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Abstract Laser vibrometry is a technique that, among several possibilities, allows
modal analysis of light and thin structures. To make this analysis possible,
the capture of a set of points is initially necessary. The devices present in the
market, besides being expensive, present a rudimentary obtaining of points,
usually done manually by the user. Not presenting the flexibility required
for research, it is planned in this project to develop a system of automatic
acquisition of these points for a laser vibrometer scanner. Given this need,
a system was created to capture points through the information acquired
by a Microsoft Kinect camera. In a Matlab environment, these points were
converted into point clouds and processed through an application, in which
the user can define their final configuration. This work presents the results
obtained during the analysis of two different types of geometries through the
application developed.
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Resumo A vibrometria laser é uma técnica que, entre várias possibilidades, permite
a realização de análises modais de estruturas leves e finas. Para tornar
esta análise possível, a captura de um conjunto de pontos é inicialmente
necessária. Os dispositivos presentes no mercado, para além de dispendiosos,
apresentam uma obtenção de pontos rudimentar, normalmente feita de
forma manual pelo utilizador. Não apresentando a flexibilidade exigida para
investigação, está previsto neste projeto desenvolver um sistema de aquisição
automático destes pontos para um scanner de um vibrometro laser. Dada
esta necessidade, foi criado um sistema de captura de pontos através da
informação adquirida por uma câmara da Microsoft Kinect. Num ambiente
Matlab, estes pontos foram convertidos em nuvens de pontos e processados
através de uma aplicação, na qual o utilizador pode definir a sua configu-
ração final. Este trabalho apresenta os resultados obtidos durante a análise
de dois tipos diferentes de geometrias através da aplicação desenvolvida.
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Chapter 1

Introduction

1.1 Motivation

Studying the dynamic behaviour of light structures (cars, aircraft, wind turbine blades)
commonly uses experimental modal analysis or operational mode analysis techniques. It
is imperative to measure the dynamic response of a structure when subjected to a known
excitation or due to its operation. In this type of testing, it is usual to use accelerometer
networks to measure the structure response. However, the laser vibrometry technique
presents a robust implementation in various industrial applications due to its speed,
reduced analysis requirements and negligible interference on the structure. It uses a
velocity measurement system based on the Doppler principle, allowing the laser beam to
measure the illuminated point speed.

The main advantage when using laser vibrometry is the non-contact measurement.
However, as a disadvantage, it can only measure the velocity at a single point (where
the laser beam is incident). Some scanning systems are available in the market [1], but
these are very expensive and require a time-consuming setup since the user must draw
a complete mesh of points based on an image captured by an attached camera. The
systems available on the market only present the flexibility and versatility necessary for
research involving large investments.

1.2 Problem Description

Although laser vibrometry can be used in vibration analysis in general, it provides a
valuable tool for experimental modal analysis of large structures. Experimental modal
analysis is a method that describes a structure in terms of its natural characteristics
(frequency, damping, and mode shapes).

A standard setup for experimental modal testing and measuring the response due to
excitation requires sensor technology (force transducers, accelerometers, cameras, or non-
contact laser vibrometers), data acquisition, and a computer for monitoring and analyzing
the measured data [2]. When using a laser vibrometer, a single point can be measured;
therefore, a scanning system able to sequentially change the measurement point is a
valuable tool to reduce the response time of the acquisition task. An automatic point
acquisition system would no longer require the user to create the measurement points
necessary for using the laser vibrometry technique, simplifying the whole process.

1



2 1.Introduction

1.3 Objectives

In order to use a laser vibrometer with a scanning feature, it is mandatory to develop
an automatic technique to define the measurement mesh with minimal user intervention.
This project aims to develop an adaptive scanning system based on 3D shape recognition
and 2D contour recognition techniques. For this purpose, a Microsoft Kinect system pro-
vides three-dimensional object recognition and identification of the projected geometry.
It is supposed to achieve these primary objectives:

• Recognition system capable of tracking the two and three-dimensions of objects
under analysis and their contours;

• Graphical user interface allowing data visualization and point cloud editing;

• Automatic measurement point data generation for the laser vibrometer;

These systems give a set of points for a scanner device in an automatic measurement
setup. They will be integrated into a single control environment to implement in a
programming language. It is expected to achieve a prototype system and consequent
experimental validation.

1.4 Document Structure

The present document is divided into six chapters. The current chapter introduces the
problem, its objectives, and motivation. Chapter 2 describes the state of the art and
published works developed and carried out within the same scope. It also aims to give
the reader a better perception and contextualization of the project. Chapter 3 discusses
experimental infrastructure and equipment, such as software and hardware used in the
project. Chapter 4 reports the proposed solution and the applied methodology. Chapter
5 shows how the tools used in the project were implemented. Chapter 6 describes the
experiments and results arising from the tactics of Chapter 4. Chapter 7 sums up all the
conclusions drawn from this project and proposes a future work plan.
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Chapter 2

Related Work and State of the Art

As technology advances, cameras and models for object detection develop. This chapter
will explore how the emergence of these new technologies has influenced the industry and
how this topic complements measurement systems. Related work will also be discussed
in this chapter.

2.1 Image Acquisition and Processing

Depth cameras are systems that simultaneously capture color and depth information of a
scene, resulting in dense point clouds or triangulated meshes [3]. During the development
of this project, a camera will capture all the environment and objects shapes, colors, and
depth.

Over the years, RGB-D (depth sensor) cameras, like the Microsoft Kinect, greatly
impacted Computer Vision, like robotics and image processing. These cameras provide
dense depth estimations and color images at a high frame rate, pushing forward several
research fields such as 3D reconstruction, camera localization and mapping, gesture and
object recognition, and bilateral filtering, among others [4]. One of the most common
devices which use this technology is the Microsoft Kinect sensor. The first versions of
Kinect cameras work around the Structured Light Principle. Light sectioning and coded
structured light projection methods are typical methods used to obtain three-dimensional
shapes by projecting light information on objects and using this information for their
measurement [5]. Structured light is the projection of a known sequence of light patterns
onto an object, which gets deformed by its geometric shape, as Figure 2.1 displays.

Fundamentally, structured-light triangulation requires addressing two basic questions:
what patterns to project onto the scene, and how to compute projector-camera stereo
correspondences from the images captured [7]. A specific projector or light source, modu-
lated by a spatial light modulator, generates 2D structured illumination. Then the object
is observed through a camera from a different direction as three-dimensional information
is obtained by analyzing the distortion of the observed speckle pattern, i.e., the disparity
from the original projected pattern, causing depth information extractable [6].

A speckle pattern is a random intensity pattern resulting from the mutual interference
of many waves of the same frequency but with different phases and amplitudes. It can
be observed when a coherent light, such as a laser beam, is reflected or transmitted from
a rough surface [8]. Figure 2.2 shows how the Microsoft Kinect produces this pattern.
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4 2.Related Work and State of the Art

Figure 2.1: Principle of structured light based systems [6].

The infrared (IR) emitter and IR depth sensor distinguish the depth of objects in the
field of view of the RGB camera [9]. The IR emitter casts an IR speckle dot pattern into
the 3D scene while the IR camera captures the reflected IR speckles [10]. The Microsoft
Kinect comprises multiple sensors, an RGB camera, an IR emitter and IR depth sensor, a
microphone array for speech recognition and a tilt motor to track the user movements [9].
Figure 2.3 shows the hardware configuration of the Microsoft Kinect sensor.

(a) (b) (c)

Figure 2.2: The projected pattern on a flat wall (a), a generic scene (b), and a closer
view of the speckle pattern (c) [8].

The depth value is encoded with grey values; the darker a pixel, the closer the point
is to the camera in space. The black pixels indicate that no depth values are available
for those pixels [11]. This might happen if the points are too far (and the depth values
cannot be computed accurately) and are too close (there is a blind region due to limited
fields of view for the projector and the camera) [11]. It can also happen if the points are
in the cast shadow of the projector (there are no IR dots) or reflect poor IR lights (such
as hairs or specular surfaces).
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Figure 2.3: Hardware configuration of Microsoft Kinect, and two image samples captured
[10].

