
Universidade de Aveiro Departamento de Engenharia Mecânica
2022

Miguel Francisco De
Amaral Pinto

Dashboard Interativa do Estado Global do
ATLASCAR2

Interactive Dashboard with the Global State of the
ATLASCAR2





Universidade de Aveiro Departamento de Engenharia Mecânica
2022

Miguel Francisco De
Amaral Pinto

Dashboard Interativa do Estado Global do
ATLASCAR2

Interactive Dashboard with the Global State of the
ATLASCAR2
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Resumo A indústria automóvel tem desenvolvido inúmeros esforços para tentar tornar
a nossa experiência de condução mais segura e confortável. Atualmente,
uma das soluções desenvolvidas são ”dashboards”. Estes dispositivos são
Sistemas Avançados de Assistência ao Condutor que permitem aos uti-
lizadores obterem todas as informações relativas ao estado do véıculo que
os transporta através de um ”display” dinâmico. No âmbito do projeto
ATLAS, esta dissertação tem como objetivo criar uma dashboard para o
ATLASCAR2. Tendo em vista este projeto, primeiro foi instalada uma nova
solução de energia para a unidade central de processamento do véıculo,
responsável pelo funcionamento dos equipamentos instalados. O antigo
quadro elétrico do carro apresentava algumas limitações. Por essa razão,
foi instalado um novo quadro e colocado no porta-malas do véıculo. Em
seguida, o ATLASCAR2 foi equipado com um inversor que retira energia da
bateria de chumbo do véıculo para alimentar o computador. Numa segunda
fase, foi criada uma nova rede de informação baseada numa arquitetura
ROS que fornece o estado dos sistemas integrados no carro ao display da
dashboard. O barramento Controller Area Network do véıculo foi utilizado
para este fim. Este trabalho apresenta a solução desenvolvida e todas as
funcionalidades nela incorporada. Por fim. foi realizado um teste que aux-
iliou na avaliação da usabilidade da nova solução.
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Abstract The transportation industry has deployed new efforts to make our driving
experience safer and more comfortable. Nowadays, one developed solution
points to dashboards. These devices are an Advanced Driver-Assistance
System that allows the users to check information regarding the vehicle that
transports them through a dynamic display. Within the ATLAS project, the
present dissertation aims to create a dashboard for the ATLASCAR2. Given
this need, a new power solution for the central process unit responsible for
booting all external installed equipment was installed first. The electric
board already in place presented some limitations. Therefore, a new one
was installed and placed on the vehicle’s trunk. Next, the car was equipped
with an inverter that withdraws energy from the vehicle’s lead battery to feed
the computer. Then, an information network built upon a ROS architecture
had to be created to feed information from the car’s in-built systems to the
dashboard display. The Controller Area Network bus of the vehicle was used
for this purpose. This work presents the developed solution and all features
embedded in it. In addition, a field test was performed, which helped to
evaluate the new solution’s functionality.
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Chapter 1

Introduction

With the recent technological advances, the transportation industry constantly de-
mands continuous car performance progress. Therefore, customers have now built un-
precedented expectations about their vehicles, which triggered brands worldwide to focus
on making our driving experience as safe and comfortable as possible.

One crucial factor is the ability of drivers to gather as much information as they can
regarding their car. The solutions developed are based on human-machine interfaces
Human-Machine Interface (HMI) called dashboards which allow drivers and passengers
to easily engage with the vehicle and the outside world. They can be embedded with
navigation systems, control panels, built-in screens, buttons, and driving assistance.
Dashboards turns a vehicle into an ecosystem of interconnected parts that work together
to make our driving experience more convenient, personalized, and enjoyable.

This dissertation aims to develop a fully functional dashboard for ATLASCAR2, an
autonomous research vehicle from the University of Aveiro, by displaying data regarding
the vehicle’s global state on a dynamic display.

1.1 Context on the ATLAS project

The ATLAS project was created in 2003 by the Laboratório de Automação e Robótica
(LAR) of the Department of Mechanical Engineering of the University of Aveiro, focusing
mainly on the research and development of robust sensory systems [1]. During the first
years, the group focused on creating a series of autonomous robots (Figure 1.1), thus
advancing with its attendance at the Portuguese Robotic Open.

(a) (b)
(c)

Figure 1.1: ATLAS autonomous robots [1].
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2 1.Introduction

The participation was such a success that in 2009 the development of a fully au-
tonomous vehicle, the ATLASCAR1 (Figure 1.2), began. This prototype had a series
of embedded equipment, which collected all the internal information of the car and its
surroundings. Subsequently, the sensors sent the acquired data to a central computer,
which returned a series of orders for the actuators to act as intended. A Ford Escort
Station was equipped with the most diverse instruments to be as reliable as possible,
being systematically improved year after year.

Figure 1.2: The ATLASCAR1 vehicle [1].

Over time, the team decided to switch to another vehicle. The ATLASCAR2 (Figure
1.3) is a fully electric Mitsubishi i-MiEV and on it were incorporated all the progress
and results obtained so far. Therefore, the vehicle is more technologically advanced than
its predecessor and facilitates the research work carried in it.

1.2 Problem description and objectives

The ATLASCAR2 focuses on becoming the driving experience more comfortable,
autonomous and mistake-free. Therefore, many Advanced Driver-Assistance System
(ADAS), such as sensors and Light Detection And Ranging (LIDAR), were embedded in
the vehicle. These devices are gaining more and more attention as a critical technology
to increase driver awareness and safety. The implementation of a dashboard also serves
this purpose. This hardware will keep the user updated by displaying all data related to
the vehicle on a dynamic screen, enhancing the driver’s sense of security and joy while
driving the ATLASCAR2.

In order to install the dashboard on the vehicle, a new electric power supply must
first be installed. This task will be done on top of the current installation. As researchers
developed work on ATLASCAR2, an outside power source was added to feed the vehicle’s
computational system, which is the car’s central processing unit. Throughout the years,
this solution has become less suitable for the team’s demands due to a lack of autonomy,
and future work on the car can be compromised as we overload its power supply.

Miguel Francisco De Amaral Pinto Master Dissertation



1.Introduction 3

Figure 1.3: The ATLASCAR2 vehicle.

The data related to the car status is present in the control units of the vehicle and
it can be accessed as a result of past developments. Due to security reasons, these
messages are encrypted and they are hard to trace. Nevertheless, the ATLASCAR2
model is commonly used by investigators worldwide for autonomous driving projects,
and much work has been done in this field. The dashboard must be capable of reading
the messages received from the automobile and processing them, so a software application
must be developed. Most information will be related to the car’s original features, such
as autonomy and velocity.

As the software feeds the dashboard with information, an interactive display will
keep the driver updated on the vehicle’s current state. The user must be capable of
easily communicating with the machine by incorporating a user-friendly interface. To
summarize, the following topics are the main objectives of this dissertation:

• Increase the power autonomy of the computational system;

• Create a software infrastructure with the global status of the vehicle in real-time;

• Development of an interactive display;

1.3 Document structure

This document is divided into seven chapters. The first and second focus on in-
troducing the problem, describing the main objectives and explaining the basis behind
this work. The third is related to the experimental infrastructure. On the one hand, it

Miguel Francisco De Amaral Pinto Master Dissertation



4 1.Introduction

analyses relevant features and characteristics of ATLASCAR2. On the other, it covers
all software used for this project. Chapter 4 discusses the power solution to extend the
autonomy of the processing unit implemented on the vehicle. Chapter 5 discusses the
process of receiving information from the car. Chapter 6 includes all aspects related to
the dashboard and display. Finally, the conclusions and proposals for future works are
presented in the last chapter.

Miguel Francisco De Amaral Pinto Master Dissertation



Chapter 2

State of the art

The following chapter addresses the state of the art. The section 2.1 gives some
relevant details on the car’s architecture and electrical systems. Section 2.2 analyses
Advance Driver-Assistance Systems, some of which are already implemented on the
ATLASCAR2. Section 2.3 gives context on features to implement on a dashboard and
section 2.4 mentions important work related to this project developed in LAR and world-
wide.

2.1 Background on vehicle architecture and their eletric
systems

In the context of this work, it is crucial to address the current vehicle architecture to
understand where the displayed information comes from. Nowadays, modern vehicles are
managed by a series of networked controllers, which allow easy communication among
all in-car hardware.

One feature that has shaped current automobiles is the Eletronic Control Unit
(ECU). These devices were created in 1970 by US manufacturers and are embedded
systems used to monitor and control specific devices of vehicle units [2]. Modern cars
have various ECU’s, each associated with a specific device such as the brakes, lights, or
steering.

In 1986, Bosh created the Controller Area Network (CAN) and found a way to fa-
cilitate data transmission between ECU’s [3]. They are connected through a “pathway”
inside the car composed of semiconductors called CAN bus, where other units are lis-
tening. CAN is a serial multimaster protocol which means that any ECU can send a
message to the bus when it is free. All nodes connected to the bus can receive frames and
process them. The node that sends the data is called the transmitter and the node that
receives it is called a receiver. This bus can be accessed using the On-Board Diagnostic
II (OBD-II) port, usually situated under the vehicle’s steering wheel. Nowadays, road
entities force car manufacturers to implement this robust feature on their products, as
they are crucial for drivers to overwatch malfunctions.

5
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2.2 Advanced Driver-Assistance Systems

Fast growth in ADAS development has been seen worldwide over the last years.
Due to recent technological advances, car manufacturers have embedded them in their
vehicles as they play a crucial role in road safety. According to [4], in 2015, 94 % of US
car crashes occurred due to human error. Thus, their main purpose is to reduce this
statistic by assisting drivers in gathering important information about the car and the
external world. The driver’s comfort is another aspect, as they provide a better on-road
experience.

