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Abstract— The advancement of Autonomous Driving (AD)
systems in simulated environments like CARLA is essential for
real-world automotive technology. CARLA’s new Leaderboard
2.0 poses greater challenges, and current AD methods have
struggled due to insufficient ground truth data. Human driving
logs from CARLA and previous expert agents like Autopilot
and Roach have proven inadequate under these challenging
conditions. To address this, we introduce PRIBOOT, an expert
agent that leverages limited human logs with privileged infor-
mation. We developed a novel BEV representation tailored for
these complex driving scenarios, processed as an RGB image to
enable transfer learning, rather than using masks. Additionally,
we propose the Infraction Rate Score (IRS), a new metric for
a balanced assessment of driving performance over extended
routes. PRIBOOT is the first model to achieve a 75% Route
Completion (RC) in Leaderboard 2.0, along with a Driving
Score (DS) of 20% and an IRS of 45%. PRIBOOT enables
researchers to generate extensive datasets, potentially resolving
data availability issues in this benchmark.

I. INTRODUCTION
Autonomous Driving (AD) is a key technological advance-

ment with the potential to transform transportation, improve
road safety, and redefine urban environments [1], [2]. Despite
its potential, developing fully autonomous vehicles involves
significant challenges. These include integrating diverse sen-
sors, processing complex data, making real-time decisions,
and addressing ethical issues. Such vehicles must operate
reliably in unpredictable conditions, requiring advanced sys-
tems capable of handling a wide range of scenarios [3]. Real-
world testing of autonomous vehicles, while necessary, is
often expensive, risky, and encumbered by ethical dilemmas.

Simulations serve as a critical complement to real-world
testing, providing a safe and controlled environment that
replicates complex real-world scenarios without the associ-
ated costs and risks [3], [4]. This enhances the development
of autonomous driving technologies by allowing preliminary
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testing and refinement in simulations, reserving real-world
trials for the final stages of development. Moreover, in these
simulated environments, it is possible to leverage privileged
information, otherwise not available in the real-world, to cre-
ate expert systems that can provide demonstrations, further
enriching the development process.

Among various open-source AD simulators, CARLA [3]
is often listed as the premier choice [4], [5]. CARLA offers
a suite of essential features for realistic and effective sim-
ulation of driving scenarios. These include comprehensive
environmental conditions, detailed vehicle models, and a
wide array of sensors, making it an ideal platform for
advanced AD research and development.

To accelerate innovation, CARLA introduced the CARLA
Leaderboard 1.01 benchmark, designed to assess the driving
proficiency of autonomous agents within realistic traffic
scenarios. Despite the complex scenarios presented in the
benchmark, various methods such as ReasonNet [6], In-
terFuser [7], and TCP [8] have consistently reported high
performance over the years. Notably, the CARLA Autopilot,
a rule-based agent, achieved near-perfect performance. This
underscores the benchmark’s capacity to be effectively mas-
tered using current technologies. Building on this foundation,
CARLA Leaderboard 2.02 introduces even more complex
and challenging scenarios, such as obstacles in the lane and
parking exits. These novel scenarios significantly increase the
difficulty level, challenging the limits of existing autonomous
driving systems. To this date, all approaches tested on the
Leaderboard 2.0 benchmark have shown very poor perfor-
mance, with the highest Route Completion (RC) reaching
15%, and the highest DS reaching 1% [9]. We believe that
the primary reason for this notable decline in performance
can be attributed to the insufficiency of available training
data. CARLA provides a set of human driving logs from a
few route scenarios, but these are insufficient for training
models that rely on sensor information. In Leaderboard
1.0, researchers could leverage online experts like CARLA
Autopilot or Roach [10] to generate demonstrations. How-
ever, in Leaderboard 2.0, these experts are either markedly
less effective or completely ineffective, as we will show in
Section II.