Figure 2.4: A schematic provided to explain the cause of IR dot occlusions and depth
shadows [12].

2.2 Laser Vibrometry

A laser vibrometer is a device that allows the user to point a laser beam at a target surface
to measure its velocity level in amplitude and phase. It can detect displacement, with
a resolution on the order of nanometers, by analyzing the difference in phase between
a measurement beam reflected off the object and a reference beam [13]. Experimental
modal analysis of light and thin structures uses this non-contact, optical measuring tech-
nique that allows non-contact and non-destructive testing and evaluation of the dynamic
behaviour of mechanical structures, while providing a fast and flexible measurement per-
formance [14]. Based on the Doppler effect principle, these devices allow point velocity
measurement of a vibrating structure through the Doppler phase shift between the inci-
dent light and scattered light returning to the measuring instrument [15].

The beam splitter divides the light into the reference and measurement beams. The
reference beam points directly at the photodetector, while the measurement beam reaches
the test object, where the moving surface scatters the light [16]. Depending on the
object’s velocity, the backscattered light changes in frequency and phase. Therefore,
motion characteristics keep contained in the backscattered light. The superposition of
this light with the reference beam creates a modulated detector output signal, revealing
the Doppler shift in frequency. This non-contacting transducer will complement the
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accelerometer when hot, light or rotating surfaces are involved [17].

Figure 2.5: Basic measurement principle of vibrometry and setup of a laser Doppler
vibrometer [16].

Laser Doppler Vibrometers (LDV) with a scanning system head use a scanner that
deflect the laser beam horizontally and vertically. These scanners, responsible for guiding
the laser use a pair of mirrors and rotating galvanometers and are controlled by external
analog voltage signals. Laser beams can scan different positions on the plane according
to different rotation angles of the two plane mirrors about the X and Y axes [18].

Figure 2.6: Laser scanner mounting configuration [19].

Computer-generated digital commands ultimately control the scanners. Consequently,
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these commands depend on the scan angles that deflect the laser beam. Through soft-
ware, analog signals are sent to the LDV, which, in turn, sends the signal to the respective
scanner, performing its control [20].

2.3 Industrial Framework

In industrial research and development, studying objects with extensive shapes and sizes,
ranging from entire car bodies, airplane parts, and engines to hard drive components,
requires a comprehensive and usually time-consuming dynamic characterization task [21].
Laser vibrometry is gaining an important position within this analysis scope. It is vital
to measure the dynamic response of the structures when subject to controlled excitation
or under the effect of vibration due to regular operation.

Laser vibrometers are predominantly used in numerous applications: automotive,
aerospatial, medical, biological, ultrasonic, microstructural, and manufacturing, mainly
for vibration measurements, system identification, testing, and damage detection.

The PSV-400 Scanning Vibrometer [22], in Figure 2.7, is a powerful data acquisition
platform, from Polytec, that can effortlessly integrate into the engineering workflow.

Figure 2.7: Polytec OFV-400 scanning vibrometer [22].

PSV-400 can be configured to meet the application data measurement requirements
optimally. A wide range of velocity and displacement decoders combined with matching
acquisition hardware guarantees the highest performance. The scanning laser vibrometer
head has a built-in video camera and a high-precision scanning unit, which detects the
laser beam. Since to start a measurement, placing the scanning head from 80mm up to
30m in front of the object is necessary, the scanning vibrometer head is on a tripod for
easy setup. The object will then be visible on the monitor in real time.

B. Neto Master Degree



8 2.Related Work and State of the Art

2.4 Project Context

This project will begin by creating a controlled scanning system, where a Microsoft
Kinect will automatically capture the object points to be analyzed. An automated and
sequential scanning will be performed for possible control of the data acquisition system,
becoming the primary goal of this work.

Concerning future work, it intends to construct a functional prototype of an automatic
scanner for the laser vibrometer existing in the laboratory (Polytec OFV-505/OFV-5000)
to continue previously developed work [23].

Figure 2.8: OFV-5000 vibrometer controller [24] and OFV-505 sensor head [25].

The Polytec OFV-505, Polytec OFV-series single-point laser vibrometer, is a standard
sensor head with multiple lens options featuring stand-off distances ranging from 100mm-
300m. This sensor head integrates an interferometer, laser and imaging optics in stable
housing. It is also compatible with the Polytec OFV-5000 Modular Vibrometer, capable
of reaching its highest signal quality when combined [24].

Tables 2.1 and 2.2 show the primary specifications to operate correctly with the
sensor head and the modular vibrometer. Table 2.1 contains the general specifications
for the Polytec OFV-505 sensor head. It is possible to verify the laser type and class, its
wavelength, and minimum and maximum stand-off distances.

General specifications

Laser type Helium Neon (HeNe)
Laser class Class2, < 1mW, eye safe
Laser wavelength 633 nm, visible red beam
Focus Auto, remote and manual focus
Minimum stand-off distance 100mm
Maximum stand-off distance 300m
Weight 3.4 kg
Dimensions [W×H×L] 120×80×345 mm

Table 2.1: Polytec OFV-505 specifications. [25]

Table 2.2 contains the prevailing specifications for the Polytec OFV-5000 modular
vibrometer. The analog and digital signal outputs, frequency range, and maximum
velocity are listed.
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General specifications

Analog signal outputs

BNC, ± 10V:
Velocity signal
Displacement signal
AUX output
DSP output (velocity with DSP filter)

Digital signal output S/P-DIF standard 24 bit 48/96 kSa/s
Frequency range DC to 24 MHz
Max velocity ± 10 m/s
Power supply 100...240 VAC ±10%, 50/60 Hz
Power Consumption max. 100 VA
Weight 10kg
Dimensions [W×D×H] 450×360×150 mm

Table 2.2: Polytec OFV-5000 specifications. [24]
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Chapter 3

Experimental Infrastructure and
Equipments

As the project developed, various pieces of equipment and software served as a tool to
carry on with it. This chapter briefly describes the hardware equipment and software to
manipulate and visualise the data.

3.1 Hardware

Regarding hardware, the Microsoft Kinect camera was the tool used. This device provides
data acquisition for the developed systems simply and affordably.

3.1.1 Microsoft Kinect

In order to acquire and analyse images, a Kinect camera from Microsoft was applied in
this project. Since it is small-sized, Microsoft Kinect rapidly recognized its usefulness
as a 3D depth sensor within many third-party applications [12]. It has applications for
medical purposes, language learning, and even partying outdoors. Figure 3.1 shows an
example of this device.

Figure 3.1: Kinect V1.
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12 3.Experimental Infrastructure and Equipments

As shown in Figure 3.2, this device contains an RGB color video camera, a depth
sensor, and a microphone array. The Kinect sensor lets the computer directly sense the
players depth (third dimension) and the environment.

Figure 3.2: Schematic for Kinect V1. [9]

The camera of the device detects the three color models (red, green, and blue) and
body shapes to differentiate it from other things. It has a pixel resolution of 640 x
480 and a frame rate of 30 fps. It also contains a stack of signal processing hardware
that recognizes all the data generated by the cameras, IR light, and microphones. By
combining the output from these sensors, a program can track and identify objects in
front of it, determine the direction of sound signals, and isolate them from background
noise. The IR projector helps creating a 3D image of the environment.

3.2 Software

The Matlab tools were used to carry out all the system’s programming, which provided
a large library allowing the Kinect control - offering all the manipulation of the system
in a favourable environment for research.

3.2.1 Matlab

The matrix-based Matlab language is the most natural way to express computational
mathematics. It can run analyses on larger data sets and scale up to clusters and clouds.
Built-in graphics make it easy to visualize and gain insights from data. These Matlab
tools and capabilities are rigorously tested and designed to work together. Matlab code
can be integrated with other languages, enabling deploy algorithms and applications
within web, enterprise, and production systems.
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Figure 3.3: Matlab home page.

