
Universidade de Aveiro
2022

Sara Costa Pombinho Arquitetura integrada de software no ATLASCAR2
Integrated software architecture in ATLASCAR2

Universidade de Aveiro
2022

Sara Costa Pombinho Arquitetura integrada de software no ATLASCAR2
Integrated software architecture in ATLASCAR2

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestrado em Engenharia de
Automação Industrial, realizada sob orientação científica de Miguel Ar-
mando Riem de Oliveira, Professor Auxiliar do Departamento de Engen-
haria Mecânica da Universidade de Aveiro e de Vítor Manuel Ferreira dos
Santos, Professor Associado c/ Agregação do Departamento de Engenharia
Mecânica da Universidade de Aveiro.

O júri / The jury

Presidente / President Prof. Doutor(a) Margarida Isabel Cabrita Marques Coelho
Professora Auxiliar c/ Agregação da Universidade de Aveiro

Vogais / Committee Prof. Doutor(a) Miguel Armando Riem de Oliveira
Professor Auxiliar da Universidade de Aveiro (orientador)

Prof. Doutor(a) Paulo Jorge Sequeira Gonçalves
Professor Coordenador do Instituto Politécnico de Castelo Branco

Agradecimentos /
Acknowledgements

Agradeço em especial ao professor Miguel Riem e ao professor Vítor Santos
pelo seu apoio e disponibilidade mesmo quando o tempo era escasso. A sua
orientação foi fundamental para a realização desta dissertação.
Agradeço aos meus pais pelo seu apoio incondicional nestes 5 anos de Uni-
versidade, que fizeram tudo para que nada me faltasse. Às minhas irmãs,
pelos desabafos e pelas conversas.
À Lara por estar presente em todas as fases da minha vida.
À Mané e à Beatriz que me apoiaram nestes 5 anos de Universidade.
Ao Rafael pela motivação e companhia demonstrada em todos os momen-
tos.
Por fim, agradeço ao pessoal do LAR, em especial ao Manuel pela entrea-
juda e troca de ideias que contribuiu para esta dissertação e ao Engenheiro
Rui Heitor que se mostrou sempre disponível para me ajudar quando precisei.

Palavras-chave Odometria; Arquitetura ROS; Atlascar2; Electronic Control Units; CAN;
Modelo Ackermann;

Resumo A organização do sistema computacional de um veículo autónomo é cru-
cial para uma melhor implementação de algoritmos na área da navegação
autónoma. O primeiro objetivo desta dissertação consiste na organização e
atualização da arquitetura de software do Atlascar2. Esta organização cobre
a atualização e adição dos ficheiros de lançamento dos sensores, atualização
de "drivers", melhoramento da unidade de processamento e atualização da
infraestrutura de comunicação.
O segundo objetivo principal é o desenvolvimento de uma solução de odome-
tria, para ser integrada na nova arquitetura de software do Atlascar2 que
utiliza o barramento CAN do veículo como um meio de transmissão e re-
ceção dos dados necessários, como o ângulo das rodas do carro e a sua
velocidade. Para a aquisição da velocidade, um codificador incremental foi
instalado na roda esquerda traseira do Atlascar2, enquanto os valores do
ângulo são obtidos pela rede do CAN.
Os resultados mostram melhorias na arquitetura de software e no desem-
penho obtido pelo sistema de odometria, simulado e real. Os resultados reais
indicam a necessidade de ser feita a calibração da odometria, que quando
elaborada num trabalho futuro, trará melhorias ao sistema de navegação do
Atlascar2.

Keywords Odometry; ROS architecture; Atlascar2; Electronic Control Units; CAN;
Ackermann model

Abstract The organization of an autonomous vehicle computational system is cru-
cial for a better implementation of algorithms in the area of autonomous
navigation. The first objective of this dissertation consists of organizing
and updating the Atlascar2 software architecture. This organization covers
updating and adding the sensor’s launch files, updating drivers, improving
the processing unit and updating the communication infrastructure.
Another objective is the development of an odometry solution, to be inte-
grated into the new Atlascar2 software architecture. It used the vehicle’s
CAN bus as a means of transmitting and receiving the necessary data, such
as the angle of the car’s wheels and its speed. To measure the speed, an
incremental encoder was installed on the Atlascar2 rear left wheel, while the
angle values are provided by the CAN.
The results show improvements in the software architecture and in the per-
formance obtained by the odometry system, in simulation and real. In real
mode, the results indicate the need to calibrate the odometry, which, when
elaborated in a future work, will bring improvements to the Atlascar2 navi-
gation system.

Acronyms

AD Autonomous Driving. 1, 2, 3, 6, 7, 8, 14, 18, 63

ADAS Advanced Driver Assistance Systems. 1, 2, 7, 63

AV Autonomous Vehicles. 5, 7

CAN controller area network. 23

ECU Eletronic Control Unit. 23, 43

GNSS Global Navigation Satellite System. 26

GPS Global Positioning System. 14

HMI humanmachine interface. 8, 12

iCab intelligent Campus AutomoBile. 13

IMU Inertial Measurement Unit. 15, 26

INS Inertial Navigation System. 15

LiDAR Light Detection And Ranging. ix, 8, 11, 16, 17, 18, 23, 24, 26, 56

MEMS micro-electro-mechanical system. 15

OS Operating System. 35

ROS Robot Operating System. iii, ix, 4, 29, 30

SAE Society of Automotive Engineers. 1

UAV Unmanned Aerial Vehicle. 16

URDF Unified Robotics Description Format. 32, 37

i

ii

Contents

1 Introduction 1
1.1 ATLAS project . 2
1.2 Problem Description . 2
1.3 Objectives . 3
1.4 Document structure . 4

2 State of the Art 5
2.1 Software architecture . 5

2.1.1 Related Work . 7
2.1.2 Work developed at the University of Aveiro. 14

2.2 Odometry . 14
2.2.1 Wheel Odometry . 15
2.2.2 Inertial Odometry . 15
2.2.3 Radar Odometry . 16
2.2.4 Laser Odometry . 16
2.2.5 Visual Odometry . 16
2.2.6 Work developed at the University of Aveiro. 17

2.3 Summary . 18

3 Experimental Infrastructure 23
3.1 Hardware . 23

3.1.1 CANalyze . 23
3.1.2 Camera Point Grey FL3-GE-28S4-C 24
3.1.3 Sick LMS151 LIDAR . 24
3.1.4 Sick LD-MRS400001 LIDAR . 25
3.1.5 Novatel SPAN-IGM-A1 and Novatel GPS-702-GG 26
3.1.6 Nexus P-2308H4/HR4 . 27
3.1.7 Atlascar2 . 28

3.2 Software . 29
3.2.1 Robot Operating System (ROS) 29
3.2.2 Rviz . 30
3.2.3 Mapviz . 31
3.2.4 Rqt . 32
3.2.5 ROS packages used in this project 32
3.2.6 Other software tools . 33

iii

4 Software Architecture 35
4.1 Processing unit performance . 35
4.2 Communication infrastructure . 36
4.3 Launching Nodes . 37

4.3.1 Top level launch file . 37
4.3.2 Launch file architecture . 38

4.4 Documentation . 41

5 Development of an Odometry Solution 43
5.1 Approach of the Odometry Solution . 43
5.2 CAN communication . 44
5.3 Mitsubishi i-MiEV CAN values . 45