ADAS are composed of a wide set of instruments (Figure 2.1). Sensors measure
the distance from surrounding obstacles. Radio detection and ranging (Radar) allows
monitoring of the road ahead and is particularly helpful if a vehicle hides behind other
obstacles such as corners or other cars. Assisted by artificial intelligence and deep
learning, cameras allow recognition of different objects in our driving experience, from
pedestrians to traffic signs. These gadgets can be combined with embedded actuators
that have the power to control crucial ECU’s of the vehicle, such as the break paddle
or the steering wheel. Adaptive Cruise control, automatic parking, driver monitoring
system, and the ability to dodge obstacles are a few examples of this development.
Another aspect that must be highlighted is consumption. Intelligent Global Positioning
System (GPS) can advise the driver on more efficient and economical driving practices
[5].

Figure 2.1: Examples of ADAS instruments [6].

There are two types of ADAS: Passive and Active [7]. The passive ones have the
job of informing about certain situations as the driver must then act to correct them.
The battery or low tire pressure warnings are two examples. In this case, a warning
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light flashes in the vehicle’s control panel when a malfunction occurs. They can also be
associated with internal gadgets such as rear cameras or parking sensors. With active
devices, the vehicle takes direct control of its systems, as they act directly on the car’s
ECU’s and are activated when the system feels necessary. Self-parking or lane-centering
assistance are some cases.

Due to past developments, ADAS are already part of the ATLASCAR2 (Figure 2.2).
To accomplish their full purpose, the driver must visualize the information collected by
these systems in real-time. Therefore, dashboards were also designed to address this
issue. A deepened analysis of this instrument is provided in the next section.

(a) (b)

Figure 2.2: Examples of the ATLASCAR2 ADAS.

2.3 Context on dashboards

A dashboard is a HMI. It consists of a panel that enables communication with a
machine. On its screen, touch buttons are presented so the operator can easily navigate
through its display. They are a considered passive ADAS since they are used mostly to
check information and do not have a direct interference in the driving experience. It is
important to dive into some aspects of this hardware to understand how it operates.

Displayed information

Dashboards transmit all kinds of data to the driver. Since most information is related
to the car’s ECU’s, dashboards must be connected to the CAN bus. For instance, they
can show the car’s velocity, autonomy or the state of headlights or blinkers. The study
by Figueiredo [8] describes many ways to engage with it. The OBD-II provides a direct
access point to the CAN bus. Another option is to get indirect access to it using enter-
tainment systems such as a CD player, USB port or an iPod port. Lastly, dashboards
can also use wireless channels such as Wi-Fi or Bluetooth to engage with the CAN bus.
Many perform a two-way communication since they can access ECU’s to adjust some
parameters according to the driver’s desire. The air conditioning temperature and radio
volume are a few examples.
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Dashboards also show ADAS data on their display. They use data provided by
sensors and LIDAR’s to create virtual representations of the real environment, helping
drivers with maneuvers like parking their vehicles. The GPS is a common feature as
well. It provides drivers with information related to their location and driving directions.
Dashboards can be connected to Web services to verify updated data regarding outside
temperature, weather or current traffic conditions.

Warnings

Dashboards provide several warnings to inform the driver of numerous occurrences
related to external agents or the car itself. They can come in text form by using pop-ups
and notifications. Flashing icons can also be used to indicate some events. An audible
indication can follow both, which makes the task of identifying messages more intuitive
and direct. Car warning messages can be classified in several ways. According to Laux
& Meyes [9], they are divided into three distinct categories:

• Level 1- Information/Advisement: These messages are mainly used to inform and
help the user during his driving experience. The information may be ignored since
they do not oppose any danger to the driver or the vehicle;

• Level 2- Potential Danger: Occurrences that are dangerous to the driver if correc-
tive action is not taken. A flat tire or low battery messages are two examples;

• Level 3- Urgent or Imminent/Emergency: High-importance warnings that alerts
of an imminent threat to the driver’s safety. They must be communicated to the
driver immediately and should be the most direct possible;

Inputs

Drivers can engage with the HMI in multiple ways. The most common is to use a
touchscreen or an in-built mousepad. R. Swette et al [10] studied which tool is the most
efficient to access a display between a serial, circular or vertical mousepad or a standard
touchscreen. Therefore, the team conducted a survey where participants had to click on
a series of icons using these four devices. They considered two aspects: the time each
participant took to complete a series of tasks and the attention percentage based on eye
awareness. The final result was that the participants performed better while using a
touchpad.

Voice commands are also a possibility to be considered. T.A.Ranney et al [11] com-
pared an interface based on voice with one using mainly the touch. The study asked a
group of 22 participants to do a set of tasks in the fastest time possible while driving
their vehicles. The conclusion was that adding this feature to some functionalities of the
dashboard, such as remote phone access, helped the drivers to focus more on the road
and reduce the distraction caused by accessing the dashboard by hand.

Eye-Gaze is the most innovative way of communicating with a dashboard. It allows
the users to control the dashboard with their eyes by using a set of sensors and cameras.
T.Poitschke et al [12] tested this system by comparing it to the touchscreen device. The
research concluded that Eye-Gaze commands sometimes were inefficient and did not
improve the driver’s experience on the road.
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Static vs Adaptive interface

The interface can be either static or adaptive [13]. The first has a low degree of
customization, and the software developer’s visualization mode is standardized. They
present the information all at once and can hinder the task of the driver to check informa-
tion. Adaptive ones, on the other hand, perform a more intelligent display organization
and may give greater emphasis to more relevant data, depending on the moment or the
driver’s preference. Also, they can give the option to reorganize the information mod-
ules according to the user demand. They possess multiple windows and numerous tabs,
providing a more intelligent data organization.

Solutions on the market

In the context of this work, it is important to analyze the current dashboards in the
market. They are a standard widget of numerous car manufacturers worldwide, such as
Tesla and Mercedes. The most common practice is to place these electronic devices in
a central position on the car’s instrument board, between the driver and the passenger
seat. A different screen arrangement can be seen depending on the brand or model of
the vehicle.

(a) (b)

Figure 2.3: Tesla Model 3 dashboard [14].

The Tesla Model 3 dashboard (Figure 2.3) offers an interactive layout composed of
multiple windows that can be closed and opened anytime [14]. The touchscreen allows
the users to navigate through the screen, access media, use entertainment features and
customize Model 3 to suit their preferences. On the top end of the screen are the time
and outside temperature. Meanwhile, touch icons in the bottom bar replace traditional
in-car physical buttons. For instance, the driver can control cabin heating temperature,
air conditioning and headlights. The main screen is shared by many widgets, from a
virtual representation of surrounding objects to information regarding the door locks.
In the background, the GPS can be seen.

Similar functionalities can also be found on Mercedes vehicles, as in the Mercedes
Benz EQS 450 (Figure 2.4). The screen has an adaptive layout equipped with many
windows. The top and bottom tabs are configured similarly as in the prior case [15].
By clicking on the “home” icon, the drivers access a menu with the navigation, phone,
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radio, media and features. In both cases, hand-free access is available by selecting the
voice option. A parking assistance menu pops up when the user toggles the reverse shift.

(a)

(b)

(c)

Figure 2.4: Mercedes Benz EQS 450 dashboard [15].

2.4 Related work

2.4.1 LAR projects

Several LAR projects have been developed around the ATLASCAR2 during the past
years. Therefore, it is essential to cover some assignments that will take a crucial role
in the context of this work.

One work aimed to develop an OBD-II interface to monitor the ATLASCAR2 state
[16]. To receive and read CAN packets, the author developed an Arduino solution that
enabled communication between the OBD-II port of the vehicle and the external devices,
like a laptop or flash drive. After establishing the connection with the CAN bus, the
author decoded several encrypted messages. As a result, messages with data related to
some of the vehicle’s internal systems can now be understood and analyzed. By accessing
the data from the brakes, steering and accelerator ECU, Figueiredo [8] was able to hack
the car systems and construct a remote-control solution.

Another work documented the electric board aboard the ATLASCAR2 [17]. Pereira
studied different power solutions that could feed the additional external hardware im-
plemented on the vehicle. The author conducted an experiment where he studied the
possibility of withdrawing energy directly from the main battery using a DC-DC con-
verter. The conclusion was that it was possible to do so since the vehicle did not report
any malfunction signal on this panel. Correia built an electrical circuit fed by this energy
source that powers external hardware on the vehicle [18].

2.4.2 Similar projects

Researchers of the University of Berlin designed an HMI for two vehicles used for
autonomous driving research called “Spirit of Berlin” and “Made in Germany” [19]. With
it, the team could remotely command the vehicles and check real-time data received from
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Figure 2.5: “Spirit of Berlin” architecture [19].

the sensors (Figure 2.5). The base platform for this work was a multitouch Apple iPad
tablet connected to a server and microcontroller simultaneously. The iPad received data
from the microcontroller over Wi-Fi using UDP packets. It acts as an emergency backup
system and is directly connected to CAN. Meanwhile, the server sends information from
the car’s cameras, LIDAR’s and ECU’s via a TCP/IP connection to the tablet. This
component is connected to the vehicle via ethernet to retrieve messages from the CAN
bus. This configuration provides a more mistake-free design since the other is operational
if one fails. The developers used an iOS programming language based on C called
Objective-C to design the display (Figure 2.6). The top bar shows status information
regarding time and Wi-Fi connection with the server. The screen shows a 3D Model of
the vehicles with a short description of all hardware. At the bottom, a scroll view with
various icons gives access to all the implemented features.