In order to implement all the code in the Matlab environment, it was necessary to
install several toolboxes. These toolboxes were:

• Image Acquisition Toolbox Support Package for Kinect For Windows Sensor [26];

• Image Processing Toolbox;

• Image Acquisition Toolbox;

• Computer Vision Toolbox;

3.2.2 App Designer

App Designer is an interactive development environment for designing application layouts
and programming its behavior. App Designer allows the creation of apps and the control
of various visual components to lay out the graphical user interface (GUI) design.

To develop the data manipulation and visualisation application, App Designer was
selected for building apps in Matlab since GUIDE (GUI Design Environment) will be
removed in future releases of Matlab [27] and replaced by App Designer.

Figure 3.4: Matlab AppDesigner home page.
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Chapter 4

Proposed Solution and Methodology

The following chapter discusses the solution proposed for the project realization and
the methodology applied. At first, a solution overview presented for solving the problem
shows the connection between each element and the solution workflow. Next, and through
examples and explanations, all image acquisition functioning is made clear. Finally, it
explains how all the methods converge into a Matlab application for data manipulation
and visualization.

4.1 Solution Overview

To better understand and perceive the solution, Figure 4.1 displays a flowchart showing
the steps in the proposed solution.

RGB image

Image
acquisition Object Depth Point Cloud

Data
Visualization
Application

Point Cloud
Processing

Object Shape

Figure 4.1: Proposed solution flowchart.

As presented in Figure 4.1, image acquisition is the initial stage of the whole project.
In this stage, a Kinect camera will capture RGB and depth images of the environment
and the object under analysis. This way, detecting the object’s shape and depth is made
possible. In a Matlab application, with the collected data, it is possible to create and
process the point clouds. With this done, it is expectable to reach a final point cloud
configuration for the laser vibrometer scanner.
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16 4.Proposed Solution and Methodology

4.2 Image Acquisition

4.2.1 Kinect Data

To be able to create a cloud of points, it is necessary to capture RGB and depth images
from the Kinect. For that, it requires a connection to the RGB and the depth camera,
responsible for capturing RGB and depth images, respectively. Creating a video object for
both cameras was the next step. With both images and objects created, the pcfromkinect
[28] function can create a point cloud of the environment captured by the Kinect camera,
as Figure 4.2 shows.

Depth Image

Kinect
Connection

RGB Image pcfromkinect Point Cloud

RGB and Depth
Video Objects

Figure 4.2: Point cloud flowchart.

Generating a target area allows excessive data removal from the environment point
cloud. Extracting all data inside this area creates a new point cloud only containing
the object. This technique will extract the object under analysis into a new point cloud
where it can be processed and treated much easier, as Figure 4.3 shows.

Environment
Point
Cloud

Target
Zone Ex-
traction

Object
PC

Type
of PC

Full
Object

PC

Object
ROI

Selection

Object
ROI PC

Desired
PC

Figure 4.3: Point cloud filtering flowchart.

The number of points inside this new point cloud will reduce without losing the object
geometry, so fewer points will be exported to the scanner controller.

4.2.2 Contours

The identified contours provide the object’s shape under analysis and facilitate the laser’s
zone of action. With the object point cloud created, it was possible to remove its third
dimension (depth), projecting the object onto a bidimensional space.

With the two-dimensional projection, we proceeded in the following steps to obtain
the contours, as Figure 4.4 shows. After following the previous method, detecting the
object’s silhouette makes it possible to visualize its shape.
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Point Cloud Remove third
dimension

2D Object
Convert
object

to image
Image

binarization

Morphological closing using
’disk’ as the structuring element

Edge
detection

Object
contours

Figure 4.4: Contour flowchart.

4.2.3 Point Cloud Downsampling

Since the points collected would get exported, several methods tested the point cloud
reduction while preserving the object’s geometry, thus easing the exportation process.
Choosing one method from Figure 4.5 enables the downsampling process of the point
cloud created. The three methods exemplified in Figure 4.5 reduce the number of points
in the cloud, and each method performs a different reduction process. This reduction
decreases the number of points exported to the scanner controller.

Desired
Point Cloud

Down sampling
methods

gridAverage

Random

Non Uniform
Grid Sampling

Down sampled
Point Cloud

Figure 4.5: Point cloud downsampling flowchart.

The resulting point cloud will then be processed in a specific tab inside the developed
application to edit the integrity of the downsampled point cloud.

4.3 AppDesigner Interface

With all the strategies defined in the steps previously demonstrated, it is necessary
to implement them in the Matlab environment. Conceiving an application through a
graphical user interface provided by Matlab makes that possible. Thus, we can then
break up the application into two significant steps:

• Image and data acquisition;

• Processing and treatment of the point cloud;

4.3.1 Image and Data Acquisition

In this application section, the user can acquire and visualize a vast amount of data
captured from the Kinect camera. Data such as video streams, environment point clouds,
object point clouds and object contours can be analyzed.
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18 4.Proposed Solution and Methodology

The first step in operating the application is to start the video streams. These streams
will capture RGB and depth images to create the environment point cloud. With the
environment point cloud created, it is now possible to insert the target window limits
(X, Y and Z) to extract the object for analysis. The application allows the user to
manipulate the object cloud, allowing the selection of a specific region for analysis or
leaving the entire object to be processed by the next steps of the application. Once the
user has finished selecting the area of the object to be analyzed, it is possible to remove
its contours through the application.

In Figure 4.6, a flowchart summarizes all the earlier steps.

Start
Video
Feeds

Environment
Point
Cloud

Target
Zone

Extraction

Selection
of ROI

Full Object

Truncated
Object

Object
Contours

Figure 4.6: Image Acquisition Section Flowchart.

4.3.2 Point Cloud Processing and Treatment

With the point cloud created in 4.3.1, we now move on to the analysis and processing
of this cloud. This application section essentially allows point reduction. Therefore, it
allows the user to cut out areas of the cloud for point reduction and eliminate, densify
and compress the number of points in zones predefined by the user, or even a combination
of all these options.

To make it easier to understand, the flowchart in Figure 4.7 shows the direction to
follow for the treatment and processing of the point cloud.

Object
Point Cloud

PC Down-
sampling

PC Down-
sampled

PC
Processing

Remove
Points

Densify
Area

Compress
Area

Crop Cloud

Refined PC

Figure 4.7: Point Cloud (PC) Processing and Treatment Flowchart.
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Chapter 5

Tool Implementation

In the current chapter, are known the steps that made possible the development of the
system that will construct and process the point matrices. Here it will be demonstrated
how the implementation of the tools used was performed.

5.1 Acquiring Data with Kinect

Initially described in subsection 4.2.1, acquiring an RGB and depth image was required
to create a point cloud. However, a video object for RGB and depth devices was also
needed before acquiring those images.

5.1.1 Video Objects

To create the video object, the videoinput [29] function was implemented, and as de-
scribed in Code 5.1, both objects were created.

%% CAMERA CONNECTION
% RGB CAM
RGBDev = videoinput(’kinect’,1,’RGB_640x480’);

% DEPTH CAM
DEPTHDev = videoinput(’kinect’,2,’Depth_640x480’);

Code 5.1: Matlab code to create RGB and Depth video objects.

The inputs of the functions described in Code 5.1 allow the access to the RGB and
depth cameras, with 640×480 pixel resolution, thus creating the necessary video objects.

5.1.2 Images Acquisition

With both video objects created, it was possible to command the Kinect to start captur-
ing images. Both images acquired by the Kinect use the Matlab function getsnapshot [30],
which takes a single frame from the video objects. Code 5.2 describes the Matlab func-
tion to get the desired frames. These two functions acquire both images: the image from
the RGB camera and the depth matrix data from the depth device. It was only necessary
to insert the video objects as input to get the images shown in Figure 5.1, used to create
the environment point cloud.
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20 5.Tool Implementation

%% ACQUIRE IMAGES FROM BOTH VIDEO OBJECTS
RGBFrame = getsnapshot(RGBDev);
DEPTHFrame = getsnapshot(DEPTHDev);

Code 5.2: Matlab code to obtain both RGB and Depth frames.

