate
the DLP-RF2-Z The DLP-RF1-Z has no I/0 interface other than the single USB interface.

Other than the way they interface, the DLP-RF1-Z and DLP-RF2-Z are very similar in de-
sign. However, you can obviously see that the DLP-RF1-Z's role is data collector, while the
DLP-RF2-Z will most always be found at the remote end of the link.

Figure 14.4 is a look at the DLP-RF2-Z's 20-pin interface.

Once you have the framework in place, writing application code for the DLP-RF2-Z is as
easy as implementing the DLP-RF2-Z hardware. A piece of code designed to run on a Micro-
chip PIC microcontroller is presented in Code Snippet 14.1. This piece of code sets one of the
latching relays on the DLP Design DLP-RF2-ZRELAY module.

269

Chapter 14

Pin 1

Pin 20

Pin 1

Top View (Interface Header on bottom of PCB)

T R R
X X X R

V 3 2 2 1 E
R G V / / / S
E B A N C C C E E
F 2 6 D C 0 1 1 T

• • • • • • • • •

B B B * B G G G T B
1 3 6 0 N N N X K

D D D 1 G
/ D
E

• - See table 0

' in # Header Pin Descript ior

10,11,13,15
12
14
16

17
18
19
20

PTB1 (I/O) Port Pin B1 connected to the microcontroller; ND Channel 1
DLP-RF2". PTB4 (I/O) Port Pin B4; A/D Channel 4
DLP-RF2-Z: PTA1 (I/O) Port Pin A1
PTB3 (,I/O) Port Pin B3 connected to the microcontroller; ND channel 3
Vref for ND Converter i2.08v-vc(~)
PTB6 (I/O) Port Pin B6 connected to the microcontroller; ND Channel 6
PTB2 (I/O) Port Pin B2 connected to the microcontroller; A/D Channel 2
DLP-RF2:PTB5 (I/O) Port Pin B5; A/D Channel 5
DLP-RF2-Z: PTA2 (I/O) Port Pin A2
PTA6 (I/O) Port Pin A6 connected to the microcontroller
PTB0 (I/O) Port Pin B0 connected to the microcontroller; ND Channel 0
Ground
Power Supply--connect external power supply: 2.0 (MIN) to 3.4 Volts (MAx),
PTC0 (I/O) Port Pin CO connected to the microcontroller; TxD2
PTCl (I/O) Port Pin C1 connected to the microcontroller; low power enable
for SIPP firmware if held low at reset/power up
PTE0 (I/O) Port Pin E0 connected to the microcontroller; TxD1
PTE1 (I/O) Port Pin E1 connected to the microcontroller; RxD1
BKGD Background Debug
RESET# Microcontroller Reset Input

Figure 14.4: Translate to a DLP-RF2-Z. The compact 20-pin interface makes adding the DLP-RF2-Z
to a microcontroller platform a very easy task.

Code Snippet 14.1

void init_USARTl (void) ;
unsigned char CharInQueue(void) ;
void putch(unsigned char c);
int recvchar (void) ;
int sendchar (int data) ;

270

DLP Design

unsigned char setrelay_l (void);

#defme BAUD1 9600 //desired baud rate
#defme FOSC 20000000 //oscillator frequency
#defune DIVIDER1 ((unsigned int) (FOSC/(16 * BAUD1) -i))
//1,2,4,8,16,32,64,128 or 256 bytes
#defune USART_RX_BUFFER_SIZE 128

#defme USART_RX_BUFFER_MASK (USART_RX_BUFFER_SIZE - 1)
// 1,2,4,8,16,32,64,128 or 256 bytes
#defme USART_TX_BUFFER_SIZE 128
#defme USART_TX_BUFFER_MASK (USART_TX_BUFFER_SIZE - 1)

unsigned char USART_RxBuf [USART_RX_BUFFER_SIZE] , USART_TxBuf [USART_TX_BUFFER_
SIZE] ;

unsigned char USART_TxHead, USART_TxTail, USART_RxHead, USART_RxTail ;

/WW

//* Init USART Function
**

void init_USARTl(void)
{

SPBRGI = DIVIDER1;
TRISC7 = i;
TRISC6 = 0;
TXSTAI = 0x04;
RCSTAI = 0x80;
USART_RxTail = 0x00;

USART_RxHead = 0x00;
USART_TxTail = 0x00;

USART_TxHead = 0x00;
RCIIP = i;
TXlIP = i;
RCIIE = i;
PEIE = i;

GIE = i;
CRENI = i;
TXlIE = 0;
TXENI = i;

//load baud rate divisor
//receive pin
//transmit pin
//high speed baud rate
//enable serial port and serial port pins
//flush receive buffer

//flush transmit buffer

//receive interrupt = high priority
//transmit interrupt = high priority
//enable receive interrupt

//enable all unmasked peripheral interrupts
//enable all unmasked interrupts
//enable USARTI receiver
//disable USARTI transmit interrupt
//transmitter enabled

void interrupt USART (void)
{

unsigned char data, tmphead, tmptail;

if (RCIIF)

data = RCREGI; // read the received data

// calculate buffer index
tmphead = (USART_RxHead + 1) & USART_RX_BUFFER_MASK;
USART_RxHead = tmphead; // store new index

if (tmphead == USART_RxTail)

271

Chapter 14

// ERROR! Receive buffer overflow

USART_RxBuf [tmphead] = data; // store received data in buffer

if (TRMTI)
{

// check if all data is transmitted
if (USART_TxHead != USART_TxTail)
{

// calculate buffer index
tmptail = (USART_TxTail + 1) & USART_TX_BUFFER_MASK;
USART_TxTail = tmptail; // store new index

TXREGI = USART_TxBuf[tmptail];
}
else
{

TXlIE = 0;
}

// start transmition

// disable TX interrupt

int recvchar(void)
{

unsigned char tmptail;
// wait for incomming data

while (USART_RxHead == USART_RxTail);
// calculate buffer index

tmptail = (USART_RxTail + 1) & USART_RX_BUFFER_MASK;
USART_RxTail = tmptail; // store new index

return USART_RxBuf [tmptail] ;
}

// return data

int sendchar(int data)
{

unsigned char tmphead;
// calculate buffer index

tmphead = (USART_TxHead + 1) & USART_TX_BUFFER_MASK;
//wait for free space in buffer

while (tmphead == USART_TxTail);
// store data in buffer

USART_TxBuf[tmphead] = (unsigned char)data;
USART_TxHead = tmphead; // store new index

TXlIE = 1 ; // enable TX interrupt

272

DLP Design

return data;
}

unsigned char CharInQueue(void)
{

return (USART_RxHead ! = USART_RxTail) ;
}

unsigned char setrelay_l (void)
{

unsigned char counter, rc;
unsigned int destaddr = 0x0003;
unsigned int srcaddr = 0x0002;
unsigned char tx_buffer[128];
unsigned char rx buffer[128];

//init packet index pointer
unsigned int buffer_ptr =i;
//Destination ID MSB
tx_buffer [buffer_ptr++] =
//Destination ID LSB
tx_buffer [buffer_ptr++] =
//Source ID MSB
tx_buffer [buffer_ptr++] =
//Source ID LSB
tx_buffer [buffer_ptr++]
//Command byte- Relay
tx_buffer [buffer_ptr++]

//Select Relay 1
tx_buffer [buffer_ptr++]

//Set Relay

(unsigned char) ((destaddr & 0xff00)

(unsigned char)(destaddr & 0x00ff);

(unsigned char) ((srcaddr & 0xff00)

= (unsigned char)(srdaddr & 0x00ff);

= 0xB8 ;

= 0x01 ;

tx_buffer [buffer_ptr++] = 0x01;
//assign number of bytes in packet to array position zero

>>8) ;

>>8) ;

tx_buffer [0] = buffer_ptr-l;
//send packet in tx_buffer out of serial port
for(counter = 0;counter<buffer_ptr;++counter)

sendchar (tx_buffer [counter] ;
while (!CharInQueue ()) ; //wait for 0xC0 return byte
rc = recvchar () ; //get incoming character
return (rc) ;

}

Code Snippet 14. 1 This is a representative application of the DLP-RF2-Z. The reply to this command
is analyzed by the main application to make sure the DLP-RF2-ZRELAY module returned the correct
return code.

The code in Code Snippet 14.1 uses a DLP-RF2-Z to send a relay set command to another
DLP-RF2-Z mounted on a DLP-RF2-ZRELAY. I just happen to have a DLP-RF2-ZRELAY
in my possession and I snapped a photograph of it for you, shown in Photo 14.3.

273

Chapter 14

Photo 14.3: The wiring quick connect
you see in the top left quadrant
is a door switch input. When a
switch attached to this connector is
disturbed, the DLP-RF2-Z mounted
on the DLP-RF2-ZRELAY wakes up
and sends a broadcast packet.

As you can see at the top of Photo 14.3, the DLP-RF2-ZRELAY module is designed to carry
a DLP-RF2-Z radio module. When the DLP Design module DLP-RF2-Z/DLP-RF2-ZRELAY
combination is powered up, the system goes immediately into low-power mode, drawing less
than 40 microamps of current. The DLP-RF2-Z can be programmed to wake up periodically
to check in with the controller or the door switch can act as a catalyst to awaken the relay sys-
tem to file a report. The DLP-RF2-ZRELAY's relays are latching relays, which are controlled
by pulses emanated by the Freescale Semiconductor microcontroller onboard the DLP-RF2-
Z. Take another look at the SIPP commands to see what functionality can be gleaned from the
DLP-RF2-ZRELAY module using simple serial commands.

The IEEE 802.15.4 network was designed for low-rate data collection and the DLP Design
DLP-RF2SENS you see in Photo 14.4 fits the job description.

274

DLP Design

Photo 14.4: The actual tem-
perature/humidity sensor lies
directly below Rg, which is just
below the 20-pin DLP-RF2-Z
header. Yep, that's a door
switch connector at the bot-
tom left.

I've seen that temperature/humidity sensor somewhere before. As a matter of fact, I have a
few of them in the lab. Photo 14.5 is a spy satellite view of the Sensirion SHT15 temperature/
humidity sensor. I'll tell you what I know about it.

Photo 14.5: The Sensirion SHT15 is a
really neat device to play with.It's good
for serious stuff, too.

275

Chapter 14

The Sensirion SHT15 comes in a dual-sensor configuration, which provides a calibrated
digital output. The humidity sensor component of the Sensirion SHT15 is based on a capaci-
tive polymer sensing element. The bandgap PTAT (Proportional To Absolute Temperature)
temperature sensor component and relative humidity sensor component are connected to an
on-chip 14-bit analog-to-digital converter. Temperature and humidity data are transferred
via the Sensirion SHT15's on-chip 2-wire serial interface. To provide maximum stability,
all of the Sensirion SHT15 sensing and communications elements are deposited on a single
CMOS chip. The Sensirion SHT15's accuracy is ensured by factory-programmed calibration
coefficients, which are used by the Sensirion SHT15 intemally to calibrate signals from the
temperature and humidity sensor elements when measurements are made.

Although Photo 14.5 implies that the Sensirion SHT15 is an 8-pin device, it is actually a 4-
pin device with pins for power, ground, data (DATA) and clock (SCK). The Sensirion SHT15
can operate within a supply voltage range of 2.4VDC to 5.5VDC.

The terms 2-wire, DATA and SCK are synonymous with I2C. However, the Royal Philips in-
vention is not used by the Sensirion SHT15. The Sensirion SHT15 uses a proprietary bit-bang
approach to deliver its data. The SCK signal is used to synchronize the data transfers between
the SHT15 and the DLP-RF2SENS's Freescale Semiconductor microcontroller. The Sensirion
SHT15 datasheet lays out the details of the communications interface. The good news is that
you don't have to write a single line of Sensirion SHT15 code to use the Sensirion SHT15 in
your applications, as the SIPP firmware provides full support for the Sensirion SHT15 tem-
perature/humidity sensor.

~0

: , ~ ? i ~ ; i ; ~ ¸̧ ~:,̧ ̧ •

Photo 14.6: Here's an aerial view of the DLP-RF2PROTO with a DLP-RF2-Z loaded into the
20-pin female header position. The DLP-RF2-Z3 interface pins are brought out to the inline
female header you see directly to the right of the solderless breadboard.

276

DLP Design

As if implementing isn't easy enough, Don has come up with the DLP-RF2PROTO. The
DLP-RF2PROTO is a prototyping platform for the DLP-RF2-Z. As you can see in Photo
14.6, the DLP-RF2PROTO has both a serial and USB interface, which are power and I/O
switchable via jumpers, a 20-pin nest for the DLP-RF2-Z and a solderless breadboard with
enough capacity to support a microcontroller in the standard 40-pin DIP package. The DLP-
RF2PROTO's circuitry can be powered by 9V battery, via the USB port or by an external wall
wart. All you have to do is plug in your stuff, avoid letting the smoke out and develop your
DLP-RF2-Z application.

Making a small modification to the command byte sequence in Code Snippet 14.1 produced
the pair of Daintree Networks SNA sniffs in Sniffer Capture 14.1.

Sniffer Capture 14.1

Frame 3 (Length = 8 bytes)

Time Stamp- 18-46:33.764

Frame Length. 8 bytes

Capture Length. 8 bytes

Link Quality Indication- 164

IEEE 802.15.4

Frame Control- 0x0005

............. I01 = Frame Type: Reserved (0x0005)

............ 0... = Security Enabled- Disabled

........... 0 Frame Pending: No more data

.......... 0 Acknowledgment Request. Acknowledgment

not required

= Intra PAN- Not within the PAN

= Reserved

= Destination Addressing Mode: PAN

.

...... 00 0

.... 00

identi~er and address ~eld are not present (0x0000)

..00 = Reserved

00 = Source Addressing Mode: PAN identi~er

and address ~eld are not present (0x0000)

Sequence Number- 2

Frame Check Sequence. Correct

0000- 05 00 02 00 01 a0

II

Frame 4 (Length = 8 bytes)

Time Stamp- 18-46-33.770

Frame Length: 8 bytes

Capture Length: 8 bytes

Link Quality Indication- 120

IEEE 802.15.4

Frame Control: 0x0005

............. i01

.

= Frame Type: Reserved (0x0005)

= Security Enabled: Disabled

277

Chapter 14

not required

........... 0 = Frame Pending: No more data

.......... 0 Acknowledgment Request : Acknowledgment

......... 0 = Intra PAN: Not within the PAN

...... 00 0 = Reserved

.... 00 = Destination Addressing Mode: PAN

identifier and address field are not present (0x0000)

..00 = Reserved

00 = Source Addressing Mode: PAN identifier

and address ~eld are not present (0x0000)

Sequence Number: 1

Frame Check Sequence: Correct

0000: 05 00 01 00 02 cO @..
**

Sniffer Capture 14.1" This is an easy sniff sequence to solve. Just use the packet layout of Figure
14.1 and find the command in Figure 14.2.