This paper presents a method to address the challenges
posed by the limited training data availability. The driving
logs from CARLA, while insufficient alone for models re-
quiring sensor inputs, become significantly more useful when

1https://leaderboard.carla.org/#leaderboard-10
2https://leaderboard.carla.org/



combined with privileged information from the simulator,
specifically Bird’s Eye View (BEV). This integration effec-
tively simplifies the complexity of the benchmark. Employ-
ing this strategy, we apply Imitation Learning techniques to
develop PRIBOOT (Privileged Information Bootstrapping),
an expert agent capable of navigating the demanding scenar-
ios presented in Leaderboard 2.0. PRIBOOT utilizes priv-
ileged information to master these scenarios, subsequently
enabling the generation of extensive datasets or providing
online demonstrations. Although PRIBOOT was designed
to address the challenges of Leaderboard 2.0, it is also
applicable to any other CARLA benchmark.

Overall, we summarize our main contributions as follows:
• Introduce PRIBOOT, an expert agent that effectively

leverages privileged information and limited data for
model training, marking the first instance of achiev-
ing significant performance milestones on the CARLA
Leaderboard 2.0;

• Develop a tailored Bird’s Eye View (BEV) representa-
tion to effectively address the complex driving scenarios
encountered in CARLA Leaderboard 2.0.

• Process the BEV as an RGB image rather than a set
of masks. This facilitates the application of transfer
learning techniques, which significantly enhance model
performance and efficiency, particularly in the context
of limited data availability;

• Introduce Infraction Rate Score (IRS), a novel eval-
uation metric that considers infractions per kilometer
rather than the total number of infractions. This metric
is designed to complement the Driving Score (DS)
by providing a more detailed assessment of driving
behavior over long routes.

The source code of PRIBOOT is available at
https://github.com/DanielCoelho112/priboot.

II. RELATED WORK

This section is divided into two topics: the application of
expert agents in AD, and an overview of all expert agents
utilized in CARLA.

A. Application of Experts in Autonomous Driving

In recent years, the field of AD has seen significant
advancements through the application of online experts [8],
[10]–[12]. A notable example of this is showcased in [11],
where the utility of online experts is demonstrated in real-
world, high-speed off-road driving scenarios. In their ap-
proach, an initial expert system equipped with expensive
sensors is developed using a combination of hand-engineered
components. This expert system then serves as a reference
model, providing high-quality driving demonstrations to train
a student model, which operates using more affordable
sensors.

Building on the foundational use of online experts, the
transfer of knowledge from the expert to the student model
can be accomplished through various methodologies. One
prevalent method involves the creation of offline datasets,

which are subsequently employed for offline Imitation Learn-
ing (IL) [6], [13] or Reinforcement Learning from Demon-
strations (RLfD) [14]. These approaches are particularly
valuable in scenarios where direct interaction with the en-
vironment is either too costly or filled with risks. However,
a significant challenge with using offline datasets is the
potential for a distribution shift [15]. To address the issue
of distribution shift, an alternative strategy is online IL [16],
where the student actively explores the environment while
the teacher provides on-demand supervision. This method
helps to align the student’s learning experience more closely
with the actual operational environment, thereby reducing
the impact of distribution shift. Nevertheless, this approach
still relies heavily on the quality of the data provided by the
expert. If the expert’s behavior is not optimal, the student is
likely to inherit these imperfections [10]. To further refine
this process and overcome the limitations of potentially
suboptimal expert data, another innovative approach is Rein-
forcement Learning from Online Demonstrations (RLfOLD)
[17]. This technique merges the benefits of Online IL with
the principles of RL, tackling both the issue of distribution
shift and the challenge of learning from a suboptimal expert.