5.3.1 Development of the First Solution 46
5.4 Wheel Encoder Installation . 47

5.4.1 Selection of a new Encoder . 47
5.4.2 Assembly of Encoder . 48
5.4.3 Development of the Final Solution 49

5.5 Computation of the odometry . 51
5.5.1 Collecting the Ackermann values 52
5.5.2 Computing the odometry . 53

6 Tests and Results 55
6.1 Software Architecture . 55

6.1.1 Processing Unit Evaluation . 55
6.1.2 Performance of the Software Architecture 56

6.2 Odometry . 56
6.2.1 Performance with the Simulation Values 56
6.2.2 Performance with Real Vehicle Data 58

7 Conclusions and Future Work 63
7.1 Conclusions . 63
7.2 Future Work . 63

A Project’s README information 73
A.1 Core packages . 73
A.2 Turning on the vehicle and its components 73
A.3 Configuring the IP addresses . 75
A.4 Connecting to the Atlascar2 with remote work 77
A.5 Testing the sensors . 78
A.6 Launching the system . 79

B Arduino IDE code 81

C CAN messages to ackermann values program 85

D Ackermann to Odometry script 87

E Modified Ackermann controller 91

iv

F Odometry simulation results 103

v

vi

List of Tables

2.1 Sensors from multiple vehicles . 20
2.2 Software architecture from multiple vehicles 21
2.3 Comparison of self-localization methods 21

3.1 Specifications from the Point Grey camera. 24
3.2 Features from the LMS151 LiDAR. 25
3.3 Features from the LD-MRS400001 LiDAR. 26
3.4 Novatel SPAN-IGM-A1 specifications . 27
3.5 Novatel GPS-702-GG specifications . 27
3.6 Nexus P-2308H4/HR4 technical specifications. 28

4.1 Processing unit partitions. 35
4.2 Atlascar2’s ports addresses. 36
4.3 IP addresses of sensors. 36

5.1 CAN bus values. 45
5.2 RI32-0/1000ER.14KB specifications . 47
5.3 Arduino UNO wifi rev2 specifications . 49

6.1 Comparison between odometry values in six experiments. 57
6.2 Comparing travelled distances using different velocities. 58

vii

viii

List of Figures

1.1 Levels of driving automation . 1
1.2 Atlas2010 and AtlasMV3. 2
1.3 Atlascar1. 3
1.4 Atlascar2. 3

2.1 Functional architecture . 5
2.2 Software architecture . 6
2.3 Stanley the 2005 winning vehicle of the DARPA challenge. 8
2.4 Stanley functional architecture . 9
2.5 Boss the 2007 winning vehicle of the DARPA challenge. 10
2.6 Boss software architecture . 10
2.7 A1 vehicle . 11
2.8 A1 functional architecture . 11
2.9 A1 software architecture . 12
2.10 iCab 1 and iCab 2 platforms . 13
2.11 iCab three-tier architecture . 13
2.12 Types of Odometry. 15
2.13 Velocity measurement system . 17
2.14 Steering wheel angle measuring system . 18
2.15 The experimental setup on the industrial robot 19

3.1 CANalyze . 23
3.2 Camera Point Grey FL3-GE-28S4-C . 24
3.3 LiDAR Sick LMS151 . 25
3.4 LiDAR Sick LD-MRS400001 . 26
3.5 GNSS and Inertial Navigation. 27
3.6 Nexus P-2308H4/HR4 . 28
3.7 Position of sensors on Atlascar2. 29
3.8 OBD-II port and CANalyze connection. 30
3.9 Diagram of ROS infrastructure . 30
3.10 Rviz tool with Atlascar2 sensors. 31
3.11 Mapviz tool . 32
3.12 SOPAS Engineering Tool . 33
3.13 FlyCap application . 34

4.1 Communications diagram. 36
4.2 rqt_graph of the bringup.launch. 38
4.3 System hierarchy when launching the bringup file 41

ix

5.1 Ackermann kinematic model . 43
5.2 Some of the ECUs and CAN bus in a vehicle 44
5.3 Standard CAN frame structure . 45
5.4 Comparison of the first and second solutions’ velocities 46
5.5 Encoder RI32-0/1000ER.14KB . 47
5.6 The tube that connects the encoder to the manufactured parts. 48
5.7 Encoder assembly beginning. 49
5.8 Encoder assembly intermediate. 49
5.9 Encoder assembly in the Atlascar2. 50
5.10 Sick DT20 Hi optoelectronic back path . 51
5.11 Solution to send the CAN bus data. 51
5.12 Arduino and encoder connection. 52
5.13 Diagram of the implemented odometry solution 53
5.14 Rqt_graph of the bringup_odom.launch. 54

6.1 Atlascar2 odometry simulation. 57
6.2 Comparison of the odometry topics using the simulation. 58
6.3 0.75 rad/s trajectory with the ackermann controller and python script. . . 59
6.4 0.75 rad/s trajectory difference of x values. 60
6.5 0.75 rad/s trajectory difference of y values. 60
6.6 Comparison side-by-side of the odometry values from the controller and

the python script . 61
6.7 Atlascar2 in the Crastro’s parking lot. 61
6.8 Odometry values from the Atlascar2 with the first route. Results pre-

sented using the Mapviz application. 62
6.9 Odometry values from the Atlascar2 with the second route. Results pre-

sented using the Mapviz application. 62

A.1 Core packages for the Atlascar2 . 73
A.2 Steps to turn on the vehicle . 74
A.3 Steps to turn on the vehicle . 75
A.4 Configuring IP addresses of the switches 76
A.5 Configuring IP addresses of the switches 77
A.6 Remote work configuration . 77
A.7 Testing the sensors . 78
A.8 Launching the system . 79

F.1 30m forward odometry simulation. 103
F.2 30m forward x values difference. 104
F.3 30m forward y values difference. 104
F.4 100m forward odometry simulation. 105
F.5 100m forward x values difference. 106
F.6 100m forward y values difference. 106
F.7 200m forward odometry simulation. 107
F.8 200m forward x values difference. 108
F.9 200m forward y values difference. 108
F.10 20rad/s turn odometry simulation. 109
F.11 20rad/s turn x values difference. 110

x

F.12 20rad/s turn y values difference. 110
F.13 Random course odometry simulation. 111
F.14 Random course x values difference. 112
F.15 Random course y values difference. 112

xi

xii

Chapter 1

Introduction

"We are at the dawn of the future of autonomous driving" [1]. With each passing day,
the studies and technological advances in the area of Autonomous Driving (AD) and
Advanced Driver Assistance Systems (ADAS) get one step ahead to save time and give
comfort and safety to the drivers. According to the Society of Automotive Engineers
(SAE), there are six levels of driving automation ranging from 0 (fully manual) to 5
(fully autonomous) [2].

Figure 1.1: Levels of driving automation [3].

To step up in the hierarchy of AD, more complex systems are created, which leads
to more data exchange between the various modules of an autonomous car. Although
an autonomous vehicle with a higher autonomy level has a more complex system, even
at level 1, they require sophisticated algorithms capable of guaranteeing safety at every
moment. Furthermore, the non-organization of that data can lead to errors, which may
be harmless or be fatal on the road. To avoid this, software architecture was born.
A good architecture is crucial to keep an efficient and versatile system in which new
developers can easily manage and facilitate the addition of new modules when needed.

