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Abstract

Inserted in the ATLASCAR2 project, this work aims to develop a short-term path planning frame-

work for driver assistance in dynamic environments. In order to achieve this objective, it was made

a preliminary study of the existing local path planning methods and the projects that have already

been developed in this field, their advantages and disadvantages were weighed and the most suc-

cessful approaches applied to local navigation in real autonomous driving projects were taken into

account. This thesis presents two different strategies for a self-driving car short-term path planning

among multiple moving obstacles. The main task is to study and implement a motion planning and

execution framework in order to make ATLASCAR2 coexist with other moving obstacle vehicles by

avoiding collision and overtake them when necessary and possible. The first method developted, is

an obstacle avoidance system that moves the vehicle around different moving obstacles while the sec-

ond algorithm is a lane following system that keeps the ATLASCAR2 traveling along the centerline

of the lanes on the road. The proposed techniques, based on the adaptive Model Predictive Control

paradigm, solve optimization problems formulated in terms of cost minimization under constraints.

Simulation results, developted in a MATLAB/Simulink enviroment, demonstrate and verify the fea-

sibility and the usefulness of methods considering different scenarios, opening space for real scenario

implementation.
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“Self-driving cars are the natural extension of active safety

and obviously something we thing we should do.”

ElonMusk

1
Introduction

In robotic research, the problem of navigation is among the most important. Basically, all autonomous

mobile robots need some kind of navigation abilities to perform, localization, motion planning and

guidance [1]. In the present context, we focus on navigation as a process of planning a path of a

mobile robot from its current position to a desired goal location, following the planned path, and

avoiding any discovered obstacles along the way. The desired paths have to fulfill several conditions
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to ensure safety and feasibility of the navigation. Moreover, the paths can be also defined in terms of

specifications; for example, short or smooth paths are usually more desirable than long and curved

ones in every dynamic environments. Beyond the path planning, the navigation problem also in-

volves reacting to changes of the environment model. Robots are required to move towards the

target in a short time and avoid either static or dynamic obstacles observed by their sensors, which

involves efficient path planning and valid obstacle avoidance. Research and development of Un-

manned Ground Vehicles has been dominated by DARPA (Defense Advanced Research Projects

Agency) and NASA (National Aeronautics and Space Administration). The DARPA initiative

started with the development of the first mobile robot, Shakey, and also includes the Autonomous

Land Vehicle and the DARPADemo I1 Program. NASA sponsors the development of unmanned

vehicles for planetary surface exploration, from the Jet Propulsion Laboratory Mars Rover to the

most recent Mars Pathfinder. Recent UGV design and development has been enhanced to build

UGVs capable of operating in Intelligent Vehicle Highway Systems [2]. Over the last decades, the de-

velopment of Advanced Driver Assistance Systems has become a critical endeavor to attain different

objectives: safety enhancement, mobility improvement, energy optimization and comfort [3]. Much

of the argument used in this discussion is based on the road mortality we see today. According to

data from theWorld Health Organization, in 2013 there were about 1.25 million road deaths world-

wide, and this number is expected to increase in the next decade [4]. Algorithms for autonomous

navigation are increasingly robust and reliable and are starting to handle complex situations and

decision problems. According to Katrakazas [5], local navigation is responsible for guiding the ve-

hicle, that is, for the planning of the direction and speed to be taken, in a space close to the current
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position based on information exclusively obtained by the sensors on board. The guiding must be

planned in such a way as to guarantee the displacement, from the current state to the objective, with-

out collisions. The algorithms we have developed at the LAR, follow a new and different approach

for an advanced control strategy for autonomous navigation. The idea is that these methods do not

replace the algorithms developed previously but are a valid alternative, so that depending on the

situation, the vehicle can choose the best strategy to overcome obstacles or solve problems that can

occur on the road that need a decision in real time. Simulation results demonstrate and verify the

feasibility and the usefulness of methods considering different scenarios.

In this introductory chapter, the ATLAS project is presented in more detail in section 1.1, while

examples of autonomous navigation projects are discussed later (section 1.2). The context of the

problem and the proposed solution of this thesis are carried out in section 1.3 while the organization

of the document is presented in section 1.4.

1.1 ATLAS Project

The ATLAS project was created in 2003 by the Group for Automation and Robotics from the De-

partment of Mechanical Engineering at the University of Aveiro [6]. The objective of this project is

to study and develop advanced sensors and active systems to promote the autonomous control of

cars and other platforms. The first projects in the autonomous driving area focused on small scale

models in controlled environments for participation in the National Robotics Festival (FNR) and

in many other competitions winning some awards for the best performance (subsection 1.1.1). The
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success and experience gained with these models allowed the evolution of the project for full-scale

vehicles, where ATLASCAR (subsection 1.1.2) in 2010 and ATLASCAR2 (subsection 1.1.3) in 2016

have been developed.

1.1.1 ATLAS platforms

The first developed robot (Figure 1.1a) was based on an aluminum and wood structure. In this pro-

totype only one camera was installed that pointed to a mirror to allow the complete visualization of

the road in which the robot circulated. The traction movement was assured by a mechanical differ-

ential coupled to the rear wheels and the steering movement was given by a single front wheel. In or-

der to create a model more similar to an ordinary car, the ATLAS group developed the ATLAS 2000

(Figure 1.1b) in scale (1:4), with which it managed to win the first autonomous driving competition

of the FNR in 2006. After several improvements made in ATLAS 2000, in 2008 a new platform,

ATLASMV (Figure 1.1c) was created. This robot was designed on a smaller scale (1:5), with the in-

tention of being lighter and faster. On board were installed a new steering system, hydraulic braking

and an active perception unit. This robot allowed the conquest of new victories in the autonomus

driving competitions.

1.1.2 ATLASCAR

Driven by the positive results achieved with scale models and years of navigation experience in con-

trolled environments, in 2010 the Group of Automation and Robotics decided to invest in a large-
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(a) First ATLAS prototype. (b) ATLAS 2000. (c) ATLAS MV.

Figure 1.1: Some of the ATLAS project small scale pla orms (adapted from [7]).

scale project, ATLASCAR (Figure 1.2). The vehicle used for this project was a Ford Escort Station

Wagon of 1998 powered by a gasoline internal combustion engine, in which several sensors, process-

ing units and actuators were installed. On-board sensors processed data collected from the vehicle

and its surroundings, with different LIDARs for obstacle detection and environmental reconstruc-

tion, pedestrian detection cameras and a Global Navigation Satellite System (GNSS) for location

and route planning. After passing through the processing units, these data were sent to the actua-

tors that allowed the movement and execution of the maneuvers in a completely autonomous way

on the part of the vehicle. To power all the equipment, a Uninterruptible Power Supply (UPS) was

used, loaded from an auxiliary alternator. During this project, many works were developed in the

Laboratory for Automation and Robotics, many of which produced master thesis. For example, in

2014 Cabral de Azevedo [8] developed a module to detect pedestrians using sensory fusion of LI-

DAR and vision data while in 2016 Vieira da Silva [9] created a multisensory calibration module that

was exported to subsequent projects.
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Figure 1.2: The car used in ATLASCAR, based on Ford Escort Sta on Wagon of 1998 (adapted from [7]).

1.1.3 ATLASCAR2

Given the different limits, to continue the project, in 2016, a new vehicle was acquired: ATLAS-

CAR2 (Figure 1.3). This time it was chosen as a platform an electric car, a Mitsubishi iMiEV, with an

autonomy range of 100 km. The fact that the vehicle is electric allows to use the energy stored in the

batteries, making it easier to power the sensors installed. In fact, despite the short time of existence,

3 LIDARs, a camera, inclinometry sensors and a GNSS unit are already installed on the ATLAS-

CAR2. Many of these sensors were transferred from ATLASCAR to this project during the work

of Madureira Correia [10] in 2017, where a module for detecting free space around the car was also

developed while in 2018 Ricardo Silva [11] created a local navigation module for driver assistance in

the immediate decision making, identifing a solution based on a multiple hypothesis approach.
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Figure 1.3: The vehicle used in ATLASCAR2, based on an electric car, a Mitsubishi iMiEV of 2015 (adapted from [11]).

1.2 Autonomous Cars

The legal definition of autonomous vehicle in the District of Columbia code [12] is:

”Autonomo vehicle” means a vehicle capable of navigating District roadways and

interpreting traffic-control devic without a driver actively operating any of the vehi-

cle’s control systems. The term ”autonomo vehicle” exclud a motor vehicle enabled

with active safety systems or driver-assistance systems, including systems to provide elec-

tronic blind-spot assistance, crash avoidance, emergency braking, parking assistance,

adaptive cruise control (ACC), lane-keep assistance (LKA), lane-departure warning, or

traffic-jam and queuing assistance, unless the system alone or in combination with other

systems enabl the vehicle on which the technolo installed to drive without active

control or monitoring by a human operator.
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The modern automobile companies keep coming up with newer autonomous features in their

recent models. Technological advancements seen every day in areas like information technology,

communication, data analysis and storage etc. is not exclusive to these areas alone. The realm of

autonomous cars is also progressing at a rapid rate these days [13]. Google’s development of self-

driving technology began in January 2009. The initial objective of the project was to develop a car

able to navigate on highways with minimal human intervention. In December 2016, the unit was

renamedWaymo; this name derived from its mission, ”a new way forward in mobility”. Waymo

moved to further test its cars on public roads after becoming its own subsidiary.