A team from the Politecnico de Milano created an interactive dashboard interface
for an autonomous shuttle (Figure 2.7) [20]. The objective was to design an HMI that
not only served to command the shuttle but also could be used to visualize the states
of the various ECU’s. The inputs used to control the vehicle could come from either a
joystick, the HMI, or the autonomous driving logic. A PeakCan USB hardware was used
to communicate with the shuttle’s CAN bus. Robotic Operating System (ROS) network
connected all the systems and each system had an associated node that published its
information on a topic. An additional node that subscribed to all topics was created
to accommodate the interface designed in a Simulink-based CAN interface. From this
node, CAN packets can be sent to the shuttle’s bus to control the vehicle remotely.
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Figure 2.6: “Spirit of Berlin” dashboard [19].

Figure 2.7: “Politecnico de Milano” autonmous shuttle [20].
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2.5 Summary

Dashboards present a variety of information to the driver. This information can
come from web connections, the vehicle ECU’s, or implemented ADAS. In the context
of this work, it is also essential to study how this device works, what functionalities must
be added and how the information modules should be organized and displayed. For this
purpose, other dashboards were analyzed.
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Chapter 3

Experimental infrastructure

The following chapter details the test platform of this dissertation. Section 3.1
presents the main ATLASCAR2 characteristics, explains the current power architec-
ture and describes the equipped hardware. Section 3.2 specifies the infrastructure used
to communicate with the car’s CAN bus. Section 3.3 and 3.4 overviews the software,
libraries, and tools used.

3.1 The ATLASCAR2 vehicle

3.1.1 Characteristics

Figure 3.1: Mitsubishi i-MiEV 2015.

As mentioned in Section 1.1, the ATLASCAR2 is a Mitsubishi i-MiEV 2015 (Figure
3.1). This fully electric vehicle has a 16 kWh lithium-ion battery with a rated voltage
of 330V Direct Current (DC) [21]. It has a 160 km cruising range and can be charged
with a 230V Alternating Current (AC) outlet, taking up to 10 hours to fully recharge.
By using a fast-charging station, the stoppage time is reduced up to 30 minutes. The
49 kW electric motor that powers the rear wheels is connected to the main power supply.
The car is also equipped with a lead 12V battery. Its two main functions are to feed
small gadgets, such as audio systems, headlights and windshield wipers, and protect the
16 kWh battery through its isolating relays. The main electric source powers the small
battery through a DC-DC converter when the ignition is on [22].
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16 3.Experimental infrastructure

3.1.2 Onboard power distribution

ATLASCAR2 is a vehicle for studies on autonomous driving and for that reason,
many sensors, LIDAR and cameras have been added to it. Thus, researchers had to
equip it with a small circuit powered by the 12V DC battery at the vehicle’s front end.
Since the electric board is placed in the vehicle’s rear, cables were added to connect
these two components. The orange wire corresponds to the positive pole and the blue
one to the negative pole (Figure 3.2).

The circuit is protected by a 16A DC circuit breaker that acts as a switch for the
board. Then, the current flows through a relay which guarantees that the car’s gadgets
are powered only when the main battery is on. A MC7812SCT 12 V/1A regulator was
added to the switch input to protect the board from voltage fluctuations. This device is
stored in a custom 3D printed case inside the board.

Initially, a DB 15 female connector was added. It plugs a cable with twelve connectors
that comes from the vehicle’s hood and is used for two purposes: to power the embedded
gadgets and to activate the relay. Further work added a pair of female banana connectors
on the board’s top and two hardware plugs on each side (Figure 3.3).

(a) (b)

Figure 3.2: ATLASCAR2 original electric board [18].

Figure 3.3: Eletric board expansion.
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3.1.3 Auxiliary equipment

The added devices are connected to a processing unit. This computer is the master
brain of the car since all the programs addressed to the vehicle hardware are stored in
it. The computer needs a 230V AC plug and the only two power sources inside the
vehicle were the 330V DC main battery and the small 12V DC battery. Therefore, an
Uninterruptible Power Supply (UPS) was installed in the vehicle’s trunk (Figure 3.4)
alongside the central processing unit. When the UPS is turned on, it powers the central
computer, booting all ATLASCAR2 systems simultaneously.

Figure 3.4: ATLASCAR2 processing unit and UPS

APC Smart-UPS 1500 VA

The APC Smart-UPS 1500VA (Figure 3.5) is the central unit’s power supply. It
has a 230V AC nominal output voltage and a 1500VA maximum power output. The
technical specifications of the APC Smart-UPS are shown in table 3.1.

Figure 3.5: APC Smart-UPS 1500VA [23].

Table 3.1: APC Smart-UPS technical spec-
ifications [23].

Main Input Voltage 230V AC
Main Output Voltage 230V AC
Power Output 1500VA
Batteries Lead-Acid
Weigth 24.09 kg
Outlets 8
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Battery MZ690402

The ATLASCAR2 lead battery (Figure 3.6) has 12V DC and is situated on the car‘s
hood. The main characteristics are specified in Table 3.2.

Figure 3.6: Battery MZ690402 [24].

Table 3.2: Battery MZ690402 technical
specifications [24].

Model MZ690402
Voltage 12V
Maximum current 300A
Capacity 35Ah

3.2 Accessing the CAN bus

3.2.1 CANalyze

Having a reliable source of information is crucial for this thesis. As mentioned in
section 2.1, ECU information is present in the CAN bus of the vehicle. To access that
data, a CANalyzer was used (Figure 3.7). This hardware is an open-source, native
CAN interface for Linux that uses SocketCan to link the CAN bus with other devices.
By enabling communication with outside sources, it allows reading and recording of all
relevant messages.

To set up the network, the CANalyzer should be linked with the OBD-II port placed
next to the foot pedals of the vehicle (Figure 3.8). A standard OBD-II to DB9 cable
must be used to ensure proper transmission of messages. A USB 2.0 type A to type B
cable is also required to connect this gadget to the computer.

Figure 3.7: CANalyzer. Figure 3.8: OBD-II Port on ATLASCAR2.

3.2.2 SocketCan

The SocketCan is a set of open-source CAN drivers for Linux. By providing a
socket interface built upon the Linux network layer, it allows communication between
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the CANalyzer, the device described in section 3.2.1, and the CAN bus. After setting up
a socket, this package binds it to an interface like in a TCP/IP network. Once bound,
the socket is ready to be used. The SocketCAN offers three types of CAN interfaces [25]:

• Native: CAN interfaces associated with real hardware, such as a USB-CAN adapter,
like in this dissertation. Usually, they are entitled “can0”, “can1,” and so forth;

• Virtual: Interfaces that are not associated with any real device. They are named
“vcan,” followed by the identification number;

• SLCAN: Serial interface compatible with the Slcan-Interface. They are associated
with the Slcan ASCII protocol and are typically named “slcan,” following the rule
as in prior cases;

For this work, only the native and virtual interfaces were needed. The first was used
to communicate with the vehicle to get real data on the car’s current state and the
second served to conduct tests and experiments in a virtual environment without really
accessing the ATLASCAR2.

Depending on the type of interface that will be linked, an initial configuration is re-
quired. For the native interface, a configuration of the CAN interface with the required
bitrate must be done:

$ sudo ip link set can0 up type can bitrate 500000

A virtual CAN driver for testing purposes can be loaded and created in Linux with
the commands below. Loading the modprobe module may be needed in case the driver
is still not loaded:

$ sudo modprobe vcan

$ sudo ip link add dev vcan0 type vcan

$ sudo ip link set up vcan0

The command “ifconfig” is used to verify if the connection is set up:

$ ifconfig can0

In either case, the presented code should enable interaction between a CAN bus and
a Linux environment. However, to read and process the received messages, an addi-
tional SocketCan package has to be installed: can-utils.

can-utils

The can-utils packate is a series of SocketCan utilities that help programmers with
CAN communication inside the Linux operating system. These tools can be accessed
using a standard Linux terminal. With it, users can create, receive and send custom
CAN packets to the vehicle [26]. The main tools used in the context of this work were:
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• cansend: Sends a CAN message to the network. It is used mainly for experience
purposes in a virtual environment since the internal security system of ATLAS-
CAR2 does not allow external messages to be sent into the CAN bus of the vehicle.
The frames are composed of a three-digit identifier followed by a cardinal digit and
8 bytes of data, as in the following example:

$ cansend can0 ABC#1122334455667788

In this case the message identifier is 0xABC and the data bytes are 0x11, 0x22,
0x33, 0x44, 0x55, 0x66, 0x77 and 0x88. Futher analyses on CAN messages will be
given in Section 5.2;

• cangen: Generates random CAN packets. It is used mostly in virtual CAN in-
terfaces for testing since the user has no control over the messages sent to the
network;

$ cangen can0

• candump: Prints all received messages by the CAN interface to the terminal (Table
3.3). As explained before, the correct bitrate must be set while connecting with
the CAN bus. In this case, the network operates with a 50000 bitrate, making
it difficult for investigators to identify any particular CAN message. The data
presented at the console is very cluttered, making it hard to trace by the human
eye. Therefore, a Linux command-line tool was used to help filter these messages.
The grep filter searches a file for a particular pattern of characters and displays all
lines that contain that pattern in the terminal (Table 3.4). In this case, inputting
a specific identifier to the grep tool makes it possible to print the desired set of
CAN messages;

$ candump can0

175 [8] 12 A3 E0 19 FF 56 AF A5
184 [8] 16 00 00 00 0D 16 12 12
235 [8] 01 23 71 19 14 57 23 BE
457 [8] 45 58 00 65 14 D3 54 14
579 [8] 12 A6 04 12 14 5A 92 0A
987 [8] A4 03 87 14 14 00 00 00
1A3 [8] E4 00 45 1F 00 56 21 42
2E5 [8] 12 A3 23 55 14 00 10 3A
4FA [8] 12 1AD3 11 10 56 73 BA

Table 3.3: Dumping all CAN messages.

