
© RENAULT 2001 Origin: PEGI - Renault Page: 1 / 17

Software quality rules for programming of
automated systems

EB03.07.010 /B
__

Standard
__

Status Binding

Important Note : This document has been translated from the French. In the event of any dispute, only the
French version is referred to as the reference text and is binding on the parties.

Purpose To lay down the main rules to be complied with to ensure a good level of control system
programs (controller, numerical control, robots, PC...).

Scope Renault Group.

Issuer 65940 - Industrial information systems and bodywork automation

Confidentiality Non-confidential

Approved by Function Signature Date of application
J.COANT Department 65940 Manager

03/2001

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 2/17

Document history
Version Update Purpose of the main modifications Author

A 02/1999 Creation (1) C.PRUVOST
B 03/2001 Adaptation of document for Mech. Eng. (1) J-P.FARRUGIA

Replaces EB03.07.010. of 02/1999

Available from Department 65931 - Normalisation des Biens d'Equipement (Capital Goods
Standardisation)

Fax: 01 34 95 81 79 Tel: 01 34 95 82 10
E-mail: norminfo.moyens@renault.com

Documents quoted Regulations :

International : CEI 61131-3.

European :

English :

CNOMO :

Renault :

Other in-house doc. :

Other external doc. :

Codification ICS: 25.040.01; 03.120.99

Class E03

Keywords Automate programmable, automatisme, logiciel, programmation, programmable controller,
automation, software, programming.,

Language English

(1) Assisted in authoring the document
Mgt. Dept. Name Mgt. Dept. Name
DDIV/DPSI 65940 Gérard Bardou DDIV/DPSI 65940 Giuseppe Lionetti
DDIV/DPSI 65940 Patrick Chemla DDIV/DPSI 65940 Bruno Panel
DDIV/DPSI 65940 Fabien Delaveau DDIV/DPSI 65940 Pascal Pottiez
DDIV/DPSI 65940 Jean Claude Gérard DDIV/DPSI 65940 Claude Pruvost

DDIV/DPSI 65941 Doïc Brochon DDIV/DPSI 65940 Pierre Nicolas
DDIV/DPSI
DDIV/DPSI

65941
65941

Alain Chaillou
Gérard Daclon

DDIV/DPSI
DDIV/DPSI

65941
65941

Jean-Louis Ragois
Bernard Trelcat

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 3/17

Contents

Page

Foreword4

1 General...4

2 Modularity rule (division into programme blocks)..5

3 Hierarchy rule5

4 Language rule...6

5 Structure rule..6

5.1 Writing order ... 7

5.2 Standard creation of a movement equation ... 8

5.3 Combining variables ... 8

5.4 Format of equations .. 8

5.5 Breakdown of equations .. 8

5.6 Interlocking of the controls .. 9

5.7 Check to ensure the limit switches function correctly ... 10

5.8 Activation/deactivation of the variables ... 10

5.9 Stored variables .. 10

5.10 Intermediate variables... 10

5.11 Independence from the hardware .. 10

5.12 Cases specific to Structured Text language... 11

6 Abstraction rule12

7 Variable designation rule13

7.1 General... 13

7.2 Complex functios .. 14

8 Organisation rule...14

9 Documentation15

9.1 Programme Documentation .. 15

9.2 Functional analysis.. 17

9.3 Organic analysis.. 17

9.4 Functional boxes or complex functions.. 17

10 List of cited documents..17

11 Glossary17

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 4/17

Foreword

Software quality is a major factor in achieving:

 a rapid increase in the work rate of installations,

 a long-term rate of performance in compliance with the technical specifications,

 rapid familiarisation of the people concerned with automation.

It is useful to recall that the software is only a reflection of a requirement expressed by the customer,
namely Renault. It is therefore important for Renault to take the necessary measures to formalise its
requirements. The requirements are defined in a detailed booklet: "functional analysis". This analysis
may, where necessary, be imposed by Renault or carried out by the supplier. In both cases, it must be
subject to a written agreement between Renault and the supplier, prior to writing the programme.