Frame 3 of Sniffer Capture 14.1 is a five-byte message sent from a DLP-RF1-Z to a DLP-
RF2-Z. How do I know that? Easy, the factory default ID for a DLP-RF2-Z is 0x02 and the
default ID for a DLP-RF1-Z is 0x01. The command is a PING (0x0A).
**

0000: 05 00 02 00 01 a0 PING from DLP-RFI-Z to DLP-RF2-Z

0000: 05 00 01 00 02 cO REPLY from DLP-RF2-Z to DLP-RFI-Z
**

Frame 4 of Sniffer Capture 14.1 is yet another five-byte message in the form of a reply de-
noted by the SIPP reply command 0xC0.

Fortunately, I've had prior experience with DLP Design's USB product line. My feeling
about DLP Design is that if you really need to get a serious application up and working fast,
get some DLP Design stuff to do it with. With every DLP Design product I've worked with,
I've found that, once you get what you think you want, you can always take it a level further
down the complexity scale if you choose to. That fact is evident here as, if you don't see what
you want in the modules you and I have talked about in this chapter, DLP Design can either
provide you with the technical details you require or build it to suit you.

278

DLP Design

About DLP Design
As I mentioned earlier, I've done some magazine things with Don's stuff prior to the writing
of this chapter. Don Powrie's name can be found at the top of a few magazine columns as
well. Take it from one who knows first-hand--if you're proud enough of a product you sell to
put your name on an international magazine column about that product, it had better work and
work very well. I don't think Don will have anything to worry about.

If you like bluegrass music, then you can thank Bill Monroe. Bill's Blue Grass Boys put blue-
grass music into the mainstream. In fact, the bluegrass moniker is derived from Bill's band's
name. If you have absolutely no idea what bluegrass music is, check out the movie O Brother
Where Art Thou. Trust me, you will be hooked.

The smooth and jazzy Nashville sound was ushered in by the likes of Chet Atkins. Outlaw
music opposed the slick Nashville-produced music. Can you name any of the "outlaws"?

279

This Page Intentionally Left Blank

CHAPTER IS
Microchip

The IEEE 802.15.4 hardware for this IEEE 802.15.4 MAC/PHY discussion is marketed by
the Microchip Corporation as the PICDEM Z Demonstration Kit. The Microchip ZigBee
network hardware is based on their brand-new MRF24J40, which is an IEEE 802.15.4-com-
pliant/ZigBee-ready 2.5-GHz RF transceiver. I got my hands on one and put a camera lens
against it in Photo 15.1.

Photo 15. 1: I don't know if you
can make it out, but my MRF24J40
module is so new that it carries an
engineering sample of the part.

The best way to show you how the MRF24J40 works is to assemble and run a simple IEEE
802.15.4 network. Our dual-node IEEE 802.15.4 network consists of a ZigBee Coordinator
and a ZigBee End Device. Each of the devices is loaded with the latest version Microchip
ZigBee Stack, which you can obtain freely from the Microchip web site.

The ZigBee Coordinator and ZigBee End Device in our IEEE 802.15.4 network are actually
PIC18LF4620 microcontrollers, which are loaded with ZigBee Coordinator and ZigBee End
Device driver code that is able to interface with the Microchip MRF24J40 radio modules that
are attached to each of the ZigBee nodes. So, the network I've assembled is actually an IEEE
802.15.4-compliant network with ZigBee protocol capability. A representative Microchip
ZigBee node is shown in Photo 15.2.

281

Chapter 15

Photo 15.2: The MRF24J40
mounts in the dual-gender
connector at the far right of
this shot.

Let's fire everything up and see what happens.

Birth of a Microchip ZigBee Network
The ZigBee source code contains the following line of code:

#defme ALLOWED_CHANNELS 0x0 0 0 010 0 0

know from that Hne of code that the PIC-based ZigBee appHca6on F m about to run will
use channe| 12, which, as you already know, Hes in the channe| assignments for the
2.4-GHz band.

The very first thing the Microchip ZigBee Coordinator driver firmware does is to initial-
ize the PICDEM Z PIC microcontroller hardware with a call to the Hardwarelnit function
from the Coordinator.c module. The PIC hardware initialization process involves setting
up the PIC microcontroller's SPI (Serial Peripheral Interface) portal and the direction
(input or output) and initial output states (1 or 0) of the PIC microcontroller's general-pur-
pose I/O pins. The PICDEM Z's host PIC18LF4620 microcontroller's SPI engine must be
activated and configured as the MRF24J40 IEEE 802.15.4-compliant 2.5-GHz RF trans-
ceiver communicates with the PIC microcontroller using the SPI portal. In addition, the
PIC microcontroller's Master SPI interface must use an additional I/O pin to act as the SPI
select line for the MRF24J40, which is acting as an SPI slave. The code snippet from the

282

Microchip

Hardwarelnit function pertains to the MRF24J40 2.4-GHz transceiver is shown in Code
Snippet 15.1.

Code Snippet 15.1

void HardwareInit (void)
{

//

//

// This section is required to initialize the PICDEM Z for the MRF24J40

// and the ZigBee Stack.

//

SPIInit() ; // a defunition that simply sets SSPIIF = i;

#if (RF_CHIP == MRF24J40)

// Start with MRF24J40 disabled and not selected

PHY_CS = 1 ;

PHY_RESETn = 1 ;

// Set the directioning for the MRF24J40 pin connections.

PHY_CS_TRIS = 0 ;

PHY_RESETn_TRIS = 0;

// Initialize the interrupt.

INTCON2bits. INTEDG0 = 0 ;

#endif

// Initialize the SPI pins and directions

LATC3 = i; // SCK

LATC5 = i; // SDO

TRISC3 = 0; // SCK

TRISC4 = i; // SDI

TRISC5 = 0; // SDO

// Initialize the SPI module

SSPSTAT = 0xC0;

SSPCONI = 0x20;

//

// This section is required for application-speci~c hardware

// initialization.

RA2.
// D1 and D2 are on RA0 and RAI respectively, and CS of the TC77 is on

// Make PORTA digital I/O.

ADCONI = 0x0F;

283

Chapter 15

// Deselect the TC77 temperature sensor (RA2)

LATA = 0x04;

// Make RA0, RAI, RA2 and RA4 outputs.

TRISA : 0xE0;

// Clear the RBIF flag (INTCONbits.RBIF)

RBIF : 0;

// Enable PORTB pull-ups (INTCON2bits.RBPU)

RBPU = 0;

// Make the PORTB switch connections inputs.

TRISB4 = i;

TRISB5 = 1 ;
}

Code Snippet 15. 1 If you're not familiar with the innards of a PIC, get the PIC 18LF4620 datasheet
from Microchip and you'll be able to match up all of the mnemonics in this Code Snippet. I'll get
you started. LATX are output pins and TRISXX sets the general-purpose I/0 port direction. A "1 "
makes the port pin an input and a "0" puts the port pin in output mode.

Once all of the PIC 18LF4620's general-purpose I/O pins and SPI stuff are pointing in the
fight direction, the ZigBeelnit function, which is located in the ZigBeeTasks.c module, is
invoked from within the Coordinator.c code module. As you can see in Code Snippet 15.2,
all of the normal initialization tasks you come to expect by now (if you haven't been chapter
skipping) come into play.

Code Snippet 15.2

void ZigBeeInit(void)
{

SRAMInitHeap () ;

MACInit () ;

NWKInit () ;

APSInit () ;

ZDOInit () ;

TxHeader = 127;

TxData = 0;

RxWrite = 0;

RxRead = 0;

// Set up the interrupt to read in a data packet.

// set to capture on falling edge

#if (RF_CHIP == UZ2400) I I (RF_CHIP == MRF24J40)

CCP2CON = 0b00000100;

284

Microchip

#elif (RF_CHIP == CC2420)

CCP2CON = 0b00000101;

#endi f

// Set up the interrupt to read in a data packet.

#if (RF_CHIP==UZ2400) I I (RF_CHIP == MRF24J40)

INTOIF = 0;

INTOIE = i;

#elif (RF_CHIP==CC2420)
CCP2IF = 0;

CCP2IP = I;

CCP2IE = i;

#endif

InitSymbolTimer();

ZigBeeStatus.nextZigBeeState = NO_PRIMITIVE;

CurrentRxPacket = NULL;
}

Code Sn~pet 15.2: No~ ~e mclusbn of o~er types of IEEE 802. 15.4 ~dio types. You shouM be
~miliar wi~ one of ~em.

At this point, the Coordinator is PAN-less. The Microchip ZigBee stack works with states
and NO_PRIMITIVE is the current state, which was set in the initialization routine shown
in Code Snippet 15.2. This will lead to the application code falling into the set of statements
shown in Code Snippet 15.3.

Code Snippet 15.3

if (! ZigBeeStatus .flags .bits .bTryingToFormNetwork)
{

params. NLME_NETWORK_FORMATION_request. ScanDuration = 8 ;

params. NLME_NETWORK_FORMATION_reques t. ScanChannel s. Val = ALLOWED_

CHANNELS;

params. NLME_NETWORK_FORMATION_request. PANId. Val = 0xFFFF;

params. NLME_NETWORK_FORMATION_request. BeaconOrder = MAC_PIB_
macBeaconOrder ;

params.NLME_NETWORK_FORMATION_request. SuperframeOrder = MAC_PIB_
macSuper frameOrder;

params. NLME_NETWORK_FORMATION_reques t. Bat teryLi f eExt ens ion = MAC_PIB_
macBattLifeExt ;

currentPrimitive = NLME_NETWORK_FORMATION_request;
}

Code Snippet 15.3: Don't worrz, you and/both know we'll find out what the MAC PIB values are when
we examine the Daintree Networks SIVA sniff. Note that we're passing a request primitive here.

The ZigBeeStatus.flags.bits.bTryingToFormNetwork bit is set to indicate that a PAN is in the
attempt stage and the following code is executed:

285

Chapter 15

params. MLME_SCAN_request. ScanType = MAC_SCAN_ENERGY_DETECT;
// ScanChannels is already in place
// ScanDuration is already in place
return MLME_SCAN_request;

The commented ScanChannels and ScanDuration lines are reminders that the values for those
attributes were passed with the primitive call. We know that only a single channel (12) will be
scanned. Otherwise, the Microchip ZigBee stack would go through iterations to determine the
best channel on which to establish the PAN. As you already know, things coming down from
the NWK layer pass through the appropriate SAP to the MAC layer, which is what we see
happening in Code Snippet 15.4.

Code Snippet 15.4

params .MLME_START_request. LogicalChannel = nwkStatus, discoveryInfo.
channelList [nwkStatus. discoveryInfo, currentIndex] . channel ;
params. MLME_START_request. BeaconOrder = MAC_PIB_macBeaconOrder;
params .MLME_START_request. SuperframeOrder = MAC_PIB_macSuperframeOrder;
params. MLME_START_request. ~elds. Val = MLME_START_IS_PAN_COORDINATOR;
params. MLME_START_reques t. ~el ds. bits. Bat teryLi f eExtens i on = macP IB.
macBat tLi feExtPeriods ;
return MLME_START_request;

Code Snippet 15.4: At this point we've scanned and selected a channel on which to establish the
PAN. Note the passage of the same MAC PIB attribute values from the NWK NLME to the MAC
MLME.

A good thing to have happen at this point is to process the MLME_START_confirm
primitive, which, if the confirm message indicates a successful start, will kick off the NLME_
NETWORK_FORMATION_confirm operation. A PAN exists.

Someone has to join the PAN for anything useful to happen. You all know what happens
next:
* ~ * . . . * * * * * * * * * .

params.NLME_PERMIT_JOINING_request. PermitDuration = 0xFF; // No Timeout
currentPrimitive = NLME_PERMIT_JOINING_request;

The NWK, MAC and PHY layers have established a PAN at the behest of the application.
The response to the Beacon Request sniff in Sniffer Capture 15. I should be easily absorbed.

Sniffer Capture 15.1

Frame 3 (Length = 16 bytes)
Time Stamp: 19:22:04.298
Frame Length: 16 bytes
Capture Length: 16 bytes
Link Quality Indication: 112

286

Microchip
IEEE 802.15.4

Frame Control: 0x8000

............. 000

. °° 0 . . .

.

.

not required

. , . . . 0 . . ° o ° °

. O 0 0

. . . . O 0

= Frame Type: Beacon (0x0000)

= Security Enabled: Disabled

= Frame Pending: No more data

= Acknowledgment Request: Acknowledgment

= Intra PAN: Not within the PAN

= Reserved

= Destination Addressing Mode: PAN

identi~er and address ~eld are not present (0x0000)

..00 = Reserved

i0 Source Addressing Mode: Address ~eld

contains a 16-bit short address (0x0002)

Sequence Number: 1

Source PAN Identi~er: 0x3f80

Source Address: 0x0000

MAC Payload

Superframe Speci~cation: 0xcfff

a PAN Coordinator

............ iiii

........ Iiii

.... iiii

° . . 0 ° . o o

. . 0 . ° ° ° o o . ° °

. i ° ° o° °° ° ° ° °

. o o ° o o

accepting Association Requests

GTS Speci~cation: 0x00

= Beacon Order (0x000f)

= Superframe Order (0x000f)

= Final CAP Slot (0x000f)

= Battery Life Extension: Disabled

= Reserved

= PAN Coordinator: Transmitter is

= Association Permit: Coordinator

Requests

. 0 0 0

. 0 0 0 O . . .

. . ° o . . .

= GTS Descriptor Count (0x00)

= Reserved

= GTS Permit: Coordinator not accepting GTS

Pending Address Speci~cation: 0x00

..... 000 = Number of short Addresses pending: 0

.... 0... = Reserved

.000 Number of extended Addresses pending: 0

0 Reserved

Beacon Payload

Protocol ID: ZigBee NWK (0x00)

Frame Check Sequence: Correct

NWK Layer Information: 0x8411

. 0 0 0 1

. 0 0 0 1

. O 0

. i o o .

. 0 0 0 0

. , . o . . . o . o o

= Stack Pro~le (0xl)

= nwkcProtocolVersion (0xl)

= Reserved (0x0)

= Router Capacity: True

= Device Depth (0x0)

= End Device Capacity: True
dr ~ d r . dr dr d r * * * dr d r * * * dr dr d r * ~ ~ ~ * * * t ~ . t t ~ . ~ ~

Sniffer Capture 15.1" It's almost like a Western--the cowboy arrives to save the day and then rides
off into the sunset. In this case the ZigBee End Device was accepted for association and you should
know the rest of the story.

287

Chapter 15

If you're not proficient in the ways of IEEE 802.15.4 and ZigBee network flows by now,
please hand this book to your sister. On the other hand, if you feel good about your IEEE
802.15.4 and ZigBee network flow expertise, let's get off the beaten path and look at some-
thing else Microchip has to offer that smells like ZigBee. If you stiffed through my first
two books and you've made it this far through this one, you know that when it comes to
doing things Ethernet, I relied heavily in both cases on my Network General Sniffer Por-
table application suite. I used the Sniffer in the development of all of my wired and wireless
microcontroller Ethernet designs. In fact, I used the Sniffer captures to lay open the 802.1 l b
and 802.3 specifications bit by bit in the texts. The Network General Sniffer Portable tool in
its many variants works quite well for Ethernet development.