(a) (b)

Figure 5.1: RGB image (a) and depth data (b) acquired by Kinect

The frame acquired in Figure 5.1 (b) shows the depth values of each point in a
grayscale range, which means that darker colors represent points closer to the Kinect.
Pitch black pixels are values the Kinect camera could not capture, either by being out
of range, on reflective or transparent surfaces or simply by the Kinect malfunctioning.

5.1.3 Environment Point Cloud

It was necessary to implement the pcfromkinect [28] function to create the point cloud,
which only needs one video object, the depth video object, and both frames captured,
as Code 5.3 shows.

%% CREATE POINT CLOUD
PtCloud = pcfromkinect(DEPTHDev,DEPTHFrame,RGBFrame);

Code 5.3: Matlab code to create point cloud.

After creating the point cloud, it is necessary to visualise it. It is possible to visualise
the point cloud using the pcshow [31] function. Here is required to introduce some input
arguments to visualise the point cloud correctly. The first input is the point cloud data.
Then it is necessary to define the vertical axis and its direction to represent the field of
view of the Kinect correctly. In Figure 5.2 (a), the point cloud is rotated and does not
represent the real scenario captured by Kinect, and in Figure 5.2 (b), the point cloud
is upside down from what it should look. It is, therefore, essential to define the correct
representation referential.

Succeeding the code implementation in Figure 5.3 (b), the point cloud is in the
desired position and shows what the Kinect camera is acquiring. Figure 5.3 (a) shows
some negative values for both the X and Y axis since they represent their position from
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(a) (b)

Figure 5.2: Point clouds without any input arguments besides the point cloud created
(a) and with Y axis assigned as the vertical axis (b).

the centre of the Kinect. Once the direction of the Y axis is changed, its representation
changes according to the updated referential.

(a)
% POINT CLOUD VISUALIZATION
figure
pcshow(ptCloud,’VerticalAxis’,’Y’,VerticalAxisDir=’Down’);
xlabel(’X(m)’)
ylabel(’Y(m)’)
zlabel(’Z(m)’)

(b)

Figure 5.3: Point cloud assigning Y as the inverted vertical axis (a) and the Matlab code
implementation for the representation of the updated coordinate system (b).

In the code shown in Figure 5.3 (b), "Down" was chosen as the vertical axis direction.
If not, the point cloud assumed the configuration depicted in Figure 5.2 (b). Therefore
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Figure 5.4 (a) shows the original axis representation of the point cloud, and Figure 5.4
(b) shows the final representation of the Kinect coordinate system.

(a) (b)

Figure 5.4: Kinect initial coordinate system (a) and corrected coordinate system after
code implementation (b).

With the Kinect coordinate system set, the values on the X axis tell if the object
is on the right or left side relative to the centre of the Kinect device. Therefore, when
the object is on the left side of the Kinect centre, its points have negative values, and
positive if the object is on its right side. On the Y axis, negative values mean the object
is above the Kinect horizon line and positive values if located below that line. Values
on the Z axis correspond to the object’s perpendicular distance to the Kinect’s vertical
plane.

5.1.4 Target Area

Extracting some information is necessary to define the cloud to get the object, excluding
all unnecessary information. Inside the point cloud produced in Figure 5.3 (a) is created
a cube-shaped target area, where all the points inside are extracted into a new point
cloud data matrix. For this task, it is essential to define the limits of this region of
interest, as shown in Code 5.4, delimiting the volume occupied by the object.

%% DEFINE CUBIC ROI AS TARGET AREA
roi = [Xmin Xmax Ymin Ymax Zmin Zmax];

Code 5.4: Six-element array created defining all axis limits.

The function findPointsInROI [32] shown in Code 5.5 finds points in the initial cloud
within the region of interest, with the limits defined earlier. The output of this function
is a matrix of indexes corresponding to the stored points.

% FIND POINTS OF THE ORIGINAL CLOUD WITHIN ROI PREVIOUSLY DEFINED
indices = findPointsInROI(ptCloud,roi);

Code 5.5: Matlab function to find points within a region of interest in the point cloud [32].
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Once the points are identified, selecting them from the original point cloud is possible.
The function select [33] returns a point cloud object containing only the selected points.
Setting the limits in Code 5.4 correctly, the selected points in the new point cloud match
the object’s point cloud. Then, it is possible to obtain the desired point cloud using the
code from Code 5.6.

% SAVE THE POINTS INTO A NEW POINT CLOUD
ptTargetArea = select(ptCloud,indices);

Code 5.6: Matlab function to select points in point cloud [33].

In order to make the target area visible, the cube, formed by the area boundaries, is
drawn. Both Code 5.7 (a) and (b) illustrate how the limits defined in Code 5.4 determine
the vertices and faces of the cube, respectively.

% CREATE THE COORDINATES OF THE CUBE’S VERTICES
p1 = [Xmin Ymax Zmax]’;
p2 = [Xmin Ymax Zmin]’;
p3 = [Xmax Ymax Zmin]’;
p4 = [Xmax Ymax Zmax]’;
p5 = [Xmin Ymin Zmax]’;
p6 = [Xmin Ymin Zmin]’;
p7 = [Xmax Ymin Zmin]’;
p8 = [Xmax Ymin Zmax]’;

(a)

% CREATE THE FACES OF THE CUBE
Cube = [p1 p2 p3 p4;

p4 p3 p7 p8;
p7 p8 p5 p6;
p7 p6 p2 p3;
p6 p5 p1 p2;
p8 p5 p1 p4];

(b)

Code 5.7: Configuration of target area vertices (a) and faces (b).

By applying the code from Figure 5.5 (a), it is possible to display the cube created,
specifying the color and transparency of its faces and the line type of its edges. Figure
5.5 (b) exemplifies configured target area.

% DISPLAY THE TARGET AREA WITH COLOR AND
TRANSPARENCY SET

p=fill3(Cube(1,:),Cube(2,:),Cube(3,:),’--w’);
p.FaceAlpha = 0.3;
p=fill3(Cube(4,:),Cube(5,:),Cube(6,:),’--w’);
p.FaceAlpha = 0.3;
p=fill3(Cube(7,:),Cube(8,:),Cube(9,:),’--w’);
p.FaceAlpha = 0.3;
p=fill3(Cube(10,:),Cube(11,:),Cube(12,:),’--w’);
p.FaceAlpha = 0.3;
p=fill3(Cube(13,:),Cube(14,:),Cube(15,:),’--w’);
p.FaceAlpha = 0.3;
p=fill3(Cube(16,:),Cube(17,:),Cube(18,:),’--w’);
p.FaceAlpha = 0.3;

(a)

p1

p2

p5

p6

p3

p4

p7

p8

(b)

Figure 5.5: Matlab code to display and configurate the target area (a) and visual repre-
sentation of that configuration (b).

As a result, in Figure 5.6 (a), the selected points are marked in red, and in Figure
5.6 (b), the target area that delimits the selected points is represented.
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(a) (b)

Figure 5.6: Original point cloud with selected points marked in red (a) and the target
area deployed (b).

5.1.5 Object Point Cloud

With the help of the target area, it is now possible to extract data from some regions of
the cloud into a new data matrix. It is only necessary to define the boundaries of the
target area, to create this new point cloud within a specific area. This solution allows
easy point extraction and removes any cloud disturbances. In Figure 5.7, it is possible
to perceive the target area created after defining the X, Y, and Z limits.

Figure 5.7: Environment point cloud with target area.

After completing the data extraction, the object point cloud is created. The same
procedure in Figure 5.3 (b) makes this point cloud visible. Adopting the point cloud
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created in Code 5.6 as the first and only changeable input is possible to see the object
point cloud, as depicted in Figure 5.8.

Figure 5.8: Object point cloud extracted from target area.