However, no matter how specific the requirements, this may in no way prejudice the required quality
level of the software.

Robot programming must comply with the principles for integration of robots into the plc's, as described
in the professions guide and manuals. The rules set out in this document are complementary to same.

1 General

This document defines the rules necessary to achieve the expected level of software quality. These
quality rules, defined in this document facilitate control throughout the writing of the software and
therefore are a fundamental guarantee of the level of quality. They are based on simple principles which
help to develop the essential skills which are the only guarantee of quality software.

These are:

 the capacity to manage the installation in compliance with the requirements expressed.

It depends directly on the quality of expression of the requirements, the functional analysis and
the rigour of the tests and checks carried out as part of the acceptance procedures. These
individual elements are not covered in this specification.

 software reliability
This is the ability of the programme to accomplish its task without failure and its durability. It is an
essential factor to guarantee the contractual rates of performance.

 homogeneity
This consists in writing the programme whilst respecting the same logic (writing structure), thereby
improving its readability.

 readability
This is dependent on how easily the software can be decoded. Good readability improves
maintainability. Programming should enable browsing affording up-tracking to the source of a
fault. This should be taken into consideration in the case of use of instantiation.

 maintainability
This is the essential complement for long lasting performance. Maintainability is a fundamental
condition for carrying out efficient maintenance operations and thus for guaranteeing
performance.

Furthermore, it is a means of rapid adaptation and low costs for future installation developments.

All these factors, which are essential to obtaining quality software shall be supplemented by detailed,
rigorous and exhaustive documentation. The documentation consists of two parts:

 the first part covers the content of the software, the variables, equations, functional blocks, etc.,

 the second covers the essential complements for a good understanding of the complex functions.

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 5/17

The rules apply to the control system programs (plc's, numerical control, robots, PC,...).

These general rules can be supplemented by rules which are specific to each job. In this case, the
associated documents shall be clearly specified in the relevant technical specifications.

In particular, this includes:

 the use of job-related functional boxes,

 flow management,

 recycling, for the relevant installations,

 fault management.

2 Modularity rule (division into programme blocks)

Modularity involves breaking a system, regardless of its complexity, down into a set of components
deemed to be individually single. This division complies with the functional analysis and leads to
components which combine a set of facts or actions which are logically linked .

In most cases, a module only includes basic functions.

E.g.:
A loading station (voluntarily single)

Module ⇒ A loading station (global functionality).

The basic functions ⇒ - the part presence inspection function,
- the part assembly/disassembly function,
- the part movement function (Forwards/Backwards).

It is impossible for a module to be linked to a physical sub-assembly, i.e. the management of the
installation start modes or safety zones, etc..

A module can have just one function if it adds to a better understanding.

3 Hierarchy rule

The hierarchy rules give rise to a single and homogeneous assembly (module). This facilitates design
control and ensures the software programme is easy to maintain.

The module obtained should enable, apart from writing independent from the other modules, all
operations, such as development of the application, backup, duplication, destruction, etc.

In a module:

 Unless absolutely necessary, the input variables (physical inputs ⇒ sensors or information from
an "intelligent" device via an intermediary) cannot be used by another module.

 The intermediate variables specific to one module cannot be used by another module.

 More generally, the variables used in a module cannot be used in another module, except for the
variables dedicated to this purpose (exchange variables) and general variables of the "operating
mode" or "component variable" type, etc..

 The output and exchange variables can only be activated/deactivated in this module.

 A variable, regardless of its type, can only be activated/deactivated in this module.

 Exchanges between modules are restricted to a bare minimum.

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 6/17

4 Language rule

 Unless otherwise necessary or impossible, the programming language must be the "LD" contact
language (ladder). The language is particularly specific to machine animation.

 Where not, only the following languages are permitted:

 Structured literal text "ST" (Structured Text) in compliance with standard CEI 61131-3: it is
reserved for calculation functions and functional boxes.