(a) Google’s Firefly
self-driving prototype in 2015 (adapted from [14]).

(b)Waymo Chrysler Pacifica Hybrid
self-driving prototype in 2017 (adapted from [14]).

Figure 1.4: Some of the Waymo/Google prototypes tested across mul ple loca ons in the Unided States in recent
years.

Waymo uses LIDARwhich sends out millions of laser beams per second to build up a detailed

picture of the world all 360 degrees around it. It also uses radar to detect how far away objects are

and their speed and high-resolution cameras detect visual information like whether a traffic signal

is red or green. It then combines all that data to understand the world around it and predict what
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those things might do next. It can do that for things up to three football fields away. Based on all

this information, Waymo’s software determines the exact trajectory, speed, lane and steering maneu-

vers needed to progress along this route safely [14] [15].

With the advances in autonomous technology, VIAC or VisLab Intercontinental Autonomous

Challenge was one of the major competitions which led to improvements in the testing and anal-

ysis of autonomous vehicles and robotics. It was a 13,000 kilometers trip, nearly three months

from Parma, Italy to Shanghai, China from July 20, 2010 to October 28, 2010. It involved four au-

tonomous vehicles with negligible human intervention and high level of autonomy [16]. One of

VisLab’s advanced autonomous car, BRAiVE (Figure 1.5), drove in downtown Parma on July 12th,

2013. It successfully navigated narrow rural roads, crosswalks, traffic lights, pedestrian areas, round-

abouts and artificial hazards. It was a pioneer in the field of vehicular robotics, since it was totally

autonomous [17].

Figure 1.5: BRAiVE prototype developted by VisLab, based on a Hyundai Sonata (adapted from [17]).

Another example of autonomous system is Navya, a robotically driven electric shuttle which

operates at a maximum speed of 25 kilometers per hour. Made by Induct Technology, France, it
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can accommodate 15 passengers. It uses four LIDAR units and stereoscopic optical cameras, and it

does not require any road modifications. Its LIDAR unit and optical cameras help in generating a

real-time three dimensional map of the surroundings. It is being successfully tested at various univer-

sities across Switzerland, England and Singapore [18].

Figure 1.6: Navya Shu le developted in 2016 by Navya Group in France.

1.3 Context of the Problem and Proposed Approach

Dynamic environments pose several added difficulties to the motion planning problem. The dy-

namics of the ATLASCAR2 must be taken into account, and there are limitations due to the sensors

range and uncertainty in measurements, that must be reflected on the motion plan. Besides it, a

motion plan must incorporate time restrictions, meaning the vehicle will require a certain amount
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of time to accomplish a task. For example, when crossing a road, the ATLASCAR2 must do it fast

enough to avoid incoming cars. The proposed algorithms were studied for the ATLASCAR2 project

in which the group for Robotics and Automation at the University of Aveiro has setup and adapted

a common commercial electric vehicle to provide a versatile framework to develop studies and re-

search [6] [19]. The fact that the vehicle is electric allows to use the energy stored in the batteries,

making it easier to power the sensors installed. In fact, the ATLACAR2 is equipped with sensors,

such as lidar, that measure the distance to obstacles in front and around the vehicle. The obstacles

can be static, such as a large pothole, or moving, such as a moving vehicle on the same or a nearby

lane. The most commonmaneuver from the driver is to temporarily move to another lane, drive

past the obstacle, and move back to the original lane afterward. In this case, we want to design an

obstacle avoidance system that moves the ATLASCAR2 around moving obstacles in the lane using

throttle and steering angle. This system uses an adaptive Model Predictive Controller that updates

both the predictive model and the mixed input/output constraints at each control interval. More-

over we want to develop a lane-keeping assist system for the vehicle: it has a sensor, such as camera

or laser, that measures the lateral deviation and relative yaw angle between the centerline of a lane

and the ATLASCAR2; it also measures the current lane curvature and its derivative. Depending on

the curve length that the sensor can view, the curvature in front of the vehicle can be calculated from

the current curvature and its derivative. This system keeps the autonomous car travelling along the

centerline of the lanes on the road by adjusting the front steering angle. The goal for lane keeping

control is to drive both lateral deviation and relative yaw angle close to zero.

11



1.4 Thesis Outline

In this section, we outline the thesis organization:

Chapter 1 is used to introduce the thesis focus areas of autonomous vehicle technology. In partic-

ular the ATLAS project and examples of autonomous navigation projects are presented. Moreover

the context of the problem and the objectives to be achieved are reported.

Chapter 2 focuses on some of the more theoretical aspects of this dissertation with a brief intro-

duction to path planning, a literature review related to local navigation algorithms with a special

section centred onMPC control strategy for obstacle avoidance and tracking.

In Chapter 3, the theory of Model Predictive Control is discussed in detail to highlight working

principle and its characteristics (tuning parameters, stability and robustness). In particular for this

work we used an advanced control strategy based on this paradigm called Adaptive MPC that uses a

fixed model structure, but allows the model parameters to evolve with the time.

Chapter 4 is used to present the Obstacle Avoidance method that we have developted. First we in-

troduced the case-study model, then we designed the decision making alghorithm and the controller.

Finally we verified the control strategy in different scenarios.

Chapter 5 focuses on the Lane Following alghoritm based on Adaptive Model Predictive Con-

trol. We considered a different model in which we have applied the bicycle model of lateral vehicle

dynamics and approximated the longitudinal dynamics using a first order transfer function. Then

we developed the overall control scheme considering different paths to follow.
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2
Literature Review

In this chapter we introduce the literature review of the various algorithms used for robot naviga-

tion. The navigation methods are divided into two kinds of control: global path planning and local

motion control. First we analyze these two types of strategies and then we describe the current situa-

tion of Model Prediction which is the control method that we have adopted.

13



2.1 Global Path SearchingMethod

Global path planning uses information about a priori model or a map of the enviroment to evaluate

the shortest path that allows the motion from a starting point to the goal position. There are a lot

of path planning algorithms, like cell decomposition, road map or potential field, where the calcu-

lation of a complete trajectory from a start position to one or more goal positions can be computed

off-line. However they produce a reliable path if and only if the map of the enviroment is already

available. So, this prior knowledge of the space where the robot can move, must be accessible. The

most famous method developed for global navigation is the Dijkstra algorithm [20]. In recent years,

an evolution of this method called A* is one of the most used [21]: this algorithm gives a complete

and optimal global path in static enviroments. However, it was upgraded in D* [22] for efficient

online searching of a dynamic enviroment, which gives sequences of path points in the known or

partially known space. The basic idea of these two methods is the following: minimizing their cost

functions, these strategies have the capability of a quickly redesign when the conditions of the space

change, to guarantee an optimal solution of the trajectory from the starting point to the goal loca-

tion. Moreover it has been shown that the D* algorithm is much more efficent than the A* method.

Now we will analyze the general structure of these two algorithms and the practical operation based

on a representation of an environment grid around the vehicle. However these methods are not suf-

ficient to create a complete robot system navigation. We will see later that if the information of the

map is not yet available, the system has to use onboard sensors to define a path and avoid obstacles.
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2.1.1 The A* Algorithm

The algorithm A*, based on a graph representation, examines, step by step, the nodes that have the

best score. A* uses the following data structures to keep track of the execution status: the first one

is a list of nodes already visited while the second one is a priority queue containing the nodes to

be visited. During execution, each node is associated with multiple values: gScore, hScore, fScore.

In mathematical terms, given the current node n, the starting node p and the solution node s, we

define the values:

• gScore = g(p, n) that evaluates the actual cost of the path that separates the p (start) and n
(current) nodes.

• hScore = h(s, n) that calculates an estimate of the cost of the path between the s (solu-
tion) and n (current) nodes; this is also called Euristic function because it is associated to an
Euristic algorithm that allows A* to find rapidly a solution.

• fScore = gScore+ hScorewhich is the total cost.

The structure of the A* method can be summarized in 8 steps as follows:

1. Insertion in the queue of the starting node with priority equal to the fScore;

2. If the queue is empty, the algorithm returns that the solution cannot be found;

3. Extraction of the best node to visit (priority with lower value);

4. If the extracted node has zero hScore, the algorithm terminates: solution found;

5. Creation of child nodes;

6. Deletion of child nodes already visited and suboptimal;

7. Inserting the remaining nodes in the queue with priority equal to the fScore;

8. Return to step 2.
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Finally it is possible to state that the major limitation of this algorithm is in the absence of con-

straints on the search depth.