The points of the object, taken from Figure 5.8, reveal the object’s location relative
to the Kinect’s centre. It means that with these points, it is possible to know the object’s
approximate position in RGB images similar to Figure 5.1 (a). Thus, to only select a
particular part of the object cloud, a figure is opened that shows only the part of the
RGB image where the object is, shown in Figure 5.9.

Figure 5.9: RGB image of the object.

On top of this image, it is possible to draw a rectangle to define the area taken from
the cloud. Figure 5.10 shows examples of regions of interest created.

(a) (b) (c)

Figure 5.10: Object regions of interest selections (a), (b) and (c).

It is initially necessary to define the rectangle corners to create a new point cloud
with only the selected part. Similar to the target area in the environment point cloud,

B. Neto Master Degree



26 5.Tool Implementation

this process takes a part of the original cloud to create a new cloud, as shown in Figure
5.11.

(a) (b) (c)

Figure 5.11: Object region of interest point clouds (a), (b), and (c).

5.1.6 Contours

With the point cloud created and processed, it is possible to start the contour treatment.
As described in 4.2.2, the third dimension (depth) was removed from the object turning
the object into a two-dimensional set of points, as represented in Figure 5.12.

(a) (b)

Figure 5.12: Three-dimensional (a) and two-dimensional object points (b).

Now it was necessary to convert the set of points into an image to proceed to the
image processing, which enables contour detection. Next, this image was binarized, and
its colors inverted, resulting in Figure 5.13.

In order to close all the gaps in the image, the function imclose [34] was executed.
This function performs morphological closing on the binary image using a structuring
element. In this case, "disk" was used as the structuring element, and its results are
visible in Figure 5.14 (b) and (a), respectively.

With all the gaps closed, correct contour detection was possible. Here another func-
tion is implemented to obtain the contours. The edge function [35] finds edges in two-
dimensional grayscale images using an edge detection method. Figure 5.15 (b) shows the
function implementation, using canny as the edge detection method, and Figure 5.15 (a)
illustrates its results.
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(a)

% IMAGE BINARIZATION AND COLOR INVERSION
ImgBin = imbinarize(im2gray(imgFramePlot));
InverseImg = uint8(255) - im2uint8(ImgBin);

(b)

Figure 5.13: Object set of points converted into an image, binarized and with colors
inverted (a) and the Matlab code used (b).

(a)

% MORPHOLOGICAL CLOSING USING DISK
% AS THE STRUCTURING ELEMENT
se = strel(’disk’,disk_radius);
ImgClosed = imclose(InverseImg,se);

(b)

Figure 5.14: Object silhouette after morphological closing (a), and the Matlab code (b).

(a)

% FIND CONTOURS
ImgEdge = edge(ImgClosed,’canny’);

(b)

Figure 5.15: Object edge detection (a) using Matlab function (b).

It is also possible to do all these processes using an ROI object point cloud, similar
to Figure 5.11, instead of turning the whole object point cloud into a two-dimensional
set of points. Then redo the same processes until edges are detected, similar to Figure
5.15 (a). This hypothesis will be discussed and presented in Section 5.2.1.

5.1.7 Point Cloud Downsample

The size of the point cloud, acquired by the Kinect camera and post-processed by the
procedures described above, is too large for the final purpose of this project. A complete
vibrometry analysis only requires a limited yet representative set of points. Therefore,
a strategic and controlled reduction of the cloud of points is essential at this stage. A
downsample [36] function is implemented to reduce the number of points acquired and
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preserve the object structure. Three options were available to downsample the point
cloud.

Random Downsampling

By using Code 5.8, it is possible to create a downsampled point cloud using the random
method, being the inputs, the object point cloud, the downsample method and, in this
case, the percentage. The percentage input in the downsample function specifies the
percentage returned from the original point cloud.

% CLOUD DOWNSAMPLING USING RANDOM METHOD
ptRndm = pcdownsample(ptObject,’random’,percentage);

Code 5.8: Matlab code to downsample the point cloud using the random method.

From the analysis of Figure 5.16, random downsampling [36] returns a percentage
from the original point cloud.

(a) (b)

(c) (d)

Figure 5.16: Point cloud random downsampled with 75% (a), 50% (b), 25% (c) and 10%
(d) of the original point cloud returned.
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GridAverage Downsampling

The program lines from Code 5.9 downsample the point cloud using the gridAverage
method. This function returns a downsampled version of the input point cloud with
points depending on the gridStep size. GridStep is the input of this function and specifies
the size of the 3D bounding box.

% CLOUD DOWNSAMPLING USING GRIDAVERAGE METHOD
ptGridAvgDownS = pcdownsample(ptObject,’gridAverage’,gridStep);

Code 5.9: Matlab code to downsample the point cloud using gridAverage method.

GridAverage downsampling [36] uses a box grid filter to downsample the point cloud.
Inside this bounding box, defined by GridStep, all points are merged into a single point,
as seen in Figure 5.17. When increasing the gridStep value, the bounding box increases;
consequently, the number of points merged into a single point increases.

(a) (b)

(c) (d)

Figure 5.17: Point cloud gridAverage downsampled with box grid filter size of 0.005 (a),
0.01 (b), 0.02 (c) and 0.04 (d).
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NonUniformGridSample downsampling

The last method is the NonUniformGridSample, given in Code 5.10, where the func-
tion outputs the downsampled point cloud according to the maxNumPoints. The input
maxNumPoints defines the maximum number of points inside the box grid filter.

% CLOUD DOWNSAMPLING USING NONUNIFORMGRIDSAMPLE METHOD
ptNonUnifDownS = pcdownsample(ptObject,’nonuniformGridSample’,maxNumPoints);

Code 5.10: Code to downsample the point cloud using NonUniformGridSample method.

NonUniformGridSample downsampling [36] returns a downsampled point cloud using
a NonUniform box grid filter. This function draws the box grid filter in each point and
randomly selects a single point from each box, as exemplified in Figure 5.18.

(a) (b)

(c) (d)

Figure 5.18: Point cloud NonUniformGridSample downsample with maxNumPoints of 6
(a), 10 (b), 20 (c) and 50 (d).

As can be seen, the gridAverage downsample method, in Figure 5.17, downsamples
the point cloud so that the object structure remains better preserved. Therefore, it
becomes the method to downsample the point cloud. This conclusion is not universal,
as it suits better for this case in particular.
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5.2 AppDesigner Application

As mentioned in Section 4.3, the app is split in two major tabs: Image Acquisition and
Point Cloud Editor.

5.2.1 Image Acquisition Tab

When starting the application, the initial tab by default is "Image Acquisition", Figure
5.19. In this tab, is detected the object and its contours. It is also possible to do the
same for a specific object zone and prepare their point clouds for the next tab.

Figure 5.19: Image acquisition section homepage.

As visible in Figure 5.19, the only button available is the "Start Streams" button.
This button will turn on the Kinect and display the video streams. After clicking it,
a warning will inform the user that the Kinect camera requires time to acquire data
correctly, as illustrated in Figure 5.20. If the user pressed the button to get the point
cloud too early, it would result in several gaps in the image. The time it takes for the
user to read and close the warning is enough for the Kinect to acquire data correctly,
fulfilling the purpose of the warning. There was also a timer that only allowed the user
to progress after it finished, giving time for the images to stabilize.

Figure 5.20: Camera warning.

The "Get the Point Cloud" button was only available after the timer finished. If
the images are not acquired correctly, the user can always check if the data is correctly
acquired by analyzing the video streams.
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Next, the button that opens a browser shows in a point cloud the information captured
by the Kinect, as shown in Figure 5.21 (a). If the cloud generates incorrectly, the user
can recreate it using the "Update Full Point Cloud" button, Figure 5.21 (b). When the
browser closes, it can reopen without affecting the cloud. With the point cloud created,
Figure 5.21 (c), the user can define the target area boundaries for object detection.

(a)

(b)

(c)

Figure 5.21: "Get Point Cloud" button available (a), buttons to upgrade and view the
point cloud (b), and the point cloud created and displayed in a browser (c).