I don't know what kind of thoughts you may have had about the ZigBee protocol before
you started reading this book, as on the outside, ZigBee appears to be a simple wireless
implementation that should be easily grasped and applied. However, as you have seen in our
discussions, on the inside, ZigBee can be quite complex. That's why I used Daintree Net-
works SNA captures so heavily to convey the basic concepts of IEEE 802.15.4 and ZigBee
networking. Now that you have a good understanding of the flow of things in IEEE 802.15.4
and ZigBee networks, you can learn a great deal about the network layer and primitives by
following the Microchip ZigBee stack thread I described previously.

The free Microchip ZigBee stack and the MRF24J40 are not the only things Microchip that are
ZigBee related. If you choose to develop your IEEE 802.15.4 or ZigBee application with Micro-
chip products, Microchip makes another ZigBee development tool available to you called ZENA.
Let's fire up the application we just discussed again and look at it through the eyes of ZENA.

ZENA
Nope...ZENA isn't one of those scantily clad female superheroes that can cut bad guys into
pieces of sushi with her good looks, quick hands and sharp blade. ZENA, formally known as
the ZENA Wireless Network Analyzer, is actually a piece of hardware and some supporting
software that performs a similar function to the Daintree Networks SNA application you've
seen all throughout this book.

ZENA's network support provides for decoding ZigBee packets in the 2.4-GHz frequency
spectrum. As ZigBee networks are formed, ZENA analyzes the network activity and draws
the network topology as it is created. ZigBee packet transactions can be viewed in real time
and can be recorded for variable speed playback. In addition to ZigBee 802.15.4 packet sniff-
ing/packet analyzer duty, ZENA contains a configuration tool that can be used to act on the
free Microchip ZigBee stack to help ZigBee developers modify the Microchip ZigBee stack
to suit their application.

The ZENA Wireless Network Analyzer hardware you see in Photo 15-3 is based on a
PIC18LF2550, which is the little brother of the USB-equipped PIC18LF4550. ZENA's USB
interface allows the ZENA hardware to be powered directly from the USB bus via a USB
mini-B cable that comes with the ZENA Wireless Network Analyzer package. Information
flows between the ZENA and host personal computer within the HID standard class.

288

Microchip

Photo 15.3: This version of ZENA is built around the familiar CC2420 from Texas Instruments/
Chipcon. The new version of ZENA will revolve around the new Microchip MRF24J40 2.4-
GHz transceiver IC

Summoning ZENA
The Microchip ZigBee stack comes with a couple of ready-to-roll demo projects. I want to
show you how the ZENA Wireless Network Analyzer works and I really don't need a fancy
ZigBee application to do that. So, I used Microchip's C 18 C compiler to build up the basic
demo ZigBee Coordinator and ZigBee RFD (Reduced Function Device) projects.

Just to make sure that everything was really working before I invoked ZENA, I attached the
ZigBee Coordinator node to an instance of my preferred terminal emulator, Tera Term Pro.
I powered up the ZigBee Coordinator node and received a positive response. The newly
loaded ZigBee Coordinator node did indeed perform a channel scan and form a new PAN.
At this point, my confidence level was high enough to go ahead and build the code for and
load the ZigBee RFD node. Just for grins I fired up the ZigBee RFD node and it joined the
existing PAN that had just been created by the ZigBee Coordinator node. The Microchip
PICDEM Z ZigBee hardware is ready to go.

With known-good ZigBee nodes on the ready, I loaded the ZENA Wireless Network Ana-
lyzer code into my laptop. After starting the ZENA application, I selected Network Monitor
mode and restarted the ZigBee Coordinator node. You and I already know that the ZigBee
nodes are operating on channel 12 and I set ZENA up accordingly and retired the ZigBee
PAN Coordinator node. At this point, the ZigBee Coordinator has searched for other Zig-
Bee Coordinators that may be operating in the same channel range. Obviously, in our case
there are no other ZigBee Coordinators. Thus, the lone ZigBee Coordinator establishes a
network and assigns it a unique 16-bit PAN ID. I've combined all of the good stuff from the
ZigBee Protocol window and the ZigBee Network Monitor console window into a view in
Screen Capture 15.1.

289

Chapter 15

ZigBee(T~) .etwork Monitor [X-i

2 Io~oc]

2 ~ec

Verbose
.

Verbose
.

Verbose

Screen Capture 15. 1: You're used to seeing it
all and the Tera Term Pro verbiage is a much
less descriptive subset of the information you
can obtain from the ZENA Wireless Network
Analyzer decode frame.

MAC Frame Control
Type Sec Pend ACK IPAN
CMD N N N N

Microcbip ZigBee(TH) Stack - v 1 . (~ - 3 . 5

[igBee Coordinator

[ty ing to s t a r t n e t w o r k . . .
PRN 2PD1 = t a t t e d s u c c e s s f u l l y .

o i n i n 9 p e r m i t t e d

Note that the new PAN ID is revealed in the Tera Term Pro window. The PAN ID revelation
in the Tera Term Pro window is part of the ZigBee Coordinator application code. A ZigBee
network is no good if there aren't any nodes to perform useful work. So, the next logical
step is to enable the ZigBee RFD node I just built and see what the ZENA Wireless Network
Analyzer has to show me. I've also brought up another instance of Tera Term Pro on COM2
to allow us to see what the ZigBee RFD node has to say as it is coming up.

You already have a very good idea about how devices join ZigBee networks. So, let's work
through what we see in the ZENA packet decodes and the Tera Term Pro output. Once I
powered up the ZigBee RFD node, as expected the node immediately tried to find an es-
tablished ZigBee network. In Screen Capture 15.2, this is shown by the Beacon Request
frame with a sequence number of 0x00 (Frame 00002), which was transmitted by the lonely
ZigBee RFD node.

290

Microchip
MACFrameContr~

T y l ~ Sec Pend ACE IPAN
CMD N N N N

MAC Frame Control
T y p e ~ c Pend ACE IPAN
CHD N N N N

Type Sec Fend ACE IPAN
BCN N N N N

MACFrameContr~
T y l ~ Sec Pend ACK IP,
CMD N N Y N

MACFrameControl
Type Sec Fend ACE IP~N
ACE N Y N N

MACFrameControl
Type ~ec Pend ACE IPAN
CMD N N ¥ N

MAC ~ameConlr~
T y l ~ Sac Pend ACK IPAN
ACE N Y N N

MAC Frame Control
Type Sec Pend ACK IFAN
CHD N N Y N

MAC Frame ConSul
Type Sec Pend ACK IPAN
ACE N N N

MACFremeContr~
Type Sec Pend ACK IPAN
CMD N N Y N

MAC~lmeCoarol
T~pe ~sc Pend ACE IPAN
ACE N Y N N

MACFrameCont~
Type Sec Pend ACK IFAN
DATA N N N N

Somce Addr

0x0004A30000000065

Source Add[

0x0004A3000000006S

Dest Adar I Source [Somce AddS
I P a l ! t

0x0004A3000000006~l 0x2FDII0x0004A30000000054

! II i

ZigBee Coordinator

T~yin9 to start network...
P~N 2FD1 s t a r t e d s u e c e s s f u l l g .
J o i n i n 9 p e l ~ m i t t e d .
Node 796P j u s t j o i n e d .

~igBee RFD

r r g i n g to j o i n ne twork as a new d e v i c e . . .
~e twork (s) found . T l -y in9 to j o i n 2FD1.
Join successful?
R e q u e s t i n g data...
~o data available
~oin9 t o s l e e p . . .
~q uest i n9 data... 00,o4.~.0o.

d a t a a v a i l a b l e 00.00,00,65
~oing to s l e e p . . .
~ e q u e s t i n g d a t a . . .
~o data available
~oin9 to sleep...
Requesting data...
~1o d a t a a v a i l a b l e
~oing to s l e e p . . .
~ e q u e s t i n9 d a t a . . .

i i i i i i iiii ii ii ii i i iii i :~~

Screen Capture 15.2: The nodes that were drawn by ZENA are identified by both color and their
MAC addresses. The connecting arrowed line between the ZigBee Coordinator and ZigBee RFD
nodes represents the communications route between the nodes. The packet decode frames extend
horizontally in the Protocol window to accept the maximum ZigBee MAC packet size of 127 bytes.

Just before the ZigBee RFD node punched a hole in the ether looking for a friend, the ZigBee
Coordinator generated a Beacon Request Frame (the active channel scan indication) sequence
numbered as 0x44 and represented as Frame 00001 in Screen Capture 15.2. The sequence
numbers will allow us to keep up with who's talking and who's not, as the next logical Zig-
Bee RFD node message will be sequence number 0x01 and the next packet from the ZigBee
Coordinator should be 0x45.

291

Chapter 15

In Frame 00003, the ZigBee Coordinator reveals itself by generating an informational Bea-
con in response to the Beacon Request issued by the wanna-be-on-my-PAN ZigBee RFD
node. The Tera Term Pro COM1 output (ZigBee Coordinator) in Screen Capture 15.1 told us
that the newly created PAN ID is 0x2FD 1. The Tera Term Pro COM2 output (ZigBee RFD)
in Screen Capture 15.2 confirms the PAN ID of 2FD 1, as the ZigBee RFD node has discov-
ered the 0x2FD 1 network and is trying to join it. The PAN ID was passed in the Source PAN
field of the packet and the ZigBee Coordinator's address was passed in the Source Address
field. This packet is labeled with a sequence number of 0x45 (Frame 00003), which tells us
that the ZigBee Coordinator is the originator of the packet.

The ZigBee RFD node issues an Association Request in Frame 00004. How do we know
this? The ZENA packet decode tells us that this is an Association Request. The next clue is
the sequence number, which is 0x01. Recall that the sequence numbers for the ZigBee Co-
ordinator began with 0x44. A look at the Destination PAN field shows a value of 0x2FD 1,
which says the ZigBee RFD node is targeting the PAN our ZigBee Coordinator created.
The ZigBee RFD node also gives up physical information about itself, including its MAC
(hardware) address in this frame. The ZigBee RFD node needs to hear back from the
prospective PAN Coordinator and asks for an acknowledgment in the MAC Frame Control
field.

The acknowledgment for the ZigBee RFD node's Association Request (Frame 00005) is
received and the ZigBee RFD node, now confident that it has found a network to join, asks
for an address on PAN 0x2FD 1 in Frame 00006. Following the acknowledgment in Frame
00007, the ZigBee Coordinator produces Frame 00008, which is an Association Response
packet that is identified with sequence number 0x46. In this packet, the ZigBee Coordinator
provides the ZigBee RFD node with the coordinator's MAC address as well as a newly as-
signed address for the ZigBee RFD node (0x796F). The Tera Term Pro COM2 output signals
this event with a "Join successful !" message. The Tera Term Pro COM 1 output celebrates
this sequence of events with a "Node 796F just joined" message.

Following the ZigBee RFD node's acknowledgment of the Association Response packet in
Frame 00009, the ZigBee RFD node has all of the information it needs to get to the ZigBee
Coordinator and ask for data. The ZigBee RFD node repeatedly runs through a sleep and
request data cycle. This sleep/request data cycle is represented by Frames 00010, 00011 and
00012 of the ZENA Screen Capture 15.2.

In the meantime, ZENA has drawn our little network up in the Network Configuration
Display window. I've superimposed the actual node drawing into the Tera Term Pro COM2
window in Screen Capture 15.2.

The logic of a ZigBee data exchange and the node association process becomes eviden t by
walking through the decoded packets as we have just done. However, there is more informa-
tion to be gleaned from the packet decodes. Packet to packet elapsed time in microseconds is
displayed as is the length of the packet. The MAC Frame Control fields are parsed to show
such things as the type of packet (CMD, DATA, ACK, etc.) and packet status bits.

292

Microchip

Thus far, with the help of ZENA, we've strolled through a sequence of ZigBee moves that led
to the formation of a tiny ZigBee network and the association of a ZigBee RFD node. You
and I should be expert at reading ZigBee sniffs by now. So, let's see if we can take a couple of
ZENA-captured frames and get the gist of a ZigBee network and the data it is carrying with-
out resorting to the inspection of the application source code. I loaded up my ZigBee nodes
with a temperature application. The idea is to push a button on the ZigBee Coordinator node
and get a temperature from the associated ZigBee RFD node.

Screen Capture 15.3 shows that the ZigBee RFD sent a temperature back to the ZigBee Co-
ordinator's COM 1 Tera Term Pro window. So, we can assume that all of the aforementioned
network creation/network association stuff you've been reading about in the previous chapters
of this book actually happened.

MAC Frame Control
Type Sec Pend ACK IPAN

~ D A T A N , ~. N

~ S Frame Control
Type D~liv Mode Sec ACK
DAT UNI N/A N N i

,.. I0,,, ! . - . ! so,,,.e I so. , - I
'lure I PA. I Addr] P A l l I Addr i
~xFD I 0x0 ~ 9210~79 6F I 0x0,19 210x00001

~ T y p e Sec Pend ACI(IPAN
~ D A T A N N ¥ N
~ . . ° ~ " ~ - ~ ~ - ~ W '.~ '~' ~i , ~ ~ : ~ ®~;~ ~ ; ~ ; ~ i ~ i ; i ~ ~i

APS Frame Control
Tyl~ D~liv Mode Sec ACK
.,DAT UN! ,,,N/A N N

I s, , i o - , l ' e "
I tuml PAll] Addr i PAn I Addr !
o~o~1 k~o4921o~ooool 0~049210x79SFi

I .

Microchip ZigBee(TH) Stack - v l . 9 - 3 . 5

ZigBee Coordinator

Trying to s t a r t network. . .
PAN B492 s t a r t e d s u c c e s s f u l l y .
Joining permi t t ed .
Node 796F j u s t joined.

Request ing t e m p e F a t u r e . . .
Request ing temperature
Nossage sent s u c c e s s f u l l y .
Message s en t s u c c e s s f u l l y .

Rece ived 2 5 . 8 7 5 B C
R e c e i v e d 2 5 . 8 7 5 8 C

Screen Capture 15.3: So far, so good. This is how ZENA displays the layers. Can you pick out the
MAC, NWK and APS layers in the ZENA trace?

Our known parameters consist of the received temperature (25.8750 C), the PAN ID (0492)
shown in the Screen Capture 15.3 Tera Term Pro output and the node (796F) mentioned in
the Screen Capture 15.3 Tera Term Pro output. I fat-fingered the switch and got a pair of

293

Chapter 15

identical readings. So, we'll only hack through one switch-closure packet and one tempera-
ture-reading packet.

In addition to a text message from a Tera Term Pro session, what you see in Screen Capture
15.3 are a couple of typical ZigBee messages. Each ZigBee message consists of a MAC
header, a NWK (Network) header, an APS (Application Support) header and the APS Payload
(data). Frame 00024 is the temperature request frame and Frame 00033 contains the tempera-
ture data. You've now ventured one more layer up in the ZigBee stack. Congratulations!

The PAN ID given to us in the Tera Term Pro message is confirmed by the Source and
Destination PAN fields in both of the packets' MAC headers. Looking further into the MAC
header we find that the ZigBee Coordinator's Source Address is 0x0000 and the ZigBee RFD
node's address (Destination Address field) is 0x796F. The packet length is 32 bytes including
the checksum (RSSI) and the packet has requested an acknowledgment (MAC Frame Control
bit ACK set to Y).