This thesis has two main subjects. The first is the creation of a software architecture
that implements an efficient and reliable system, using ROS as the main framework of

1

2 1.Introduction

the vehicle. The second is the implementation of an odometry node to test the newly
implemented software architecture and calculate the relative position of the vehicle.

1.1 ATLAS project

The Group of Automation and Robotics created the ATLAS project at the Department
of Mechanical Engineering of the University of Aveiro, Portugal. The project’s main
focus was to develop advanced sensing and active systems and to implement them in au-
tomobiles and platforms alike. This dissertation is one of the many projects/dissertations
in the context of the ATLAS project [4]. The ATLAS project started to develop mobile
autonomous robots (Figure 1.2), which participated in multiple robotics competitions
and won various awards.

Figure 1.2: Atlas2010 and AtlasMV3.

With newfound success in competitions, the automation group expanded the work
further and created the AtlasCar1. The Atlascar1 was a Ford Escort equipped with
multiple sensors that enabled the vehicle to perceive the road around it [4]. This car
was a prototype for research on Advanced Driver Assistance Systems.

After several years of studies, algorithms, and hardware, the Atlascar1 had fallen
behind in technology and was no longer enough for the project’s requirements, so the
Atlascar2 was developed. The Atlascar2 (fig 1.4) is an electric Mitsubishi i-MiEV vehicle
from 2015. Its most significant advantage compared to the Ford Escort is the nonexis-
tence of gear changing, which facilitates the automation control, and the fact that the
car is electric also facilitates the direct battery access for the sensors. This is the vehicle
used in this dissertation.

1.2 Problem Description

With the years passing by, the Autonomous Driving projects kept expanding the scope
with increased complexity and a higher level of automation. With that complexity came
more sensors that lead to more data exchange, which increases the possibility of errors.
The problem with this increase is that it also increases the probability of accidents we

Sara Costa Pombinho Dissertação de Mestrado

1.Introduction 3

Figure 1.3: Atlascar1.

Figure 1.4: Atlascar2.

want to avoid at all costs. In that line, the importance of software architecture is to give
reliability to the vehicle and organize the system to ensure the safety of the drivers and
other agents. On the other hand, with the growing development of AD, certain features
can be challenging but need to be implemented to develop a fully functional autonomous
vehicle, such as self-localization. Therefore, the proposed objective to acquire the local-
ization of the moving vehicle is to apply an odometry algorithm with the new software
architecture already developed to facilitate its implementation.

1.3 Objectives

With the addition of multiple projects along the years, the Atlascar2 data started to
become difficult to maintain organized and robust due to the excess of information,
which causes multiple errors when an inexperienced user starts working with the vehicle,
losing weeks, even months in an attempt to understand the state of the car. This problem
occurs since there is a lack of organization and documentation about the system and its
software.

Sara Costa Pombinho Dissertação de Mestrado

4 1.Introduction

After developing a software architecture, the next step is to create an odometry
algorithm, which can test the improvements made in the architecture in terms of quality
attributes and acquire the vehicle’s relative position.

In summary, this thesis aims at the following objectives:

• Update of the Atlascar2 software architecture.

• Development, update, and integration of the AtlasCar2 software packages.

• Development and testing a node to compute the vehicle odometry.

1.4 Document structure
This document has seven parts:

• Chapter 1: Presents the introduction, which has the purpose of contextualizing
the problem and background and establishing goals to achieve at the end of this
thesis.

• Chapter 2: Presents the state of the art, the various works in this area in software
architecture, and a study of the odometry solutions.

• Chapter 3: Explains the used infrastructure, both software and hardware, describ-
ing the various sensors in the Atlascar2 and the Robot Operating System (ROS)
and its packages and other software.

• Chapter 4: Describes the methodology used to change the vehicle software archi-
tecture, the requirements needed, and the nodes.

• Chapter 5: Describes the methodology used to implement the odometry node.

• Chapter 6: Presents the qualitative and quantitative results in terms of software
and odometry.

• Chapter 7: Presents the conclusion of the thesis, by evaluating the results and
discussing the future work that may improve the implemented subjects.

Sara Costa Pombinho Dissertação de Mestrado

Chapter 2

State of the Art

As stated previously, this work focuses on two subjects. The first is the software ar-
chitecture. To create an appropriate architecture for the Atlascar2, there is the need
to understand what is a software architecture for an autonomous vehicle and the var-
ious works in this area that tend to show what can be used to improve the vehicles’
architecture.

The second subject is to implement an odometry node. This theme is studied by
many authors worldwide, and there are many solutions and different methodologies to
overcome the problem. Some of them are described in this chapter.

2.1 Software architecture

Although describing what is a software architecture may appear an easy task, it can be
very convoluted due to its two conflicting descriptions:
Functional architecture: According to Behere et al. (2016) [5] and Serban et al.
(2018) [6], functional architecture can be defined using the ISO 26262 functional safety
standards definition of a functional concept, which is the specification of the intended
functions and their interactions necessary to achieve the desired behavior [7]. Thus,
functional architecture refers to "the logical decomposition of the system into components
and sub-components and the data-flows between them" [5]. Figure 2.1 shows an example
of a functional architecture in AV.

Figure 2.1: Functional architecture [8].

5

6 2.State of the Art

Software architecture: Software architecture is the organization of a system. This
organization usually includes all components in AD are I/O devices, operating systems,
middleware, and application modules. Figure 2.2 gives an example of a software architec-
ture, which describes the same AV as shown in the figure above, depicting its functional
architecture.

Figure 2.2: Software architecture [8].

Despite different names and descriptions, both are considered software architectures.
The first one presents a detailed high-level architecture, while the second shows a low-
level general approach to the architecture.

In terms of components in the software architecture, Pendletan et al. (2017) [9] and
Behere et al. (2016) [5] state three primary tasks in autonomous vehicles: Perception,
planning, and control. These three high-level functional components can be described
as follows:
Perception: Perception refers to collecting information from the sensors and "under-
standing" the relevant data. The sub-modules are usually localization, which is responsi-
ble for determining the position of the ego-vehicle in the environment, and sensor fusion,
which uses the multiple data gathered to construct a hypothesis about the state of the
environment and can also perform object tracking and association. There also exist
others, such as the world model, which holds the state of the external environment as
perceived by the ego-vehicle, and semantic understanding, which implements the detec-
tion of ground planes, roads’ geometries, and drivable areas as well as predict future
behavior from objects with references to physical models.

Sara Costa Pombinho Dissertação de Mestrado

2.State of the Art 7

Planning: Planning refers to the decision-making to achieve the intended goal. In
Autonomous Vehicles that is typically the realization of a trajectory from a start location
to a goal location while avoiding obstacles and optimizing complex heuristics. This
component usually has sub-modules such as mission planning, behavioral planning, and
motion planning, which are responsible for generating the best trajectory, following the
stipulated road rules, and deciding a sequence of actions to avoid obstacles.
Control: Control is the process of converting intentions into actions, receiving the
movements generated by the planning component, and providing the necessary inputs
to the hardware to generate those desired motions. This functional component can also
stabilize the vehicle, where unreasonable motion requests may be rejected or adapted to
stay within the car’s physical capabilities and safety envelope.