 Programming language "SFC" (Sequential Function Chart (programming using "grafcet")) :
Renault only authorises SFC language after consent by the Automated Control manager, for
machines as follows:

− simples (1)

− single-station,

− standardised,

− synchronous (single branch graph),

− linked on basis of strong supplier standards.

Renault forbids the use of "pseudo-grafcet" programming which does not use the SFC language
supplied by the softshop.

(1) not considered as simple machines are those for which it is difficult to quickly return to the cycle
resumption position (in under 5 minutes). These are notably:

 Machines with at least 2 input flows (parts flow, information flow):

 examples : a machine for mounting externally worked parts on the main flow assemblies,

 a "marrying up" station (for example, machine for fitting the cylinder head to
the engine bottom end)

 a machine with information flows not related to the physical flow (virtual
labelling).

 Machines with "anticipation" :

example : a machine for fitting externally worked parts with forward reading of the part to
be fitted and the cycle to be executed, and outsourced part currently being
fitted at the workstation.

 Machines which have at least 2 asynchronous operating positions:

example : a robotised unit.

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 7/17

5 Structure rule

 In the examples below in article 5, the mnemonics are taken directly from the corresponding heading.

5.1 Writing order

 For reasons of homogeneity, Renault would like the order of writing of the programme within a module to
be in conformity with the following model:

  the equations relating to the module's necessary conditions are:

  the general safety equations,

  the operating mode equations.

  the first movement equations:

  the safety equations,

  the operating mode equations,

  the movement command equations:

 - Forwards, Upwards, Tightening, etc. equations,
 - Backwards, Downwards, Loosening, etc. equations,
 - high speed equations (if they exist),
 - low speed equations (if they exist),

  the viewing equations, (1)

  the equations associated with a fault monitoring tool, particularly the activation of
default bits (if this function exists) (1).

  the second movement equations:

 I
 I

  the final movement equations:

  the viewing equations (2).

  the equations associated with a fault monitoring tool, particularly the activation of default bits (if
this function exists) (2).

  the equations relating to exchanges with the other modules.

 Note: The position of the equations relating to fault viewing and monitoring (in italics) is, unless otherwise
specified in the technical specifications, left to the supplier's initiative. However, in order to facilitate the
use of the software, mixing of situations (1) and (2) is not authorised.

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 8/17

5.2 Standard creation of a movement equation

Operating
Modes

Orders General
Safeties

End of
Movement

ActionICommand
Interlock

exists
if inverse action

Operating mode
related safeties

 There are as many parallel branches as start modes. In cases where it is necessary to break the equation
down (see paragraph 5.5), the final movement and interlocking information, if they exist, shall be
included in the final equation (the one which activates the working variable).

5.3 Combining variables

 To make the programme easier to read when the same group of variables is used in several equations of
the same model, this group of variables is replaced by a meaningful intermediate variable.

 However, there shall be no mixing of the various types (Start mode, Commands, Safety, etc.), see
paragraph 5.2.

5.4 Format of equations

 The format of the equations shall correspond to the characteristics of the associated viewing system.

 Any of the equations shall be viewed on one screen page and be able to be used in its entirety without
zooming.

 To do this, the number of series variables and parallel branches shall be compatible with the display
characteristics of the viewing system.

5.5 Breakdown of equations

 When the equations do not respect the format (see paragraph 5.4), it is necessary to break them down.
This operation shall follow a logic which does not generate equations.

 The breakdown respects the different constituent items of the equation (see paragraph 5.2) and the
programmer has to break the equation down as best as possible.

 To remain homogeneous, all start modes shall be part of one particular equation if it proves necessary to
create a particular equation for a particular start mode.

 The equations obtained in such a way are written in the following order:

  general safety equation,

  start mode equations,

  action control equations.

 If one of these equations is itself broken down, the resulting equations shall be consecutive. The sum
variable shall be placed at the end. Each equation activates its own variable.