The NWK header contains actual source and final destination of the packet. Since this is a
minimal ZigBee network, the actual and finals will match up with what we've already ascer-
tained from the MAC layer information.

Destination endpoint, profile and cluster information is provided by the APS header. Endpoint
information seen here should correspond to endpoint configuration data within the application
itself, as endpoints are directly related to application objects. From the looks of things here,
the ZigBee Coordinator's endpoint 0x09 is sending data to the ZigBee RFD node's endpoint
0x03. Without examining the ZigBee RFD node's source code, we must conclude that the
bytes within the APS Payload kick off the temperature measurement application within the
ZigBee RFD node.

The way ZigBee jockeys data back and forth between nodes is very similar to the way IP
does it. You can cross verify the source and destination addresses of the ZigBee Coordinator
and ZigBee RFD nodes in Frame 00033. The same can be said for the NWK header of Frame
00033. Moving to the APS header, the endpoints also cross verify with the source and desti-
nation endpoints pointing to each other.

What we really care about are the bytes inside the APS Payload area of the decode. I elimi-
nated the bytes that didn't match up with an ASCII number or letter and determined that the
0x09 is the number of characters in the temperature data returned by the ZigBee RFD node. If
you're not used to doing ASCII in your head, get out your ASCII chart and you will decipher
"25.8750 C" as the last nine characters of the payload data.

You and I have reverse-engineered the configuration data out of the ZigBee nodes in our
little network by using ZENA captures and simple logical deduction. ZENA also works the
other way around. The ZENA configuration tool allows you to graphically enter the con-
figuration data we saw in the ZENA capture fields. The ZigBee Device portion of the ZENA
configuration tool allows the ZigBee programmer to enter device-specific information such
as the node MAC address, ZigBee device type (ZigBee Coordinator, ZigBee Router or
ZigBee End Device) and IEEE device type (Full Function Device/FFD or Reduced Func-

294

Microchip

tion Device/RFD). Endpoint data can be specified in another area of the ZENA configuration
tool. Once all of the configuration data has been entered, the ZENA configuration tool gener-
ates a basic definitions file for stack configuration, a ROM initialization file that includes
ZigBee device descriptors and a project linker file for the PIC microcontroller you specified
in the ZENA configuration tool.

About Microchip
Can you say "PIC microcontroller"? If your sticky little fingers are on the pages of this book,
I'll bet that you have used a PIC microcontroller in at least one of your projects. If you don't
know what a PIC is, give this book to your sister. She knows what a PIC is. Microchip is a
very large corporation. However, how many corporate CEOs do you know that attend the
technical conferences and actually talk to the attendees? Microchip's Steve Sanghi does. And
guess what~Eric Lawson and the Microchip staff answer phone calls and respond to emails.
My thanks to Eric and the entire ZigBee development team at Microchip for their contribu-
tions to the content of this book.

Willie Nelson is still an outlaw and the late Johnny Paycheck is without a doubt an outlaw,
wherever his soul may be. You've probably heard the term "outlaw" applied to Waylon Jen-
nings and Merle Haggard as well. Do you know which unmentioned outlaw loved to perform
in prisons?

295

This Page Intentionally Left Blank

CHAPTER 16
Telegesis

Thanks to Danny Lemos at Lemos International, the folks that supply the Telegesis ETRX2
ZigBee modules, I sat in wonderment for at least an hour just watching the mesh networking
do its thing in the Daintree Networks SNA Visual Device Tree window, as I removed and re-
inserted Telegesis ETRX2 nodes in the mesh network the modules had created. Light up some
incense and enjoy the show, beginning with Screen Capture 16.1.

~i • p., DaintreeNetwo~ks

X

~.] Fzl le 733 (Length ,= 43 bytes)

i . Fr'~tte Length: 43 bytes
Caplcuce Lengt1~: 43 b y t e s

.Link 0uallty Indication: 180

~,~}. I~Z 802,15.4

[~ Fr~e Cont~ol: 0x8841

: Sequence Nu=,ber: 177

: Destination PA~ Zden~ifier: 0XZ4db
i. Destination Address: 0xffff

i ~OU~Ce Address: 0X7337

.. Frame Check Sequence: C o ~ e c t
~]. ZigBee N/~K

' {~i Fra~1=e Contmoi: 0×0205

' . Destination Addzesc~; Oxff£f

0000: 41 88 bl db 24 ff ~f 37 73 05 02 f: f~ 00 00 09 A.i[~..Ts
0010: fc ~8 30 I0 00 00 33 d90a 00 00 6f 0d 00 00 6a l(0.. 3Y...o...j
0020: 39 56 3e al 06 9e Zc c9 3b 9 V > ! . . , I ; . .

!£ : !Ch~el S u m l a ~ 0.27 739 38 531
[4~J~ T.D: 24db O. ?.9 699 38 55

(~Davice: 7337 (000d6fO0000ad933) Capac i . . 0.00 171 19 12
[~SC¢el Summar~ - IZl 12 12

{~}->~£f (Bzoadcas~ - All Deulces) 109 0 IC

:i!!
{~ channel sum=a~y " "°°" "°°" ,,., ,°,., ,o.

7337 (000d6fO0000ad., , " ,
O000 (00Od6fO0000aa.. "
. . . . (000d6£00000ad..
0110 (000d6~00000ad.. "

730 13:54:52,043 +80:00:00,199 0x?337 O × f f f f 0X00O0 0X f f £ f Z igbee ~ N~R Co~=e¢~d (Sectored - No Key)
731 13:54:52,060 +00:00:00.017 OX0000 0×f~f£ 0xO000 0 X f f f f Zi~bee ~q~ ~ Co~=~J~d (Secured No Key)
732 i 3 : 5 4 : 5 2 . 2 2 0 +00:00 :00 .160 0x0110 0x~££f 0xO000 0×~f~£ Zi~bee kq~K 1¢~ Cosm~d ~Secuzed - No Key)
~ ~ S . . , = ~ : ~ ! ~ i <. : i , . , ': ~ !~; ';;'." ~
734 13:54",52.337 +00:90. '00,029 0x00O0 O × ~ f f 8x0000 8 x f f ~ f Zigbee N~, N~TK Co==~d (Sec~.tred No Key)
735 13:54:52.564 +00:00:00,228 OxOli0 0×ffff 0X~000 0×ffff Zzgbee Nk~: }NPK Command (Secured - ~o Key)
7:36 13: 54: 5~-, 636 +O0:00:00,O?~ 0xO000 0xffff 0×0000 O×£fff Zigbee N~ NNK Co.and (3ecu~ed - No Key)
737 13:54:$6.623 +00:00:03.987 0X7337 0xfff~ 0X7337 0Xfff~ Zi~bee ~ ~ : Data
738 13:55:00.026 +00:00:03.403 0x0110 0×ffff OxOll0 0x~f.ff Zigbee ~ ~ Data
739 13:55:05.169 +00;00:05.143 0x0000 0xffff 0x0000 0xffff Zlgbee ~ NT~K Data

Screen Capture 16. 1 The rings around the Reuters and Coordinator are levels of attempted
intorconnectiuity (broadcast levels) that each node has attained. In other words, these guys are
searching the airwaves for each other and new life forms in a big way.

297

Chapter 16

As you can see at the bottom of Screen Capture 16.1, the ETRX2 network is rather busy for a
low-power, low-data-rate IEEE 802.15.4-based ZigBee network. The ETRX2 nodes are run-
ning at their out-of-the-box factory defaults. We can administer some Ritalin via the ETRX2's
S-Registers to calm things down.

Figure 16.1 is a better view of the Daintree Networks SNA Visual Device Tree window
shown in Photo 16.1. The view in Figure 16.1 is called a Tree layout and is a graphical subset
of the Network View.

J

C

O 0 • . . " , • eO'eo, e"
DaintReNetworks

0110R

Figure 16. 1: Tree layout. I powered off the Router labeled 0110R in midstream. You
probably can't make out the legend, but the Router at the far/eft is the "recovered"
version of 011OR.

The constellation you see in Figure 16.2 is still a Network View but is shown in the Radial
format.

In the visual in Figure 16.3 is a Topology View of the same Telegesis network you see in Fig-
ures 16.1 and 16.2 but shown here in Tree format.

The Daintree Networks SNA Visual sniffs are really helpful when it comes to understanding
what's going on in a ZigBee network. The real point I want to impress upon you here is that I
did nothing other than appoint a PAN Coordinator and the rest of the work that generated the
traffic I captured with the Daintree Networks SNA was done by the Telegesis ETRX2 modules.

The heart of a Telegesis ETRX2-based network is the ETRX2 ZigBee transceiver module.
The Telegesis ETRX2 module is a low-power 2.4-GHz ISM band transceiver based on the
single chip Ember EM250. That takes care of the hardware.

298

Telegesis

... Oo_...~.
. o ~ e . o -

.... / ,

. DaintreeNetworks.

.f i

/./
j,/,/~

....... %. / / /

Figure 16.2: Radial format. Note the PAN Coordinator is the center of the universe and the
Routers orbit in the nearest radius. ZigBee devices associated with the Routers would orbit
in the ring where the dead node resides.

/
/

/
/
lO
tOd6fOOOOOad9b7

tO00 0
iOOd6fOOOOOaabdd

\
\

\
\

O 0 O . , . d k 0 ! o~o,,o
DaintreeNetworks

7337 R
000d6E)0000ad933

0110R
OOOd6fOOOOOad9b7

Figure 16.3: The dotted lines are association lines with the arrow pointing towards the
parent. Notice that 0110R was originally associated with 7337R until I pulled the plug. I
repowered 0110 much later and it reassociated with the Coordinator.

2 9 9

Chapter 16

The other side of the story is the embedded EmberZNet meshing stack. The integrated Ember
EM250 hardware is the reason for not having to be one of those moon-and-star-pointy-hat RF
guys; the EmberZNet meshing stack eliminates having to also have a software engineering
degree to go with the pointy hat. I can't show you the EmberZnet stack, but I can show you a
naked ETRX2 module. Make the kids leave the room and take a peek at the disrobed ETRX2
I caught on camera in Photo 16.1.

,ETRX2
02 0001181 " i
01Z O60724

. F C C ID:

Photo 16. 1:ETRX2 module, disrobed. Very unassuming. Very powerful Very easy to use.
Very nice.

Look closely at the Telegesis logo in Photo 16.1. That's somebody sitting under a tree! If
you really use your imagination, that person is also reading something. He or she is probably
pouting over the Telegesis tech manuals. Hmmmm...That could be me sitting there.

Enough of the cloud watching. Let's flip this thing over. As you can see in Photo 16.2, the
ETRX2's solder-side view, the ETRX2 is designed to integrate easily into most any hard-
ware design. That's because it's really an IC disguised as a module. Just design in some
ETRX2-complementary pads and you can incorporate instant ZigBee mesh networking into
your project.

You don't have to build up a motherboard to develop your application with the ETRX2 unless
you don't have anything else to do. Telegesis offers an ETRX2 development kit that puts the
1.27-mm header on the ETRX2's solder side, as shown in Photo 16.3.

300

Telegesis

Photo 16.2: The 20-pin DIP outline can be populated with a 1.27-mm header strip, which
makes the ETRX2 pluggable. Otherwise, the pads around the perimeter are the soldering
points. ZigBee integration doesn't get much easier than this.

Photo 16.3: This is how the ETRX2 becomes "portable. " This isn't practical for real-world
applications but it does come in handy if you think you've let the smoke out of the ETRX2.
Note that all of the pins are not used.

We can take this no-solder-no-build-from-scratch idea one step further and mount the ETRX2
on the Telegesis ETRX2 development kit motherboard, as I've done in Photo 16.4.

OK...That takes care of one of the ETRX2 nodes. Telegesis has made it just as easy to get run-
ning quickly on the remote end of the link as well. In Photo 16.5, the ETRX2 is mounted on a
Telegesis MCB (Module Cartier Board), which is also part of the ETRX2 development kit.

301

Chapter 16

Photo 16.4: As you would expect, all of the ETRX2"s general-purpose I/0 lines are opened
up to a header. The buttons and LEDs can be put into or taken out of the ETRX2"s circuit
with jumpers. There's an Atmel microcontroller in this mix somewhere, as the 10-pin header
near the center of the board mates to an Atmel programming device.

Photo 16.5: Two buttons, two LEDs, a piezo speaker and a light sensor--that's the mix
on the MCB. Power for the MCB can be taken from the 4-pin header pins, which also
pin out the TX and RX serial connections, or the power connector with the "T" label. The
1.27-mm connection pads are not used and the ETRX2 is mounted directly to the MCB
by its solder pads.

The ETRX2 nodes can be exercised using the Telegesis Terminal program, which is a free
download from the Telegesis web site. As you can see in Screen Capture 16.2, every aspect of
an IEEE 802.15.4 network and flecks of ZigBee network functionality can be easily con-

trolled by the click of a mouse button.

302

Telegesis

coM~ ~ i i l l l l m D ~ l ~ 9 2 o o

D i s a b l e
.

Stett~: Connected to COM1
,T~F

OK

8PAN:ZI,ZCSA

Screen Capture 16.2: I issued a Factory Default command (AT&F) and the ETRX2 mounted
on the ETRX2 development board irnmediatelyjumped on starting a PAN with a PAN ID
of Ox2CSA on channel 21.

Let's take control and use the Telegesis Terminal application to construct a network of our
own. Instead of showing you screen shots of the Telegesis Terminal transactions, I'll translate
the Telegesis Terminal screen contents to plain text. Each AT command must be followed by
a carriage return/line feed sequence, which I will not show in the text translations. Be aware
that the CRJLF sequences are present even though I 'm not listing them for you.

We'll begin by issuing the Factory Default command once again via a click on the Factory
Default button in Screen Capture 16.3.

3 0 3

Chapter 16

Screen Capture 16.3: The Factory Default button issues AT&F to the ETRX2.

The ETRX2 immediately attempts to start a PAN. However, I want to control the start of a
PAN. So, I issue the Dissassociate Local command:

AT+DASSL

The ETRX2 responds with the message "LeftPAN". At this point, rather than allow the
ETRX2 to choose a channel on which to establish the PAN, I will limit the establishment of
the PAN to channel 11. This is easily done via S-Register S00, the Channel Mask register.
S-Register S00 defaults to 0xFFFF, which includes all 16 of the 2.4-GHz ISM band IEEE
802.15.4 channels. If we only want to use channel 11, we must set S-Register S00 to 0x0001.
Clicking on the S-Register button only partially filled in the Command window with "ATS". I
had to manually enter "00=0001" before clicking on the Send button in Screen Capture 16.4.

5creen Capture 16.4: We're always looking for an "OK" to be returned, indicating the
successful completion of the command.