2.1.2 The D* Algorithm

Before describing how the D* algorithm works, we have to introduce how the nodes are marked

(infact also this method mantains a list of nodes):

• NEW, it has never been placed on the list;

• OPEN, it is currently on the list;

• CLOSED, it is no longer on the list;

• RAISE/LOWER, its cost is higher/lower than the last time it was on the list;

This method works by iteratively choosing a node from the list and evaluating it; then the node’s

changes are propagated to all of the neighboring nodes and they are placed on the list. This first pro-

cess is called expansion. In particular we can emphasize that the D* algorithm begins by searching

backwards from the goal node. After being expanded, each node has a backpointer which refers

to next node leading to the target where the exact cost is known by each node. When an obstacle

is detected along the path, all the points that are thwarted, are again placed on the list marked as

RAISED. Hence, the method examines RAISED’s neighbors to try to reduce the node’s cost; other-

wise it increases the cost of the RAISED node. If not, the nodes’ descendants, which have backpoint-

ers, are marked as RAISE. These nodes are calculated and the RAISE state is propagated forming a

wave. If it is possible to reduce a RAISED node, its backpointer is updated and the LOWER state is
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passed to its neighbors. These two waves cannot touch other points so the algorithm worked only

on the nodes that are affected by the cost change.

2.2 Local Motion Control

Local Motion Control is related to the real-time motion of the robot inside in unknown enviro-

ment, where monitoring with the sensors, it can detect where are the obstacles and create a motion

to avoid the collision with them. One of the advantages of the local navigation systems is the ability

of generating a new path every time the space changes, for example when multiple moving obsta-

cles are identified thanks to the sensors that captured the information in the enviroments. These

methods can be divided into directional and velocity space-based approaches.

The most famous directional approaches (generate a direction for the robot/vehicle) are:

• Potential field method [23], where the robot is represented as a particle and it is subject to
forces that are produced by the surrounding environment;

• Virtual Force Field which expands to Vector Field Histogram [24], where it utilizes a statisti-
cal representation of the vehicle’s space through the so-called histogram grid;

• Nearness Diagram algorithm [25], which performs a high level information extraction and
interpretation of the environment, used to generate the motion commands;

while velocity space approaches, that manage the robot/vehicle considering translation and rota-

tion velocities, are:

• Curvature Velocity method [26] which formulates the problem as one of constrained opti-
mization in velocity space;
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• Dynamic Windowmethod [27] which is divided in two main phases; in first one, it generates
a valid search space while in the second one it selects an optimal solution in the search space.

Now we will analyze the general structure of some of these algorithms. In particular it is impor-

tant to underline that to create a complete navigation system it is necessary that there are both local

algorithms and global methods such as those seen previously.

2.2.1 Potential Field Method

The first local method that we analyzed is the Potential Field; in this strategy the robot/vehicle is rep-

resented as a particle that moves in the workspace and it is affected by attractive and repulsive forces

that are generated by the surrounding environment. In particular the target propagates an attractive

force while the obstacles transmit a repulsive forces. The latter can be evaluated considering only

the distance from the obstacles and the instantaneous vehicle velocity and accelerations. Combining

these two forces it is possible to compute the trajectory of the robot at every time instant. The total

force can be used as input to control the trajectory of the vehicle.

2.2.2 Curvature Velocity Method

Another obstacle avoidance problem can be solved applying the Curvature Velocity Method where

the problem becomes a constrained optimization in the velocity space of a syncro-drive steered robot

[28]. This strategy tries to maximize the following function:

f(tv, rv) = α1speed(tv) + α2dist(tv, rv) + α3head(rv) (2.1)
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where tv and rv are respectively the robot’s translational and rotational velocities while speed(tv)

represents the speed of the vehicle, head(rv) is the heading of the robot and dist(tv, rv) is distance

to a set of obstacles within a given limit. These last three terms can be expressed as follows:

speed(tv) =
tv

tvmax
head(tv) = 1− θg − rvTc

π
dist(tv, rv) =

Dlimit(tv, rv,OBS)

limit
.

(2.2)

At each sampling time Tc, the constrained optimization problem is solved choosing the transational

and rotational velocities to adjuste α1, α2 and α3 values. In order to limit the search space of possi-

ble curvatures of the vehicle in velocity space, the valueDlimit is bounded and discretized. Finally we

can classify these intervals in disjoint, contained by, contains or overlapping and they are fundamen-

tals to compute optimal values for the distance function and consequently for the equation (2.1).

2.2.3 Dynamic Windowmethod

The last obstacle avoidance method that we have analyzed is called Dynamic Window approach;

this is a velocity-based local planner that evaluates the optimal speed for a robot rquired to reach the

target without colliding. In this algorithm the cartesian goal is translated into a velocity command

for a vehicle. First, we can evaluate the desired velocity to the target based on our current position,

and the destination; then we select the ammissible linear and angular velocities given the robots dy-

namics. From all the allowable velocities we determine the closest obstacle for the proposed vehicle

velocity. If the distance to the nearest obstacle is within the robots breaking distance and the vehi-

cle is not able to stop in time, we will reject this proposed robot speed. Otherwise, we can evaluate
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the required values for the cost function. If the calculated cost is better than anything else so far,

then we set this as our best option. Finally, the desired trajectory is set to the best proposed velocity.

Hence, this method calculate a valid velocity search space and select the best speed that maximizes

the robots clearance and obtains the closest heading to the target.

2.3 MPC in Autonomous Driving

The algorithms we have developed in this project have a different approach than those mentioned

above. In this section we have reported some algorithms based on the MPC used in the field of au-

tonomous navigation. This literature review was fundamental to understand what methods exist

and the strategies adopted to solve certain problems. In [29] the authors addressed the problem of

real-time obstacle avoidance on low-friction road surfaces using spatial Nonlinear Model Predictive

Control (NMPC). They considered a nonlinear four wheel vehicle dynamics model that includes

load transfer and they also used the ACADOCode Generation tool to generate NMPC algorithms

based on the real-time iteration scheme for dynamic optimization. An obstacle avoidance prob-

lem solved with anMPC approach that integrates the artificial potential field method is discussed

in [30] where the controller is combined with the feedback linearization in order to manage the

control problem of a single robot with unicycle kinematics and collision avoidance function. How-

ever in many traffic emergency situations a collision cannot be prevented by braking alone. This is

the reason why in [31] the authors proposed an obstacle avoidance method based on the NMPC

paradigm that simultaneously optimizes steering and braking. In [32] a path planning and tracking
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framework is considered to maintain a collision-free path for autonomous vehicles. In particular

to track the planned trajectory, the proposed controller formulated the tracking task as a multicon-

strained model predictive control (MMPC) problem and evaluated the steering angle to prevent the

robot from colliding with a moving obstacle vehicle. Finally we considered another driver assistance

method for obstacle avoidance based on constrained model predictive control. The algorithm also in

this case was reduced to a convex quadratic programming problem. [33]. All these methods, based

on the MPC paradigm, allowed us to define two different situations where the use of this type of

controller is required. The first situation we have faced is a collision avoidance problem consider-

ing moving obstacles. In the second scenario we have instead built a system that allows tracking of

the lane. These two approaches, faced earlier, have been solved through a new type of MPC called

Adaptive MPC.
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3
Model Predictive Control

In this chapter, the theory of Model Predictive Control is discussed in detail to highlight working

principle. In particular for this work we used an advanced control strategy based on this paradigm

called Adaptive MPC that uses a fixed model structure, but allows the model parameters to evolve

with the time.
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3.1 Generic Model Predictive Control problem

Model Predictive Control (MPC), also known as Moving Horizon Control (MHC) or Receding

Horizon Control (RHC), is a popular method for the control of slow dynamical systems, to gen-

erate the required control inputs that are calculated at each sampling instance k, using the current

state as initial conditions to solve a finite optimal control problem.

Some of the advantages of using MPC, reported in [34], are:

• the ability to handle unstable, time variable, non-minimum phase systems;

• robustness feature with the uncertainties in the nonlinear systems;

• built in feed-forward control to handle disturbances in the processes;

• enhanced tuning features to achieve the best response including transient responses;

• the possibility to introduce constraints in a natural form;

• if the references are known in advance, they can be used in order to optimize the reference
tracking.

The methodology of all the controllers belonging to the MPC family is characterized by the fol-

lowing strategy, represented in Figure 3.1. The future outputs for a determined horizon, called the

prediction horizon, are predicted at each instant k using the process model. These predicted outputs

depend on the known values up to instant k (past inputs and outputs) and on the future control

signals which are those to be sent to the system and calculated. The set of future control signals is

calculated by optimizing a determined criterion to keep the process as close as possible to the refer-

ence trajectory. This criterion usually takes the form of a quadratic function of the errors between
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the predicted output signal and the predicted reference trajectory. The control effort is included in

the objective function in most cases [35].

Figure 3.1: A discrete Model Predic ve Control scheme adapted from [36].

An explicit solution can be obtained if the criterion is quadratic, the model is linear, and there are

no constraints; otherwise an iterative optimization method has to be used. Some assumptions about

the structure of the future control law are also made in some cases, such as that it will be constant

from a given instant. Only the current control signal is send to the process. At the next sampling

instant the measured output is evaluated and the sequence is repeated and all the steps brought up

to date. Thus the predicted control input is then calculated using the receding horizon concept.