Taking the same course as in subsection 5.1.4, the user can now insert the limit values
to create the target volume of analysis, as indicated in Figure 5.22 (a). By analyzing
the point cloud, such as Figure 5.21 (c), the user can visualize the range of values where
the object is and thus create the target area to extract the object under analysis. The
constructed target area is visible in Figure 5.22 (b).

With the target volume defined, extracting the object becomes available to extract the
information within the target area. Then, a new figure opens, showing the information
extracted by the target area, represented in Figure 5.23.

This action still leaves the browser open to let the user verify the result. At this
stage, it is still possible to define only a part of this object. By pressing the button to
select a region of interest of the object, an alert dialogue box will inform the user how
to define this region, shown in Figure 5.24 (a). An RGD image of the object will also
appear, where the user draws the rectangular area of interest, Figure 5.24 (b).
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(a)

(b)

Figure 5.22: Target area limits setup (a) and display in the browser (b).

Figure 5.23: Object extracted within target area.

When the region of interest is delimited, it is possible to extract the point cloud of
that region. After double-clicking on the defined region of interest, a new figure opens
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(a) (b)

Figure 5.24: Information about the ROI definition (a) and rectangle draw to create the
ROI (b).

containing the extracted point cloud, as shown in Figure 5.25.

(a) (b)

Figure 5.25: Default (a) and frontal (b) view of the object’s ROI

The user now has two clouds of points ready for treatment and processing: the
complete object cloud (Figure 5.23) and the ROI cloud (Figure 5.25). A drop menu
(Figure 5.26) lets the user choose between the two clouds to identify their contours. This
option is only available after extracting the information from Figure 5.22.

Figure 5.26: Dropdown menu for cloud point selection.
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Once the cloud is selected, it proceeds to obtain its contours. Following the method
of Figure 4.4, the user can correctly control the dimension of the structuring element
to obtain the contours. Figure 5.27 shows examples of the contours obtained for the
complete object, with different values for the structuring element dimension.

(a) (b)

(c)

Figure 5.27: Edge detection after morphological closing using disk as structuring element
with dimension 1 (a), 5 (b) and 12 (c).

An oversized structuring element can lead to poor contouring since holes in the object
will be closed, showed in Figure 5.27 (c). As seen in Figure 5.27, increasing the size of the
structuring element closes gaps in the contours. In contrast, as visible in Figure 5.27 (a),
a small size can lead to excessive holes appearing in the image, incorrectly representing
the object contours. By selecting the ROI cloud, the same process is followed but for a
portion of the cloud, as depicted in Figure 5.28.

Here, after implementing the method described in Section 4.2.2, the points in the
ROI cloud are further apart than in the entire cloud. After converting the 2D points to
an image, they will be further apart by comparing Figure 5.23 and Figure 5.25. Thus,
a short range of values for the structuring element dimension is required to close all the
unwanted gaps and open the object holes, making it harder to get the contours correctly.
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(a) (b)

Figure 5.28: Edge detection after morphological closing using disk as structuring element
with dimension 5 (a) and 11 (b).

5.2.2 Point Cloud Editor Tab

Concluding the steps previously exemplified, all image acquisition processes ended, and
it is now possible to move to point cloud processing and treatment. This section majorly
reduces the number of points of both point clouds created. It is also possible to remove
points and increase and decrease the point density in a specific area. In this tab, the
user can see the result of cloud processing, and a browser will allow the user to check the
history of all actions performed throughout the process, Figure 5.29.

Figure 5.29: Point Cloud Editor Section Homepage.

With the cloud chosen, by pressing the "Get Point Cloud" button, a new point cloud
with the reduced points will be shown. Figure 5.30 shows variations of this reduction.
The point reduction is applied by establishing the box grid filter dimension and following
the chosen method, exemplified in Figure 5.17.

Notice that as this value increases, the number of points decreases. This decrease is
due to the size of the box grid filter. By increasing the box size, more points are inside it,
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(a)

(b)

(c)

Figure 5.30: Point cloud downsampled with box grid filter size of 0.025 (a), 0.015 (b)
and 0.005 (c).

and therefore more points are removed. The maximum number of points is the number
of points before any reduction. Along with all changes, a counter shows the total number
of points in the cloud.
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By choosing the value for the point reduction, the user can choose several options to
edit the point cloud, as shown in Figure 4.7. The first option for editing the cloud is the
"Crop Cloud" option, in which, by selecting an area, similar to the process of 5.24, the
user can define an area of the cloud to be removed, as illustrated in Figure 5.31.

(a)

(b)

Figure 5.31: Area selected to crop the downsampled cloud (a) and its result (b)

Thus, the new cloud will appear after selecting the region of interest. Visible in
Figure 5.31 (b), the browser saves the changes marked in green for the cropped area and
the number of total points after the change.

The user can also remove points from a limited area of the point cloud. Previously
selected the "Crop Cloud" option, and by clicking on the "Remove Points" button, a
new figure displays the point cloud created in Figure 5.32 (a), allowing the user to draw
the area to remove the points.
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(a)

(b)

Figure 5.32: New figure displaying the two-dimensional points of the cloud and the area
selected to remove points (a) and its result (b).

As shown in Figure 5.32 (a) and (b), the points within this area are removed, dis-
playing the new point cloud in the application. The browser is also updated to show the
history of these changes, marked in red for the removed points, Figure 5.32 (b).

After performing the crop and removing points, it is possible to modify the point
density in user-defined areas. As in the previous steps, a new window will appear with
the edited cloud and will be ready for the user to select the area to modify its density,
as shown in Figure 5.33 (a).

Selecting the area will increase the density of the points inside it. This density can
never be greater than the density in Figure 5.23 nor Figure 5.25 since the added points
are recovered from the initial cloud of points. From the value chosen in Figure 5.30, the
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(a)

(b)

Figure 5.33: New figure displaying the previous edited point cloud and with the area
drawn to increase density points (a) and the densification result (b).

user will decrease it, thus increasing the point density, resulting in the point cloud shown
in Figure 5.33 (b). This process is similar to Figure 5.17, in which increasing the box
grid filter decreases the point density, and decreasing it increases its density. All density
changes will be saved and displayed in the editor browser, marked in blue in Figure 5.33
(b).

With the density of the points increased, it is also possible to do the opposite. It will
be shown again in a new figure, the point cloud with all the previous changes, where the
user again defines the processing area, Figure 5.34 (a). Once the area is selected, all the
points will suffer a reduction in their density, as shown in Figure 5.34.
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(a)

(b)

Figure 5.34: Figure displaying the area selected in the point cloud (a) and the result of
the density decrease (b).

Resembling the densification process, the user will increase the value chosen in Figure
5.30 to proceed with the density reduction. From the value chosen during the downsam-
pling, the user will increase it, decreasing the point density. This process results in the
point cloud shown in Figure 5.34 (b), and the changes in the editor browser are saved as
well and marked in magenta color in Figure 5.34 (b).

It was also tested whether it would be possible to combine density configurations,
i.e., decrease density in zones where its point density had already been increased and
vice versa. By drawing the area shown in Figure 5.35 (a), two object parts were selected
with different point densities. The points selected will be replaced by points from the
initial cloud in the same area, and a new density will be attributed according to the user
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choice, as shown in Figure 5.35 (b).

(a)

(b)

Figure 5.35: Density mixed area selected (a) to proceed to its density reduced (b).

The same was tested to increase the density of zones with initial and reduced densities.
The points inside the area selected in Figure 5.36 (a) were again extracted from the cloud
with initial density. Their new density will vary depending again on the value of density
increase. The result of this new density is shown in Figure 5.36 (b). The browser in
the "Point Cloud Editor" tab saves all changes made by the user. Thus, the browser
shows where this action occurs when editing the cloud. Initially, and after selecting the
"Get Point Cloud" button, the browser shows the same points as the downsampled cloud
(Figure 5.30).
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(a)

(b)

Figure 5.36: Density mixed area selected (a) to proceed to its density increased (b).