B. Experts in CARLA

CARLA incorporates a built-in expert system known as
Autopilot, which relies on a series of handcrafted rules that
utilize the internal state of the simulator for navigation [3].
In Leaderboard 1.0, Autopilot demonstrated commendable
performance, contributing significantly to data collection for
top-ranked methods such as ReasonNet [6], which relies on
datasets generated by this expert. However, the transition
to Leaderboard 2.0 reveals a stark contrast in the efficacy
of the Autopilot system. As detailed in Section IV, the
performance of Autopilot is markedly diminished in the
more demanding scenarios of this updated benchmark. The
primary challenge lies in the inherent limitations of a rule-
based navigation framework, which struggles to adapt to
the complex and dynamic driving conditions presented in
Leaderboard 2.0, such as yielding to emergency vehicles or
overtaking obstacles in the lane.

While Autopilot has shown competent performance in
earlier benchmarks, the adoption of learning-based experts
presents distinct advantages [10], [16], [18]. These methods
usually decouple the perception from planning, which sim-
plifies the training process. Typically, such methods leverage
privileged information from the simulator to bypass the need
for complex perception systems, focusing instead on training
the planning module directly. For example, LBC [16] and
SAM [18] replace the perception module with simulator-
derived privileged information, and then train the planning
component using IL based on demonstrations provided by
the Autopilot. To ensure effective knowledge transfer from
the expert to the student, LBC aims to minimize the out-
put differences between them, whereas SAM focuses on
aligning the latent representations of both models. These
learning-based experts have been assessed in straightforward
benchmarks, such as the NoCrash benchmark [13]. This
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(a) (b)
Fig. 1. BEV used in PRIBOOT. This representation was built upon Roach and LBC, with critical adaptations to tailor it for the complexities of Leaderboard
2.0. (a) Differentiates emergency vehicles (dark blue) from regular vehicles (blue). (b) Introduces an additional class for construction objects, illustrated in
orange. Additionally, both images depict a simple method to represent motion with directional arrows, illustrated in green. The images with a white frame
provide a zoomed-in view to highlight specific details.

benchmark, with its relatively simple navigation and collision
avoidance tasks, represents a significantly lesser challenge
than even the earlier Leaderboard 1.0, and far less demanding
than the complexities encountered in Leaderboard 2.0.

More recently, the Roach expert [10] was introduced and
has since become the most utilized expert in Leaderboard 1.0
[8], [19]. Roach processes inputs using a Bird’s Eye View
(BEV) image that encapsulates roads, lanes, routes, vehicles,
pedestrians, traffic lights, and stop signs. This information is
then processed using a model-free Reinforcement Learning
(RL) algorithm to generate vehicle control commands. While
Roach has demonstrated impressive results in Leaderboard
1.0, its applicability to Leaderboard 2.0 is questionable with-
out significant modifications. Several challenges hinder the
transition of Roach to the more demanding Leaderboard 2.0.
Firstly, their BEV implementation struggles with scalability
issues in the larger towns of Leaderboard 2.0, primarily due
to memory constraints when computing the cache for the
roads and lanes. Secondly, the existing classes in the BEV
representation fall short in capturing complex new scenarios
introduced in the updated leaderboard, such as construction
zones or the presence of emergency vehicles. Lastly, there is
uncertainty regarding the effectiveness of Roach’s model-free
RL approach when faced with the heightened complexity and
dynamic requirements of Leaderboard 2.0. It is important
to note that Roach was trained for about one week on an
Nvidia RTX 2080 Ti to achieve its results on Leaderboard
1.0. Considering the increased difficulty and complexity of
scenarios in Leaderboard 2.0, adapting and retraining Roach
could potentially require significantly more time, further
complicating its deployment in this new benchmark.

Recognizing the limitations of existing expert agents for
Leaderboard 2.0, CARLA has made available a set of driving
logs that showcase human-driven routes in various scenarios.
However, these logs alone do not suffice to train a system
capable of processing sensor inputs and generating control
commands. In response, and inspired by the approaches
of LBC and Roach, we propose PRIBOOT, a method that
simplifies the perception component by employing a Bird’s

Eye View (BEV) as the primary input. However, instead
of using BEV as independent mask channels for training
a CNN from scratch, PRIBOOT converts the mask into
an RGB image and leverages transfer learning techniques
using pre-trained networks from the ImageNet dataset [20].
This adaptation is crucial, particularly given the limited data
available.