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 9/17

 Non-authorised procedure

IIntermedate
Ivariable

VI

VI

IIntermediate
variable

 This procedure, which uses a reduced number of variables, generates dynamic viewing diagnosis

errors.

 Obligatory procedure

Intermediate
variable 1

VI1

Intermediate
variable 2

VI2

Working
variable

VU

VI1 VI2

 The VU variable is used in the equation of the corresponding movement.

5.6 Interlocking of the controls

 The movement controls with several operating directions must be interlocked so that the associated
actuators cannot be activated at the same time.

 E.g.: 2 movements "Backwards and Forwards".

Movement
Forwards

MSA

MSR

Movement
Backwards

MSR

MSA

Movement
Backwards
R l

Movement
Forwards

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 10/17

5.7 Check to ensure the limit switches function correctly

 In order to avoid one of the sensors from causing a mechanical fault, it is necessary carry out a check to
ensure the limit switches function correctly.

 This inspection involves checking, during the most suitable machine cycle phase, the reverse status of
the sensor of the machine with which it is to be used.

 Checking functioning of the limit switches can be carried out in different ways.

 For the movements and for reasons of homogeneity for the operator, Renault prefers the solution which
consists in generating, for example, secured end of movement variables (IFAS and IFRS in the example
below) which must be used whenever necessary.

 Example of secured variables for a 2-position movement: "Backwards and Forwards".

IEnd secured
forward

IFAS

IFRS

ISecured
End Backward

DFA

DFR DFA

DFR

Detection

End Forwards

Detection
End
B k d

Detection
End Forward
d'

Detection
End Backwards

Forward Position Check(s) Backward Step Position check(s)
P R lé

Backward Position Check(s) Forward Step Position Check(s)

IInformation

IInformation

 NOTE: the secured Forwards limit information (FLI) and Backward limit information (BLI) shall not under
any circumstances, be used to disable the corresponding actuators. Use the corresponding end of
movement detector(s).

5.8 Activation/deactivation of the variables

 The variables can only be activated/deactivated in one single equation.

5.9 Stored variables

 The conditions for setting at 1 and 0 are:

  systematically positioned in the same module,

  positioned consecutively,

  exclusive.

 For certain particular cases or for process reasons only, if the rule cannot be respected, it may be
ignored under the following conditions:

  exclusivity respected,

  specify the position of the additional equation or programme line for each equation or
programme line which modifies the status of the memory .

5.10 Intermediate variables

 They are positioned upstream and nearest the user equations.

5.11 Independence from the hardware

 Any movement control, shall be maintained until the end of the movement independent of the actuator
technology.

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 11/17

5.12 Cases specific to Structured Text language

 Generally, the structure rules defined for the contact languages apply to the structured text language.

5.12.1 Stored variables

 The programme lines which set the logical status to 1 and 0, shall wherever possible, be grouped
together and positioned in the same module.

5.12.2 Presentation

 To improve readability, it is necessary to respect a certain presentation. In particular, the write entry for
each nesting level is assigned to an indent. It is nevertheless necessary to manage correctly the length
of the programme lines to avoid moving onto another page both for data entry and viewing.

 The example below is not exclusive, if the solution adopted by the supplier offers the same readability.

 For example:
 (the example is for illustration purposes only).

 (*Comment*)

 IF EMIA OR CFOPEQT OR CFOPEQMN

 THEN

 (*Comment*)

 IF EQIPPL < (EQXPPL - HMPTEQP)

 THENEQEGL := TRUE; (*Comment*) Where necessary

 EQEPPL := FALSE; (*Comment*) Where necessary

 ELSE

 IF CLIPMH

 THEN

 (*Comment*)

 IF EQIPPL > (EQXPPL + HMPTEQP)

 THEN EQEGPL := FALSE; (*Comment*) Where necessary

 EQEPPL := TRUE; (*Comment*) Where necessary

 ELSE

 (*Comment*)