MPC is typically formulated in the state space form. For a given discrete linear time-invariant
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(LTI) system:

x (k + 1) = Ax (k) +Bu(k) (3.1)

where x (k) ∈ Rn, u(k) ∈ Rm are the state and the input, respectively. The central idea in the

Model Predictive Control is to minimize some cost function, while still ensuring that some con-

straints are fulfilled. The generic MPC problem can be written as follows:

minimize
u

J(x (k), u)

subject to x k+i+1 = Ax k+i +Buk+i ∀i = 0, . . . N − 1;

x k+i ∈ X ∀i = 0, . . . N − 1;

uk+i ∈ U ∀i = 0, . . . N − 1;

x k+N ∈ Xf ; x k = x (k).

(3.2)

where u = (uk, . . . ,uk+N−1) is a sequence of control inputs, x k+i is the state at time k + i as

predicted at time k, andN is the prediction horizon. The setsX ∈ Rn and U ∈ Rm define the

constraints on the state and the input, respectively. Finally, the setXf ⊆ X defines the terminal

constraint on the state. If we consider a regulation problem, the system (3.1) should be steered to the

origin and the cost function J(x (k), u) could be in a quadratic form as follows:

J(x (k), u) = x ⊺
k+NPfx k+N +

N∑
i=1

(
x ⊺
k+iQx k+i + u⊺

k+iRuk+i

)
(3.3)

wherePf ,Q ≥ 0 (positive semi-definite) andR > 0 (positive definite) are weighting matrices.
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Instead if we consider a servo problem, like tracking of a reference signal, the cost function is

changed as follows:

J(x (k), u) =(x k+N − x ref
k+N )⊺Pf (x k+N − x ref

k+N )

+

N∑
i=1

(
(x k+i − x ref

k+i)
⊺Q(x k+i − x ref

k+i) + u⊺
k+iRuk+i

) (3.4)

where x ref
k+i, x

ref
k+N describe the reference trajectory. The standardMPC algorithm can be summa-

rized by the following steps:

Algorithm 1 Basic Model Predictive Control loop
1: Measure the current state x (k);
2: Solve the optimization problem (3.2) with x (k) as initial state, where u(k) is calculated;
3: Apply the first control of the optimal control sequence;
4: Wait one sampling time and repeat steps 1-3;

AnMPC has many strengths. Given that the model is discrete and linear it handles multivariable

problems very well. Also mathematical convexity is an important part of the resulting problem for-

mulation of anMPC. In fact there exists efficient solvers for convex optimization problems but it is

therefore desirable that the MPC problem (3.2) is convex which is ensured if:

1. the cost function is convex;

2. the prediction model is linear;

3. the constraint setsX ,U are convex.

The optimization handles actuator constraints and state constraints naturally in the optimization

which allows for the process to be operated much closer to the hard constraints, which improves
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control performance and efficiency. Because of its predictive nature it is able to solve a variety of

problems and handle disturbances smoothly.

3.1.1 Tuning Parameters

The two most important parameters to tune in order to satisfy the control objectives are the diag-

onal matricesQ andR that can be used to weight the system state matrix and the control inputs

respectively. The response of the system that is too slow can be influenced by adding high weighting

values in theQ matrix, whereas the control gains are damped with high weighing values in theR

matrix. Find an optimal trade-off is a fundamental aspect for the constroller behaviour.

3.1.2 Stability of MPC controller

A limited horizon on the MPC problem affects the stability of the controllers; in order to avoid this

problem it is possible to set an infinite horizon, impose end point constraints, terminal cost function

or use other techniques. To obtain a stable controller, the parameters to tune are: the terminal cost,

prediction horizon and constraints. Also the weights on the cost function can be tuned to ensure a

stabilizing solution.

3.1.3 Robustness

If the stability can be guaranteed and the performance specifications are met with respect to a cer-

tain set of uncertainties, the system is said to be robust; in particular a controller with this property
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has to ensure that the constraints are never violated for any admissible disturbance realization. The

uncertainties in a system are due to external disturbances, measurement noise, inaccurate values of

the model parameters, non-linearities etc... The most common type of uncertainties considered in

the literature is additive disturbance because usually the current state of the system can be measured

hence there is no noise in the measurements.

3.2 Adaptive Model Predictive Control

We understood that Model Predictive Control is an advanced method that predicts future behav-

ior using a linear-time-invariant (LTI) dynamic model. These predictions are not exact and a good

strategy is to makeMPC insensitive to prediction errors. If the plant is strongly nonlinear or its char-

acteristics vary dramatically with time, MPC performance might become unacceptable because LTI

prediction accuracy degrade [36]. A method that can address this degradation by adapting the pre-

diction model for changing operating conditions is called Adaptive MPC: this control strategy uses

a fixed model structure, but allows the model parameters to evolve with time. Ideally, whenever the

controller requires a prediction, it uses a model appropriate for the current conditions. At each con-

trol interval, the adaptive MPC controller updates the plant model and nominal conditions. Once

updated, the model and conditions remain constant over the prediction horizon. The plant model

used as the basis for the adaptive MPCmust be an LTI discrete-time, state-space model with a struc-
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ture as follows:

x (k + 1) = Ax (k) +Buu(k) +Bvv(k) +Bdd(k)

y(k) = Cx (k) +Dvv(k) +Ddd(k)

(3.5)

where the matricesA,Bu,Bv ,Bd,C ,Dv andDd can vary with time. The other parameters in

the previous expression (3.5) are:

• k is the time index/current control interval;

• x are the plant model states;

• u are the manipulated inputs that can be adjusted by the MPC controller;

• v are the measured disturbance inputs;

• d are the unmeasured disturbance inputs;

• y are the plant outputs, including both measured (necessary at least one) and unmeasured.

In the adaptive MPC control, there are additional requirements for the plant model, like the sam-

ple time Ts that has to be constant and identical to the MPC control interval. This control strategy

prohibits direct feed-through from any manipulated variable to any plant output. Thus,Dv = 0

in the above model. A traditional MPC controller includes a nominal operating point at which the

plant model applies, such as the condition at which you linearize a nonlinear model to obtain the

LTI approximation (equilibrium, reference trajectory and the most updated value) [36]. In adaptive

MPC, as time evolves it should update the nominal operating point to be consistent with the up-

dated plant model. It is possible to rewrite the plant model in terms of deviations from the nominal
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conditions as follows:

x (k + 1) = x +A(x (k)− x ) +B(u t(k)− u t) + ∆x

y(k) = y +C (x (k)− x ) +D(u t(k)− u t)

(3.6)

where the matricesA,B ,C andD are updated with respect to time. The other parameters in the

previous structure (3.6) are:

• u t is the combined plant input variable, comprising u , v and d variables defined earlier;

• x are the nominal states;

• ∆x are the nominal state increments;

• u t and y are the nominal inputs and outputs.

The adaptive MPC uses a Kalman filter to update its controller states which include the plant,

the disturbance and measurement noise model states. In particular this filter is linear-time-varying

(LTV) because adjusts the gains at each control interval to maintain consistency with the updated

plant model.
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4
Moving Obstacle Avoidance System

In this chapter we present an Obstacle Avoidance alghorithm based on Adaptive Model Predictive

Control. First we introduced the case-study model, then we designed the controller and the method

of decision-making. Finally we verified the proposed strategy in different scenarios.
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4.1 Problem Formulation

The collision avoidance problem is very dependent on the vehicle modeling since it is a requirement

for adaptive MPC law design. Figure 4.1 illustrates a typical scenario of overtaking of a moving ob-

stacle. The maneuver from the driver is to temporarily move to another lane, drive past the obstacle,

and move back to the original lane afterward.

Figure 4.1: Problem descrip on of collision avoidance on a road with only two lanes.

This is possible if and only if there is a free lane or enough space to overcome the obstacle. If the

road is occupied by vehicles, the ATLASCAR2 must slow down and adjust its speed to that of the

nearest obstacle until the scenario changes.

4.1.1 Car-like Model

The model used in this part of the thesis should take into account the kinematic and dynamic as-

pects of the vehicle. Here, we present a non linear mathematical model of a vehicle used for the de-
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velopment of a collision avoidance system. The model has four states and two inputs:

x =



x

y

θ

v


, u =

T
δ

 (4.1)

where (x, y) are the global coordinates of the contact point between the rear wheel and the

ground, θ is the heading angle of the car body with respect to the x-axis and v is the linear speed of

the car (positive). The manipulated variables are T the throttle (positive when accelerating/negative

when braking) and δ the steering angle of the front wheel with respect to the vehicle (0when aligned

with car, counterclockwise positive). Figure 4.2 illustrates the applied nonlinear bicycle model and

the related parameters.