I received an "OK" and to make sure that S-Register S00 is actually filled with 0001, I clicked
on the Display All button you see in Screen Capture 16.4 and obtained the following result:

AT+TOKDUMP

S00:0001

S 01 : FFFF

I 'm only showing S-Register S00 and S-Register S01 here as the contents of all 52 of the
ETRX2's S-Registers were displayed. Obviously, AT+TOKDUMP is the AT command to dump
the S-Register bank's contents. It's important to note that I received an "OK" at the end of the
last S-Register value. If you're talking to a microcontroller, your firmware will have to be ready

304

Telegesis

to pick up that positive acknowledgment after every successful AT command invocation. If you
really don't want to deal with the "OK" prompt handing, you can disable it by clearing bit 8 of
S-Register S08. In fact, you can disable a bunch of prompts in S-Registers S07 and S08.

I showed you the default setting of S-Register SO 1 (0xFFFF) as we're about to make a change
to that value as well. S-Register SO 1 holds the preferred PAN ID. Let's get Brylcreme and
set the PAN ID to 0xlDAB (will do ya). For the youngsters in the audience, Brylcreme was
a men's hair cream and their commercial jingle was centered around "one dab will do ya."
Anyway, I executed the contents of the S-Register command shown in Screen Capture 16.5.

Screen Capture 16.5: One DAB will do ya" Keep your eye on that Remote S Reg button
as we'll be clicking on that puppy soon.

As expected, all is good in S-Register land. The AT+TOKDUMP command did its thing and I
checked its work with a click on Display All:

AT+TOKDUMP

S00:0001

S01 : IDAB

Recall that we were able to name nodes using ASCII characters in the Rabbit Semiconduc-
tor ZigBee implementation. Well, we can do that with the ETRX2 as well. Just for grins let's
use the command in Screen Capture 16.6 to name this node MOTHERSHIP. Remember
STARCHILD? Well, if you purchased the Parliament album like I asked you to, you would
know that STARCHILD was a resident of the MOTHERSHIP.

Screen Capture 16.6: As STARCHILD would say, "If you hear any noise, it's just me and
the boys. "

305

Chapter 16

So far, so good. As we' re passing through these AT commands, put them into the context of
originating from the UART of your favorite microcontroller. I pulled a Display All and here's
where we are"

AT+TOKDUMP

S00:0001

S01:IDAB

S02:3

S03:<hidden>

S04:MOTHERSHIP
**

That's enough custom stuff for the PAN for fight now. Before we test our S-Register selec-
tions by establishing a new PAN, I scanned for pans with a click to the Scan For PANs button
in Screen Capture 16.7.

Screen Capture 16. 7: The response to Scan for Pans command A T+N was +N=NoPAN.

Establish PAN is the next step in our journey. I clicked on that bugger and here's what was
returned in the Telegesis Terminal window:

AT+EN

JPAN: l l , IDAB

Obviously, AT+EN is the AT command to establish a PAN and the response contains our
selected channel and our selected PAN ID. All of this time I had an ETRX2 scanning the 2.4-
GHz channel space searching for a PAN to join. Once the 0xlDAB PAN came to life, this is
what was displayed in the Telegesis Terminal window:

NEWNODE • 000D6F00000AD933

Now we can have some real fun. Check out the LED buttons in Screen Capture 16.8.

306

Telegesis

Screen Capture 16.8: All of the buttons you have seen me use in the Telogosis Termina!
application are soft and programmable.

I know from the ETRX2 development kit documentation that the ETRX2 on the MCB has the
pair of LED cathodes attached to bits 5 and 7 of the ETRX2 general-purpose I/O pins. Since
there are only a couple of buttons and a couple of LEDs tied to the ETRX2's general-purpose
I/O interface, I can tum the remote ETRX2's LEDs on and off by simply carpet bombing the
ETRX2's general purpose I/O with 0x0000 and 0x00F0, respectively. That's exactly what I
did in Screen Shots 16.9 and 16.10.

-Put ON LED Buttons !!:

Sink H andling - R2xx
.

Screen Capture 16.9: Lights on...

307

Chapter 16

-Put OFF LED Buttons

Sink H ~ - R2~

Screen Capture 16. 10: Lights off...

The ATSREM command is the remote version of the ATS AT command. Trust me. When I
click on the LED 1 ON button, the pair of LEDs on the remote ETRX2 node illuminate.

Suppose I want to read the status of the switch closures on the remote ETRX2 node. No wor-
ries. Here's the command:

ATSREMI 1 : 000D6F00000AD933 ?

S-Register SII is the input buffer of the remote ETRX2's general purpose I/
O, while S-Register S0F is the output buffer. The results of my depressing
various button combinations on the remote ETRX2's MCB are shown following
the initial read with no pushbutton activity:

ATSREMII:000D6F00000AD933?
SII:0FF7
OK
ATSREMII:000D6F00000AD933?
SII:0FF4
OK
ATSREMII:000D6F00000AD933?
SII:0FF6

// Both pushbuttons inactive

//Both pushbuttons depressed

//Pushbutton 1 depressed

308

Telegesis
OK
ATSREMII:000D6F00000AD933? //Pushbutton 2 depressed

SII : 0FF5

OK

Obviously, from the pushbutton trace results the MCB's pushbuttons are connected to the pair
of least-significant bits of the ETRX2's general-purpose I/O. I created a button in the Sink
Handling-R2xx group to obtain the status of the MCB's pushbuttons in Screen Capture 16.11.

BUTTON STATUS

AT SREM11: 000D 6F0000~D 933?

CHECK MCB PUSHBUTTON STATUS

Screen Capture 16. 11 The text in the Description window is displayed
when the button is moused over.

Screen Capture 16.12 shows you what the new button looks like.

We spoke earlier about slowing down the traffic flowing in the default ETRX2 network. The
ETRX2 contains eight individually programmable timer/counters that control such things as
waking from sleep, when to poll for data, when to take an analog-to-digital converter reading
and what power modes to assume depending on a timer.

The idea behind the ETRX2 transceiver is to allow the ZigBee network application program-
mer to use the well-knowN AT command-set template to configure the operational parameters
of an ETRX2 node using a simple 3-wire serial port and the ETRX2's internal S-Registers.

309

Chapter 16

Screen Capture 16.12: The Telegesis Terminal application can be used to completely test
all of your projects" AT commands before you hardcode them into your microcontroller-
based ETRX2 application.

From an implementation standpoint, using the ETRX2 transceiver modules is a no-brainer.
Just call Danny at Lemos and tell him how many ETRX2 modules you want.

If the built-in functionality of the ETRX2 modules doesn't suit your application's needs,
you can use Ember's Insight development toolsuite to totally customize the operation of the
ETRX2.

About Telegesis
My association with Telegesis is by way of Danny Lemos at Lemos International. Danny and
the folks at Telegesis were also first-responders to my cry for help with ZigBee. In fact, many
of the cutting-edge RF products, such as the ETRX2, that I have the opportunity to write
about are products offered by Lemos International. Thanks, Danny, for your contribution to
the content of this book.

I don't know about you, but singing "A Boy Named Sue" in front of a bunch of inmates could
have consequences. However, Johnny Cash did it more than once.

310

CHAPTER 17
Cypress MicroSystems's CapSense

Does PSoC mean anything to you? If PSoC is not in your vocabulary, here's a weather satel-
lite view. PSoC is a product of Cypress MicroSystems and mixed signal is PSoC's claim to
fame. A PSoC device incorporates internal analog and digital building blocks that are con-
nected by firmware. The PSoC building blocks interact in input to output fashion using the
PSoC's internal multiplexer and bus infrastructure. A PSoC application allows one to string
together and interconnect comparators, timers, PWM modules, digital communication blocks
(RS-232, IrDA, I2C, SPI, etc.), counters, analog-to-digital converters, digital buffers and digi-
tal inverters, which can generate and process real-world signals according to the firmware you
feed into the PSoC's on-chip microcontroller. The latest addition to the PSoC mixed-signal
array is the CapSense CSR (Capacitive Sensor Relaxation Oscillator) User Module.

Capacitance-based touch sensors are easily realized with mixed-signal PSoC devices. The
Cypress PSoC engineers have put together a combination of PSoC hardware, practical capaci-
tive touch sensor design guidelines and a capacitive sensor library complete with API calls that
makes putting together a PSoC capacitive-based touch sensor design quick and easy. If you
want to jettison the mechanical switches in your ZigBee or IEEE 802.15.4-based design, the
CY3212-CapSense Training Board and the theory behind it will provide you with the knowl-
edge needed to replace those mechanical switches with simple capacitive touch pads that can
be etched directly on your ZigBee or IEEE 802.15.4-based device's printed circuit board. In
addition, the PSoC device providing the touch pad service can focus its remaining digital and
analog resources on other parts of the application that the touch pads are supporting.

Capacitive Sensing Basics
Sports-drink commercials bombard you with the thought that you need to drink their products
to replace those electrolytes your body loses when you sweat. Those very same electrolytes
you're running out of your pores are the reason why human fingers and capacitive touch pads
work so well together. The electrolytes we carry around every day, coupled with our lossy
dielectric-like skin, allow us to hold an electrical charge.

A typical capacitive touch sensor consists of an electrically isolated printed circuit pad sitting
inside of a ground-plane area. Isolation of the printed circuit pad is provided by a 0.040-
inch gap etched around a 0.40-inch pad. The result of this pad/ground plane arrangement is
a simple capacitor. Unlike the enclosed parallel-plate capacitors you mount on your project
boards, our CapSense-oriented capacitor plates are side by side, exposing some of the elec-
trical field bands, which form energy bands between the capacitor's pair of open plates and

311

Chapter 17

ground. Because a finger is able to conduct and thus hold a charge, placing a finger in the
proximity of our open-face pad/ground-plane capacitor increases the conductive surface of
our simple open-faced printed circuit capacitor. The additional conductive surface supplied by
the intruding finger adds additional charge storage capacity, which we can see as an increase
of capacitance between the capacitive sensor and ground. Interestingly enough, the finger
adding the capacitance does not have to be grounded. In fact, the finger's added capacitance
can be sensed if the finger is grounded or floating. Sensing of the finger's capacitance is
accomplished by the finger's charge participating in the electric fields spilling from around
the pad/ground plane sensor. This interaction of fields implies that the finger doesn't have
to physically touch the capacitive sensor to be sensed. The ability of the capacitive sensor to
sense the finger without physical contact allows a thin nonconductive coveting such as glass
or lead-free plastic to be placed over the sensor.

CapSense Basics
All we need now is a way to sense the change in capacitance that occurs when a conductive
object comes within proximity of our open-faced capacitive sensor. If we can sense a capaci-
tance change in one capacitive sensor, there's no reason why we can't do the same for an
array of capacitive sensors. However, if we decide to deploy an array of capacitive sensors,
we must have a way to interrogate each of the sensors individually and report the sensor's
status. That's where the PSoC comes in.

CapSense is implemented within a PSoC using a relaxation oscillator circuit consisting of a cur-
rent source, a sensor capacitor, a comparator and a discharge switch, as shown in Figure 17.1.

The arrangement of analog and digital building blocks in Figure 17.1 is officially called a
CSR User Module. The sensor capacitors you see depicted in Figure 17.1 are actually an ar-
ray of capacitive touch sensors.

When selected by the analog mux, the capacitive touch sensor is attached to the CSR User
Module and begins to be charged by the CSR User Module's DAC-controlled current source.
Meanwhile, the PWM is set to its start value and the oscillator is enabled. The CSR User
Module's comparator will trip and close the discharge switch when the voltage across the
capacitive sensor reaches the comparator's preset threshold voltage. The charging ramp and
the discharge cycle create a sawtooth waveform across the capacitive sensor. As the sen-
sor charges towards the comparator threshold voltage, the comparator's output remains low.
When the comparator threshold voltage is reached, the comparator output will go high.

By design, the comparator trip time and reset switch add a fixed delay of two system clocks.
The output of the comparator is synchronized with the system clock to make sure that ample
time is allowed to completely reset the charging voltage on the selected capacitive sensor.
Each time the comparator threshold is reached and the comparator output changes state, a
high-going pulse will appear at the output of the comparator. The CSR User Module's PWM
is counting these comparator output pulses. While the PWM is counting comparator output
pulses, the 16-bit counter gate is enabled, allowing the 16-bit counter to accumulate clocks

312

Cypress MicroSystems's CapSense
VDD

_.L sc

CP(1) Z
I0-30 pF~
Typical

PWM
(Gate)

24 MHz "•cCOUnterl 6
PTURE

Cap
Charging
Waveform
Oscillator
Output [1 I1 rl ... I1 rl I1

Counted
SysCIk

_i I

U.I

09
Z o
I-- E~ O F F

ON

\ /

NOISE
THRESHOLD

/ \

I
I
I

FINGER
THRESHOLD

C O U N T S

Figure 17. 1 The sensor capadtors in this diagram are actually capacitive sensors that respond
to the proximity of a conductive object such as a finger. The PSoC allows each sensor to be
muxed into the CSR (Capacitive Sensor Relaxation Oscillator) circuitry.

313

Chapter 17

from its 24-MHz signal source. The PWM will eventually count down to zero and disable the
gate signal to the 16-bit counter. The raw count yielded by the 16-bit counter is then trans-
ferred to the CSR_iaSwResult integer array. The counting of pulses by the PWM module is
associated with what Cypress calls the Period Method of measurement.

If you use your imagination to stretch and compress the sawtooth cycles you see in Figure
17.1, you'll come to the conclusion that the larger the sensor capacitance, the longer the ramp
of the sawtooth cycle will be, which means more time between PWM counts, resulting in a
longer 16-bit counter gate time and more counts accumulated by the 16-bit counter.

The determination as to whether a finger is influencing the sensor is based on the difference
in baseline counts versus finger counts. Initially, baseline counts are accumulated at start-up
time while there is nothing in the proximity of the capacitive sensors. Each sensor is scanned
and its initial baseline value gets stored in the baseline array. The baseline is historically
updated on every user-determined number of scans defined by the Update Rate parameter.
Keeping track of the baseline insures that changes in the characteristics of the capacitive sen-
sor due to environmental changes are accounted for.

Noise Threshold is defined as the number of counts below sensor turn-off. If the sensor's
difference value is within the positive and negative limit of the Noise Threshold, the baseline
value of that sensor is updated using an IIR filter. The IIR filter adds 75% of the previous
baseline and 25% of the current raw data count to form the new baseline value. If the sensor's
difference value is in the dirt as far as noise is concerned, the current raw data count becomes
the baseline value. If the sensor isn't in the dirt and the difference value is not within the posi-
tive and negative limit of the Noise Threshold, the baseline value is not altered. The opposite
of Noise Threshold is Finger Threshold, which is defined as the number of counts needed to
consider the sensor as "ON". The combination of the Noise Threshold and Finger Threshold
cut-off points create a welcomed hysteresis effect.

The baseline count is a 16-bit variable with a maximum value of 0xFFFE The CSR User
Module's baseline adjust routine multiplies the raw baseline count by four to maximize reso-
lution. Thus, our raw finger count cannot exceed 0x3FFF counts. The PSoC documentation
doesn't mention running the CSR User Module at any other system clock frequency except
24 MHz. So, our maximum sensor count time at 24 MHz is 42 nS (1/24 MHz) multiplied by
16383 (0x3FFF), which gives us 682 ps.