However, as described in section 2.1.1, many projects in the AD area change the
formula to a more robust approach to increase the vehicle’s safety.

When developing a software architecture, there are attributes to check the quality of
the new system. The book The Future of Software Quality Assurance [10] has a list of
topics needing consideration when testing an autonomous vehicle architecture:

Functional Suitability: "It must be checked if the functional properties of the system
are implemented "complete," "correct," and "appropriate."" To notice if the higher and
lower-level components are doing their functions properly.

Reliability: "The ability of the system to maintain its once achieved quality level under
certain conditions over a fixed period of time." In the context of AD, the vehicle can
repeat the same behavior multiple times in a row without errors.

Performance efficiency: "The time behavior of the system and its components and
the consumption of resources must be checked."

Compatibility: "Interoperability between components of the system itself (sensors,
controls, actuators) as well as compatibility with external systems." If the actuators are
correctly controlled, the communication protocols are compatible with other components
and external systems.

Security: "To check how resistant the system is against unwanted access or criminal
attack on data of the system or its users or on the entire system itself."

Maintainability: "If software and hardware are modular and the respective compo-
nents are reusable and easily changeable."

2.1.1 Related Work

Work in the area of AD can date back to the 1920s. This thesis focuses on some of
the more essential and prominent work of the ADAS vehicles to acquire the needed
information to improve the Atlascar2.

Sara Costa Pombinho Dissertação de Mestrado

8 2.State of the Art

DARPA Grand Challenge

The DARPA Grand Challenge was a big step in the area of Autonomous Driving. It
was a competition from 2004 to 2007 to develop an autonomous vehicle that could drive
autonomously on a given route. Despite the difficulty of the challenge, in 2005 and 2007,
various vehicles successfully completed the challenge.

By observing their work in software architecture, we can start with the winning
vehicle of 2005, Stanley [11]. Stanford racing team based Stanley on a 2004 Volkswagen
Touareg R5 TDI (Figure 2.3) and his architecture from a three-layer architecture [12].

Figure 2.3: Stanley the 2005 winning vehicle of the DARPA challenge.

This architecture was divided into six main functional groups: sensor interface, per-
ception, planning/control, vehicle interface, user interface, and global services (Figure
2.4).

The sensor interface was in charge of receiving and time stamping all of the sensor
data and containing the database of the course coordinates. Then, the perception layer
mapped the sensor data into internal models, such as the ego-vehicle pose estimation,
which determined the vehicles coordinates, orientation, and velocities. Next, it built the
environment using three mapper modules from various sensors, cameras, radars, and
LiDARs. Lastly, it required a surface assessment module to extract the parameters from
the current road to determine safe vehicle speed. Knowing the surrounding environment,
the planning/control module was capable of planning the vehicle’s trajectory in steering-
and velocity-space. This trajectory was passed to two closed-loop controllers, one for the
steering control and one for brake and throttle control. Both these controllers sent the
commands to the actuators that faithfully execute the trajectory created by the planner.

The vehicle interface contains the interfaces to the vehicles brakes, throttle, and
steering wheel and an interface to the vehicle’s server, which regulated the physical
power of many of the system components.

The user interface comprised a remote E-stop button and an HMI to start the soft-
ware. To communicate with all the modules, the global services are provided through
CMUs Inter-Process Communication (IPC) toolkit and keeping track of the health of
all systems and restarting them when needed. These modules can be observed in more
detail in section 1.3.2 of Stanley’s article [11].

This robust architecture gave the system quality attributes such as reliability, where

Sara Costa Pombinho Dissertação de Mestrado

2.State of the Art 9

Figure 2.4: Stanley functional architecture [11].

the global services layer monitored the health of individual software and hardware com-
ponents and restarted the components when a failure was observed, performance effi-
ciency because lacking a master process reduced the risk of deadlocks and undesired
processing delays, maintainability since "the developer can easily run just a sub-system
of the software, and effortlessly migrate modules across different processors", and com-
patibility for the reason that "nearly all inter-process communication is implemented
through publish-subscribe mechanisms" [11] through the IPC toolkit.

Its successor Junior had an almost identical approach and finished second in the 2007
DARPA urban challenge. Like most of the following vehicles presented in this thesis,
the system lacks security since it is a research vehicle. That type of requirement would
be time consumer that provided slight improvement to the vehicle itself [13] and its
functional components.

Following the victory of Stanley in 2007, another vehicle took the podium, Boss
[14]. Boss was developed by the Tartan Racing Team and based on a 2007 Chevrolet
Tahoe (Figure 2.5).

Boss had four main functional components: Perception, Mission Planning, Behavioral
Executive, and Motion Planning.

Like in most architectures, the Perception module was responsible for recreating a
model of the world to the behavioral and motion planning components. That model in-

Sara Costa Pombinho Dissertação de Mestrado

10 2.State of the Art

Figure 2.5: Boss the 2007 winning vehicle of the DARPA challenge.

Figure 2.6: Boss software architecture [15].

cluded tracked and static objects, vehicle position estimation, and road detection. The
mission planner used the course coordinates to create a graph that encodes the con-
nectivity between the environment. This module provided the current waypoint to the
goal, following the road rules and detecting blockages. Next, it was up to the behavioral
module to execute the proposed policy: making lane-change and safety decisions respec-
tively on roads, intersections, and yields, as well as recovering from abnormal situations.
With that, the motion planning could execute the current motion goal issued from the
behavioral module.

Specifically, there is not much data about the attributes of the software architecture
of Boss. However, it had a remarkable property because its progress monitoring system
was embedded inside its behavioral executive module, described in detail in section 3 [16],
giving it reliability. The system was also compatible because the four main functional
components in figure 2.6 "communicate via message-passing according to the anonymous
publish-subscribe" [16] are maintainable since, like Stanley, it could just run a sub-system
of the software.

More DARPA challenge vehicles are discussed in the section 2.3 in a more summarized

Sara Costa Pombinho Dissertação de Mestrado

2.State of the Art 11

way.

A1 Racecar

In 2012 a similar competition to the DARPA Grand Challenge took place in Korea. The
autonomous vehicle A1 created by the Hyundai Motor Group won the 2012 Autonomous
Vehicle Competition and completed all the missions, such as handling moving vehicles
and pedestrians and understanding traffic lights, among others [17, 18].

Figure 2.7: A1 vehicle [18]

Its functional architecture has five main components: Localization, Perception, Plan-
ning, Vehicle Control, and System management, since sensor fusion is not the primary
function but a sub-module from perception.

Figure 2.8: A1 functional architecture [18].

The localization component in most software architectures is considered a sub-module
from perception. This component calculates the ego-vehicle coordinates, orientation, and
velocity, which is later fused in the sensor fusion with the information on the surrounding
environment and object detection and classification determined by the perception com-
ponent using sensors such as cameras, radars, and LiDARs. The planning component

Sara Costa Pombinho Dissertação de Mestrado

12 2.State of the Art

determines the necessary maneuvers for the car to reach the main goal successfully. The
A1 planning algorithm focused on behavioral reasoning and local motion planning. The
behavioral reasoning implemented a rule-based decision process based on finite-state
machines to follow the traffic regulations and accomplish various tasks (lane keeping,
obeying traffic lights, and keeping under speed limits). Furthermore, to drive in various
environments, the local motion planning was composed of two types of path planning
algorithms. These types are road-map-based and free-form, which are used to drive in
everyday situations, such as lane driving, and in complex unstructured areas, such as
roads in construction, respectively.