III. METHOD

PRIBOOT (Privileged Information Bootstrapping) lever-
ages the limited logs available in Leaderboard 2.0 to establish
the first expert agent capable of achieving satisfactory results
within this demanding benchmark, as we show in Section
IV. The development of PRIBOOT was structured in two
phases: First, we focused on generating the most effective
input representation tailored to the unique challenges of
Leaderboard 2.0, as detailed in Section III-A. Following this,
we designed and implemented a neural network architecture
that is specifically optimized for handling the constraints of
limited data, described in Section III-B.

A. Generation of Bird’s Eye View

Building on the approach used by Roach [10] and LBC
[16], we employ a BEV to model the environment. However,
adaptations were necessary to tailor it for the complexities
of Leaderboard 2.0. Roach’s and LBC’s BEV include vari-
ous classes such as roads, desired routes, lane boundaries,
vehicles, pedestrians, traffic lights, and stop signs. While
these classes were adequate for Leaderboard 1.0, they proved
insufficient for the expanded scope of Leaderboard 2.0. Our
enhancements to the BEV are outlined below:

a) Scalable Cache: Current BEV approaches utilize
a caching mechanism to store the roads and lanes for the
entire town, a process completed once per town to facilitate
real-time BEV generation. However, applying this method
to the larger towns in Leaderboard 2.0 caused memory
overflows due to the use of Pygame. We addressed this
by adopting a more efficient caching technique inspired



Fig. 2. Architecture of PRIBOOT. The system receives two types of inputs: a BEV image and a vector of vehicle measurements. These inputs are
processed independently— the BEV through a pretrained EfficientNet model and the vehicle measurements via a MLP. The resultant feature vectors from
both models are concatenated to form a comprehensive feature vector, which is then fed into a GRU-based waypoint decoder, similar to the approach used
by Transfuser [21]. The final stage involves processing the waypoints through both longitudinal and lateral PID controllers to generate the vehicle control
commands.

by deepsense.ai3, implementing the cache with NumPy for
enhanced performance.

b) Decomposition of the Vehicles Class: In current
BEV representations, all vehicle types are aggregated under a
single class. We refined this by segmenting the Vehicles class
into three distinct categories: Bikes, Emergency Vehicles, and
Regular Vehicles. This differentiation is crucial as the driving
behavior varies significantly based on the type of nearby
vehicle, especially in emergency situations (see Figure 1a).

c) Simplified Motion Representation: Roach’s BEV
uses multiple temporal masks to capture movement, which
increases significantly the computational load. Instead, we
introduced a single additional mask featuring an arrow for
each actor, as illustrated with green arrows in Figure 1. This
arrow indicates both the direction (orientation) and the speed
(length) of the actor, simplifying the representation while
reducing memory and computational demands.

d) Incorporation of a New Class: Leaderboard 2.0
introduces scenarios requiring interaction with new envi-
ronmental elements not covered by existing classes. For
instance, construction zones that necessitate slight route de-
viations were not previously accounted for. To accommodate
this, we added a new class named Construction, which
encompasses all pertinent elements like traffic cones and
street barriers, represented in orange in 1b.

e) RGB Format Instead of Masks: Roach and LBC
process the BEV using independent mask channels, requiring
the training of a CNN from scratch. Given the limited data
in Leaderboard 2.0, we found that converting these masks
into an RGB format and utilizing pre-trained visual encoders
not only saves training time but also enhances the model’s
performance and efficiency.