The idea behind the CSR User Module is very simple and it works very well. If you've been
around as long as I have, you've built similar capacitive-controlled circuits using the famous
LM555. If you're just a young pup and wouldn't know a 555 if it fell on you, it may inter-
est you to know that you can build up an emulated LM555 using the elements of a PSoC. If
you're interested in the LM555 in PSoC clothing, there is a PSoC application note that tells
you all about it. However, we're not here to create PSoC 555 timers. So, let's take a look at
the CapSense hardware implementation offered by Cypress.

314

Cypress MicroSystems's CapSense

CapSense Hardware
My CY3212-CapSense Training Board is shown in Photo 17.1.

Photo 17. 1 The CY3212-CapSense Training Board is very unassuming. There's just enough
stuff here to sense your finger on the pads and slider. The CY3212-CapSense Training Board
includes a CY8C21001 OCD part, which adds a bunch of advanced debugging clout to
this unassuming development board.

As you can see in Photo 17.1, the CY3212-CapSense Training Board's capacitive sensor
array consists of seven etched buttons and a slider, which is made up of 16 capacitive sensor
segments. All of the CapSense work is done by a single CY8C21001 OCD (On-Chip Debug-
ger) part. The CY8C21001 stands in place of the CY8C21434 PSoC that it emulates on the
CY3212-CapSense Training Board. Using the CY8C21001 instead of the stock CY8C21434
PSoC allows the human PSoC CapSense designer to use the more powerful PSoC emulation
and debugging tools for CapSense project development.

Speaking of programming PSoC devices, the CY3212-CapSense Training Board comes with
a PSoC MiniProg module, whose likeness has been captured in a photograph in Photo 17.2.

Photo 17.2: Using this handy little device, I was
able to program my CapSense code changes into
the CY8C21001 and run them without having
to remove the PSoC MiniProg module from the
CY3212-CapSense Training Board ISSP socket.

315

Chapter 17

The PSoC MiniProg is driven by a USB-enabled program called PSoC Programmer. PSoC
Programmer has the ability to instruct the PSoC MiniProg to reset and power the CY8C21001
after programming, which is very handy when you're running through quick little code
changes. The PSoC MiniProg worked so well for me that I not once pulled out my PSoC
emulator. Another plus the PSoC MiniProg module provides is to eliminate the need for a
wall wart.

The 16 x 2 LCD mounted on the CY3212-CapSense Training Board is used to visually
indicate which capacitive sensor is excited. One of the coolest things you can do is slide your
finger across the sensor while checking out the LCD. The default CapSense demo program
not only indicates numerically where your finger is on the slider but it also tells you which di-
rection you're moving it (fight or left). For those of you that are musically inclined, a speaker
is also part of the CY3212-CapSense Training Board. I've pulled up close on the business end
of the CY3212-CapSense Training Board for you in Photo 17.3.

Photo 17.3: Another advantage of using PSoC devices is the reduced number of popcom and
glue parts needed by the final PSoC hardware. Most of the stuff you see in this picture would
be eliminated if this were to become a commercial product. Note the hatch groundplane,
which is recommended and spedfied in the CapSense design documentation.

CapSense Logic
I 'm sure interactive books are on their way. However, they ain't here yet. So, showing you
what happens on the LCD every time I touch a sensor isn't going to happen fight now. In-
stead, I'll physically remove the LCD, make a slight PSoC hardware change and gain access
to the CY8C21001's CapSense results by way of good old RS-232.

Before we make our modifications, let's look at the PSoC Designer view of the original CSR
User Module hook-up that you get when you run the LCD demo that comes loaded on the
CY8C21001. Shift your attention to Figure 17.2 for a moment.

316

Cypress MicroSystems's CapSense

Figure 17.2: PSoC Designer includes a CSR User Module wizard that is used to assign the CSR_ 1 sensor
inputs to their respective PSoC general-purpose I/0 pins. Note that the L CD is assigned exclusively
to Port 2. The CSR User Module is cast in stone and will always populate the PSoC resources and
make the connections you see in this figure.

The little tag labeled with a "1" feeding the ACE00 comparator module's clock input is the
PSoC's 24-MHz system clock. Although the PSoC Designer view doesn't show it in detail,
the comparator's input is actually muxed to the capacitive sensor buttons that are attached to
the PSoC's Port 1 and Port 3 general-purpose I/O pins using an internal AnalogMuxBus. This
internal AnalogMuxBus is also used to connect the CSR User Module's DAC current source
and reset switch.

The comparator's output, which is also not obvious to the most casual observer, is routed
internally to GOO4 (GlobalOutputOdd4). An interconnect resource takes the GOO4 signal to
GIO4 (GLoballnputOdd4), which is connected to RIO[0]. The PSoC PWM module gets its
input from RIO[0], whose signal path we just traced back to the comparator output.

The PWM module output feeding RO013] is passed to the NOT-input side of the [--A AND
B] gate fed by RO013]. The remaining PWM module output takes the RO0[0] rail to the
B side of the RO013] [~A AND B] gate. The output of the [--A AND B] gate feeds GOO7
and interconnects to GIO7, which feeds into RIO[3] and the 16-bit counter module's
input.

Figure 17.2's hardware layout uses an associated PSoC C program to put the number of the
sensor touched on the LCD. I want to show you some count values associated with the sensor

317

Chapter 17

activations and the best way to do that is to feed the count values out through a standard serial
connection to a terminal emulator running on a personal computer.

Figure 17.3 is a PSoC visual of my version of the touchy-feely CSR User Module application.
The CSR User Module is laid in concrete and there are no changes that I could make there.
I need to get at the CY8C21001's general-purpose I/O pins that are attached to the LCD, as
they are the only way I can get signals out of the CY8C21001 without having to micro-solder
wirewrap wire directly to the CY8C21001 pins. (I think you'll see what I mean when you
look back at Photo 17.3.) So, using PSoC Designer I eliminated the LCD connections on the
CY8C21001's Port 2 general-purpose I/O pins and pulled the physical LCD from its 14-pin
SIP socket on the CY3212-CapSense Training Board. I can stick some header pins into the
LCD SIP socket and use jumpers to get the signals I need out.

Figure 17.3: I left the CSR User Module alone, scuttled the LCD connections and added an 8-bit serial
transmitter user module. I used the PSoC Designer resources to assign a clock to my new transmitter
and make the connection from the transmitter output to a PSoC general-purpose I/0 pin.

The PSoC module library includes separate serial transmitter and serial receiver user mod-
ules. I really don't need to receive any data here. So, the PSoC 8-bit serial transmitter module
will do just fine. After loading the CSR User Module into the configuration, the architecture
of the CY8C21434 that is being emulated by the CY8C21001 leaves me with a single digi-
tal module (DCB03), which I can put to good use as an 8-bit serial transmitter. To use the
DCB03 as an 8-bit serial transmitter, all I have to do is set the baud clock and connect the

318

Cypress MicroSystems's CapSense

output of the 8-bit serial transmitter to a CY8C21001 general-purpose I/O pin left open by
the removal of the LCD. Setting the baud clock is an easy task, as the PSoC requires the 8-bit
serial transmitter be clocked at eight times the bit rate. I want to run the 8-bit transmitter at
115200 bps. So, with a 24-MHz system clock, I need to divide the incoming system clock by
26 to achieve the 8x bit clock. Performing the system clock division is an easy task, as all I
have to do is specify the system clock source, specify the clock output portal and dial in a di-
visor of 26 for the output portal in the PSoC Designer Global Resources window. Once I have
the bit-rate parameters set, all that's left to do is connect the serial transmitter module's output
to one of the CY8C21001's Port 2 general-purpose I/O pins. The PSoC CY8C21001 doesn't
have the resources available to do the digital-to-RS-232 voltage-level conversion. That's OK,
as I have literally dozens of prototypes containing the necessary TTL-to-RS-232 conversion
circuitry that I can tap the serial transmitter's output into.

The capacitive sensors of the CY3212-CapSense Training Board are in the open and are not
covered with an overlay. The absence of an overlay makes the sensors very sensitive. Thus,
the scan speed of the CY3212-CapSense Training Board sensors is set at the minimum of
three, which scans for a single oscillator period. Three is the minimum for a single oscillator
period as two oscillator periods are added to compensate for the PWM interrupt overhead.
The DAC current also has to be adjusted for the conditions, as the number of raw counts is
inversely proportional to the amount of DAC current supplied to the sensor. In one of the
CapSense application notes, the Cypress CSR User Module application engineer who au-
thored the app note points out that capacitive touch sensing is an art. With that in mind, the
calibration extents of the CY3212-CapSense Training Board sensors have been determined to
lie within a range of 290 to 310 raw counts with no fingers present. A simple loop increments
or decrements the DAC-controlled current source value for each of the seven individual sen-
sors using the CSR_StartScan and CSR_SetDacCurrent API calls until each sensor raw count
falls into the calibration extents that were specified. I read in another CapSense document that
much of what one has to deal with when designing capacitive touch-sensing applications is
left up to experimentation. I 'm sure that's where the 290-310 numbers came from, as there
is absolutely no technical or mathematical explanation of how these numbers were chosen in
the CapSense documentation. Personally, I like to use SWAG design methods every now and
then. Right now, the Finger Threshold is set for 100 and the Noise Threshold value is set to
40 within PSoC Designer. Given the aforementioned values were most likely derived from the
physics of the CY3212-CapSense Training Board, I'll leave them be. I'll also let the current
BaselineUpdateRate value of 40 stand.

Once all of the sensors are calibrated, we can call upon the CSR_bUpdateBaseline API for the
interrogation of the sensors one by one. Because the CSR User Module is multiplexing the
sensors into a common CSR User Module configuration, the DAC current calibration value
for each particular sensor is loaded before the selected sensor is scanned.

Here's what goes on inside the CSR_bUpdateBaseline API call. The CSR_bUpdateBaseline
API call interprets the raw sensor data and is responsible for many of the numbers I generated
with a touch of the CY3212-CapSense Training Board's 0 sensor in Figure 17.4.

319

Chapter 17

Sensor I waSnsResult I baSnsOnMask[0] iwaSnsD~0] i bBaselineUpdateTimer i waSnsBaseline/4

....................... 6 i 6 1 g i i 0 0 6 1 T 6 6 g g i .. o 0 2 f ... i ... 6 i 1 2 c "
0 01 C2 0001 0096 0026 i 012C
0 01C 1 0001 0095 . 0025 i 012C
0 01C7 0001 009B 0024 : 012C
0 01C3 0001 0097 0023 i 012C
0 01C9 0001 009D i 0022 ~ 012C

.................... 6 .. 6 i C E ... 6 6 6 i ... i 5 5 ~ i ... 062-0 ... i 6 i 2 C

Figure 17.4: The sensor with a finger on it is indicated by the bit mask in the baSnsOnMask column.
Raw counts are tallied in waSnsResult and the baseline counts used in the difference calculation are
found in the waSnsBaseline/4 column. The waSnsDiff[O] value is used by the CSR_bUpdateBaseline
API call to make an "ON/OFF" decision.

A difference value, which is stored in waSnsDiff[0] for sensor 0, is calculated by subtract-
ing the previous baseline value (waSnsBaseline/4) from the raw data (waSnsResult) obtained
from sensor 0 (zero). Note that in Figure 17.4 the bBaselineUpdateTimer value begins with
0x28 and every time the CSR_bUpdateBaseline API call returns a positive result (a sensor is
"ON") the bBaselineUpdateTimer value is decremented. When the bBaselineUpdateTimer
value exhausts itself, the CSR_bUpdateBaseline API is eligible to perform an update on the
sensor's baseline value depending on the Noise Threshold value, as I described earlier. For us,
the most important thing the CSR_bUpdateBaseline API call does is determine if the sensor
is "ON" or "OFF". The determination of the sensor status is stored in the baSnsOnMask[0]
array as a "1" for "ON" and a "0" for "OFF".

I've provided the listing (Listing 17. l) that generated the numbers you see in Figure 17.4.

List ing 7.1

//

/ / For Board: CY3212-CapSense RevC
// Chip: CY8C21434-24LFXI
/ /
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

Project Settings (in the Device Editor):

Global Resources :
Power Setting [Vcc/SysClk freq]: 5.0V / 24MHz
CPU_Clock- SysClk/l

User Module Parameters:
Method: Period
FingerThreshold: i00
NoiseThreshold- 40
BaselineUpdateRate: 40
ESDDebounce: Disabled

3 2 0

Cypress MicroSystems's CapSense
/!

// bit masks defuned for each button
#defune BUTTON_0 0x01
#defme BUTTON_I 0x02
#defme BUTTON_2 0x04
#define BUTTON_3 0x08
#defune BUTTON_4 0xl0
#defme BUTTON_5 0x20
#defune BUTTON_6 0x40
// defme the number of switches in this system
#defune NUM_SWITCHES 7
// the followin defmes the ranges for the raw counts
// during the calibration routines
#defune DAC_MAX_RAW_COUNT 310
#defme DAC_MIN_RAW_COUNT 290

void CalibrateSwitches (void) ;
// Array that holds the individual DAC settings for each switch
BYTE bDACcurrent [NUM_SWITCHES] ;
WORD i,x;
//

void main()
{

CSR 1 Start(); // call CSR Start, does all the internal CSR connections
M8C_EnableGInt; // Enable global interrupts
TX8 1 Start(TX8_I_PARITY_NONE);
CalibrateSwitches();

while(l) // start the main loop
{

// scan each switch individually
for (i=0; i<NUM_SWITCHES; i++)
{

CSR 1 SetDacCurrent(bDACcurrent[i],0); // Sets DAC current
CSR 1 SetScanSpeed(3); // use a scanspeed of three (no overlay so

buttons are very sensitive)
CSR 1 StartScan(i,l,0); // Scan one Switch (i)
while(!(CSR 1 GetScanStatus() & CSR 1 SCAN_SET_COMPLETE));

// wait until the scan is complete
}

// call the update baseline function which does several functions, the
two main

// functions it provides are:

// i) updates each switches baseline (if necessary and according to
the rate

// set by the updateBaseline value
// 2) determine the button status (on/off) and places this value
// in CSR 1 baSnsOnMask[]

// if any of the buttons are determined to be "ON" then the function
will

// return a non-zero value

321

Chapter 17

if (CSR 1 bUpdateBaseline (0))
{

// check to see if BUTTON 0 is on or off
if ((CSR 1 baSnsOnMask[0]) & BUTTON_0)
{
TX8 1 PutChar('0') ;
TX8 1 PutChar(',') ;
TX8 1 PutSHexInt (CSR 1 waSnsResult [0]) ;
TX8 1 PutChar(',') ;
TX8 1 PutSHexInt (CSR 1 baSnsOnMask[0]) ;

TX8 1 PutChar(',');
TX8 1 PutSHexInt (CSR 1 waSnsDiff [0]) ;

TX8 1 PutChar(',') ;
TX8 1 PutSHexInt(CSR 1 bBaselineUpdateTimer) ;
TX8 1 PutChar(',') ;
TX8 1 PutSHexInt(CSR 1 waSnsBaseline[0]/4) ;
TX8 1 PutCRLF() ;

}
// check to see if BUTTON 1 is on or off
if ((CSR 1 baSnsOnMask[0]) & BUTTON_I)
{

TX8 1 PutChar('l') ;
TX8 1 PutChar(',') ;
TX8 1 PutSHexInt (CSR 1 waSnsResult [i]) ;

TX8 1 PutChar(',') ;
TX8 1 PutSHexInt (CSR 1 baSnsOnMask[0]) ;
TX8 1 PutChar(',') ;
TX8 1 PutSHexInt(CSR 1 waSnsDiff[l]) ;
TX8 1 PutChar(', ') ;
TX8 1 PutSHexInt (CSR 1 bBaselineUpdateTimer) ;
TX8 1 PutChar(', ') ;
TX8 1 PutSHexInt(CSR 1 waSnsBaseline[l]/4) ;
TX8 1 PutCRLF() ;

}
III
//
// Function: CalibrateSwitches()
//

// Description"
// This function will automatically determine the appropriate
// DAC values for each switch in the system. The values will be
// stored in the variable - bDACcurrent[]. The function will set
// the DAC value depending on the values set by the following lines:
//
/ / #deftne DAC_MAX_RAW_COUNT 310
/ / #define DAC_MIN_RAW_COUNT 2 9 0
//
// These lines are located at the top of the program and give a range
// for the raw CSR count values to be in to set the DAC value. This
// function will iterate through each switch. It will do a single
// scan and compare the raw count values with the range defuned above.