235 [8] 01 23 71 19 14 57 1F BE
235 [8] 00 23 71 19 14 57 1F BE
235 [8] 01 23 71 19 14 57 1F BE
235 [8] 00 23 71 19 14 57 1F BE
235 [8] 01 23 71 19 14 57 1F BE
235 [8] 01 23 71 19 14 57 1F BE
235 [8] 00 23 71 19 14 57 1F BE
235 [8] 01 23 71 19 14 57 1F BE
235 [8] 00 23 71 19 14 57 1F BE

Table 3.4: Dumping all CAN messages using
grep tool.

• cansniffer: It helps with message identification by only displaying changing CAN
packets (Table 3.6) . For instance, if the driver presses the brake, opens a door, or
turns on the air-conditioner, cansniffer will print to the console the messages with
the 0x208, 0x424 and 0x3A4 ID’s;

$ cansniffer can0
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175 [8] 12 A3 E0 19 FF 56 AF A5
184 [8] 16 00 00 00 0D 16 12 12
235 [8] 01 23 71 19 14 57 23 BE
457 [8] 45 58 00 65 14 D3 54 14
579 [8] 12 A6 04 12 14 5A 92 0A
621 [8] 65 E3 56 AA 00 56 09 F3
987 [8] A4 03 87 14 14 00 00 00
1A3 [8] E4 00 45 1F 00 56 21 42
2E5 [8] 12 A3 23 55 14 00 10 3A
4FA [8] 12 1AD3 11 10 56 73 BA

Table 3.5: Dumping all CAN messages.

175 [8] 12 A3 E0 19 FF 56 AF A5
184 [8] 16 00 00 00 0D 16 12 12
208 [8] 01 33 15 A5 BB 75 24 BE
235 [8] 01 23 71 19 14 57 23 BE
424 [8] 22 32 11 75 AABB A2 F1
579 [8] 12 A6 04 12 14 5A 92 0A
682 [8] 01 23 71 19 14 57 1F BE
987 [8] A4 03 87 14 14 00 00 00
3A4 [8] 00 03 03 05 24 99 64 2A
4FA [8] 12 AAD3 11 10 56 73 BA

Table 3.6: Dumping all CAN messages using
cansniffer.

3.3 ROS - Robotic Operating System

Figure 3.9: ROS architecture [27].

Over the last years, LAR´s researchers have implemented a communication archi-
tecture based on ROS at ATLASCAR2 (Figure 3.9). This open-sourced framework was
created in 2007 and provides a common platform for robotic applications. By easily
handling large volumes of data, it allows smart communication between multiple sys-
tems and offers the opportunity to create complex and efficient networks of information.
Currently, ROS has over 3000 collections of tools and libraries written in C++, Python,
and LISP, mainly supported by Linux [27].

Three ROS network objects were used for this work: Nodes, Topics and Messages.
The following topics will explain these concepts, followed by a description of Rqt and
RosLaunch, two ROS packages used during this project.
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Nodes

Nodes are structures that perform computation. They send messages to topics that
are then subscribed by other nodes to communicate. After a node subscribes to a topic,
all messages are delivered to the node that requests it. When a message is received, they
process the data as intended. These two entities usually are not aware of each other’s
existence.

Topics

Topics are modules in which nodes can exchange messages. They work on a publisher-
subscriber logic as they serve as a communication channel between different nodes. A
topic is defined by its name and a message definition, which is the data structure of the
information nodes send. All messages on the same topic must be of the same data type
and there can be multiple subscribers to a topic at once.

Messages

A message consists of a data structure that carries information. They can be com-
posed of other messages, arrays or standard primitive types such as integers, floating
points and booleans and can be either standard or custom. The structure of the custom
message is defined in a text file stored in the msg subdirectory of a package.

Rqt

Rqt is a Graphical User Interface (GUI) framework designed to support ROS users
with various tools in the form of plug-ins. With it, users can trace the messages being
sent, providing them with a useful tool for monitoring malfunctions in complex networks.
Rqt can also create virtual nodes that publish messages to a certain topic at a specific
rate. A schematic representation of all running nodes and topics is provided as well.

Roslaunch

Roslaunch is a tool for quickly launching multiple ROS nodes locally. It includes
the option to respawn processes that have already died. Launch files are of the format
.launch extension and use a specific XML format that specifies the parameters to set
and the nodes to launch.

3.4 Kivy

The chosen software to conduct this work had to meet some specifications. The
software had to be supported in Linux and open-source. In addition, it must be com-
patible with python and have a broad set of online documentation. Kivy was the chosen
software to develop the dashboard display.

Kivy is a multitouch application development software supported on Linux, Win-
dows, OS X, Android, iOS, or Raspberry Pi platforms. It is based on an object-oriented
format and gives users the option to add all the core functionalities of a standard ap-
plication to their project. The software provides a wide range of tools to work with
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since it supports input devices such as a keyboard or a mouse and allows the addition of
external gadgets like cameras and GPS tracking systems. It contains a graphic library
using only OpenGL ES 2 based on Vertex Buffer Object [28].

A Kivy application is divided into two files. The primary coding is done in a standard
python script (Code Listing 3.1). Thus, the user can access multiple libraries that ease
the development of applications. An independent text file written in Kv language (Code
Listing 3.2) is responsible for customizing the app layout. It manages all app objects,
such as text boxes or buttons and offers the possibility to specify the size, position, or
events associated with them. Each widget has an associated ID. Kivy collects all the
IDs and places them in an instance of the app class. Thus, the programmer can call to
the script any object and update its features anytime. Also, Kivy supports music tracks,
custom letter fonts and videos by sorting them in the app’s directory.

Kivy has a vast collection of add-ons and frameworks to improve the GUI app’s
performance and design quality. For this dissertation, two were used: KivyMD and
Kivy-Garden.

1

2 import kivy

3 from kivy.app import App

4

5 class MyDashboard(Screen):

6

7 #Change the text of the label

8 def change_label(self):

9 self.ids.label.text = ’Button Pressed ’

10

11 class ExampleApp(App):

12

13 def build (self):

14 Builder.load.file(’KvFile.kv’) #Import Kv File

15 return MyDashboard () #Inicialize App

16

17 if __name__ == ’main’

18 ExampleApp ().run()

Code Listing 3.1: Main script example.

1

2 <screen >:

3

4 Button: #Create left button

5 id:button

6 size_hint :0.5 ,0.5

7 pos :0.25 ,0.25

8 text: ’Example Button ’

9 on_press: root.change_label

10

11 Label: #Create right label

12 id:label

13 size_hint: 0.5, 0.5

14 pos :0.75 ,0.75

15 text: ’Example Label ’

Code Listing 3.2: Kv file example.
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Figure 3.10: Example app.

KivyMD

The standard Kivy library provides a set of unappealing widgets that lack visual
design. Therefore, Kivy developers created a library built on top called KivyMD. It
gathers a collection of Material Design widgets that provides the GUI with a more
attractive look, improving the visual outline of the project (Figure 3.11). In addition,
this expansion offers programmers various objects, from appealing buttons to custom
tabs [29].

(a) (b)

Figure 3.11: Comparison between Kivy and KivyMD buttons.

Kivy-Garden

Garden is a project used to centralize add-ons for Kivy. It gathers a series of projects
created by standard users in one place, as developers can access it and upload their work
there. Furthermore, this package equips the application with more sophisticated tools
using a straightforward approach. All widgets are available in the Kivy-Garden Github
repository and can be imported into any project [30].
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3.5 Summary

This chapter describes the hardware and software infrastructure used during this
work. CANalyze was used to access CAN messages by connecting it with the OBD-II.
The CanSocket is responsible for establishing communication between the CAN bus and
external computers using this hardware. The operating system was Linux OS as Python
was the opted language to code all applications. The library used for the display design
was Kivy and the communication framework picked was ROS.
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Chapter 4

Solution to extend the processing
unit autonomy

The first objective of this dissertation is to install a new power solution for the
computational system of the ATLASCAR2. Currently, the vehicle control unit is only
operational for 15 minutes and by adding the dashboard, this time can be decreased
even more. Therefore, the intervention must increase the time span on which these
components are available. This chapter details the approach used during this work,
explains all added components and describes the electric board’s final setup.

4.1 Solution overview

As described earlier, the vehicle’s control unit needs a 230V AC plug. However, the
only compatible source available onboard the vehicle is the UPS which only provides
energy for a short period.

Devices on the car are connected to two types of sources. On the one hand, some
devices can withdraw energy from in-built hardware aboard the ATLASCAR2, like the
330V DC or the 12V DC lead battery. On the other, they could be fed by an external
device not connected to the vehicle and has to be recharged from time to time, such
as an UPS. As mentioned in section 3.1.2, the car possesses a 12V DC electric board
connected to the lead battery that feeds embedded systems such as cameras and sensors.
In turn, the main battery is linked to the lead battery and is charged when the ignition
is on. One option was to install another UPS more powerful than the old one. However,
this solution was ruled out since it is expensive. The second was to convert the 330V
DC to 230V AC, but no compatible inverter was found. Therefore, transforming the
current from the main battery would require a DC-DC and a DC-AC conversion units.
This solution was ruled out since it was not affordable and the electrical signal quality
might be compromised. Considering all facts, using the 12V electric board presents the
best option to develop this work.