B. Architecture

The architecture of PRIBOOT is depicted in Figure 2.
Our system takes as input a BEV image and a vector
of vehicle measurements. The vehicle measurement vector

3https://github.com/deepsense-ai/carla-birdeye-view

encompasses several key parameters: current speed and the
road speed limit, block time, a target point, and a navigation
command. The ”block time” parameter denotes the duration
during which the vehicle has been stationary, aiding the
system in determining whether to overtake or maintain its
position due to typical traffic conditions. The ”target point” is
a waypoint located 30 meters ahead on the desired trajectory
provided by a global planner, and the ”navigation command”
provides high-level directional indication from the global
planner, encoded as a one-hot vector.

We utilize an EfficientNet [22] for processing the BEV
image and an MLP for handling vehicle measurements.
Given the constraint of limited available data, we adopt
transfer learning by employing the pretraining of EfficientNet
with the ImageNet dataset. Subsequently, the feature vec-
tors extracted from both the EfficientNet and the MLP are
merged and inputted into an autoregressive GRU decoder.
This decoder is tasked with predicting the subsequent T=4
waypoints {wt}Tt=1 within the ego-vehicle coordinate frame-
work, drawing inspiration from the methodology applied in
Transfuser [21].

To convert the predicted waypoints into control com-
mands, we employ two PID controllers—one for lateral con-
trol and another for longitudinal control—following method-
ologies from [16], [21]. The longitudinal controller uses
the magnitude of the average vector between consecutive
waypoints, while the lateral controller relies on their ori-
entation. Additionally, similar to Transfuser, we integrate a
creeping behavior and a safety heuristic mechanism utilizing
information from the simulator.

This system is trained end-to-end using an L1 loss between
the predicted waypoints and the ground truth waypoints from
the human logs. Let w∗

t represent the ground truth waypoint
at timestep t, the the loss function is defined as:

L =

T∑
t=1

∥wt − w∗
t ∥1. (1)

The human demonstrations typically exhibit minimal de-



(a) (b)
Fig. 3. Data augmentation techniques used to expose the agent to a broader
range of driving scenarios. In these illustrations, white dots indicate the
future waypoints that were followed by the human driver, and the black
dot represents the target point. (a) Displays a sample with no augmentation,
showing the standard scenario. (b) Shows a sample where both translation
and rotation augmentations have been applied to the ego vehicle, illustrating
a situation where the agent needs to recover to the center of the lane.

viation from the center of the lane, resulting in noise-
free data. However, this adherence to the centerline causes
a distribution shift between the training distribution and
inference distribution. During inference, due to planning or
controller inaccuracies, the agent may find itself in scenarios
that deviate from the center of the lane. These instances are
encountered as out-of-distribution events, presenting difficul-
ties for the agent to navigate. To address this issue, inspired
by the LBC approach, we use data augmentation techniques
regarding the position and orientation of the vehicle. By
varying the position and orientation of the vehicle, we
expose the agent to diverse configurations, enabling it to
learn effective recovery strategies. Figure 3 provides a visual
representation of this augmentation process.

IV. EXPERIMENTS

This section starts with an overview of the setup used
for collecting the experiments, followed by a comparative
analysis of expert agents. It concludes with a presentation of
an ablation study.

A. Setup

1) Benchmark: CARLA Leaderboard 2.0 builds upon
CARLA Leaderboard 1.0, increasing the complexity of the
benchmark in three distinct ways: a) by extending the route
lengths approximately tenfold, b) by incorporating a new
set of intricate driving scenarios derived from the NHTSA
typology [23], and c) by increasing the frequency of these
scenarios along each route. Additionally, this new benchmark
introduces larger and more complex environments, as exem-
plified by Town12 and Town13. Town 12 is a 10× 10 km2

map that features a mix of urban, residential, and rural areas,
offering varied types of challenges. Town13, while sharing
many characteristics with Town12, distinguishes itself with
different architectural styles, road and pavement textures,

TABLE I
COMPARISON OF RUN TIME INFERENCE USING THE EXPERT AGENTS.