322

Cypress MicroSystems's CapSense
// If the count values for that particular switch are outside of the
// range, the function will change the DAC value appropriately and do

// a rescan. This process is repeated until the raw counts for each
// particular switch are within the speci~ed range.
//

void CalibrateSwitches(void)
{

BYTE bFlag = i;

for(i=0; i<NUM_SWITCHES; i++) // iterate through all the switches in the
system

{

// calibrate DAC setting for a switch
//

bFlag = i; // reset the Bag to a true state

CSR 1 SetScanSpeed(3); // start with a scanspeed of three to get ONE
oscillator cycle or period

bDACcurrent[i] = 20; // a DAC current of 20 will start us in range

// do one scan and compare the raw count value against
// the defmed range.

// - If the counts are BELOW the set range

// DECREASE the DAC setting to INCREASE the counts

// - If the counts are ABOVE the set range

// INCREASE the DAC setting to DECREASE the counts
do

// set the DAC current

CSR 1 SetDacCurrent (bDACcurrent [i] , 0) ;

// scan just the one button
CSR 1 StartScan(i,l,0) ;

while(!(CSR 1 GetScanStatus() & CSR 1 SCAN_SET_COMPLETE));

// check to see if the counts are in range
if (CSR 1 waSnsResult[i] < DAC_MIN_RAW_COUNT)
{

bDACcurrent[i] ; // counts are BELOW the range so DECREASE the
DAC setting

}

else if (CSR 1 waSnsResult [i] > DAC_MAX_RAW_COUNT)
{

bDACcurrent[i]++; // counts are ABOVE the range so INCREASE the
DAC setting

}

else
{

bFlag = 0; // the counts are in range so exit the do loop
}

}while (bFlag); //if the Bag is still 1 then go back and rescan the
switch

}
}

323

Chapter 17

It was very refreshing to discover that the CapSense application engineers admitted that
you will need more than the math and theory to build up a good CapSense implementation.
However, the CapSense documentation and application notes provide more than enough of
the engineering stuff you'll need to mix with your experimentation. The PSoC takes most of
the behind-the-scenes complication out of putting an embedded capacitive touch application
together. I've included this informational discussion centered on the CapSense technology
because it can be directly applied to a ZigBee or IEEE 802.15.4 application.

About Cypress MicroSystems
If you haven't experienced PsoC, you owe it to yourself to get your hands on a PSoC de-
velopment kit. PSoC devices are geared towards low-power operation and fit perfectly into
sensor-based designs.

324

The Final Word
About halfway through the writing of this book, the ZigBee Alliance decided that they wanted
to field a new ZigBee Specification. Oh, Boy! I figured all of my work up to that point was
null and void. To make matters worse, the ZigBee folks weren't going to release the new spec
to the general pubic until after this book was published.

I 'm just a poorboy from Tennessee. So, I couldn't cough up enough money to join the Zig-
Bee Alliance. However, I ain't too proud to beg (Temptations 1966 / Rolling Stones 1974).
Governments around the world should consider looking into the ZigBee Alliance's security
practices as I could not get one drip of advance information from any of the ZigBee Alliance
members.

I've learned over the years that one must find an outlet for stress created by situations like
this. So, I loaded up a few ammo cans, packed my heat (I prefer carrying GLOCKs) and
jumped into the Jeep. My friend, Steve Kennedy, who happens to own The Gunsite, my favor-
ite pistol range, welcomed me into his place and bent his ear to my dilemma. After listening
to me whine, Steve just shook his head and handed me a bunch of targets.

After the smoke cleared, I did some web surfing and noticed that not one of the 802.15.4
radio manufacturers was changing their radios to meet the new spec. I also didn't see a rush
to replace or update any of the development kit hardware I had already examined and writ-
ten about. In addition, there wasn't any buzz about changes to the 802.15.4 2003 standard, as
the 802.15.4 wizards didn't even get out of their South Beach hammocks. As the days passed,
and more shots were fired at Steve's place, it became apparent that I should move on with this
book and worry about the new ZigBee standard only if I had to. After all, how can I write about
something that I can't obtain any information about? That's like shooting in total darkness.

A few weeks later, the ZigBee folks had become so proud of their new baby that they decided
to release the new ZigBee 2006 specification to the general public. My Mom always says
that worrying about things is a waste of time as you have no control of the natural events of
your future. Again, she was fight. The 2006 ZigBee specification lays out some really slick
stuff. However, everything you've learned about the structure of ZigBee and the operations
performed by 802.15.4 by reading this book can still be applied to the new 2006 ZigBee
document. There's rumor that a 2007 ZigBee specification is already in the works. So what?
We're covered.

325

This Page Intentionally Left Blank

Index

A
ADC, 156, 161,163-164, 173
Analog-to-Digital Converter, 113, 135-

136, 165, 193, 213, 250, 276, 309,
311

API, 3, 73, 87, 89-90, 98, 136-137, 155,
159, 171, 174, 178, 181, 196, 215-
218, 220, 222-223, 227-228, 311,
319-320

Application Program Interface, 3
AT86RF230, vi, 38, 63-75, 89, 93, 103,

113, 116
Extended Mode, vi, 70

ATmega 1281, 63, 72-73, 87-89, 102-
103

Atmel, vi, 38, 63-64, 71-75, 83, 85-89,
98, 109, 111, 113, 116, 168-169, 302
IEEE 802.15.4 MAC, 72-75, 83, 85,

87-89, 98, 111
Z-Link modules, 72

BCS, 48, 51-52, 55-56
Beacon, 7, 23, 25, 29-43, 47, 50, 56, 59,

76, 80, 85-86, 91, 99-102, 140-141,
170, 197, 201-202, 217-222, 233-
235, 241,243, 245, 261,286-287,
290-292
Generation, 23, 47
Interval, 37
Order, 36
Request, 39, 99-100, 102, 140, 170,

197, 201,217-221,234, 261,
286, 290-292

Synchronization, 23
BI, 35-38
Binary Phase-Shift Keying, 28
BIOS, 72-73
Bluetooth, 3, 44
BO, 35-39
BPSK, 28
Bulletin Board System, 131

B
Bandpass filter, 113
Basic Communication Software, 48
Basic Input-Output System, 73
BBS, 131

C
Callback Functions, 74
CAP, 30-32, 34-35, 39, 97, 101-102,

141,202, 222, 235, 287
Capacitive Sensor Relaxation Oscillator,

327

Index

311,313
CapSense, vii, 311-312, 314-316, 319,

324
Basics, vii, 312
Logic, vii, 316
Project development, 315

Carrier Sense Multiple Access - Collision
Avoidance, 5, 9

CC2420, xii, 113-127, 169, 193-195,
211-212, 285, 289

CC2420EM radio module, 117-118
CCA Mode, 11, 52
CCA, 9, 11-12, 15, 18-19, 21, 50, 52,

74, 114, 121,124
CE, 138, 220, 222, 224-226, 228
CFP, 30-31
Checksum, 5, 137, 147-148, 294
Chip Select, 116
Cirronet, vi, xii, 166-174, 178, 184, 186,

190-191
Standard Module, 171
ZigBee module, 171,184
ZMN2400HP development package,

178
ZN241Z, 167

Clear Channel Assessment, 9, 15, 74, 114
Clear To Send, 133
Cluster Tree topology, 6-7
CodeWarrior IDE, 251,256-257
Contention-Access Period, 30
Contention-Free Period, 30
Coordinator Enable, 138
CRC, 5, 46, 55, 57-59, 69-70, 114, 122

CSM, 171-174, 177-179, 181,184
Profile clusters, 172-173, 181,184

CSMA-CA, 3, 5, 7, 9, 23, 30-31,41,47,
68-69, 71

CSR, 311-314, 316-323
User Module application, 318-319
User Module, 312, 314, 316-319

CTS, 133, 1 58
CY3212-CapSense Training Board, 311,

315-316, 318-319
Cyclic Redundancy Check, 5, 46
Cypress MicroSystems, vii, 311,324

CapSense, vii, 311
EZ-USB IC, 117
EZ-USB microcontroller, 117

D
DAC, 317, 319, 321-323
Daintree Networks SNA, 32-33, 36-38,

44-45, 48, 50, 54, 93, 104, 122, 125,
139, 164, 170-171,174, 179, 181,
191,197, 200, 205, 208-209, 211,
213, 219-220, 233-234, 236, 240,
242, 245, 247-250, 257, 261-262,
277, 285, 288, 297-298

Data Link Control, 3
Device security, 23
Digital-to-Analog Converters, 193
Direct Sequence Spread Spectrum

technology (DSSS), 3, 46
Direct Sequence Spread Spectrum, 3
DLC, 3
DLP Design, vii, 265-267, 269, 274,

328

Index

278-279
Design module, 274
Design's USB product line, 278
DLP-RFI-Z, 265-269, 278
DLP-RF 1 -Z-Z, 265-266
DLP-RF2-ZRELAY, 269, 273-274
Television, 129

Dongle, 64, 213, 256
DSL, 132
DSSS, 3, 46
Dynamic C, 1 55, 1 57-158, 163-164

STDIO, 157, 163-164

E
ED, 9, 11, 15, 18-19, 21,47, 74, 233-

234, 237, 239
EDTP Electronics, 131
Ember,

EM250 hardware, 300
EM250, 298, 300
EmberZNet meshing stack, 300
Insight development toolsuite,

310
ENC28J60, 146, 148-149
End Device, vi, 6-7, 33, 40-41,47, 50,

55, 75, 83, 93, 98-103, 105-108,
110, 138-144, 156, 163, 168, 171,
173-174, 177-178, 197, 199-203,
205-209, 220, 222, 224, 226-227,
232, 234-235, 242-243, 245-250,
261-262, 281,287, 294

Energy Detect, 9, 233
Ethernet development board, 145

Ethernet, 5, 131-132, 145, 149-150, 153,
155, 165, 288

ETRX2,
Development kit, 300-301,307
Network, 298, 309
Node, 308-309
Transceiver, 298, 309-310
ZigBee transceiver module, 298

F
FFD, 5-7, 72, 97-98, 102-104, 142, 168,

197, 199, 294
Firefly DLC, 3
Firefly MAC, 3
Flash Over USB, 213
FoUSB, 213-215
Freescale Semiconductor, vii, 134-136,

152, 231-232, 244-245, 250-251,
253, 255-257, 260, 264-265, 274,
276
Development kits, 231
Development platform, 232
MC13193, 134-136, 253, 265
MC13213, 231

Full Function Device, 5, 294

G
General Functions, 74
GTS, 21, 23, 30, 32, 34, 39-40, 47, 101,

141,202, 222, 235, 287
Mechanism, 23

Guaranteed Time Slot, 30

329

Index

H
HAL, 10, 49, 72-73
Hardware Abstraction Layer, 10, 73
Hayes modem, 145
HI-WAVE, 256, 258-259

Application, 2 56, 258

I

IEEE 802.1 5.4 Radio, x, 10, 43, 63, 113-
114, 154, 285

IEEE 802.1 5.4, v-vi, ix-x, 1-13, 18, 20,
23-29, 31-32, 34-39, 41-52, 55-56,
59-60, 63-64, 69-75, 83-85, 87-90,
93, 98-100, 104-107, 109, 111,113-
115, 119-120, 122-127, 131-132,
136-138, 140-145, 149, 1 51, 1 54,
161-162, 164-167, 174, 176, 180,
182, 184, 186-191,193-194, 196-
198, 201-204, 206-207, 211-213,
216-221,223-226, 228-229, 231-
232, 234-235, 245, 247-248, 251,
253, 255-257, 261-263, 265-266,
274, 277, 281-282, 285, 287-288,
302,304, 324

Industrial, Scientific and Medical, ix, 45-46
In-phase (I), 27
I-phase, 27-28
ISM, ix, 2-3, 28-29, 35-36, 43, 45-46,

51, 93, 231,298, 304

L
Link Quality Indication, 57
Link Quality Indicator, 9

LNA, 113-114, 135-136
Low noise amplifier, 113, 135-136
Low Rate Wireless Personal Area Network,

7
LQI, 9, 54, 57, 174
LR-WPAN, 7

M

MAC, 1, 3-5, 8-10, 12-14, 18-25,
29, 31-43, 46-47, 49-51, 53-55,
57-60, 69, 72-75, 77-92, 94-102,
104, 106-111, 121, 131, 134, 136,
138-144, 146, 149-150, 161-163,
165, 172-173, 175, 178, 189-190,
196-204, 216-217, 219, 221-223,
225-226, 232-235, 237, 241-242,
245, 247, 249, 262, 265, 281,285-
287, 291-294
Common Part Sublayer, 21, 75
Footer, 33
Header, 33, 55
Mode, 139
PIB, 23-25, 29, 33, 35, 39-41,49, 55,

75, 241-242, 285-286
Protocol Data Unit, 12, 55
Sublayer Management Entity, 14, 21,

55
Sublayer, 5, 9-10, 13-14, 20-24, 31,

33, 35, 40-41, 49, 55, 72, 74-75
MaxStream, vi, 131-132, 135-136, 139,

152
PHY, 136
XBee Modules, 152

330

Index

X-CTU software, 136
MCB, 301
MCPS, 21, 24, 75, 82-83, 96, 98,

109-111, 196, 250
Medium Access Control, 3, 8
Mesh Topology, 7
Metrowerks CodeWarrior Development

Studio, 136
MFR, 33
MHR, 33, 53-55
Microchip Corporation, vii, xii, 18-20,

23-25, 32, 35, 39, 41, 132, 149, 269,
281-282, 284-286, 288-289, 295
ENC28J60, 149
MRF24J40 radio modules, 281
MRF24J40, xii, 20, 281,289
PIC microcontrollers, 132
ZigBee, vii, 18-20, 23-25, 32, 35, 39,