Figure 4.2: Bicycle model of a car (adapted from [37]).
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The ATLASCAR2 can be modeled using the non-linear kinematic bicycle model described by the

following equations of motion [38] [39]:



ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ =
v

CL
tan(δ)

v̇ = 0.5 · T

=⇒
ẋ = f (x ,u)

y = g(x ,u)

(4.2)

whereCL is the car length. When the velocity is zero then the rate of change of heading angle is

zero, that is, it is not possible to change the vehicle’s orientation when it is not moving. If the front

wheel is orthogonal to the back wheel, i.e. the steering angle is π
2 , the ATLASCAR2 cannot move

forward and the model enters an undefined region. In order to simplify the model, it is assumed that

only the front wheel can be steered. Moreover, in this chapter it is assumed that the ATLASCAR2

does not slip, so any slippage is thus considered as an external disturbance. Under this assumption,

the slip angle is zero, meaning that the velocity is directed along the heading of the vehicle. In par-

ticular the rate of change of heading angle is referred to as turn rate which can be evaluated with a

gyroscope. This yaw rate can also be deduced from the angular velocity of the wheels on the left- and

right-hand sides of the vehicle which therefore rotate at different speeds because follow arcs of dif-

ferent radius. We can write the non-holonomic constraint which is an expression for velocity in the

ATLASCAR2’s y-direction in the world coordinate frame as follows:

ẏ cos θ − ẋ cos θ = 0. (4.3)
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This equation cannot be integrated to form a relationship between x, y and θ. In order to use an

MPC controller, the state space model needs to be linearized with a first order approximation and

also re-written in a more compact form:

ẋ = f (x ,u)

y = g(x ,u)

=⇒
ẋ = Acx +Bcu

y = C cx +Dcu

(4.4)

where the matricesAc,Bc,C c andDc are obtained as follows:

Ac =
∂f (x ,u)

∂x
=



0 0 −v sin(θ) cos(θ)

0 0 v cos(θ) sin(θ)

0 0 0 tan(δ)/CL

0 0 0 0


,

Bc =
∂f (x ,u)

∂u
=



0 0

0 0

0
v

CL

(
tan(δ)2 + 1

)
0.5 0


,

C c =
∂g(x ,u)

∂u
= I4, Dc =

∂g(x ,u)

∂u
= 04×2.

(4.5)

The simple linearized approximation of the system to describe the dynamics of the ATLASCAR2
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will be evaluated at the operating conditions. Note also that the system we are considering is a linear

state-space model whose dynamics vary as a function of certain time-varying parameters. The system

to be controlled is usually modeled by a discrete state-space model in the MPC literature. Therefore,

(4.4) is transformed into a discrete state-space model to be used by the Model Predictive Controller:

ẋ = Acx +Bcu

y = C cx +Dcu

=⇒
x (k + 1) = Adx (k) +Bdu(k)

y(k) = C dx (k) +Ddu(k)

(4.6)

whereAd andBd are the state and control matrices for the discrete state-space equation, respec-

tively, which can be calculated with the Euler method as

Ad = eAcTs , Bd =

∫ (k+1)Ts

kTs

eAc[(k+1)Ts−η]Bcdη (4.7)

where Ts is the sampling interval for the discrete state-space model. The matricesC d andDd are

equivalent to those in the continuous case. For simplicity, we assume that all the states are measur-

able and the ATLASCAR2 drives east with a constant speed at the nominal operating point.

In the scenario that we are going to consider, the road is straight and our vehicle stays in the mid-

dle of the center lane when not passing. Without losing generality, the ATLASCAR2 passes an ob-

stacle both to the right and to the left lane depending on where it is placed on the road. We create

also a safe zone around the obstacles so that the vehicle does not get too close to the obstacle when

passing it.
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4.2 Design of Adaptive Model Predictive Control

We designed a Model Predictive Controller that can make the ATLASCAR2 maintain a desired ve-

locity and stay in the middle of center lane. We used an Adaptive MPC controller because it handles

the nonlinear vehicle dynamics more effectively than a traditional MPC controller; in fact, the latter

uses a constant plant model but the former allows us to provide a new plant model at each control

interval. Because the newmodel describes the plant dynamics more accurately at the new operating

condition, an adaptive MPC controller performs better than a traditional MPC controller.

In practice, at each control interval, the adaptive MPC controller updates the plant model and

the nominal conditions. Once updated, the model and the conditions remain constant over the

prediction horizon. In motion planning that uses adaptive MPC, it is common to formulate the

constrained control problem as a real-time optimization problem subject to hard constraints on

plant variables and soft constraints on outputs; at the beginning, we specified the constraints for the

manipulated variables: to prevent the ATLASCAR2 from accelerating or decelerating too quickly,

we added an hard constraint on the throttle rate of change and another one on the steering angle

rate of change. We used an approach that takes advantage of the ability of MPC to handle constraint

explicitly. Figure 4.3 shows a conditional state machine designed for higher-level behavior planning.

When an obstacle is detected, it defines an area on the road (in terms of constraints) that the AT-

LASCAR2 must not enter during the prediction horizon. At the next control interval the area is

redefined based on the new positions of the vehicle and the obstacle until passing is completed.
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Figure 4.3: Behaviour planning condi onal flowchart.

To define the area to avoid, we used the following mixed Input/Output constraints:

Eu + Fy ≤ G (4.8)

where u and y are respectively the manipulated variable vector and the output variable vector, while

E ,F ,G are the constraint matrices that can be updated when the controller is running.
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Five constraints were defined:

1. upper bound on the y-coordinate (left boundary of the road);

2. lower bound on the y-coordinate (right boundary of the road);

3. constraint for obstacle avoidance; although no obstacle is considered in the nominal condi-
tion, we must add this virtual constraint here because we cannot change the dimensions of
the constraint matrices at run time;

4. upper bound on the x-coordinate (position of the closest obstacle);

5. lower bound on the x-coordinate (position of the ATLASCAR2).

The matrices for the above inequality are the following:

E =



0 0

0 0

0 0

0 0

0 0


, F =



0 1 0 0

0 −1 0 0

cS −1 0 0

1 0 0 0

−1 0 0 0


, G =



W/2

W/2

−cI

xmax

xmin


(4.9)

whereW is the width of the road, cI and cS are the required parameters such that the ATLAS-

CAR2 must be above the line formed from the vehicle to safe zone corner for left/right passing and

finally xmax represents the position of the closest obstacle in the case there is not free space for the

overtaking (otherwise xmax = +∞) while xmin depicts the location of our vehicle. Figure 4.4

illustrates the constraints that are computed at each Ts in the case of a left overtaking.
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Figure 4.4: Constraints in the case of le overtaking.

4.3 Simulation Results

The performances of the proposed adaptive MPC based vehicle control method are demonstrated

in four simulation examples. We tried to choose parameters that were as close as possible to a real

situation: the sampling time used in the discretization of the system is Ts = 0.02 swhile the values

of the prediction and the control horizon are respectively pH = 25 and cH = 5.

In all simulations, the distance between the front and rear axles isCL = 5m and the width of

the vehicle isCW = 2m. The saturation ranges of the control inputs are: the steering angle rate of

change lies in
[
− π

30 ,+
π
30

]
rad/s while in order to prevent the ATLASCAR2 from accelerating or

decelerating too quickly, we impose an hard constraint of 2.5m/s2 on the throttle rate of change.

Moreover we are using a constant reference signal for the velocity of v = 20m/s (≈ 72 km/h).

Note that the blue paths in Figures 4.6, 4.8, 4.9, 4.11 and 4.13 are known only at the end of the sim-

ulations but we have decided to report the entire trajectory that the vehicle will perform in every

frame. The overall framework for a multiple moving obstacle avoidance is depicted in the Figure 4.5.
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Figure 4.5: Overall procedure scheme moving obstacle avoidance.

All the simulations are done inMATLAB and Simulink. MATLAB is used for loop-shaping.

Simulink is used as a testing environment. Moreover, the MATLABModel Predictive Toolbox

is used. The controller will be tested in the same Simulink environment as the classical controller.

Note that all these blocks have been implemented through the S-functions (types of dynamically

linked subroutines for Simulink).

4.3.1 OneMoving Obstacle - Right Overtaking

In this first simulation (Figure 4.6) the ATLASCAR2 drives in the middle of the center lane while

the road is completely free and when there is an obstacle, the vehicle passes it only using the right

lane (the same simulation can be launched so that the car goes over to the left fast lane). In this ex-

ample the obstacle has a constant speed of 8m/s and moves in the same direction as the ATLAS-

CAR2. We assume that the LIDAR sensor can detect an obstacle 30m in front of the vehicle. The

red dashed block around the obstacle represents a safe zone used to evaluate the restrictions so that,
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even if there is a small margin of error in the manuever, there is always a safe distance between the

ATLASCAR2 and the nearby vehicle.

Figure 4.6: Simula on of right overtaking with one moving obstacle that moves in the same direc on as the vehicle.

Algorithm 2 summarizes the main steps to compute custom constraints for the obstacle; when

the vehicle detects the obstacle, the constraints are computed.

In other words the constraints are evaluated as follows:

• if the ATLASCAR2 is already in the adjacent lane, it uses the safety zone as the constraint
(line 7);

• otherwise the vehicle must be above the line formed from the ATLASCAR2 to safe zone
corner for right passing (lines 9 and 10);

• if the vehicle is parallel to the obstacle (line 14), it uses the safety zone as the constraint;
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• finally if it has passed the obstacle, it uses the inactive constraint to go back to the center lane
(line 16).