 IF EQIPPL <= EQXPPL

 THEN EQEPPL := FALSE; (*Comment*) Where necessary

 END_IF;

 END_IF;

 END_IF;

 END_IF;

 END_IF;

 (*Comment*)

 EQIPPLMN := EQDPPL AND (EQIPPL >= HMPPEQIP) AND (EQIPPL <= (HMPPEQIP + HMPTEQP));

 (*Comment*)

 EQIPPLD := EQDPPL AND (EQIPPL >= HMPPEQIP) AND (EQIPPL <= (HMPPEQIP + HMPTEQP));

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 12/17

 (*Comment*)

 TON_1 (

 IN := EQDPPL AND (EQIPPL >= (HMPPEQTP - HMPTEQP)) AND (EQIPPL <= (HMPPEQTP +
HMPTEQP));

 PT := TIME # 5s);

 Note: the carriage returns in the TON_1 equat ion are not obligatory. Th ere are however str ongly
recommended when they improve readability.

 This note is valid for all programme writing.

6 Abstraction rule

 The abstraction consists in masking the components of the programme which are identical or which do
not make for better understanding. It also contributes to better readability.

 In programming, the abstraction shall apply:

  for all functions which are used more than once,

  for all complex functions.

 The corresponding programme components are actually functional boxes.

 E.g.: automatic positioning with play compensation for a single speed induction engine.

 Automatic positioning

 with play compensation

 (single speed induction engine)

 Inputs Outputs

 Start-up order

 (Bool)

 Downwards request

 (Bool)

 Upwards request

 (Bool)

 Inf. end of positioning

 (Bool)

 Inf. positioning fault

 (Bool)

 Position to be achieved

 (Int)

 Current position

 (Int)

 Compensation travel

 (Word)

 Positioning tolerance

 (Word)

The programme component of the functional box shall meet the rules in this document.

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 13/17

 To be used correctly and understood by the operators, the use of the functional boxes shall be
accompanied by:

  an explicit description of its function,

  the details of the input/output interfaces.

 NOTE: Renault recommends using its functional boxes. The special functions developed by the supplier
have to be accompanied by the necessary documents validated by Renault for it to be used correctly,
including the details of the programme component.

7 Variable designation rule

7.1 General

 In order to facilitate the design and reading of programmes, it is necessary to have a mnemotechnical
variable marking method.

 In particular, this system should comply with:

 Rules easy to implement, which give a mnemonic which is as clear as possible,

 Rules for coherence with other documents constituting the machine documentation.

 The comment corresponding to the mnemonic must be written in the language of the user country.

 The mnemonic must provide information on the links with the machine physically (Workstation number,
movement number, direction of movement) and/or the type of component it refers to (detector, button,
lamp, etc..).

 Example of mnemonic construction rule:

 It provides information on:

 a) the origin of the variable (module),

 b) the type of information (sensor, actuator, intermediate variable, etc.).

 c) the nature of the physical phenomenon discovered (Forwards, Backwards, Upwards, Clamping, etc.).

 d) the function in question (loading, lift, etc.).

 e) the additional necessary information.

 Each mnemonic has a corresponding comment.

 E.g.: the Forwards limit of the loading station (same example as in paragraph 2).

 Origin (Module) Info type Nature Function

 LS (Loading Station) D (Detection) F (Forwards) L (Loader)

 Mnemonic ⇒ LS D F L

 Corresponding comment ⇒ Loading station Detection Forwards Loader

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 14/17

 Another example: machining lathe unit 21 table return monitoring.

 Discriminator Action/Function Assembly/sub-function Sub-assembly

 Mnemonic ⇒ C R TB 21

 Corresponding comment ⇒ Unit 21 Table Return Monitoring.

7.2 Complex functios

 For complex functions or functional boxes, it could prove difficult or even impossible to apply the
mnemonics drafting rule. It is therefore recommended to associate the variables with a comment with the
most meaning, with each word being separated by a "_" (under score) or a " " (space) to improve
readability.