41,281-282,285-286, 288-289
ZigBee Coordinator driver firmware,

282
ZigBee network hardware, 281
ZigBee stack, 18-20, 23, 25, 32, 35,

39, 41,281,285-286, 288-289
MLME, 14-17, 21-24, 42, 49, 55, 75, 78-

82, 84-85, 89-93, 96-99, 101-102,
108-111, 196, 237-241,246-247,
250, 286

MLME-SAP, 21, 24, 49, 89
MM, 139
Module Carrier Board,

301
MPDU, 1, 13-14, 20, 22, 55

MRF24J40, xii, 20, 32-33, 281-285,
288-289

N
ND, 161
Network, 3, 8, 294
Networking and Internetworking with

Microcontrollers, 133
NI, 156, 161, 163-165
Node Discover, 161
Node ID (NI), 156
Nonbeacon, 7, 59, 197, 223, 235
North American ISM, 45-46
NWK, 1, 3, 8, 23, 33, 40, 59, 72, 172-

173, 175-176, 180-183, 185-187,
189-191, 196-198, 200, 206-208,
215-216, 222, 227-228, 237-238,
241-242, 247, 250, 263-264, 286-
287, 293-294

O
Offset-Quadrature Phase-Shift Keying, 27,

65
O-QPSK, 27-28, 65

P

P&E Microsystems, 136
PA, 114, 136
Packetization Timeout, 133
PAN, vi, 1, 7, 10, 23, 25, 29-30, 32-34,

39, 47, 53, 55-56, 59, 75, 77, 79-83,
85-87, 89-94, 96-107, 109-110,
123-124, 131, 137-145, 151-152,

331

Index

156, 159, 161-165, 168, 170,
173-176, 178, 180-182, 184, 187,
189, 197-207, 209, 214, 216-228,
232-250, 257, 261-263, 277-278,
285-287, 289-290, 292-294, 298-
299, 303-306
Association, 23, 101
Coordinator, vi, 30, 32, 34, 39, 47,

75, 83, 86-87, 89-93, 97-104,
106-107, 109-110, 140-144,
156, 159, 161-164, 178, 182,
197, 199, 201-205, 209, 220,
222-223, 227, 232-237, 239-
243, 245-247, 249-250, 257,
261-262, 286-287, 289, 292,
298-299

Disassociation, 23
Information Base, 55

Panasonic PAN802154HAR00, 253-257,
259, 261-262,264

Panasonic, vii, 2, 253-257, 259, 261-262,
264

PAN-to-LAN data transfers, 146
PD-SAP, 10-12, 18, 20-21, 24, 51
PEmicro,

BDM, 232, 256-257
Cyclone Pro, 233
USB Multilink Interface BDM, 256
USB Multilink Interface pins

(BDM pins), 255
Personal Area Network, 7
PHR (PHY Header), 13
PHY, v, 3-5, 8-26, 28, 31, 33, 42-43, 46,

49-53, 55, 72, 74, 84-85, 131, 134,
136, 165, 232, 237, 281,283, 286
Data Service Access Point, 10
Data Service, v, 10, 12-14
FIFO, 20
First In First Out, 20
Layer Management Entity-

Service Access Point, 10
Management Service, v, 14
PAN Information Base, 10
PIB, 10-11, 15-16, 23, 49, 52, 74, 85
Protocol Data Unit, 55
Service Data Unit, 13
Sublayer, 5, 13, 22-24, 51, 72

Physical layer, 3, 8, 14
PIC microcontroller, 20, 269, 282, 295

Master SPI interface, 282
SPI (Serial Peripheral Interface), 282
ZigBee application, 282

PICDEM Z PIC microcontroller hardware,
282

PICDEM Z ZigBee hardware, 289
PLME (Physical Layer Management Entity),

14
PLME-SAP, 10-11, 14, 18, 21, 24, 51
PN, 26, 28
Popular Electronics, 153
Power amplifier, 114, 136
PPDU, 13-14, 17, 20, 55
Pseudo-random (PN), 26
PSoC, 311-319, 324

Application, 311, 314
C program, 317

332

Index

Designer, 31 5-319
Development kit, 324
Devices, 311, 31 5-316, 324
Hardware, 311, 316
Module library, 318

Q
Q-phase, 27-28
Quadrature-phase (Q), 27

R
Rabbit Semiconductor, vi, 153, 155, 165,

305
Development Kit, 1 53, 1 58
Ethernet Development Kit, 153
Microcontrollers, 153, 158, 165
ZigBee/802.1 5.4 Application Kit

XBee interface module, 154
ZigBee/802.1 5.4 Application Kit,

153-157
RabbitCore,

RCM3720 Prototyping Board, 1 54-1 55
RCM3720, 1 54-1 55, 1 57-1 59

Radio Electronics, 4, 153
Radio Frequency Service Access Point, 10
Radio Transceiver, 9
Reduced Function Device, 6, 289
Receiver Enabled (RX_ON), 17
Renesas, vii, 211-213, 21 5-216, 220,

227-229
High-performance Embedded

Workshop (HEW)IDE, 213
M16C, 211

M30280FA development board, 213
M30280FA, 211-213
M30280FA-based ZigBee Development

Board, 211, 213
RF Sniffer board, 229
RTOS, 220
ZigBee stack, 215-216, 220

Request Functions, 74-75
RF (radio frequency), 11, 111

Module, 134, 1 54, 156, 160-161,
164, 167, 173

Packet, 133, 285
Test Equipment, 119

RFD, 5-6, 72, 98, 168, 199, 203, 223,
246, 289-295

RF-SAP, 10-11
RS-232, x, 2, 4, 117, 132-133, 137-138,

145, 151, 154, 168-169, 194, 232,
253-255, 262-264, 267, 311,316

RTA-FoUSB-MON dongle, 213
RX_AAC K_ON (receive/auto-

acknowledge), 69

S
SAP, 12-14, 18, 21-22, 24, 89, 237-238,

286
SC, 138, 156
Scan Channels, 138, 156
SD, 37
Sensirion SliT15 Temperature/Humidity

sensor, 275-276
Sensirion SliT 15, 275-276
Sensor Network Analyzer, 45

333

Index

Serial Peripheral Interface, 282
Service Access Points, 10, 51
SFD, 17, 55, 114, 125
SHR, 13
Silicon Laboratories, vii, 44-45, 48-49,

193-197, 199-200, 205-206, 208
2.4-GHz ZigBee node, 193
C8051F121, 193
CC2420 radio layout, 195
CP2101, 193-194
MAC code, 199
USB Debug Adapter, 44-45, 48, 208
ZigBee development boards, 194, 208
ZigBee module, 197, 199
ZigBee Network Layer Interface, 196
ZigBee node, 196
ZigBee NWK function, 197
ZigBee NWK library, 196-197, 200

Simple MAC, 233
SIPP, 265-268, 274, 276, 278

Data Packet, 265
Firmware, 265, 267-268, 276

SMAC, 136, 233, 256, 265
SmartRF Studio, 116, 119-120, 122,

125-126
SNA, 32-33, 36-38, 44-45, 48, 50, 54,

93, 104, 122, 125, 139, 164, 170-
171, 174, 179, 181, 191, 197, 200,
205, 208-209, 211, 213, 219-220,
233-234, 236, 240, 242, 245, 247-
250, 257, 261-262, 277, 285, 288,
297-298

Sniffer programs, 125

SO, ix-xi, 1-2, 6, 8-9, 11, 20, 24, 27-29,
31, 35-39, 45, 49-52, 58, 63-65, 71,
87, 89-91, 93, 101,104, 109, 111,
113, 115, 120, 133, 139, 144-145,
149, 152, 154, 159, 164-165, 168-
171, 174, 181, 190, 197, 212, 216,
223, 228, 232, 243, 246, 248-249,
251,257, 260, 262, 264, 281,288-
290, 293-294, 304, 306, 311,314,
316, 318-319, 321,323, 325

SOP, 171,177
SPI protocol, 116
SPI transfer, 116
Start of Frame Delimiter, 17, 55, 114
Start Of Packet, 171
STDIO, 157, 163-164
Superframe (SD), 37
Superframe Order, 36
Synchronization Header, 13

T
Telegesis, vii, 297-298, 300-303, 306-

307, 310
ETRX2 modules, 298
ETRX2 nodes, 297, 301
ETRX2 ZigBee modules, 297
ETRX2, 297-298, 301,310
ETRX2-based network, 298
MCB (Module Carrier Board), 301
Network, 298
Terminal program, 302

Tera Term Pro, 262, 289-290, 292-294
Texas Instruments/Chipcon, 111, 113,

334

Index

115-116, 169, 195, 211-212, 289
CC2400EB Evaluation Board, 116
CC2420, 113, 169, 211-212

Transaction ID, 179
Transceiver Disabled (TRX_OFF), 17
TranslD, 171, 177, 179
Transmitter Enabled (TX_ON), 17

U
UART interface, 132
UART-equipped microcontroller., 145
UDP datagram, xii, 145-146, 148-149,

151
USB, 44-45, 48, 117, 131-132, 136-139,

169, 194, 208, 213, 232, 255-256,
265-267, 269, 277-278, 288

USB Debug Adapter, 44-45, 48, 208
uVision3 debug and edit modes, 208

V
VCP, 267
Virtual COM Port, 267

W
Wi-Fi, 3, 134
WinCom, 178-179, 188
Wireless Personal Area Network, 7
WPAN, 7, 74-84, 87-93, 95-99, 102,

109-111
WPAN Coordinator, 7, 110

X
XBee, vi, 131-139, 141,144-146, 151-

152, 1 54-1 59, 161, 163-165, 167,
173
"AT" command set, 145, 155-156
Communications Link, 132
End Device, 139, 141, 144, 156, 163
IEEE 802.15.4 radio technology, 154
Interface board, 137-139, 151
MM, 139
PAN Coordinator module, 159
Professional Developer Kit, 137, 151
Radios, 152
RF Module interface board, 154, 164
RF Module, 134, 154, 164, 167
UART, 132-133
USB interface board, 137
ZigBee Module, vi, 132
ZigBee modules, 132, 134

XBee-Pro, 132-133, 135-136, 145, 152,
154, 167
Modules, 132-133, 136, 152
RF module, 167

X-CTU, 136, 138-139, 154, 156-157, 161
Xilinx,

FPGA, 117
SPARTAN FGPA, 116

Z
ZBDemo,

Application, 170
Program, 174

ZbJoin API, 222-223
ZC, 7
ZDO, 181, 183, 185-186, 190-191

335

Index

ZDP, 180, 183-186, 188, 190-191
ZED, 7
ZENA, vii, 288-295

Configuration Tool, 294-295
Packet Decode, 292
Wireless Network Analyzer hardware,

288
Wireless Network Analyzer package,

288
Wireless Network Analyzer, 288-290

ZigBee, i, iii, v-vii, ix-xi, 1-10, 12, 18-20,
23-25, 32-33, 3 5-36, 39-41,43-44,
47-48, 50, 55-56, 59-60, 63-65, 70,
72-73, 111, 113, 115, 124, 126-
127, 131-137, 145-146, 149, 151,
153-157, 164-171, 173-191, 193-
209, 211-213, 215-216, 218-224,
226-229, 231-232, 242,251,253,
255-257, 259, 263-266, 281-283,
285-295, 297-302, 305, 309-311,
324-325
APS sniff data, 186
Cluster Tree, 6-7
Coordinator module, 170-171
Coordinator, 6-7, 167-168, 170-171,
174, 177-179, 182, 186, 190, 197,
199, 201,203-205, 209, 216, 218-
223, 227, 281-282, 289-294
Demonstration Kit, 64
Device Objects, 183
Device Profile, 183

End Device, 6-7, 171, 174, 177, 197,
199-203, 205-209, 220, 222,
224, 226-227, 232,242, 281,
287, 294

Network, v, vii, ix-x, 5-8, 50, 113, 127,
196, 281-282, 288-290, 293-
294, 298, 302, 309

NWK library, 196-197, 200
PAN Coordinator, 182, 197, 199, 201,

203-205, 209, 220, 223, 227, 289
Protocol stack, 5, 9, 135
RFD node, 289-294
Router, 6-7, 170-171,197, 232, 294
Stack, x-xi, 5, 8-10, 18-20, 23, 25,

32, 35, 39, 41, 56, 72, 126-127,
135-136, 145, 169, 171,175,
182-183, 188, 190, 196, 198,
215-216, 220, 227, 232,281,
283, 285-286, 288-289, 294

Star network, 6-7
Z-Link, 63-64, 72-73, 88, 107

Master module, 64
ZMD,

Radio, 45
Wireless Sensor Starter Kit, 44-45,
47-48

ZMD44102,
Starter Board, 44-45, 48, 50, 54-56,

58, 60
Transceiver, v, 43, 45-46, 52, 70

ZR, 7

336

	Front Cover
	Hands-On ZigBee: Implementing 802.15.4 with Microcontrollers
	Copyright Page
	Contents
	Preface
	What's on the CD-ROM?
	Chapter 1. Speaking the Language
	A True Story about a Couple of Flying Bugs
	Déjà vu
	The Muhammad Ali of Networks
	ZigBee Devices
	ZigBee Network Topologies
	Patty Cake, Patty Cake

	Chapter 2. You Are Dangerous and You're Going to Hell
	The IEEE 802.15.4 PHY
	The PHY Data Service
	The PHY Management Service
	Primitive Passing Technique
	The Envelope, Please

	Chapter 3. Keep Running
	Tired Yet??

	Chapter 4. A Look at the ZMD 900-MHzIEEE 802.15.4/ZigBee-Ready Radio
	IEEE 802.15.4 Done the ZMD Way
	The ZMD44102 Transceiver
	Preflighting the ZMD44102
	Our First Steps
	Our First Network...Sorta
	We're On Our Way
	About ZMD

	Chapter 5. Atmel Does IEEE 802.15.4 and ZigBee Too
	The Atmel AT86RF230
	AT86RF230 Modes of Operation
	Stepping It Up a Notch
	AT86RF230 Extended Mode
	Still, No Stack
	An AT86RF230 PAN Coordinator Application
	An AT86RF230 End Device Application
	Yet One More Way
	About Atmel

	Chapter 6. They Do Everything BIG in Texas
	One of Two
	Two of Two
	About Texas Instruments

	Chapter 7. Maxstream/XBee
	The XBee ZigBee Module
	About MaxStream

	Chapter 8. Hopping Down the Bunny Trail
	Rabbit Semiconductor

	Chapter 9. Cirronet Adds Southern Flavor to IEEE 802.15.4 and ZigBee
	About Cirronet

	Chapter 10: Silicon Laboratories
	About Silicon Laboratories

	Chapter 11. Renesas
	About Renesas

	Chapter 12. Freescale
	About Freescale Semiconductor

	Chapter 13: Panasonic
	About Panasonic

	Chapter 14. DLP Design
	About DLP Design

	Chapter 15: Microchip
	Birth of a Microchip ZigBee Network
	ZENA
	Summoning ZENA
	About Microchip

	Chapter 16: Telegesis
	About Telegesis

	Chapter 17. Cypress MicroSystems's CapSense
	Capacitive Sensing Basics
	CapSense Basics
	CapSense Hardware
	CapSense Logic
	About Cypress MicroSystems
	The Final Word

	Index