Algorithm 2 Right Overtaking if an obstacle is detected
1: function RightOvertaking(car, obstacle, road)
2: xmin ← carX , xmax ← +∞;
3: obsYrr = Obstacle.RearRightSafeY;
4: obsXrr = Obstacle.RearRightSafeX;
5: if ATLASCAR2 is behind the obstacle then
6: if ATLASCAR2 is in the adjacent lane then
7: cS ← 0; cI ← obsYrr;
8: else
9: cS ← tan(atan2( obsYrr− carY

obsXrr−carX , 1));
10: cI ← obsYrr− cS ∗ obsXrr;
11: end if
12: else
13: if ATLASCAR2 is parallel to the obstacle then
14: cS ← 0; cI ← obsYrr;
15: else
16: cS ← 0; cI ←W/2;
17: end if
18: end if
19: return xmin, xmax, cI , cS
20: Update matricesE ,F andG
21: end function

In this simulation only the first three constraints are necessary because there is enough space for

the overtaking without braking (the fourth and fifth constraints don’t change). The first two con-

straints are constant and represent the left and right boundary of the road (upper and lower bound

on the y-coordinate). The third constraint is useful to define a region where the vehicle can navigate;

it consists of two parameters (cS and cI) that are calculated in the algorithm depending on where

the vehicle is located with respect to the obstacle. After calculating these parameters, the matricesE ,

F andG are updated so that the MPC can process the new optimal input.

45



Finally we can analyze time signals of the ATLASCAR2 in the simulation of right overtaking of

one moving obstacle. Figures 4.7a and 4.7b illustrate the longitudinal and lateral positions of the

vehicle with respect to time, showing a constant trend with respect to the x component, while a shift

from 0 can be noted regarding the y coordinate due to the overcoming of the obstacle. To confirm

a uniform trend, the speed of the ATLASCAR2 remains fairly constant. Obviously it is possible to

note from Figure 4.7c that the velocity decreases very little during the first part of the overtaking

phase, and then comes back to the cruising speed in the second part. Instead from the remaining

Figures 4.7d, 4.7e and 4.7f we can observe that the throttle T and the steering angle δ respect the

limits we imposed while the heading angle θ is used to describe the direction the ATLASCAR2 is

pointing.

4.3.2 Multiple Moving Obstacles

For a second test, additional obstacles were added to make the scenario more complex like in a real

highway.

Initially we assumed that the obstacles were located at a distance greater than the LIDAR detec-

tion range which is 30m. In this way every time the vehicle overtakes a car, it applies the inactive

constraints to go back to the center lane.

This situation is represented in Figure 4.8 where there are three different scenarios withN =

2, 3 and 4moving obstacles that drive with a constant velocity of 8m/s in the opposite direction

with respect to the ATLASCAR2. The vehicle is capable of overtaking the obstacles on the right or
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Figure 4.7: Time signals of the ATLASCAR2 in the simula on of right overtaking of one moving obstacle illustrated in
Figure 4.6.
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left depending on their positions with respect to the road. If the y-coordinate of the closest obstacle

is greater than 0, then the vehicle overtakes to the right, otherwise the overtaking takes place on the

left lane.

Figure 4.8: Simula ons of overtaking withN = 2, 3, 4 moving obstacles that drive in the opposite direc on with
respect to the ATLASCAR2.

In Figure 4.9 we also hypothesized there are six moving obstacles that can drive at different speeds

but initially they are at a common distance; they can have a uniformmotion or a uniformely ac-

celerated motion. We also improved the code infact in case two obstacles are too close during the

simulation and their distance is less than the detection range, which is 30m, the ATLASCAR2 per-

ceives the objects as a single entity and adapts to the situation. The same test can be done with the

obstacles that drive in the same direction as the vehicle but to better assess and demonstrate results

we decided to show a very unusual scenario.

Also in this case we reported time signals of the ATLASCAR2 in the simulation with six moving

obstacles (Figure 4.10). The most articulated scenario makes the signals more complex with respect
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to time. However, we can see that the speed is just under 20m/swhile the inputs continue to re-

spect the imposed boundaries. Note that the vehicle manages to overcome all the obstacles without

encountering any difficulty since there is always an empty lane.

Figure 4.9: Simula on of overtaking with six moving obstacles that moves in the opposite direc on with respect the
vehicle.
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Figure 4.10: Time signals of the ATLASCAR2 in the simula on of overtaking with six moving obstacles illustrated in
Figure 4.9.
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4.3.3 No Overtaking

We have seen that as long as there is always a free lane, the obstacle avoidance algorithm works cor-

rectly. In the case that there are too many obstacles on the road, which do not allow overtaking, the

vehicle must adapt to the situation and it must slow down in order not to collide. In the algorithm

that we have developed it is possible to calculate two other restrictions which permit this decelera-

tion in the case that it is strictly necessary. To better understand how these restrictions change the

speed and deceleration of the ATLASCAR2, we simulated a scenario (Figure 4.11) in which there

are 3 obstacles at an initial distance of 35m occupying the 3 different lanes, all with the same x-

coordinate and the same velocity of 8m/s. When these obstacles enter in the vehicle’s detection

range, it checks whether there is enough space to perform the overtaking maneuver by calculating

the distance between the obstacles. Noting that it is not possible to overtake, our vehicle must de-

celerate in order not to crash into the nearest car. To do this, the MPCmust take into account the

position of the vehicle xmin and the position of the closest obstacle xmax.

Also in this simulation the reference speed of the car is 20m/s, but after≃1.5 s, the obstacles

enter in the detection range and as we can see from the Figure 4.12c the velocity decreases rapidly

to adapt to that of the nearest vehicle. It is possible to observe that this decrease in speed, which

subsequently remains constant at 8m/s, is due to a strong negative throttle impulse (Figure 4.12d).

Finally, we note that the steering angle δ and heading angle θ remain at zero: there is only a very

small oscillatory trend due to measurement errors as the vehicle always requires a minimum change

of direction. Finally we imposed a safety distance that must always be respected between two vehi-
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Figure 4.11: Simula on of no overtaking with three moving obstacles that move in the same direc on as the vehicle.

cles so that if the obstacle brakes sharply the ATLASCAR2 can avoid the impact. It is very difficult

to achieve reliable calculations of the braking distance as road conditions and the tyres’ grip can vary

greatly. An easy formula to calculate the braking distance is the following one:

d =
v2

250× f
(4.10)

where d is the braking distance in metres, v is the speed in km/h, 250 is the fixed figure which is

always used and f is the coefficient of friction, approx. 0.8 on dry asphalt and 0.1 on ice.
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Figure 4.12: Time signals of the ATLASCAR2 in the simula on of no overtaking with three moving obstacles
illustrated in Figure 4.11.
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4.3.4 Vehicle Braking and Obstacles Overtaking

Finally we have improved the code related to the mixed Input/Output constraints. Figure 4.13 de-

picts a simulation in which there are 3 obstacles at the same x-coordinate. Two obstacles have a con-

stant speed of 8m/swhile the one on the left lane of 15m/s.
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Figure 4.13: Simula on of braking and overtaking obstacles.
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In this particular case it is essential to consider the fourth and the fifth restrictions in order to

allow the ATLASCAR2 to slow down without colliding with the cars in front. The fifth constraint

is simply the position of the ATLASCAR2 that updates at each interval, while the fourth constraint,

until there is a free lane, is the position of the closest obstacle (both the positions are with respect

to the global reference frame). In the calculation of the fourth constraint is necessary to consider

the speed at which the vehicle and the obstacle are moving in order to keep a safe distance. At the

beginning, the vehicle moves with the reference velocity of v = 20m/s. When the ATLASCAR2

detects all the other cars on the road, checks if there is a free lane. In the first part of the simulation,

the ATLASCAR2 brakes because there is not enough space for overtaking the cars as shown in Fig.

4.14c. A collision would happen if the vehicle continues to follow the initially planned path with

the reference velocity. It is possible to notice that the speed decreases because the applied throttle is

negative, so a consistent deceleration is set after≈ 1.5 s as depicted in Fig. 4.14d. The velocity of

the ATLASCAR2 for≈ 2 s adapts to that of the closest obstacle. After a few seconds the fastest

car moves and makes available the left lane for overtaking. Dramatic changes of steering angle in

early stage are observed in Fig. 4.14e and consequently also on the heading angle in Fig. 4.14f. Then,

the ATLASCAR2 returns to the reference velocity during the overtaking of the two obstacles (the

applied throttle after≈ 5 s is positive). It is seen that the ATLASCAR2 avoids the obstacles and

returns to the road center line with a low overshoot.
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Figure 4.14: Time signals of the ATLASCAR2 in the simula on of braking and overtaking in the situa on illustrated in
Figure 4.13.
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5
Lane Following System

In this chapter we present a Lane Following alghorithm based on Adaptive Model Predictive Con-

trol. First we introduced the case-study model, then we designed the controller and the overall pro-

cedure scheme. Finally we verified the proposed strategy in different scenarios considering a double

lane change, sinusoidal and elliptic/circular paths.
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5.1 Problem Formulation

A lane-following system is a control system that keeps the vehicle traveling along the centerline of

a highway lane, while maintaining a user-set velocity. Figure 5.1 illustrates a typical lane following

scenario.