The proposed solution (Figure 4.1) sets on expanding the current board as multiple
components had to be acquired and several circuit components rearranged. To convert
the 12V DC into a 230V AC current, a DC-AC inverter was used. The hardware will
withdraw energy from the circuit as it powers the UPS. This device will then feed the
computer. This UPS setup allows that, if a battery malfunction occurs, the user will be
able to adequately shut down the control unit and save all work. A security fuse will
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28 4.Solution to extend the processing unit autonomy

protect the circuit from high currents and a circuit breaker acts as a switch. The box
that held the circuit was cluttered and lacked the proper space to add the instruments
required. For that reason, the montage had to be removed from the old box as a new
one was acquired. The new board was also designed to accommodate future expansions,
providing additional plugs for external hardware. The banana plugs and the electrical
buses used to feed the positive and negative pols were also replaced.

Figure 4.1: Circuit representation of the solution.

4.2 Hardware

4.2.1 Fundamentation

The components were chosen according to the board characteristics. Thus, some
previous conditions had to be previewed in order for the circuit to work properly. The
first component to be analyzed is the inverter. As mentioned in 3.1.3, the UPS has a
1500W maximum output. Therefore, it must generate the same amount of power as the
UPS. However, the top load will never be achieved as the inverter is slowly recharging this
device. Nevertheless, the estimation presented in Table 4.1 overestimates the working
conditions of this hardware. The UPS feeds the central unit of the vehicle that consumes
600W [31]. The dashboard was also considered since it will be added in future works.
The dashboard’s power output was chosen according to standard devices on the market.

Considering all facts, the power output of the selected inverter had to be 1000W.
The second component was the fuse which was chosen according to the calculations
present in the table (4.2) using the following expression:

P = V × I (4.1)

The fuse mounts in series with the components of the board. Therefore, the added
currents of each hardware are the minimal current that the component has to support.
Usually, when the hardware turns on, it consumes more power than usual. Thus, the
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fourth column is an estimation value for when all equipment powers on simultaneously.
Work from Correia [8] specifies all the characteristics of the old board components.

Table 4.1: Used calculations for the inverter design.

Hardware Quantity Power (W) Power Surge (W)

Nexus P-2308H4/HR4 1 600 680
Dashboard 1 35 36

Total 635 716

Table 4.2: Used calculations for the fuse design.

Hardware Quantity Current (A) Current Surge (A)

Sick LMS 151 2 0.67 2
Sick LD-MRS 400001 1 0.67 2
Camera 1 0.67 2
Point Grey ZBR2-PGEHD-16 1 0.67 2
Inverter 1 84 92

Total 87,35 102

4.2.2 Components definition

This section describes the components added to the original circuit. Most were
acquired through Universidade de Aveiro’s partners. Others were reused from past
projects or were already available in LAR.

Inverter

A DC-AC 1000W inverter from RS Components (Figure 4.2.2) was bought to con-
vert the signal. To avoid damaging the UPS, a crucial component for the ATLASCAR2,
the inverter has a pure sine output wave. Also, LED indicators on the front panel
lights up when a failure occurs. Table 4.3 shows the main specification of this hardware.
A pair of wires equipped with a ring terminal connect the inverter to the primary circuit.

Figure 4.2: Inverter for the power expan-
tion [32].

Table 4.3: Inverter technical specifications
[32].

Rated power 1000W
Surge power 2000W
Input voltage 12V
Output voltage 230V
Output waveform Pure sine
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Fuse and Fuse holder

A Jasco fuse (Figure 4.3) protects against spikes in the current and can support a
rated current up to 100A. It has 22x58 mm, a 500V rated Voltage and a 100 kA breaking
capacity. A Legrand fuse holder (Figure 4.4) has the function of mounting the fuse into
the circuit. While open, no current passes through it. The component has a voltage of
500V and a 100 kA breaking capacity.

Figure 4.3: Fuse [33]. Figure 4.4: Fuse holder [34].

Cable glands

The cable glands (Figure 4.5) were attached to secure the end of the electrical cable
to the box. Also, they act as a sealing device to protect all electrical equipment inside
the board from outside agents. The board has two pairs of glands. An IP68 - PG 11
pair secured the wires connected to the inverter and an IP68 - PG 13.5 supported the
battery cables. PG stands for the gland’s internal diameter.

Figure 4.5: Cable glands [35].

Plugs

Five 3-pin GX 16 plugs feed the external devices as they operate at 12V. While
the female connectors (Figure 4.6) were added to the box, wires from the camera and
sensors had to be attached to the new male adaptors (Figure 4.7).
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Figure 4.6: Female plug [36]. Figure 4.7: Male plug [36].

Buses box

The previous grey buses that distributed the power supply through all devices lacked
proper protection since a short circuit could happen if the buses got in touch with one
another. The new electric bus (Figure 4.8) has two drawers. Each has five 5.3mm diam-
eter entrances and four with 7.3mm. The top drawer is connected to the positive pole
and the bottom to the negative.

Figure 4.8: Buses box [37].

Circuit breaker

The component that acts as the switch is a YRO circuit breaker (Figure 4.9). It has
two poles, a 125A nominal current and a 550V rated voltage.

Figure 4.9: Circuit breaker [38].
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Board

A new 400x400x130 box (Figure 4.10) was acquired. It has two gutters. Two screws
hold the gutters on each side and can be withdrawn anytime. The top gutter will
accommodate the electric buses and electrical bornes. The fuse box and circuit breakers
will be on the bottom gutter.

Figure 4.10: Box for the new board [39].

4.3 Board installation

The new board had to be adapted to support the new circuit. Two pairs of holes
were drilled to accommodate the cable glands. One with 11.5mm in diameter and the
other with 13.5mm. The first is used to feed the inverter by attaching the negative and
positive borne to their correspondent electrical bus. The second was used for wiring the
12V lead battery with the fuse holder. 16mm holes were added to accommodate the
3-pin GX 16 female plug. An 8mm hole was drilled to add an existing connector from
the old box. Since they were new, the electric cables of the new connectors had to be
welded. The plugs were isolated with rubber lids. A trapeze-shaped hole was drilled to
accommodate the DB 15 female connector (Figure 4.11).

Figure 4.11: Side view of the board.

A fuse is linked to the power source to limit the current inside the circuit to 100A.
The circuit breaker that acts mainly as a switch is cabled to the fuse. This component
is directly connected to the inverter and the relay. The negative pole of the inverter
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Figure 4.12: New circuit. Figure 4.13: Closed Board.

was wired to the negative bus. Since the new circuit preserved all critical components
from the initial installation, the configuration stayed the same from this point forward.
The box opening now presents three switches, one for the 16A circuit breaker that acts
as a switch just for the sensors and cameras, the fuse and the 120A general circuit
breaker. The operator must use the inverter’s in-built button to turn off the equipment
and only power the outside gadgets. While the 3-pin GX 16 female plugs were added to
the box, the wires from the camera and sensors had to be attached with the new male
adaptors. This thesis also aims to improve the security and quality of the circuit already
implemented. For that reason, the original wires were resized and equipped with tips.
The final result can be seen in Figures 4.12 and 4.13. A schematics of the implemented
circuit is provided in Figures 4.14 and 4.15. The instructions to use the new board are
detailed in appendix A.1.
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Figure 4.14: Power distribution board.
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4.4 Expected autonomy

The first objective of this work is to increase the ATLASCAR2 processing unit power
autonomy. Therefore, it is essential to understand how this intervention affected the
vehicle’s power supply. The 12V battery has 35Ah and the circuit needs 87.35A to
feed all systems. The time the equipment is available is calculated by dividing the
consumption by the current. For that reason, with the current configuration, if the
ignition is off the board enables the hardware to work for 24 minutes (Table 4.4).

Table 4.4: Time span of the UPS while using the main battery.

Voltage (V) Capacity (Ah) Current (A) Time (minutes)

12 35 87.35 24

If the ignition is on, the main battery recharges the lead battery. Therefore, the
autonomy of the central unit becomes the same as the vehicle. To calculate the ex-
pected total autonomy, three different consumption scenarios were assumed: One where
the vehicle was travelling in a city with an average velocity of 40 km/h, the second on
a highway at 110 km/h and the third in a midterm condition where the car is cruising
at 75 km/h. By multiplying the average speed by the consumption, the power is ob-
tained. Then add the maximum power of the equipment connected to the UPS, which
is 0.635 kW, and divide the value by the battery capacity, which is 16 kW/h. The final
result is present in Tables 4.5 and 4.6. Information regarding car consumption can be
checked on [40].

Table 4.5: Relation between consumption and the driving scenario.

Situation Average speed (km/h) Consumption (kWh/km) Power (kW)

City 40 0.107 4.28
Highway 110 0.197 21.67
Mid-term 75 0.145 10.86

Table 4.6: Autonomy with and without the UPS turned on.

Power (kW) Autonomy (hours)

Without UPS
4.28 3.75
21.67 0.74
10.86 1.47

With UPS
4.92 3.25
22.31 0.71
11.51 1.39
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4.5 Summary

In this chapter, the new ATLASCAR2 electric board components were detailed and
the final configuration was explained. Since the present work aimed to increase the
autonomy of the central unit, predictions of the expected time span were made. The
calculations assumed that the lead and main battery were new and followed the manu-
facturer’s specifications. That is not the case since, at the time of this work, the vehicle
had six years. Therefore, it is hard to know the current condition of those hardwares.
Nevertheless, when the ignition is not switched, the autonomy of the processing unit is
increased by 10 minutes. On the road, assuming that the ATLASCAR2 is a research
vehicle mainly tested in urban areas, it is expected that the new configuration will pro-
vide power for 3 hours and 15 minutes which means a loss of 13%, or 30 minutes, in the
car’s full autonomy. It is also important to refer that the systems should not be turned
on all at once since it could produce a 102A current which burns the fuse.
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Chapter 5

Car status monitoring

The information displayed on the dashboard comes from the CAN bus of the AT-
LASCAR2. For this work, it is relevant to understand how the data is created and sent.
Thus, section 5.1 gives an introduction to the CAN protocol. Section 5.2 addresses mes-
sage identification and section 5.3 analyses the software application developed to receive
and process CAN packets.