Run Time ↓
s

Autopilot 0.007
PRIBOOT 0.011

TABLE II
ABBREVATION AND THE CORRESPONDING FULL NAME OF THE METRICS

USED IN LEADERBOARD 2.0.

Abbreviation Full Name

DS Driving Score
IRS Infraction Rate Score
RC Route Completion
IP Infraction Penalty

C.P Collisions Pedestrians
C.V Collisions Vehicles
C.L Collisions Layout
R.L Red Light Infractions
Stop Stop Sign Infractions
O.R Off-road Infractions
R.D Route Deviation

Block Agent Blocked
Y.E Yield Emergency Infractions
S.T Scenario Timeouts
M.S Min Speed Infractions

and vegetation types. These enhancements aim to rigorously
test the adaptability and resilience of autonomous driving
systems under varied and challenging conditions.

The benchmark uses different metrics to assess different
aspects of driving performance. The Route Completion (RC)
indicates the percentage of the route completed by the
agent. The Infraction Penalty (IP) quantifies the severity of
infractions and is calculated using the following formula:

IP =

q∏
i=1

pni
i , (2)

where q denotes the total number of different infraction
types, pi is the penalty associated with the infraction type
i, and ni is the number of infractions of type i. The main
metric of the benchmark, Driving Score (DS), is calculated
by multiplying RC and IP, providing a composite score
that reflects both route completion success and adherence
to driving regulations.

2) Infraction Rate Score: While DS provides valuable
insights into agent performance, it inherently biases against
longer routes due to its cumulative penalty for infractions,
which are statistically more likely to occur over extended
distances. To address this discrepancy and promote fairness,
we introduce the Infraction Rate Score (IRS). This metric
accounts for the infraction rate per kilometer, adjusting for
route length and providing a balanced evaluation across
varying driving conditions. The IRS is defined as:

IRS = RC ·
q∏

i=1

e−λ·ni
L ·(1−pi), (3)



TABLE III
DRIVING PERFORMANCE AND INFRACTION ANALYSIS OF EXPERT AGENTS ON CARLA LEADERBOARD 2.0 IN TOWN12 AND TOWN13.

DS ↑ IRS ↑ RC ↑ IP ↑ C.P ↓ C.V ↓ C.L ↓ R.L ↓ Stop ↓ O.R ↓ R.D ↓ Block ↓ Y.E ↓ S.T ↓ M.S ↓
% % % % #/Km #/Km #/Km #/Km #/Km #/Km #/Km #/Km #/Km #/Km #/Km

Town12 Autopilot 1.22 0.51 5.97 0.26 1.26 4.59 0.58 0.11 1.84 0.62 0.66 1.26 0.00 0.34 0.00
PRIBOOT 22.80 42.75 76.46 0.30 0.00 0.31 0.06 0.01 0.02 0.05 0.00 0.06 0.04 0.03 0.11

Town13 Autopilot 0.99 0.22 5.55 0.20 0.83 3.06 0.83 0.00 0.02 0.35 0.69 0.69 0.00 0.10 0.00
PRIBOOT 18.84 46.97 74.29 0.24 0.01 0.34 0.05 0.00 0.01 0.05 0.00 0.04 0.02 0.02 0.06

where L represents the length of the route in kilometers, and
λ is a tunable exponent set to 4 based on empirical testing to
optimize the metric’s sensitivity to infractions per distance
traveled.

3) Training Details: We utilized the human driving logs
provided by CARLA to train PRIBOOT. These logs cor-
respond to 10 routes in Town12 and 10 routes in Town13
and amount to approximately 700,000 samples collected at a
frequency of 20Hz. Each sample contains all the information
required at each training step, including the BEV image, the
vector of vehicle measurements, and the global location of
the agent on the map. For our experiments, we used CARLA
version 0.9.15. PRIBOOT was trained on a single NVIDIA
A40 GPU. During the training phase, we used a batch size
of 256 and the Adam optimizer [24] with a learning rate of
0.0001.