 E.g.: the acceleration rate in a control loop.

 "transfer_acceleration_rate" or "transfer acceleration rate"

 It is better to use lower case letters with no accents in order to facilitate the reading and use of the
keyboard during help operations.

8 Organisation rule

 The modules are run in the same order as in the presentation in the functional analysis.

 The run order of the modules shall not affect the operation of the programme.

 If the output variables are activated or deactivated when using interruption modules, the corresponding
image memory shall be updated at the end of the interruption module. The interruption modules are as
small and short as possible.

 The programme drive lines are run line by line. Electronic approaches which implement the jumps
according to the start modes or the installation status are forbidden.

 Jumps to another module are forbidden.

 A sub-programme must be called up via its input point. Similarly, the feedback to the calling component
must be routed via its output point and only the programme line positioned after the calling line.

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 15/17

 E.g.:

Programme line 200

Start of module

Programme line 201 :

Start sub-programme

Programme line 1

Last sub-programme line

Return to calling programme
l

Programme line 202

End of module

To next module

Call up sub-programme 1

Module xx

Sub-programme 1

Last programme line

Programme line 1

9 Documentation

9.1 Programme Documentation

9.1.1 General

 Each function is preceded by a meaningful comment (function = equations or programme lines
which are necessary to control the movement).

 Each comment is preceded by a line break to improve its readability.

 Each equation or programme line is preceded by a meaningful comment.

 Each variable has a mnemonic which is associated to a corresponding comment. This variable
shall be true to the mnemonic.

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 16/17

 E.g.: the loading control (same example as in paragraph 2).

 LOADING STATION

 Forwards control

Loading Station
Forwards order

PCCA
PCCRPCDA

Loading Station
Forwards det.

Loading Station
Reverse order

 Backwards control

PCCR

Loading Station
Backwards order

lPCCAPCDR

Loading Station
Backwards det.

Loading Station
Forwards order

 The wording corresponding to the mnemonics are only given to explain the example.

 Cases specific to the structured text language.

 The group of instructions which carry out a specific task are preceded by a comment. Within this group,
in order to modify the readability, only meaningful programme lines are preceded by a comment.

9.1.2 Programme

 In this we find:

 the application name,

 the author's name,

 the version number,

 the date of last update,

 the comment on the last update.

9.1.3 Functional boxes

 The functionality of the functional boxes and mnemonics for the external environment associated
variables must be sufficiently explicit. In this respect, the variables may, if necessary, be accompanied
by a text in clear rather than a mnemonic (see paragraph 7.2.).

 At the head of each functional box, we find :

 the functional box name,

 a description of the function of the functional box,

 the functional box version number (to be able to tie up with the documentation),

 the declaration of the variables handles in the functional box, in type order (inputs, outputs,
internal),

EB03.07.010 /B

© RENAULT 2001 Origin: PEGI - Renault Page : 17/17

9.2 Functional analysis

Regardless of the documents supplied as part of the consultation folder, the supplier is obliged to carry
out a functional analysis going as far as the description of the cycle resumption cases to be provided.
Other than the literal explanations, the supplier draws up, if necessary, explicit diagrams accompanied
by functional diagrams, where applicable.

9.3 Organic analysis

The organic analysis is carried out on the basis of the functional analysis. It clearly demonstrates:

 the top level architecture of the system (the different constituent elements of the installation
system) with its interconnections,

 the general architecture of the programme,

 the architecture of each of the programme modules.

9.4 Functional boxes or complex functions

They shall be accompanied by a detailed booklet which, as well as improving understanding, allows
Renault to make modifications where necessary.

10 List of cited documents

NOTE: For undated documents, the last version in force applies.

CEI 61131-3 : Automates programmables. Partie 3 : Langages de programmation.

11 Glossary

Instantiation : multiple use of a programme entity (the model) without recopy of the code, with creation
by the softshop of a data zone (memory context) relating to each use (instance).