5.1 Understanding CAN protocol

Figure 5.1: CAN bus representation [41].

First, to understand where the information displayed on the dashboard comes from,
it is important to cover the background of the CAN protocol. As mentioned in Section
2.1, the CAN bus allows communication between different vehicle ECU’s. It consists
of two wires: CAN high (CAN H) and CAN low (CAN L). A 120Ω resistor terminates
each wire (Figure 5.1). The ECU’s generate messages using a voltage differential created
between the two lines. On the one hand, when the bus is clear, both cables carry 2.5V
and control units assume a bit-value of ”1”. On the other hand, if an ECU broadcasts
a message, the CAN high line goes to 3.75V and the CAN low drops to 1.25V, creating
a 2.5V voltage differential. This differential has a bit-value of ”0”. The ”1” bit is
called dominant and the ”0” bit is called recessive. This process creates binary messages
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40 5.Car status monitoring

broadcasted to the bus [40].
The created CAN data frames ensure the message exchange between ECU’s. They

are composed of seven fields (Figure 5.2) [41]:

• SOF– Bit that synchronizes the nodes on a bus after being idle. They indicate the
CAN data frame beginning;

• ID- Unique 11-bit data frame identifier;

• RTR– The single remote transmission request (RTR) is a bit that indicates if a
node is sending data to or requesting data from an ECU. It is dominant when
information is required from another node;

• Control- The control field indicates the message’s frame type and amount of data.
It is composed of 6 bits;

• Data- Field where the data is sent. Up to 64 bits of information may be transmit-
ted;

• CRC- A 16-bit group used for error detection. The Cyclic Redundancy Check
contains the number of bits transmitted and checks the message’s data integrity;

• ACK- It is a 2-bit which acknowledges that the CRC found no issues with the
data;

• EOF- Stands for ”End of Frame.”It signals the end of transmission;

Figure 5.2: Format of standard CAN packets [42].

5.2 Decoding the Mitsubishi i-MiEV CAN mensages

Decoding CAN messages is highly significant for this thesis since all displayed infor-
mation comes from this step. First, the CANalyzer must be connected to the OBD-II
port to receive messages on a laptop. Then, can-utils enables CAN packets to be
analyzed on the computer terminal. Each message contains seven fields. However, this
library only prints to the terminal the messages ID, the total number of received bytes
and the data field (Table 5.1). This syntax allows for easier comprehension by the user
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since it sends the most relevant information. Each printed number is expressed in a
hexadecimal digit. A hexadecimal number represents 4 bits and therefore, each 8-bit
byte is a 2-digit hex number.

Table 5.1: Terminology of can-utils messages

Message Identifier Total Bytes Data Bytes

ID TB B0 B1 B2 B3 B4 B5 B6 B7

CAN messages can have up to 8 bytes of data. The most common way to identify
each byte is to name it with a capital ”B” followed by the number of his position, from
0 to 7. Meanwhile, bits are named using a lower-case ”b”. The rightmost bit is bit 0
and the left-hand one is bit 7.

Message identifiers are utterly unknown to the general public since car manufacturers
do not provide any information. Thus the most effective method to decode IDs is to do
reverse engineering. The idea is to activate a specific device or sensor of the vehicle and
then inspect the network for message changes. For example, if the operator wants to
determine the ID of the door locks, he should close one and sees if this action kicks off
changes in CAN frame data fields. Since ECU’s are constantly sending messages to the
bus, the grep and sniffer tools function as a filter that allows only the changing packets
to be printed to the terminal. Still, reverse engineering is an arduous process that may
take a while. Nevertheless, the Mitsubishi i-MiEV is commonly used by investigators
worldwide for autonomous driving projects, and much work has been done in this field.
Some message IDs and data frames are described in [8], [16] and [43].

The decoding messages process unveiled much information regarding the car’s ECU’s.
The main parameters displayed on the dashboard are described next.

• Autonomy: Information regarding vehicle autonomy is present in the messages
with ID 0x346 and 0x374. The first expresses the autonomy in km and can be read
directly from Byte B7 of that message. Meanwhile, the second holds the data in
percentage on Byte B1 and follows equation 5.1:

Autonomy =
B1− 10

2
[%] (5.1)

• Battery status: Message 0x373 holds the general status of the battery. The
current value ranges from -164.18 to 76.54 and is obtained using equation 5.2. If
the current is negative, that means that the car is charging. Equation 5.3 holds
the value of the Voltage which varies in the interval [343.2, 389.7];

Battery Current =
(B2× 256) + (B3− 128)× 256

100
[A] (5.2)

Battery V oltage =
B4× 256 +B5

100
[V ] (5.3)

• Speed and total traveled distance: The message with the identifier 0x412
holds information regarding the vehicle’s speed and total traveled distance. The
first is read directly in byte B1. The second follows equation 5.4;
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Total km = (B2× 65536) + (B3× 256) +B4 [km] (5.4)

• Shift position: Byte B0 of the message with ID 0x418 holds data related to the
shift position (Table 5.2);

Table 5.2: Byte value acording to each shift position.

B0 Shift Position

0x44 Drive
0x4E Neutral
0x50 Park
0x52 Reverse

• Seat belt, windshield, blinkers, doors, lights: The message with the ID
0x424 transmist information related to the instrument panel and some other vehicle
sensors (Table 5.3). Bit b7 from Byte B0 tracks all open doors excluding the one
from the driver. The same happens regarding the belts warning;

Table 5.3: Relation between variables of the instrument panel and the message 0x424.

Byte Bit Variable

B0
b6 Driver’s belt warning
b7 Passengers‘ belts warning

B1

b0 Right blinker
b1 Left blinker
b3 Front windshield
b4 Back windshield
b5 Medium lights
b6 Maximum lights

B2
b6 Driver’s door
b7 Passengers’ doors

• Air conditioner: All information regarding the air conditioner buttons of the
vehicle is present in the message with the ID 0x3A4 (Table 5.4). The A.C. tem-
perature and intensity vary from 0 to 15;

Table 5.4: Relation between the air conditioner buttons and the message 0x3A4.

Byte Bit Variable

B0

b0-b3 A.C. temperature
b5 Max. temperature button
b6 Recirculation button
b7 Max. intensity button

B1 b0-b3 A.C. Intensity
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During this process, other messages were identified. In this work’s context, they are not
relevant since the data do not pay any interest to the driver. Nevertheless, they are
mentioned in the following list to help future work on the dashboard.

• Igniniton key: Information regarding the state of the ignition key is found in the
byte B0 of the message with the ID 0x101 (Table 5.5);

Table 5.5: Byte value acording to the ignition key state.

B0 Ignition State

0x00 ON
0x04 OFF

• Breake pedal’s position: The brake pedal position is measured in percentage
and can be read in bytes B2 and B3 of message 0x208 following equation 5.5. When
pressed, byte B4 of the message 0x231 changes from 0x00 to 0x02;

Break Pedal Position =
(B2× 256 +B3)− 24576

640
× 100 [%] (5.5)

• Accelarator pedal’s position: The information is present in message with ID
0x210 on byte B2;

Accelarator Pedal Position =
B2

250
× 100 [%] (5.6)

• Steering wheel angle: Message with the ID 0x236 holds the Steering Wheel
Angle on bytes B0 and B1;

Steering Angle =
(B0× 256 +B1)− 4096

2
[°] (5.7)

• Eletric motor: Information regarding some aspects of the electric motor can be
found on the message 0x298. The motor’s temperature can be accessed by using
equation 5.8. Equation 5.9 holds the electric motor revolutions;

Eletric Motor Tempereture = B3− 40 [◦C] (5.8)

Eletric Motor Revolutions = B6× 256− 1000 [rpm] (5.9)

5.3 CAN software application

The developed python program receives raw packets from the CAN bus and then
processes them in order to be understood by the display software. Therefore, it is the
cornerstone of the dashboard since it feeds the display with information.

Initially, the script checks for any received messages on the bus. If any is available,
the program reads it and then associates each field with a separate variable. The result
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is three distinct variables: One called ”id” that stores the message identification in
hexadecimal form; A integer variable named ”nd” that keeps the number of data bytes;
And finally, a byte array called ”data” that holds the data field. This array is then
processed to create two variables: one that stores each byte and another that stores the
byte converted into bites. This step is essential since some messages are read directly in
the byte and others in the bit. They are named the same as before. A byte is named
with a capital ”B” followed by the number of his position and a bit with a lower-case
”b” where the rightmost bit is bit 0 and the left-hand one is bit 7.

The next step is identifying the messages according to the findings of section 5.2. The
program compares the message ID with every known identifier. It grabs the information
from the desired byte or bit if it finds a match. In the event that the read information
is an integer, the value has to be converted from hexadecimal to decimal. For instance,
if the program receives the message: ” 412 [8] 23 1E 45 23 55 A3 FF 00”. First, it
will compare the ID 0x412 with every known message ID and then the script identifies
the data it wants to access. According to byte B1, the message signals that the car
travels at 30 km/h.