B. Comparative Analysis

This section outlines a comparative analysis conducted
on Leaderboard 2.0, focusing exclusively on two expert
agents: Autopilot and PRIBOOT. An attempt was made
to adapt the Roach system to this benchmark; however, it
was unsuccessful. The benchmark currently cannot support
running a RL algorithm like Roach due to memory leaks that
prevent the execution of millions of steps without causing
server crashes.

Table I provides a comparison of the runtime between Au-
topilot and PRIBOOT. In this evaluation, Autopilot achieves
a runtime of 0.007 seconds, while PRIBOOT records a
runtime of 0.011 seconds. This difference in performance is
expected, given that Autopilot operates based on a predefined
set of rules, whereas PRIBOOT processes high-dimensional
inputs.

For the Leaderboard 2.0 results, 15 metrics were utilized
to assess the performance of the models. These metrics are
detailed in Table II, where each abbreviation is associated
with its full metric name.

As demonstrated in Table III, we conducted performance
comparisons of the agents in two distinct Towns: Town12 and
Town13. The evaluations are based on averages derived from
90 routes in Town12 and 20 routes in Town13, as stipulated
in Leaderboard 2.0. PRIBOOT consistently outperformed
Autopilot across nearly all metrics in both towns, often by
substantial margins. In Town12, for instance, PRIBOOT’s
DS was approximately 19 times higher than that of Autopi-
lot, and its IRS was 84 times better. Similar trends were
observed in Town13, with PRIBOOT achieving 19 times

higher DS and 214 times higher IRS than Autopilot. Notably,
PRIBOOT recorded zero collisions with pedestrians per
kilometer in Town12 and only 0.01 collisions per kilometer
in Town13, underscoring its effectiveness in minimizing
accidents involving pedestrians.

In contrast, Autopilot demonstrated superior performance
in two specific metrics: yielding to emergency vehicles and
maintaining minimum speed. The former was due to its
lower RC score, which resulted in zero scenarios requiring
yielding to an emergency vehicle. The latter stems from
Autopilot operating at a fixed target speed consistently above
the minimum speed requirement for the roads where the
agent drove.

PRIBOOT stands out as the first agent to achieve a
RC of approximately 75% in both towns, coupled with a
satisfactory DS and IRS. This marks a significant milestone,
positioning PRIBOOT as a pioneering agent capable of
navigating the complexities of the benchmark, which can be
used for data collection or online demonstrations.

To enhance the quantitative comparison presented earlier,
we also include a qualitative evaluation. Our analysis of
all routes in the benchmark reveals that Autopilot struggles
with the novel scenarios introduced by Leaderboard 2.0,
particularly those requiring slight deviations from the global
planner’s trajectory. These scenarios include instances like
parking exits and lane obstacles. Figure 4 illustrates a se-
quence of keyframes in a parking exit scenario, first showing
Autopilot’s performance and then PRIBOOT’s. As shown,
Autopilot immediately exits the park without considering
the vehicles in the lane, leading to a collision. Conversely,
PRIBOOT waits for a moment when the lane is clear before
exiting, as expected.

Additionally, we provide access to a series of demonstra-
tion videos that illustrate the performance of PRIBOOT on
Leaderboard 2.0. These can be accessed here.