Vx
Vy

e1

e2

lateral deviation

relative yaw angle

Figure 5.1: Problem descrip on of a lane following system.

In a classic lane keeping assist, it is assumed that the longitudinal velocity is constant [40]. This

restriction is relaxed in this model because the longitudinal acceleration varies in this MIMO control

system. This lane-following systemmanipulates both the longitudinal acceleration and the front

steering angle of the vehicle to keep the lateral deviation and the relative yaw angle small and the lon-

gitudinal velocity close to a driver set velocity. If these two goals cannot be met at the same moment,
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the system tries to balance them. The model that we are considering contains many parameters. The

first fundamental block describes the vehicle dynamics: we have applied the bicycle model of lat-

eral vehicle dynamics and approximate the longitudinal dynamics using a time constant obtaining a

linear model.

5.1.1 Longitudinal Dynamics

Dynamics of the powertrain are commonly modeled using a first-order transfer function, called the

generalized vehicle longitudinal dynamic system in [41]:

V̇x =
K

τs+ 1
a (5.1)

with the system gain usuallyK = 1 and a time constant τ = 0.2. This type of model was used in

[41] for a predictive multi-objective vehicular ACC and in [42] for model predictive control of tran-

sitional maneuvers for adaptive vehicle cruise control. Moreover a similar modeling approach was

applied in [43] to address trajectory tracking for autonomous vehicles, with the goal of developing a

racing controller.

We can use the following state space to describe the longitudinal model:

ẋ lon = Amx lon +Bmu lon

y lon = Cmx lon +Dmu lon

(5.2)

where the input is the desired acceleration and the states are the longitudinal velocity and the actual
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acceleration which is also the only output of this system:

x lon =

V̇x
Vx

 , u lon = a, (5.3)

while the matricesAm,Bm,Cm andDm are the following:

Am =

− 1
τ 0

1 0

 , Bm =

 1
τ

0

 ,

Cm =

[
1 0

]
, Dm = 0,

(5.4)

where τ is time constant described above.

5.1.2 Lateral Dynamics

The vehicle is modelled at each axis through a bicycle model in which the two wheels are lumped

into a single wheel. It will be assumed that a simple linear tire model can be used due to the con-

sidered speeds. It is also assumed that the small angles approximation can be used. The equations

describing the yaw and lateral motion are:

mV̇y = Fyf + Fyr

IZψ̈ = lFFyf − lRFyr

(5.5)
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where Fyf and Fyr are the tire forces at the front and rear axles of the vehicle, which are a function

of the cornering stifness of the tiresCF andCR, the steering angle δ and the vehicle states. The

ATLASCAR2 travels with a longitudinal velocity Vx and a lateral velocity Vy . These two velocities

can be used to form a vector describing the resultant velocity and its direction. In this case it is also

possible to find the slip angles, the difference between the actual travelling direction of the wheel and

where it is pointed [44] (in the previous chapter we assumed that the ATLASCAR2 does not slip, so

any slippage is thus considered as an external disturbance):

αf = δ − θvf , αr = −θvr (5.6)

where θvf and θvr represent the angles of the velocity vectors for the rear and front tires evalu-

ated as follows:

θvf = atan

(
Vy + lF ψ̇

Vx

)
, θvr = atan

(
Vy − lRψ̇

Vx

)
(5.7)

Finally the lateral tire forces acting on the wheels, Fyf and Fyr, are proportional to the slip angle,

for small angles; so they can be written as:

Fyf = 2CF (δ − θvf ), Fyr = −2CRθvr (5.8)
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Combining (5.5) and (5.8) gives the following vehicle lateral model from parameters:

ẋ lat = Agx lat +Bgu lat

y lat = C gx lat +Dgu lat

(5.9)

where the input is the steering angle in radians, and the outputs are the lateral velocity in meters per

second and yaw angle rate in radians per second:

x lat =

Vy
ψ̇

 u lat = δ (5.10)

while the matricesAg ,Bg ,C g andDg are the following:

Ag =

 −2CF + 2CR

mVx
−2CF lF − 2CRlR

mVx
− Vx

−2CF lF − 2CRlR
IZVx

−
2CF l

2
F + 2CRl

2
R

IZVx

 ,

Bg =

 2CF /m

2CF lF /IZ

 , C g =

1 0

0 1

 = I 2, Dg =

0
0

 = 0 2×1.

(5.11)

Recapping the parameters in the previous matrices are:

• Vx is the longitudinal velocity of the car;

• m is the total mass parameter;

• IZ is the yaw moment of inertia parameter;

• lF is the longitudinal distances from center of gravity to front tire parameter;
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• lR is the longitudinal distances from center of gravity to rear tire parameter;

• CF is the cornering stiffnesses of front tire parameter;

• CR is the cornering stiffnesses of rear tire parameter;

5.1.3 AugmentedModel for Lateral Dynamics

The goal for the driver steering model is to keep the vehicle in its lane and follow the curved road

by controlling the front steering angle. Denote by e1 the offset to the center line and e2, the relative

angle to the center line. This goal is achieved by driving the yaw angle error e2 = ψ − ψdes and

lateral displacement error e1 to zero (ė1 = Vxe2 + Vy). We can incorporate these two paramenters

in the augmented model:

ẋ aug = Aax aug +Bau aug

y aug = C ax aug +Dau aug

(5.12)

where the states and the inputs are:

x aug =



Vy

ψ̇

e1

e2


, u aug =

 δ

ψ̇des

 (5.13)
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while the matricesAa,Ba,C a andDa are the following:

Aa =


Ag 0 2×2

I 2

0 Vx

0 0

 , Ba =


Bg 0 2×1

0 0

0 −1

 ,

C a =

[
0 2×2 I 2

]
, Da = 0 2×2.

(5.14)

5.1.4 Overall Model Dynamics

Combining (5.2) with (5.12) yields the state-space model that characterizes the Model Predictive Con-

trol problem:

ẋ tot = Afx tot +Bfu tot

y tot = C fx tot +Dfu tot

(5.15)

where the states and the inputs are:

x tot =

x lon

x aug

 =



V̇x

Vx

Vy

ψ̇

e1

e2



, u tot =

u lon

u aug

 =


a

δ

ψ̇des

 (5.16)
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while the matricesAf ,Bf ,C f andDf are the following:

Af =

 Am 0 2×4

0 4×2 Aa

 , Bf =

 Bm 0 2×2

0 4×1 Ba

 ,

C f =

Cm 0 1×4

0 2×2 C a

 , Df = 0 3×3.

(5.17)

However the system to be controlled is usually modeled by a linear discrete state-space model:

x tot(k + 1) = Ax tot(k) +Bu tot(k)

y tot(k) = Cx tot(k) +Du tot(k)

(5.18)

whereA andB are the state and control matrices for the discrete state-space equation, respectively,

which can be calculated, also in this case, with the Euler method as:

A = eAfTs , B =

∫ (k+1)Ts

kTs

eAf [(k+1)Ts−η]Bfdη (5.19)

where Ts is the sampling interval for the discrete state-space model. The matricesC andD are

equivalent to those in the continuous case.
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5.2 Design of Adaptive Model Predictive Control

Before talking about the design of the controller, it is necessary to highlight which are all the ele-

ments that make up our control scheme. The overall framework for a lane keeping assist is depicted

in the Figure 5.2.

Figure 5.2: Overall procedure scheme lane following.

This control scheme is composed by four different blocks that are the Sensor Dynamics, the Vehi-

cle Dynamics, the Adaptive MPC controller and the Curvature Previewer. Summarizing, the Vehicle

Dynamics applies the bicycle model of lateral vehicle dynamics and approximate the longitudinal

dynamics using a time constant according to what was seen previously; the Sensor Dynamics approx-

imates a sensor, such as a camera or a laser, to calculate the lateral deviation and relative yaw angle;

the Curvature Previewer detects the curvature at the current time step and the curvature sequence

over the prediction horizon of the MPC controller and finally Adaptive MPC generates the optimal

control inputs for a lane following system. The objective of the trajectory planning along specified

path can be described as follows: given a path which the vehicle is expected to follow design a trajec-
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tory of a car-vehicle configuration. In order to do this it is possible to derive the road curvature and

its derivative. For a plane curve given parametrically in Cartesian coordinates as γ(t) = (x(t), y(t)),

the signed curvature is

κ =
x′y′′ − x′′y′

(x′2 + y′2)
3
2

(5.20)

where primes refer to derivatives d
dt with respect to the parameter t. The resulting curvature (5.20) is

a rational function, continuous except at the roots of the denominator, which is always nonzero pro-

vided that the interpolated positions do not contain subsequent duplicate values and that the points

are spaced sufficiently [43]. The vehicle dynamics is represented by a Simulink model in Figure 5.3

where on the upper part we find the longitudinal dynamics while on the lower part we can see the

lateral dynamics highlighted by the gains that are the components of the linear discrete state-space

model (5.9).