Figure 2.9: A1 software architecture [17].

The control module executes the trajectory planned by the planning component
safely, controlling the vehicle to be robust in various environmental conditions such as
snow, rain, and wind, and dealing with the physical limitations and vehicle dynamics
[19]. To resolve these problems, the control system of A1 is divided into two algorithms.
A lateral control algorithm assumes that the vehicle moves along the Ackermann steer-
ing geometry, and a longitudinal control algorithm derives the target position of the
acceleration and brake pedals from reference inputs [18]. Lastly, the system manage-
ment component supervises the system to detect errors in the modules described. This
module implemented the following functions: A HMI, a driving mode management, and
fault management. These modules monitored the vehicle’s health status and changed
the car mode to autonomous or manual.

The A1 applied a layered architecture-based software platform to accomplish a robust
system, which originated from AUTOSAR [20]. The software architecture has three
layers: the application layer, the run-time environment (RTE), and the basic software
layer. The application layer implements software components, and the basic software
layer consists of the OS, communication modules, input and output (I/O) hardware
abstraction module, and a complex driver. In the middle lies the RTE layer to remove
the dependence of the software components from the hardware and networks [17]. This
architecture improved the compatibility, maintainability, and reliability of the system.

Sara Costa Pombinho Dissertação de Mestrado

2.State of the Art 13

Intelligent Campus AutomoBile iCab

The iCab is an autonomous vehicle with a ROS-based architecture made at the University
Carlos III of Madrid, Spain. The used platform is an electric golf cart, model E-Z-
GO (Figure 2.10) modified to fulfill the autonomous navigation, path planning, and
cooperation objectives [21].

Figure 2.10: iCab 1 and iCab 2 platforms [21].

This architecture possesses various levels of complexity categorized into three layers
[22]: deliberative, sequencing, and reactive skills.

Deliberative

Sequencing

Reactive Skills

World / Environment

Partial task ordering

Instantiate task

Actuator Controller Sensor Readings

Deliberative

Hybrid

Reactive

Figure 2.11: iCab three-tier architecture. Adapted from [22].

The deliberative layer manages path planning, navigation, and mapping sub-modules.
The user defines the destination, and then the deliberative layer generates the output
tasks for the sequencing layer to split the tasks, whose complexity resides in the accu-

Sara Costa Pombinho Dissertação de Mestrado

14 2.State of the Art

racy of generating simple skills after splitting the mid-level tasks. These tasks are then
conveyed to the reactive layer to generate movement outputs via ROS services and send
them to the controller. These basic commands to move the vehicle are Move Forward,
Move Backward, Turn Left, Turn Right, and Stop [22].

The advantage of this ROS-based architecture is that it gives to the vehicle system
quality attributes, such as reliability, compatibility, and maintainability. Furthermore,
this system enables inter-process communication in an independent and modular way
and the capability to run multiple algorithms in parallel.

Other vehicles

There are numerous AD projects such as Waymo from Google, autopilot and Full Self
Driving from Tesla, and Motional from Aptiv. However, these are commercial solutions,
so the information regarding their technological advances is not available to the public.
However, we know that all these projects have the quality attributes and requirements
for a robust and safe software architecture since they need to be according to the strict
ISO 26262 functional safety constraints [7].

2.1.2 Work developed at the University of Aveiro.

The work developed in this area at the University of Aveiro dates to the Atlascar2 pre-
decessor, Atlascar1. The work in [23] shows that the Atlascar1 was based on CARMEN
[24], which made it a modular architecture with various functional components, such as
the other vehicles described previously. Furthermore, this architecture presented quality
attributes such as maintainability since it divided every system into multiple modules to
facilitate debugging and improve the robustness of the code, decreasing its complexity
and compatibility considering the use of an IPC communication protocol to exchange
data with the various components.

Different from the AtlasCar1, the software used in Atlascar2 is ROS, which is ap-
proached in section 3.2.1. In that line, it is essential to create a new solution that settles
on the latest software.

2.2 Odometry

One of the most essential information for a robot is its self-localization in the envi-
ronment. Although advanced Global Positioning System (GPS) can, at best, provide
accurate positioning within a few centimeters, it is still not reliable enough for a core
navigation system of autonomous platforms. In addition, various factors disturb the
acquisition and tracking of GPS, such as the signal strength variation, depending on
the place and environment conditions and [25, 26] multipath reception, where GPS sig-
nals arrive at a receiver from more than one satellite or via multiple reflective surfaces
[27, 28].

Therefore, other methods are needed to estimate the self-localization of the au-
tonomous system more reliably. One particular method is Odometry which uses local
sensory data to determine the orientation and position of the platform relative to a given
starting point. Odometry can be categorized into five types: Wheel, Radar, Inertial, Vi-
sual, and Laser (Figure 2.12), where each category is based on the type of sensor data

Sara Costa Pombinho Dissertação de Mestrado

2.State of the Art 15

used for the odometry [29].

Self localization

GPS Odometry

Wheel Radar

Radar Inertial Visual Radar

Inertial

Visual Inertial

Visual

Visual Laser

Laser

Filter/Optimization-based Thightly/Loosely-coupled

Figure 2.12: Types of Odometry. Adapted from [29].

2.2.1 Wheel Odometry

Wheel Odometry is the most straightforward technique of self-localization used in many
robots. This method usually uses wheel encoders mounted on the back wheel of the
robot to track the number of revolutions performed by each wheel. Then, the speed
information is converted into travel distance through the wheel radius. Finally, it uses
the position of the autonomous vehicle at the last obtained position to calculate the
current one.

Although a very inexpensive technique, this method suffers from multiple disadvan-
tages such as position drift, where the error in the measurements accumulates over time,
poor performance in complex, uneven terrains and slippery surfaces due to wheel slip-
page, which makes this method not suitable for autonomous vehicles since it requires a
reliable and precise localization system. Therefore, many researchers use this method
combined with other procedures for a more accurate solution [30, 31] .

2.2.2 Inertial Odometry

Inertial Odometry, most commonly known as Inertial Navigation System (INS), is a lo-
calization method that uses the measurements provided by the IMU (Inertial Measure-
ment Unit) sensor to continuously calculate by dead reckoning the position, orientation,
altitude, and linear velocity of the moving vehicle without external references. An IMU
sensor is a micro-electro-mechanical system (MEMS) device mainly composed of a 3-axis
accelerometer and a 3-axis gyroscope and may also include a 3-axis magnetometer [32].
Although small in size, having low power consumption, and resolving some problems
from the wheel odometry, these sensors still suffer from drifting issues due to constant
measurement errors from the gyroscopes and accelerometers, which leads to an incremen-
tal error in the estimated velocity and position. Therefore, inertial odometry systems
are inaccurate and unsuitable for an autonomous vehicle that requires localization for
long periods of time.