C. Ablation Study

To explore the individual contributions of key components
within PRIBOOT, particularly under conditions of limited
data, we performed an ablation study focusing on two
crucial elements: data augmentation and the utilization of
RGB BEV in conjunction with transfer learning. This study
involved training two variants of PRIBOOT: the first variant
(referred to as ”w/o aug”) was developed without the data
augmentations depicted in Figure 3b, and the second variant
(referred to as ”w/ masks”) employed the BEV as a set

https://drive.google.com/drive/folders/1NJa4bSQ-pptq1OFHyDRWweQVSnbfxPc3?usp=sharing


(a) Autopilot: t = 0s (b) Autopilot: t = 2s (c) Autopilot: t = 3s (d) Autopilot: t = 4s

(e) PRIBOOT: t = 0s (f) PRIBOOT: t = 8s (g) PRIBOOT: t = 9s (h) PRIBOOT: t = 10s

Fig. 4. Qualitative comparison in a parking exit scenario between Autopilot and PRIBOOT. The first row depicts a sequence of keyframes from Autopilot,
while the second row shows the keyframes from PRIBOOT.

TABLE IV
ABLATION STUDY: DRIVING PERFORMANCE AND INFRACTION ANALYSIS OF PRIBOOT VARIANTS ON CARLA LEADERBOARD 2.0 IN TOWN13.

DS ↑ IRS ↑ RC ↑ IP ↑ C.P ↓ C.V ↓ C.L ↓ R.L ↓ Stop ↓ O.R ↓ R.D ↓ Block ↓ Y.E ↓ S.T ↓ M.S ↓
% % % % #/Km #/Km #/Km #/Km #/Km #/Km #/Km #/Km #/Km #/Km #/Km

Town13
w/o aug 2.66 5.22 15.92 0.29 0.01 1.22 0.35 0.00 0.02 0.45 0.02 0.40 0.00 0.17 0.02

w/ masks 5.55 21.08 54.02 0.18 0.05 0.52 0.23 0.01 0.00 0.08 0.03 0.06 0.05 0.11 0.14
PRIBOOT 18.84 46.97 74.29 0.24 0.01 0.34 0.05 0.00 0.01 0.05 0.00 0.04 0.02 0.02 0.06

of masks and training a CNN from scratch, consistent with
methodologies reported in the literature [10].

The comparative analysis of driving performance and in-
fractions for these variants is presented in Table IV. The w/o
aug variant exhibited a significant decline in performance, as
evidenced by a RC of approximately 16%, which adversely
affected all other performance metrics. The reason for this
is that due to planning or control inaccuracies, the agent
encounters situations where it deviates from the center of
the lane and lacks the capability to effectively recover. On
the other hand, the w/ masks variant demonstrated improved
results compared to the w/o aug variant. However, it still fell
short of the full PRIBOOT system’s capabilities. Specifically,
the w/ masks variant scored three times lower in terms of

DS and two times lower in terms of IRS.

Figure 5 illustrates the validation loss across epochs for
the ablations considered. While the w/o aug variant achieves
results similar to PRIBOOT during training, it recurrently
faces out-of-distribution events, as detailed in Table IV. In
contrast, the w/ masks variant displays a distinct pattern in
validation loss: it requires 20% more epochs to converge and
converges at a loss value that is twice that of PRIBOOT. This
performance deficit underscores the critical role of utilizing
RGB BEV and transfer learning techniques in cases where
data availability is limited.



Fig. 5. Validation loss across epochs of PRIBOOT variants.

V. CONCLUSION

In this paper, we introduced PRIBOOT, a system that uti-
lizes privileged information alongside limited human driving
logs to establish the first expert with satisfactory driving
performance on the CARLA Leaderboard 2.0. Our results
demonstrate that PRIBOOT significantly outperforms Au-
topilot across nearly all benchmark metrics, highlighting its
superior capability in complex and challenging autonomous
driving scenarios. Additionally, we presented an ablation
study that evaluates the impact of using augmentations
to aid recovery processes. Furthermore, we demonstrated
the benefits of employing RGB BEV images with transfer
learning, which proved more efficient in terms of training
speed and performance than using masks and training a
CNN from scratch. While our work has focused on the
CARLA simulator, it is important to note that the idea behind
PRIBOOT can eventually be applied in other simulators. In
the future, we plan to employ PRIBOOT to generate large
datasets that can be instrumental in training student models
that receive sensor information as input.
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