We created an Adaptive MPC controller with a prediction model that has six states, three outputs

(longitudinal velocity, lateral deviation, relative yaw angle), two manipulated signals (acceleration

and steering) and one measured disturbance (desired yaw rate).

In order to design a valid lane keeping algorithm based onMPC we have set the constraints for

manipulated variables and the scale factors. In particular the control variables are constrained as

follows:

−3m/s2 ≤ a ≤ 3m/s2 −1.13 rad ≤ δ ≤ 1.13 rad , (5.21)

Moreover we have specified the weights in the standardMPC cost function. The third output,

yaw angle, is allowed to float because there are only two manipulated variables to make it a square
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Figure 5.3: Vehicle Dynamics of the overall scheme lane following.

system. In this controller, there is no steady-state error in the yaw angle as long as the second output,

lateral deviation, reaches 0 at steady state. Finally we have also penalized acceleration change more

for smooth driving experience. This controller uses a linear model for the vehicle dynamics and

updates the model online as the longitudinal velocity varies. The dynamics of the sensors (Figure

5.4) allows us to calculate two fundamental parameters to reach the goal of keeping the vehicle in its

lane and following the curved road by controlling the front steering angle:

• e1 which is the offset to the center line,

• e2 which is the relative angle to the center line.

where we want to drive the yaw angle error and the lateral displacement error to zero to achieve
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our goal. The product of the road curvature and the longitudinal velocity is modeled as a measured

disturbance.

Figure 5.4: Sensor Dynamics of the overall scheme lane following.

5.3 Simulation Results

The proposed adaptive MPC algorithm is designed in the MATLAB/Simulink and validated through

simulations considering different paths. The objective of these tests is to evaluate the behavior of the

proposed control strategy in critical situations. The parameters used in the lane following simula-

tions are summarized in table 5.1:

The paths considered for the evaluation of the proposed control strategy are:

• a double lane change curve (useful when a vehicle has to pass an obstacle),

• a sinusoidal path (slalom cones scenario),

• a circular/elliptic path (NASCAR race tracks).
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Parameters Values Description
m 1575 kg Mass of the vehicle
Iz 2875 kgm2 Inertia Moment
lF 1.2m Distance from COG to front axle
lR 1.6m Distance from COG to rear axle
CF 19 000N/rad Front cornering stiffness
CR 33 000N/rad Rear cornering stiffness
τ 0.2 Time constant
V0 15m/s Initial Velocity
Vset 20m/s Driver-set Velocity
Ts 0.02 s Sampling Time

Table 5.1: Parameters of Vehicle Dynamics and Road Curvature.

5.3.1 Double Lane Change Path

In the first simulation the desired path is described in terms of the lateral position Yref as function

of the longitudinal positionXref. The equations (5.22) describe a double lane change that have been

employed in different tests for different scenarios i.e. [45] [46] [47] as follow :

Xref = Vx · t, with t ∈ [0, 10]s

z1 =
2.4

50
(Xref − 27.19)− 1.2; z2 =

2.4

43.9
(Xref − 56.46)− 1.2;

Yref =
8.1

2
(1 + tanh(z1))−

8.4

2
(1 + tanh(z2)).

(5.22)

Figures 5.5a and 5.5b represent the first trajectory that the vehicle must perform and the curvature

calculated with the previous formula (5.20).
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Figure 5.5: Desired double lane change path and its curvature of the ATLASCAR2 in a simula on of 10s with ini al
posi on in (0, 0).

From the following figures, on the other hand, it can be deduced that the control system we have

created allows the ATLASCAR2 to respect the imposed constraints and to reach the set objectives.

The longitudinal and lateral components of the velocity are represented in figures 5.6a and 5.6b. In

the first few seconds of the simulation Vx increases thanks to a constant acceleration imposed by

the first input (Figure 5.6c). Later this acceleration decreases converging to zero so that at run time,

we can note that Vx reaches the predefined value of 20m/s and then it stabilizes near the driver set

velocity because it continues to vary the steering angle to adapt to the path to be followed (Figure

5.6d). The lateral component Vy , on the other hand, only affects during the steering phase when we

are forcing a change of direction. From Figures 5.6f and 5.6e we can notice that the lateral deviation

and the relative yaw angle both converge to zero. That is, the ATLASCAR2 follows the road closely

based on the previewed curvature.
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Figure 5.6: Time signals of the ATLASCAR2 in the simula on with a double lane change path.
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5.3.2 Sinusoidal Path

In the second simulation we assumed that the car must follow a sinusoidal path. We have extended

the simulation time to 20 seconds in order to better understand the progress of the various signals.

Figures 5.7a and 5.7b show the desired path and its curvature, where the former is described in terms

of the lateral position Yref as function of the longitudinal positionXref and the latter is derived ac-

cording with [48]. The ATLASCAR2 is controlled to follow a sinusoidal trajectory which is given as

follows:

Xref = Vx · t, with t ∈ [0, 20]s

Yref = 5 sin
(Xref

20

) (5.23)
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Figure 5.7: Desired sinusoidal path and its curvature of the ATLASCAR2 in a simula on of 20s.

In practice this type of route can be followed by the vehicle when it has to make a slalom between

cones or it must go up some hairpin bends in the mountains. Moreover the following figures show

the trend of the main parameters confirming that the control strategy used allows the vehicle to fol-
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low the path. In particular we simulated also a small error in the sensor dynamics in order to make

the simulation more realistic: we added a 3 percent error to the longitudinal velocity and this is evi-

dent from the small noise in the graphs of the steering angle (Figure 5.8d) and the lateral deviation

(Figure 5.8f). Figure 5.8a shows the evolution of the vehicle longitudinal velocity. Also in this sim-

ulation the velocity is equal to the initial condition for longitudinal velocity parameter V0. At run

time, we can note that Vx reaches the predefined value of 20m/s and then it stabilizes near the cruis-

ing speed because it continues to vary the steering angle to adapt to the path to be followed. In this

scenario the lateral deviation and the relative yaw angle do not converge to zero but oscillate. We

can however assert that this type of oscillation is due to the type of path we are following. Further-

more the limits of this oscillation are very small indeed: in particular the lateral deviation is less than

1.5 cmwhile the maximum relative yaw angle is 0.04 rad. We can therefore state that, even in this

case, the vehicle correctly follows the lane.

5.3.3 Circular/Elliptic Path

In the last simulation we considered that the vehicle must follow an elliptic path with a semi-major

axis of 30m and semi-minor axis of 15m depicted in Figure 5.9a. Also in this case the simulation

time is 20 s. To describe the elliptic path and to evaluate its curvature, depicted in Figure 5.9b, the

equations are as follows:

Xref = 15 cos

(
Vx · t
60

)
Yref = 30 sin

(
Vx · t
60

)
with t ∈ [0, 20]s (5.24)
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Figure 5.8: Time signals of the ATLASCAR2 in the simula on with a sinusoidal path.
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Figure 5.9: Desired ellip c path and its curvature of the ATLASCAR2 in a simula on of 20s with ini al posi on in
(0, 30).

In particular in Figure 5.10 are represented the time signals of the ATLASCAR2 in the simulation

with the elliptic path. It is possible to notice that also in this case the vehicle follows the path with a

minimal lateral deviation described in the Figure 5.10f.

However, the minimum lateral displacement is at the expense of the costant cruise velocity; infact

Figure 5.10a and 5.10b show an oscillatory pattern of both longitudinal speed and lateral velocity

caused by the continuous change of direction of the road and the length of the latter.

Also in this situation we simulated a small error in the sensor dynamics in order to make the sce-

nario more realistic: we added a 2 percent error to the longitudinal velocity and this is evident from

the small noise in the graphs of the steering angle (Figure 5.10d) and the lateral deviation (Figure

5.10f).

As previously stated, the vehicle follows the lane and allows us to affirm that the control system

we have designed is efficient and robust.
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6
Conclusions and Future Work

This thesis proposes two advanced methods for short termmotion planning of an autonomous

car based on adaptive Model Predictive Control. The first component is an obstacle avoidance sys-

tem that moves the vehicle around different moving obstacles in the lane using throttle and steering

angle. This system updates both the predictive model and the mixed input/output constraints at

each control interval. The vehicle is also able to brake in order to prevent collisions against closest
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obstacles. Instead, in the second scheme we have developed a lane following system that keeps the

ATLASCAR2 traveling along the centerline of the lanes on the road by adjusting the front steering

angle of the car. The flexibility of the concepts used in the algorithms allows a multitude of refine-

ments and extensions to this work. The future work includes the combination of these two control

strategies in a way that they can operate simultaneously. In order to achieve this objective we have

started to simulate a trajectory tracking framework using a slight modification of the linearized track-

ing error model in [49]. Next expected steps include the migration to ROS-Gazebo simulation en-

vironment and, later on, the usage of real data collected on board the ATLASCAR2 and, ultimately,

test it in a real autonomous driving scenario.
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