After selecting the areas for processing, as in Figure 5.31 (a), Figure 5.32 (a), Figure
5.33 (a) and Figure 5.34 (a), the points to be processed are known. Depending on their
color, these points will be shown in the browser and represent the different actions taken,
as seen in Figure 5.37.
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(a) (b) (c) (d)

Figure 5.37: Editor browser individually displaying crop (a), remove points (b), increase
(c) and decrease density (d) options with the colors green, red, blue and magenta asso-
ciated, respectively.

Unlike the "Image Acquisition" task, which was mandatory to follow a sequential
procedure, actions do not follow a sequential process in this tab, allowing the user to
choose any option individually. In "Image Acquisition", the application prohibits access
to the target area until the creation of the initial cloud, and obtaining the contours
is denied prior to the object cloud, for example. The "Point Cloud Editor" tab gives
freedom of action to the user, choosing the combination of options for processing the
cloud as desired or just remaining with the initial point reduction.
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Chapter 6

Experiments and Results

This chapter describes all the tests performed during the project and their results. The
results described are all obtained through the application developed in the Matlab envi-
ronment.

6.1 Image Acquisition

As it was possible to acquire images and depth information, two different geometries
were used to test the capacity of the developed system and the device used. Figure 6.1
contains several images obtained from the different geometries.

(a) (b)

(c) (d)

Figure 6.1: RGB image (a) and depth data (b) of the first geometry, and a RGB image
(c) and depth data (d) of the second geometry used.

The depth data of the first geometry, in Figure 6.1 (b), allowed the verification
of the Microsoft Kinect response to reflective surfaces. On the other hand, the second
geometry information, in Figure 6.1 (d), allowed the analysis of small and complex shapes.
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Comparing the depth data of both geometries, the presence of several black zones is more
noticeable in Figure 6.1 (b) than in Figure 6.1 (d). These zones represent incorrectly
acquired information due to the reflection of the pattern drawn by Microsoft Kinect.

6.2 Point Clouds

With the RGB images and the depth data from both geometries, it is now possible
to create the respective point clouds. Figure 6.2 shows the clouds created with the
information obtained by the Microsoft Kinect.

(a) (b)

(c) (d)

Figure 6.2: Default (a) and (c), and frontal view (b) and (d) of the point cloud generated

Obstacles between the object and the Microsoft Kinect will cover the object, making
it impossible to collect its data. Therefore, several areas of the point clouds do not have
information. In addition, the black regions in the depth data also produce zones without
information in the point cloud.

Now that the cloud has been created, both geometries were extracted, removing the
excess information. Then, by defining the target area, and entering its boundaries, as
exemplified in Section 5.2.1, the clouds of the two geometries were created, as shown in
Figure 6.3.
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(a) (b)

(c) (d)

Figure 6.3: Point cloud for the first (a) and (b), and for the second geometry (c) and (d).

By analysing Figure 6.3 (a) and (b), it can be seen that Kinect has difficulties ac-
quiring information projected onto reflective surfaces. These difficulties lead to the non-
acquisition of points that pertain to the object, as it will be possible to observe in more
detail in Figure 6.4 (c) and (d).

The application also allows the selection of a part of the object for post-processing.
As explained in Section 5.2.1, a region of interest was defined within the object cloud,
thereby creating a new cloud. Figure 6.4 shows the regions of interest created and the
resulting clouds for each geometry. The defined area delimits the cloud of the complete
object, extracting the data to create the ROI cloud. In Figure 6.4 (b), (c), (d) and
(e), the clouds extracted by the defined areas are represented. As in Section 5.1.5, it is
possible to know where the points to extract are located through the limits of the area
drawn on the RGB image, exemplified in Figure 6.4 (a) and (b). In Figure 6.4 (c) and
(d), it is then possible to see the points not captured by the Kinect in greater detail. In
Figure 6.4 (e) and (f), it is represented the ROI cloud for the second geometry.

The ROI cloud allows better visualization of the different types of curvature of the
second geometry, concluding that Kinect does not encounter difficulties detecting these
types of zones. The clouds of both geometries are then ready to proceed by detecting
and processing their contours.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Areas selected (a) and (b) to create the ROI clouds (c), (d), (e) and (f) for
both geometries geometries.

6.3 Contours

With the two clouds available (the whole object and ROI), it is required to select one of
them to trace its contours. Figure 6.5 and 6.6 show variations of the detected contours
obtained based on the procedures mentioned in Section 5.1.6.
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Different contour detection for the full object (a), (b) and (c), and for the
ROI (d), (e) and (f), for the first geometry.

(a) (b) (c)

(d) (e) (f)

Figure 6.6: Different contour detection for the full object (a), (b) and (c), and for the
ROI (d), (e) and (f), for the second geometry.

The contours of Figure 6.5 and 6.6 were obtained by varying the size of the structuring
element. With the increase of this value, possible holes in the object can be covered. Also,
the decrease in this value leads to the appearance of unwanted flaws in the contours,
such as holes. The fact that the user can obtain the contours by varying the value of
the structuring element manually rather than in an automated manner allows the user
to choose which configuration of the contours benefits it the most.
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6.4 Point Cloud Processing

With the part responsible for image acquisition completed, the next step is to process
the point clouds. In this section, an action area must be predefined to perform all actions
except the downsample.

6.4.1 Point Cloud Downsample

Initially, the first point reduction is performed using the method to downsample the point
cloud, explained in Section 5.1.7. Variations of the point reduction for both geometries
are obtained and shown in Figure 6.7 and Figure 6.8.

(a) (b) (c)

(d) (e) (f)

Figure 6.7: Variations of the downsample for the full object (a), (b) and (c). Variations
of the downsample for the ROI object (d), (e) and (f). Both variations from the first
geometry.

Similar to Section 5.2.2, as the value of gridStep is changed, the number of points in
the selected cloud changes. The higher the value, the more significant the point reduction
is. By analyzing Figure 6.7 (c) and Figure 6.8 (c), it is noticeable that a reduced gridStep
number will reduce more points from the cloud than the reductions made in Figure 6.7 (a)
and Figure 6.8 (a), which used a lower gridStep value. All operations in this application
section are saved and displayed in the browser, as shown in Figure 6.9.
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Variations of the downsample for the full object (a), (b) and (c). Variations
of the downsample for the ROI object (d), (e) and (f). Both variations from the second
geometry.

(a) (b) (c) (d)

Figure 6.9: Editor browser for the first geometry object (a) and ROI (b), and for the
second geometry object (c) and ROI (d)

A color representing each action is added to the browser, letting the user know which
action was applied and where it was performed. Once the initial point reduction has
been chosen, it proceeds to reduced cloud processing. From this part of the application,
operations such as cropping the point cloud, removing points, and increasing and reducing
point density are possible. All these operations do not occur successively, i.e., the user
can decide which operations want to do regardless of the order of action.
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6.4.2 Crop Point Cloud

The user may now want to select only a portion of the reduced cloud for processing.
By pressing the "Crop Cloud" button, the user selects an area of the reduced cloud, as
shown in Figure 6.10 and Figure 6.11, to be processed further.

(a) (b) (c)

(d) (e) (f)

Figure 6.10: Areas selected on the object (a) and ROI (d) to crop the point cloud, their
resulting point cloud (b) and (e), and the browser showing both operations performed
(c) and (f), respectively and regarding the first geometry.

The areas selected in Figure 6.10 (a) and (d) and Figure 6.11 (a) and (d) give the
location of the points inside. These points are then extracted from the cloud to create
the resulting clouds, shown in Figure 6.10 (b) and (e) and Figure 6.11 (b) and (e). The
browsers are also updated, showing the operation performed and the region where it
acted, as shown in Figure 6.10 (c) and (f) and Figure 6.11 (c) and (f). By performing
this action, only the selected part of the cloud will be used for further processing.
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(a) (b) (c)

(d) (e) (f)

Figure 6.11: Areas selected on the object (a) and ROI (d) to crop the point cloud, their
resulting point cloud (b) and (e), and the browser showing both operations performed
(c) and (f), respectively and regarding the second geometry.