Sara Costa Pombinho Dissertação de Mestrado

16 2.State of the Art

2.2.3 Radar Odometry

Radar Odometry is a technique used to estimate the relative motion of a platform by
determining the velocity, range, and angle of surrounding objects using radio waves.

The radar is a long-range active sensor immune to poor weather conditions and can
operate in low-texture environments. However, it still suffers from disadvantages such
as outliers and uneven terrain [33]. An outlier rejection scheme was used to improve
the Radar Odometry solution to tackle these limitations. In addition, to overcome the
problem of bumpy terrain, the radar measurements are fused with other sensors, such
as a camera [34] and the IMU [35].

2.2.4 Laser Odometry

Laser odometry, or LiDAR odometry, is an approach for estimating the position and
orientation of a platform by tracking laser speckle patterns reflected from surrounding
objects [29]. This method uses the advantages of the LiDAR, such as being insensitive
to ambient lighting and low-texture environments [36].

Although the LiDAR can be considered better than the radar, as it is capable of de-
tecting small objects using a short wavelength and building an extract 3D monochromatic
image of the surrounding objects, it also suffers from limitations concerning transpar-
ent objects and not being immune to poor weather conditions. Furthermore, LiDAR
odometry also suffers from the amount of points received by the LiDAR, since it applies
iterative optical matching among points of two sets, which requires fairly demanding
computations, causing poor performance [37].

2.2.5 Visual Odometry

Visual odometry is a process used to determine the position and orientation of a platform
by extracting key information from a sequence of images.

This type of odometry is much more precise than the wheel and inertial odometry.
However, it still suffers from some drawbacks. Most of these problems are mainly related
to computational complexity and image conditions. This last one is caused by low
lighting, shadow, and low texture environments. Moreover, it also suffers from drifting
issues caused by error accumulation as visual odometry is based on relative measurements
such as wheel and inertial odometry.

Thus, researchers combine these methods to obtain more precise measurements and
tackle the disadvantages of each one. Figure 2.12 indicates three types of visual odome-
try: Visual-Radar, Visual-Laser, and Visual-Inertial odometry.

Visual-Radar Odometry is one way to overcome the limitations in visual odometry in
terms of environmental conditions such as rain, fog, and snow since the radar is immune
to those issues. This type of method is used [34] to estimate the forward velocity of a
Unmanned Aerial Vehicle (UAV).

Visual-Laser odometry overcomes the limitations of the LiDAR, such as motion dis-
tortion and non-prominent environments, and limitations of the visual odometry, such
as drifting and low-texture environments.

Visual-Inertial odometry can overcome the limitations of visual and inertial odom-
etry. This odometry can be categorized as loosely-coupled and tightly-coupled. The
loosely-coupled [38] approach is the moderation of the computational load. However,

Sara Costa Pombinho Dissertação de Mestrado

2.State of the Art 17

the correlation between the internal measurements and vision data is disregarded, de-
creasing efficiency. On the other hand, the tightly-coupled [39] approach fuses the data
from the IMUs and cameras in an early stage, which leads to more precise estimations,
although it demands more computational power.

2.2.6 Work developed at the University of Aveiro.

The first work based on odometry in a real car at the University of Aveiro was imple-
mented in the Atlascar2 predecessor, Atlascar1. In 2011, Tiago Rocha implemented a
wheel odometry system using an incremental encoder on the back wheel of the Atlas-
car1 to measure its velocity [40]. This incremental encoder gave a new value of the car’s
velocity every 3.49 centimeters.

Figure 2.13: Velocity measurement system [40]

To obtain the angle of the Atlascar1, the steering wheel angle was measured with a
potentiometer connected through a pulley system directly in the steering column. This
was an invasive method and forced modifications on the structure and devices of the
steering column (Figure 2.14).

In 2014, Ricardo Silva used visual odometry in his master’s thesis to create a solution
with Ackermann steering [41]. This method was tested using the ground materials fixated
on a robot and the camera stationary on a tripod (Figure 2.15).

R. Silva proved the ability of this method using various types of movement such
as circular, linear, diagonal, and different velocities. In conclusion, he stated that this
method had a high error dealing with low velocities and a lack of precision in practical
terms.

Lastly, in 2016, Jorge Almeida used Laser odometry in his Ph.D. thesis [42] to es-
timate the ego-motion of a vehicle using exclusively laser range data. This approach
considered the local discrepancies between closely spaced laser scans to calculate the
current vehicle velocity and steering angle. These measurements incorporated a non-
linear model and successfully provided an accurate vehicle motion estimation. However,
this algorithm using exclusively the LiDAR can fail because it is mainly dependent on
the first guess and the lack of features in the range of the laser scanners.

Sara Costa Pombinho Dissertação de Mestrado

18 2.State of the Art

Figure 2.14: Steering wheel angle measuring system [41]

2.3 Summary

Two different subjects were addressed throughout this chapter: Software architecture
and odometry. Thus, this section intends to compress the essential topics and discuss
some comparisons among vehicles.

Starting with the discussion of the different vehicles, two tables were created: Tables
2.1 and 2.2, which show, respectively, the various sensors and software architecture from
multiple vehicles.

Notably, excluding Tesla, all of these vehicles, commercial or not, have some type of
LiDAR used in autonomous driving. For example, the commercial solutions by Waymo
and Motional are both, according to SAE, a level 5 autonomous vehicle, and Tesla’s
autopilot and Full Self Driving are just level 2 (although it is being marketed as a fully
autonomous vehicle). Furthermore, [36] it is referred that the LiDAR is necessary for
level 4 and 5 autonomous vehicles.

In terms of software architecture, most of these vehicles approached the Autonomous
Driving problem differently, with different communication protocols, functional compo-
nents, frameworks, operating systems, and quality attributes.

These vehicles have distinct software architectures but can all function properly,
proving that there does not exist only one good architecture and that each architecture
is implemented depending on the attributes and necessities for the autonomous vehicle.

On the subject of odometry, the various types of odometry were summarized in 2.3:
The first metric, performance, is the capability to measure values in a strict time

interval because autonomous vehicles need a strong timing constraint since a failed dead-
line can result in an accident. The second metric is power efficiency, which is the demand
for computational resources for each method. The third metric is the accuracy of the
method used to obtain the position and orientation when the system is active. The
fourth metric is energy, which refers to the amount of electrical energy consumed by
the sensors and processing units. The fifth metric is robustness against the lack of il-
lumination and environmental conditions such as rain, fog, dust, and snow. The sixth
and last metric is the dimensionality of the calculated pose, which can be either 2D or 3D.

Sara Costa Pombinho Dissertação de Mestrado

2.State of the Art 19

Figure 2.15: The experimental setup on the industrial robot [41]

From table 2.3, the following conclusions can be made:

• Except for radar odometry and GPS, it can be seen that accuracy and robustness
have an inverse relationship. If one is high, the other is low.

• All non-visual odometry has high performance since the amount of information to
be processed is not large, except GPS due to its need to connect to a satellite,
causing it to be slow.

• In visual odometry, performance is medium because the vision sensor provides a
considerable amount of data.

In the end, the chosen odometry should be the one that provides the capabilities
that the user needs or is best suitable for the type of project.