The program stores the recently discovered data in a variable named according to
each parameter. By predefinition, every variable is set to ”0” until its value is updated.
The variable is overwritten if the script receives a message with more recent information.
Table 5.6 shows all the parameters used for this work. It is essential to mention that
the final output of the shift position is a string with ”Drive, Neutral, Park or Reverse
”. The air conditioner intensity and temperature variables are an integer that can range
from 0 to 15.

Table 5.6: Data used for this work.

Message ID Description Measurement unit

0x346 Autonomy km

0x373 Battery current A

0x374 Autonomy %

0x412
Velocity km/h
Total covered distance km

0x418 Shift position -

0x424 Car instruments ON/OFF

0x3A4
A.C. buttons ON/OFF
A.C. intensity and temperature -

Finally, the script publishes the processed messages to a topic explained in the next
chapter and helps the operator to check the messages being sent by creating a dictionary
that is printed on the terminal. Figure 5.3 provides a general diagram of the script. The
script and the instructions to use it are present in appendix A.2.
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Figure 5.3: Driagram of the created Python script.
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5.4 Summary

The most relevant messages on the ATLASCAR2 CAN bus are now available due to
the developed application. In total, the following twenty parameters are now ready to
be sent to a ROS network that supports the software of the dashboard:

• Autonomy in percentage and km;

• Battery current;

• Velocity;

• Total covered distance;

• Shift position;

• Driver and passengers’ belt warnings;

• Driver and passengers’ door warnings;

• Front and back windshield;

• Medium and maximum lights;

• Temperature, intensity, recirculation and maximum intensity buttons;

• Left and right blinkers;
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Chapter 6

Dashboard - Implementation and
testing

Chapter 6 explains the architecture of the newly assembled network that allows
CAN raw packets to be transformed into readable data. The final solution is presented
and all features and functionalities embedded in it are also described. The dashboard
functionality was evaluated with a test described in the final section.

6.1 ROS architecture

6.1.1 Overview

The next step is to create an infrastructure that allows the data to flow from the
ATLASCAR2 CAN bus to the dashboard display. Since the vehicle already had a ROS
network installed in the car’s central unit, this work will follow the same policy. ROS
was designed with distributed computing in mind. Therefore, this architecture will allow
other projects already embedded in the car to be included in the dashboard infrastruc-
ture. Also, it will provide easy access to the developed work for future assignments on
the vehicle.

The network is composed of three nodes and two topics. The can node was cre-
ated using the script mentioned in Section 5.3 and it is responsible for reading and
processing the CAN messages. Therefore, it is a vital structure since it feeds informa-
tion to the network. The node publishes data in a topic named can messages which
uses a custom message named can msgs, created to facilitate communication between
the different modules. The topic is then subscribed by two nodes: warning node and
dashboard node. The first is responsible for generating the dashboard alerts. Their
state is available in a separate topic called warning messages, which also uses a custom
message named warning msgs. Finally, the dashboard node subscribes at the same
time the can messages and warning messages topics. It is responsible for gathering
all parameters from the network and displaying them in a dynamic layout created with
the Kivy library. Figure 6.1 shows a node graph of the network. The custom messages
were constructed according to the sent parameters in each node. If a node sends twenty
variables, the custom message has the same number of fields, each designed for a spe-
cific variable. The code of the dashboard and instructions to launch it are present in
Appendix A.3.
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Figure 6.1: Node graph of the network.

6.1.2 Warning structure

The warning node is a python script responsible for managing the dashboard warn-
ings, pop-ups and layout changes. It subscribes to the topic can messages, processes
the received information, and then publishes it into a new topic.

The script only updates its variables when the value of any parameter changes. Then
it organizes the information by storing the data from each field in a separate variable.
The generation process of warnings is explained in Table 6.1. The script compares the
value of the variables with a database and then checks their state. The node creates
eight warnings in total, which are sent in the warning msgs custom message. While
initializing, the variables are all set to false as default.

Table 6.1: Description of the warnings created.

Message field Description

Doors The warning is enabled when the driver or passengers’ doors vari-
ables are activated and the car velocity is higher than 10.

Belts It is activated when the variables of the driver or passengers’ doors
are activated and the car velocity is higher than 10.

Charging The alert is activated if the vehicle is being charged and whether
the car is moving or not in “Park”.

Reverse When the shift position is in reverse.

Low autonomy Warning that is enabled when the vehicle has less than 15%.

Save energy If the vehicle range is less than 30 km and the air conditioner is
turned on.

Velocity -

Close proximity -

This work will open the door to future expansions on the dashboard display and
network. Therefore, two extra variables were created. One is linked to a velocity warning
and the other to a proximity warning. They are set to false by default and can only
be activated using the Rqt tool. The idea behind the first is to access an online map
and verify if the cruising speed exceeds the actual speed limit of the road the vehicle
is currently in. For the proximity warning, it is expected that future works access the
ADAS systems of the ATLASCAR2 and analyze external agents. The script activates
an alert message if their position presents an impending danger.

The final result is a set of booleans variables that will be used on the display software.

Miguel Francisco De Amaral Pinto Master Dissertation



6.Dashboard - Implementation and testing 49

6.1.3 Display strucuture

The dashboard node is a python script responsible for receiving the information
from the entire network and then showing it on a dynamic display. It processes variables
from either the can node or the warning node.

The display was built on Kivy. The library provides a broad set of objects to work
with, from standard labels, icons and cards to pop-ups, side-bars, and multi-screens.
When the script receives data, it stores the parameters in separate variables and asso-
ciates them with different objects. Icons were associated with boolean variables. They
only can have two values: true or false. If a variable is true, then the icon flashes on
the screen. If not, the icon disappears. The same happens with warnings, pop-us and
layout changes. They are only activated when the state of the corresponding variable
is true. Labels were used to show integers and strings. Table 6.2 shows all associations
made between the variables and the created objects, which will be covered in the next
section.

Table 6.2: Relation between the created objets and the received variables.

Variable Data type Object/ Functionality

Autonomy (Km) Int. Range label
Battery (%) Bool. Battery label and icon
Battery current Bool. Battery icon
Velocity Int. Velocity label
Total covered distance Int Odometer label
Shift position String Shift icon
Front windshield Bool. Windshield icon
Back windshield Bool. Windshield icon
Medium lights Bool. Headlights icon
Maximum lights Bool. Headlights icon
Right blinker Bool. Right arrow icon
Left blinker Bool. Left arrow icon
Passengers’ doors Bool. Open door icon
Driver’s door Bool. Open door icon
A.C. maximum button Bool. Maximum icon
A.C. recirculation button Bool. Recirculation icon
A.C. intensity Int. AC intensity label
A.C. temperature Int. AC temperature label
Doors Bool. Warning module
Belts Bool. Warning module
Charging Bool. Warning module
Reverse (warning) Bool. Change to reverse layout
Low autonomy Bool. Pop-up
Save energy Bool. Pop-up
Velocity (warning) Bool. Velocity module
Close proximity Bool. Change to close proximity layout
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6.2 Display

6.2.1 Layouts

The display comprises three layouts: The main layout, the reverse layout and the
close proximity layout (Figure 6.2). All three are interactive, meaning the user can access
the displayed content by hand, using a touch screen. The first is the one displayed by
default and has all the modules of information (Figure 6.3). The others are activated
when the respective warning is true and are only used in certain events. They help the
driver to focus on the task at hand by removing unuseful information and embedding
ADAS on the dashboard display. On the one hand, when the reverse layout is activated,
the display swipes to the left. Conversely, it swipes to the right when the close proximity
layout is activated. The display shifts to the default position if their respective warnings
are false. All have two bars. On the top, time and date are shown, followed by a side
tab that allows the user to access a settings menu. The bottom bar is used to access the
GPS window that can be toggled anytime.

Figure 6.2: Representation of the three layouts.

The reverse layout (Figure 6.4) is only toggled when the car is in reverse. The top
and bottom bars do not suffer any changes. However, the modules of information get
rearranged. On the top left is given information about the battery autonomy and on
the right, a sensor measures the distance between the vehicle and rear obstacles. The
middle module shows the vehicle velocity. The particular feature of this module is the
live feed from a rear camera.

The close proximity layout (Figure 6.5) follows the same configuration as the reverse.
The main change is that the rear camera live feed gives place to a visual representation of
the external world which helps the driver to dodge any obstacles on his way. This layout
is activated when the close proximity warning is true. As in prior cases, the rear distance
sensors, the live camera feed, and the visual representation are only demonstrations for
future works, as they are not connected to any hardware.
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Figure 6.3: Main layout.

Figure 6.4: Reverse layout.

Figure 6.5: Close proximity layout.
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6.2.2 Information modules and features

The display is equiped with ten information modules and features (Figure 6.6) which
will be explained next.

Figure 6.6: Modules of information.

1. Settings

When the settings icon is triggered, a menu appears from the left side of the screen
(Figure 6.8). Two slide bars are presented in it (Figure 6.7). The first allows the
user to disable the warning and alert notifications of the dashboards. The second
changes the color scheme from night (Figure 6.9) to day mode (Figure 6.10).

Figure 6.7: Setting slide buttons. Figure 6.8: Settings tab.
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Figure 6.9: Night mode. Figure 6.10: Day mode.

2. Date and time

The top bar also provides updated data and time (Figure 6.11). The information
is in the form of the day of the week, followed by month, time and year.

Figure 6.11: Date and time.

3. Odometer

The odometer module (Figure 6.12) has two features. The top one is a standard
odometer that measures the total traveled distance by the car. The second is a
relative odometer which calculates the distance the car has traveled since the driver
triggered the reset button. Every time it is pushed, the relative odometer sets to
zero.