6.4.3 Remove Points

It is possible to define zones in the point cloud to remove points by selecting the option
to remove points. The selected points will be removed to create a new cloud, as shown
in Figure 6.12, Figure 6.13, Figure 6.14 and Figure 6.15.

This operation is responsible for removing unwanted points in the cloud. By selecting
the areas, the points are removed, and the new point cloud is updated. Note that as the
crop option has been previously selected, only the cloud resulting from the crop option
will be shown when defining the areas for point removal. The browser is also updated to
show the changes made, as demonstrated in Figure 6.12 (c), Figure 6.13 (c), Figure 6.14
(c) and Figure 6.15 (c).
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(a) (b) (c)

Figure 6.12: Area selected on the object (a) to remove points, the reduced point cloud
(b), and the browser showing the operations performed (c), regarding the first geometry.

(a) (b) (c)

Figure 6.13: Area selected on the ROI (a) to remove points, the reduced point cloud (b),
and the browser showing the operations performed (c), regarding the first geometry.

(a) (b) (c)

Figure 6.14: Area selected on the object (a) to remove points, the reduced point cloud (b),
and the browser showing the operations performed (c), regarding the second geometry.
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(a) (b) (c)

Figure 6.15: Area selected on the ROI (a) to remove points, the reduced point cloud (b),
and the browser showing the operations performed (c), regarding the second geometry.

6.4.4 Increase Point Density

Defining the action area, it is also possible to increase the point density, and, as the
remove points option has been selected, the removed points will not be shown. Figure
6.16 shows the areas where point densities will be increased in both geometries.

(a) (b) (c) (d)

Figure 6.16: Areas selected in the first geometry (a) and (b), and in the second (c) and
(d), to increase point density.

After selecting the action areas for the first geometry, as shown in Figure 6.16, (a)
and (b), the point density was varied. It is possible to see in Figure 6.17 this variation for
the complete object and the ROI of the object of the first geometry. The point density
increases by decreasing the grid box size, as explained in Section 5.2.2. It also tested
variations in the density increase in the clouds of the second geometry. Using the selected
areas in Figure 6.16 (c) and (d), density variations were obtained within the areas, as
shown in Figure 6.18.
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(a) (b) (c)

(d) (e) (f)

Figure 6.17: Variations of the point density increase for the full object (a), (b) and
(c). Variations of the point density increase for the ROI object (d), (e) and (f). Both
variations from the first geometry.

(a) (b) (c)

(d) (e) (f)

Figure 6.18: Variations of the point density increase for the full object (a), (b) and
(c). Variations of the point density increase for the ROI object (d), (e) and (f). Both
variations from the second geometry.
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After increasing the point density, the browser recorded this interaction. Figure 6.19
shows the browser, with the remove points operation marked, for the changes made to
both geometries.

(a) (b) (c) (d)

Figure 6.19: Editor browser showing the area with increased point density in the full
object (a) and ROI (b) from the first geometry. Editor browser showing the area with
increased point density in the full object (c) and ROI (d) from the second geometry.

6.4.5 Decrease Point Density

To reduce the point density is again necessary to define the area where the reduction
will occur. Figure 6.20 shows the areas where the point density reduction will happen in
both clouds of both geometries. When defining these areas, the area where an increase
in density had happened is also visible.

(a) (b) (c) (d)

Figure 6.20: Areas selected in the first geometry (a) and (b), and in the second (c) and
(d), to decrease point density.

The reduction varied for the first geometry clouds to test point density decrease, as
shown in Figure 6.21. In contrast to increasing the density, increasing the grid box size
is necessary to reduce the point density. Through the selected areas in Figure 6.20 (c)
and (d), new point clouds were created with the respective reduced point density zone.
Figure 6.22 shows these reductions in both clouds from the second geometry.
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(a) (b) (c)

(d) (e) (f)

Figure 6.21: Variations of the point density decrease for the full object (a), (b) and
(c). Variations of the point density decrease for the ROI object (d), (e) and (f). Both
variations from the first geometry.

(a) (b) (c)

(d) (e) (f)

Figure 6.22: Variations of the point density decrease for the full object (a), (b) and
(c). Variations of the point density decrease for the ROI object (d), (e) and (f). Both
variations from the second geometry.
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This action is again recorded in the browser, which displays in pink the area of points
where a point density occurred, visible in Figure 6.23.

(a) (b) (c) (d)

Figure 6.23: Editor browsers showing the areas with decreased point density in both
clouds from both geometries.

6.4.6 Density Combinations

It was also necessary to test mixed-density areas, i.e. reduce the point density in an area
previously increased and vice versa. Figure 6.24 shows an example of a density reduction
in a previously increased area concerning the first geometry.

As explained in Section 5.2.2, the points selected in Figure 6.24 (a) and (d) will
be replaced by points from the original cloud. A new point density will be assigned
to it, resulting in the clouds shown in Figure 6.24 (b) and (e). In Figure 6.24 (c) and
(f) is visible the updated browsers with the respective changes. Regarding the second
geometry, Figure 6.25 shows the results of the density combination.

The areas in Figure 6.25 (a) and (d) were defined in order to encompass areas with
density mixing. Selecting these points results in the clouds shown in Figure 6.25 (b) and
(e). It is possible to observe these changes in Figure 6.25 (e) and (f) browsers.
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(a) (b) (c)

(d) (e) (f)

Figure 6.24: Object (a) and ROI (d) areas selected to decrease point density in mixed-
density areas, their results (b) and (e), and browsers updated (c) and (f), respectively
and regarding the first geometry.

(a) (b) (c)

(d) (e) (f)

Figure 6.25: Object (a) and ROI (d) areas selected to obtain a decrease of point density
in zones with previously altered densities, their results (b) and (e), and browsers showing
which operations were made (c) and (f), respectively and regarding the second geometry.
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Chapter 7

Conclusions

7.1 Work Conclusion

A prior definition of which points are to be scanned is necessary to perform Lased-based
Vibrometry. For this purpose, an application was developed in which the user can define
the object and its contours and extract point clouds.

The pillar of the work relies on the information captured by a Kinect sensor. RGB
and depth images were the basis for creating all the results shown. From the beginning,
the information in depth and RGB images allowed us to create the clouds that molded
this project. The biggest challenge in developing the application was the development of
its back end, taking a large percentage of the progress of the whole project since several
methodologies were tested to achieve the results presented.

Finally, a target area was implemented where the user defined its boundaries, and all
the information inside was extracted. Creating this target area changed the entire course
of the project’s development. As it was possible to extract the information through a
three-dimensional cloud, it was also possible to do it in two dimensions following the
same logic. Several steps request the user to draw the target areas initially, and then
the appropriate treatment is done. This solution proved very basic in the user’s view
allowing easy and interactive application usage.

After the clouds were adequately obtained, it was possible to do several processing and
treatment actions, such as increasing or reducing the density of its points and removing
or selecting only parts of the cloud for point scanning. The tab responsible for this
configuration shows the total number of points after each iteration, making the user
aware of the number of points.

7.2 Future Work

The work developed in this dissertation is apt to implement both changes and improve-
ments. Implementing a second, or even a third, Kinect camera should be considered to
improve the information acquired. Adequately spaced and tilted to a certain degree be-
tween them allow an improved point cloud formation. Thus the object could be analyzed
through an extensive view by the Kinects. Not capturing holes in the object could be
prevented, and an increase in the number of points captured is guaranteed.

Improve the handling of the point cloud, mainly allowing the creation of areas of
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varied configuration. The user would no longer be restricted to rectangular areas and
could define triangular, circular, and polygonal areas. Thus, in selecting points for the
operations of choosing the ROI, of downsample (crop and remove points), and of editing
the density (increase and decrease density), the user would have greater freedom of
operation.

Finally, to develop the scanner’s control component. The generation of analog signals
for each drive of the two galvanometers allows the mirrors to rotate and, consequently,
the orientation of the laser. The interaction with the signal acquisition system should
also be developed to automate the entire analysis process.
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