Sara Costa Pombinho Dissertação de Mestrado

20 2.State of the Art

Table 2.1: Sensors from multiple vehicles

Cars Stationary
LIDAR

360°
rotating
LIDAR

Camera Radar GPS/INS

Stanley [11] 3 7 3 3 3

Junior [13] 3 3 7 3 3

Boss [14] 3 3 3 3 3

Sandstorm [43] 3 7 7 3 3

Odin [44] 3 7 3 7 3

Talos [45] 3 3 3 3 3

A1 [18] 3 7 3 7 3

iCab [46] 3 7 3 7 7

Motional [47] 7 3 3 3 -
Waymo [48] 3 3 3 3 3

Tesla [49] 7 7 3 3 7

Atlascar1 [23] 3 7 3 7 3

Atlascar2 [50] 3 7 3 7 3

Sara Costa Pombinho Dissertação de Mestrado

2.State of the Art 21

Table 2.2: Software architecture from multiple vehicles

Cars Functional components HMI Commu-
nication Framework OS

Stanley [11]

6: Perception, Planning/
Control, Sensor interface,
User interface, Vehicle
interface, Global services

3 IPC - Linux

Junior [13]

6: Perception, Navigation,
Sensor interface, User
interface, Vehicle interface,
Global services

3 IPC - Linux

Boss [14]
4: Perception, Mission
planning, Behavioral
executive, Motion planning

3
TCP/IP
or UDP - UNIX

Sandstorm [43] - - IPT - RTOS

Odin [44]
5: Perception, Planning,
Sensor interface, User
interface, Control

- JAUS -
Win-
dows/
Linux

Talos [45] 3: Perception, Planning/
Control 3 LCM - -

A1 [18]
5: Localization, Perception,
Planning, Control, System
management

- FlexRay AUTOSAR
Win-
dows/
OSEK

iCab [46] 3: Deliberative, Sequencing,
Reactive 3 TCPROS ROS Linux

Motional [47] - - - - -
Waymo [48] - - - - -
Tesla [49] - - - - -
Atlascar1 [23] - - TCP/IP CARMEN Linux
Atlascar2 [50] - 7 TCPROS ROS Linux

Table 2.3: Comparison of self-localization methods

Self-localization
methods

Perfor-
mance Power eff. Accuracy Energy Robust-

ness
dimen-
sions

GPS Low low-power semi-accurate non-efficient high 2D
Wheel Odometry High low-power non-accurate efficient low 2D
Inertial Odometry High low-power non-accurate efficient high 3D
Radar Odometry High low-power accurate efficient high 3D
Laser Odometry High high-power accurate non-efficient medium 3D
Visual Odometry Medium high-power accurate non-efficient low 3D

Sara Costa Pombinho Dissertação de Mestrado

22 2.State of the Art

Sara Costa Pombinho Dissertação de Mestrado

Chapter 3

Experimental Infrastructure

This chapter describes the tools used in this dissertation, both in hardware and software.
The hardware includes the sensors applied in Atlascar2, which gather navigation infor-
mation and obtain localization in the environment, the processing unit of the system
and the component used to acquire CAN messages (Section 5.1). In terms of software,
the vehicles framework serves to analyze the information gathered by the sensors, as well
as other software tools used for the system to work correctly.

3.1 Hardware

The hardware described in this section is the Atlascar2’s cameras, 3D and 2D LiDARs,
GPS + IMU, and the processing unit. These components give Atlascar2 the necessary in-
formation about its surroundings. This section also describes the CANalyze component,
which is used to receive and send the CAN messages from the vehicle’s ECUs.

3.1.1 CANalyze

The CANalyze (Figure 3.1) is an open-source hardware capable to receive and transmit
CAN messages using the Linux can-utils package. The CANalyze device performs on-
board processing of the CAN packets to make them readable to the user, allowing the
computer to become a node of the vehicle CAN bus.

Figure 3.1: CANalyze [51].

23

24 3.Experimental Infrastructure

3.1.2 Camera Point Grey FL3-GE-28S4-C

The Point Grey FL3-GE-28S4-C (Figure 3.2) is a 2.8 Megapixel color GigE Vision digi-
tal camera that uses a Sony ICX687 EXview HAD CCD II image sensor to deliver high
resolution, high-quality images in a compact and low-cost package. At its highest reso-
lution of 1928× 1448, the camera runs at 15 FPS. However, it is possible to decrease its
region of interest to obtain more frames per second [52]. Table 3.1 describes the main
specifications of this sensor.

Figure 3.2: Camera Point Grey FL3-GE-28S4-C [52].

Table 3.1: Specifications from the Point Grey camera.

Specifications
Resolution 1928× 1448

Frame rate 15 FPS @ 1928× 1448

Megapixels 2.8 MP
Chroma Color
Sensor Sony ICX687 EXview HAD CCD II
Dimensions 29× 29× 30 mm
Weight 38 g

3.1.3 Sick LMS151 LIDAR

The LiDAR is a sensor used to measure the distance to objects using laser delay time
from the moment it is projected until it is received.

The LMS151 (Figure 3.3) is a 2D laser scanner (LiDAR) that presents reliable nav-
igation, detection, and measurement data. Although the LiDAR described in Section
2.2.4 has limitations regarding poor weather conditions and transparent objects, the
LMS151 provides a multi-echo technology and fog detection, allowing it to measure dis-
tances through glass, fog, and dust [53]. Table 3.3 describes the main features of this
sensor.

Sara Costa Pombinho Dissertação de Mestrado

3.Experimental Infrastructure 25

Figure 3.3: LiDAR Sick LMS151 [53].

Table 3.2: Features from the LMS151 LiDAR.

Features
Application Outdoor
Light source Infrared light (905 nm)
Laser class 1 (IEC 60825-1:2014, EN 60825-1:2014)
Aperture angle 270° (Horizontal)
Scanning frequency 25Hz – 50Hz

Angular resolution 0.25° – 0.5°
Working range 0.5 m – 50 m
Scanning range 18 m (10%) 50 m (90%)
Number of evaluated echoes 2

3.1.4 Sick LD-MRS400001 LIDAR

The LD MRS400001 (Fig. 3.6) is a 3D LiDAR that can measure up to 4 planes. Like
the LMS151, it provides multi-echo technology which gives it immunity to rain, snow,
and dust. This type of sensor is ideal for collision detection on automated vehicles or
scanning objects [54]. Table 3.3 describes the main features of this sensor.

Sara Costa Pombinho Dissertação de Mestrado

26 3.Experimental Infrastructure

Figure 3.4: LiDAR Sick LD-MRS400001 [54].

Table 3.3: Features from the LD-MRS400001 LiDAR.

Features
Application Outdoor
Light source Infrared light (905 nm, ś 10 nm)
Laser class 1 (IEC 60825-1:2014, EN 60825-1:2014)
Aperture angle 85° (Horizontal) 3.2° (Vertical)
Scanning frequency 12.5Hz - 50Hz
Angular resolution 0.125°,0.25°, 0.5°
Working range 0.5 m - 230 m
Scanning range 50 m
Amount of evaluated echoes 3

3.1.5 Novatel SPAN-IGM-A1 and Novatel GPS-702-GG

The Novatel SPAN-IGM-A1 (Figure 3.5a) and Novatel GPS-702-GG (Figure 3.5b) are
the inertial navigation system and GPS of the Atlascar2. Combining these sensors can
offer an ideal positioning solution based on Synchronous Position, Attitude, and Nav-
igation (SPAN) technology. This method takes advantage of both the accuracy of the
Global Navigation Satellite System (GNSS) and the stability of the Inertial Measure-
ment Unit (IMU), resulting in a stable solution, allowing for exact global positioning,
even when the satellite signal is blocked. The Tables 3.4 and 3.5 show some of these
components’ specifications.