Figure 6.12: Odometer module.

Miguel Francisco De Amaral Pinto Master Dissertation



54 6.Dashboard - Implementation and testing

4. Car instruments

The fourth module shows the state of car instruments (Figure 6.13). When one is
toggled, an icon lights up on the screen.

Figure 6.13: Intruments module.

1. Left Arrow: Indicates if the left blinker is on;

2. Headlights: Toggled when the medium or maximum lights are lighted up;

3. Right Arrow: Indicates if the right blinker is on;

4. Open Door: Flashes when the driver or passengers’ doors are not closed;

5. Windshield: Toggled when the front or back windshield is toggled;

6. Battery: Dynamic representation of the battery autonomy. The icon up-
dates according to the percentage of battery it has left. When the battery is
charging, a visual indication is also provided;

5. Range and battery autonomy

The fifth module (Figure 6.14) informs the driver of the current battery autonomy
and tells the expected range of the vehicle.

Figure 6.14: Range and battery autonomy module.
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6. Velocity

The sixth module (Figure 6.15) informs the driver of the current cruising velocity
of the vehicle. It is associated with the velocity warning. When the warning is
true, the module’s background color turns red followed by an audio indication,
which signals that the driver is overspeeding (Figure 6.16).

Figure 6.15: Velocity module. Figure 6.16: Overspeeding warning.

7. Air conditioner

The driver can verify information regarding the air conditioner in the seventh
module (Figure 6.17). The intensity level is presented on the top and on the
bottom the temperature. The two icons on the right flash when the maximum
intensity button or the recirculation button are toggled, respectively.

Figure 6.17: Air conditioner module.

8. Warnings

The warnings module (Figure 6.18) notifies the driver of events that can present
an impending danger to himself or the car. They can not be averted and the driver
must act to turn them off. When the alerts are activated, an audio indication is
toggled, the right side of the module flashes red, and a text indicates the occurrence.

(a) (b) (c)

Figure 6.18: Warnings module.
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9. Shift position

The final module (Figure 6.19) indicates the current position of the shift. It has
four positions: Drive, Park, Reverse and Neutral.

(a) (b) (c) (d)

Figure 6.19: Shift position module.

10. Navigation bar

The navigation bar allows the driver to switch between the dashboard window and
the GPS window (Figure 6.20). The first contains all the information modules
and the second is equipped with a map downloaded from a kivy-garden Github
repository [44]. The main purpose of this feature is for future works to embed a
GPS on this window.

Figure 6.20: GPS Screen.

6.2.3 Pop-ups

A pop-up is a window designed to grab the user’s attention to communicate certain
events with him. Usually, they are followed by a sound notification and a small text
explaining the occurrence (Figure 6.21). Unlike warnings, pop-ups can be ignored since
they only notify minor occurrences. In this work, two were used. The first notifies the
driver when the autonomy drops below 15% (Figure 6.22). The second advises the driver
to turn off the A.C. when the range is less than 30 km to extend the range of the vehicle
(Figure 6.23). To close them, the driver must press the “close” button on the right
corner of the pop-up.
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Figure 6.21: Pop-up.

Figure 6.22: Low autonomy pop-up. Figure 6.23: A.C. pop-up.

6.3 Dashboad field test

In order to properly analyze the dashboard functionality, the solution had to be
tested on the road. Therefore, a research test was conducted. It consisted of a lap
around Aveiro’s University (Figure 6.24), where five participants tested the impact of
the device on the ATLASCAR2 driving experience.

Figure 6.24: Test circuit.

Miguel Francisco De Amaral Pinto Master Dissertation



58 6.Dashboard - Implementation and testing

The dashboard was displayed on a monitor placed on the driver’s seat (Figure 6.25).
First, each participant would drive from point A to point B. Then he would perform a
set of manoeuvres, like parking the car or driving without the safety belt, and finally
return to the starting point. At the end of the circuit, the participants had to answer
an inquiry to give their opinion about the dashboard’s performance.

(a) (b)

Figure 6.25: Dashboard field test.

The inquiry was composed of six questions. The first five were yes or no questions.
On the last, the participants had to choose a number from one to six, in which one was
the lowest grade and six the highest. The questions and their results are presented on
Table 6.3 and Table 6.4. The inquiry can be accessed on the following link:

https://docs.google.com/forms/d/e/1FAIpQLScARdpvv7KBnHNx9Ue-PGjtfCbD_Bn6JK_

ySAMG9Hezxv6EPA/viewform?usp=sf_link

Table 6.3: First five questions and their respective results.

Questions Yes No
1. Was your driving experience improved? 100% 0

2. Were the different widgets organized and well presented? 100% 0

3. Did you find the alarms clear and useful? 100% 0

4. Did you find the pop-ups clear and useful? 100% 0

5. Did you consider the dashboard a distractive agent during your test? 0 100%

Table 6.4: Last question and its respective results.

Question 1 2 3 4 5 6
6. How do you rate the dashboard’s overall performance? 0 0 0 20% 40% 40%
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Chapter 7

Conclusions and future work

The following chapter presents a summary of all the work developed in this disser-
tation regarding the solution to extend the computational system autonomy and the
dashboard infrastructure. A few suggestions and proposals for future work were pre-
sented based on the conclusions from the field test.

7.1 Conclusions

The work presented in this document had three main focuses. The first was the study
of a new setup for the power circuit of the ATLASCAR2. The second was related to the
development of a software with the global state of the car. The last aimed to develop a
fully functional dashboard that kept the vehicle’s driver updated on its global condition
by displaying all related data on a dynamic screen.

In what concerns the first objective, extending the ATLASCAR2 computational sys-
tem autonomy, it can be concluded that the new configuration of the power board enables
the computer placed on the vehicle’s trunk to be operational in a broader time span than
before. Originally, this equipment was only operational for 15 minutes. The lead battery
provides 25 minutes of autonomy when the ignition is off. When the engine is on, the
total autonomy can be extended to 3 hours, depending on the car’s driving conditions.
In addition, compared with the old one, the board is now much more organized and has
plenty of space for new expansions. It is also equipped with extra plugs that can help
future researchers on the car to have easy access to the vehicle’s power source.

The second objective aimed to create a software infrastructure that enabled raw
CAN packets to be received and processed. The conclusion is that this objective was
accomplished since, in total, twenty parameters of the vehicle ECU’s are now available
and ready to be read.

Regarding the creation of the dashboard, the developed work created a network that
can access the information received from the ATLASCAR2 CAN bus and then display
it on a dynamic display. The results of the field test were also conclusive. In general,
the five participants that took part in the study stated that the dashboard improves
the driving experience of the vehicle. They found the widgets, alarms and pop-ups were
clear and well presented. The display was organized, allowed an easy comprehension of
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the information and was not distracting while the car was on the road. The final average
score of the solution’s performance was 5 on a scale from 1 to 6. Therefore, it can be
concluded that the developed dashboard was a success.

7.2 Future works

The present dissertation aims to be the cornerstone for future projects since it is
the first work on the ATLASCAR2 dashboard. The next expansion should equip the
car with a small device, such as NUC or a Raspberry Pi, responsible for storing the
dashboard software. A touchscreen has to be connected to it for the dashboard to be
installed entirely on the vehicle. Since the ATLASCAR2 central panel has no space to
add these devices, a solution can also be developed to support them.

Regarding the display, there is room for some improvements as well. To incorporate
past ATLASCAR2 projects, the dashboard infrastructure must first be connected to the
vehicle’s ROS network. The car can also be equipped with a rear sensor and camera,
which are enabled when the reverse layout is activated. Future works can also create
virtual representations to add to the close proximity layout. The dashboard can be
connected to web servers to acess live data regarding traffic and road conditions. This
feature will enable the velocity warning and make it possible to add an intelligent GPS
feature to the display. Another feature that could be added is the possibility of enabling
some functionalities using voice commands.

Lastly, the current work only provides one-way communication since the driver can
only check information from the vehicle’s ECU’s. Therefore, future studies could evaluate
the possibility of the user controlling some car systems by accessing the dashboard screen.
For instance, the driver could adjust the temperature of the air conditioner or the radio’s
volume by accessing the instruments on the display.
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Appendix A

Hardware and software
instructions

A.1 Power the switch board and inverter

First, go to the power distribution board and mount the fuse in the fuse holder. Then
turn on the 120A circuit breaker. Next, the 16A circuit breaker must be switched to
feed the sensors (Figure A.1). To power the UPS, hit the button on the front side of the
inverter and press the power button (Figure A.2). The UPS and sensors are now ready
to be used.

Figure A.1: Power distribution board on
ATLASCAR2.

Figure A.2: Inverter and UPS on ATLAS-
CAR2.

A.2 Monitor the vehicle status

1. Connect the CANalyze with the OBD-II port of the vehicle;

2. Set up the device acording to the instructions in section 3.2.2 ;

3. Upload the can publisher script avaible on https://github.com/Miguel-Pinto99/
Thesis2022;

4. Run the ROS node responsable for publishing the vehicle status:

61

https://github.com/Miguel-Pinto99/Thesis2022
https://github.com/Miguel-Pinto99/Thesis2022


62 A.Hardware and software instructions

$ rosrun dashboard can publisher

A.3 Dashboard

1. Plug the CANalyze with the OBD-II port of the vehicle;

2. Set up the device acording to the instructions in section 3.2.2 ;

3. Upload the dashboard code avaible on https://github.com/Miguel-Pinto99/

Thesis2022;

4. Run the package using the launch file:

$ roslaunch dashboard dashboard.launch
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