Sara Costa Pombinho Dissertação de Mestrado

3.Experimental Infrastructure 27

(a) Novatel SPAN-IGM-A1 [55]. (b) Novatel GPS-702-GG [56].

Figure 3.5: GNSS and Inertial Navigation.

Table 3.4: Novatel SPAN-IGM-A1 specifications [55].

Features
Input voltage 10-30 VDC
Time Accuracy 20 ns RMS
Max Velocity 515 m/s
Single point L1/L2 accuracy 1.2 m
IMU measurement data rate 200 Hz
INSS solution data rate Up to 200 Hz
Dimensions 152 × 142 × 51 mm
Weight 515 g

Table 3.5: Novatel GPS-702-GG specifications [56].

Features
Input voltage 4.5-18.0 VDC
Current (typical) 35 mA

3 dB pass band (typical) L1: 1588.5 ±23.0 MHz
L2: 1236.0 ±18.3 MHz

Noise figure (typical) 2.5 dB
L1-L2 differential propagation delay 5 ns
Diameter 185 mm
Weight 500 g

3.1.6 Nexus P-2308H4/HR4

The Nexus P-2308H4/HR4 is the processing unit of the Atlascar2. It has a 2Tb HHD
storage capacity to store data and a 120Gb SSD where the OS is located for faster

Sara Costa Pombinho Dissertação de Mestrado

28 3.Experimental Infrastructure

processing which is described in Section 3.2. More details can be seen in Table 3.6.

Figure 3.6: Nexus P-2308H4/HR4 [57].

Table 3.6: Nexus P-2308H4/HR4 technical specifications.

Specifications
Processor 2× Intel XEON E5
RAM 32 GB
Storage 2 TB HHD + 120 GB SSD
Network 2× Gigabit onboard
Graphics Nvidia Quadro
Dimensions (mm) 178W × 437H × 648L

3.1.7 Atlascar2

The Atlascar2 is equipped with all the sensors and equipment described above. There
are also other sensors like the four Sick DT20 Hi optoelectronic sensors that assist in
the inclinometer module. Figure 3.7 shows how the sensors are placed in the vehicle and
Figure 3.8 shows the CANalyze connection with the Atlascar2’s OBD-II port.

Sara Costa Pombinho Dissertação de Mestrado

3.Experimental Infrastructure 29

Figure 3.7: Position of sensors on Atlascar2.

3.2 Software
The software described in this Section is the main framework, ROS and its used pack-
ages for this project as well as other software tools. This software gives Atlascar2 the
capability to gather the information from the sensors and perceive its surroundings.

3.2.1 Robot Operating System (ROS)

As described in Section 2.1, we need certain attributes for this project, such as in-
dependence of hardware and software, a communication protocol that is compatible
between both components and software to provide a robust architecture. To deal with
this complexity, ROS was used. ROS is an open-source framework for robot software
development that provides the functionality of an operating system on a heterogeneous
computer cluster. It enables communication between hardware and software using a
well-planned communication protocol based on publisher-subscriber logic.

The way ROS works is simple; each task is hosted in a ROS node. These nodes
communicate with each other via messages which can be published and subscribed
through topics and services, linking the nodes. The communication process control
is done by the master, who keeps a registry of all the nodes. Another important ROS
feature is a set of tools to record topics, rosbags. The importance of this tool is to

Sara Costa Pombinho Dissertação de Mestrado

30 3.Experimental Infrastructure

Figure 3.8: OBD-II port and CANalyze connection.

provide the capability to test the system with pre-recorded ROS topics which contain
real data from the sensors. This bag file enhances work progress since we can change
the developed tools and use them with that data, without always having to perform real
testing, thereby improving debugging.

Figure 3.9: Diagram of ROS infrastructure [58]

3.2.2 Rviz

Rviz is an abbreviation for "ROS visualization" which works as a 3D visualization tool for
the ROS framework [59]. This tool can show the visual information of a ROS project,
such as the point cloud and laser scanners generated by the data that comes from a
sensor, captured images from a camera, the robot model, odometry values, and more1.

1http://wiki.ros.org/rviz/UserGuide

Sara Costa Pombinho Dissertação de Mestrado

3.Experimental Infrastructure 31

Figure 3.10: Rviz tool with Atlascar2 sensors.

Figure 3.10 shows the Atlascar2’s sensors, the Atlascar2’s model and its transforma-
tions, where the red pointcloud is the 3D LiDAR, the blue is the right 2D LiDAR and
the green is the left 2D LiDAR. Camera’s images are shown on the right.

3.2.3 Mapviz

Mapviz is a highly customizable ROS-based visualization tool focused on large-scale 2D
data, with a plugin system for extreme extensibility 2. The advantage of this tool is the
capability of adding maps to improve the data visualization of moving objects such as
vehicles. Figure 3.11 shows the data the mapviz tool can visualize, such as the GPS, the
odometry, the LiDARs and more, everything in the environment it was taken, thanks to
the map addition.

2https://swri-robotics.github.io/mapviz/

Sara Costa Pombinho Dissertação de Mestrado

32 3.Experimental Infrastructure

Figure 3.11: Mapviz tool.

3.2.4 Rqt

The rqt is a software framework of ROS that implements the various GUI tools in the
form of plugins3. Some of the tools used in this project is the rqt_graph which helps
visualize the topics and nodes, and the robot steering, which publishes a Twist
message in a topic of the user’s choice.

3.2.5 ROS packages used in this project

Follow the packages used for each sensor:

Sick LMS151 - LMS1XX

The LMS1XX ROS package supports every Sick LMS1xx laser scanner. This package
includes the LiDARs’ URDF (Unified Robotics Description Format).

Sick LD MRS - sick_ldmrs_laser

The sick_ldmrs_laser ROS package supports every Sick LD-MRS laser scanner.
This package includes features such as the LiDARs’ URDF and the capability to change
specific properties like the start and end angle, the angular resolution, and the ability
to ignore scan points up to 15m.

Point Grey Camera - pointgrey_camera_driver

The pointgrey_camera_driver ROS package is specially designed for Point Grey
cameras and includes many interesting features such as the camera urdf and a config-

3http://wiki.ros.org/rqt

Sara Costa Pombinho Dissertação de Mestrado

3.Experimental Infrastructure 33

uration file that allows the camera details (e.g. video mode) to be changed without
accessing to the Flycap application, the application normally used by this cameras.

Novatel GPS + IMU - novatel_gps_driver

The novatel_gps_driver ROS package is designed for Novatel GPSs and includes
features such as choosing the device type (Ethernet or USB) and the messages the user
wants to publish. Using USB, the user is able to choose the baudrate, the sample rate
and the device port of the sensor, without needing to use the "Novatel connect" appli-
cation.

These packages provide ROS with the ability to receive the sensor data from the
ROS topic when the components nodes are launched.

3.2.6 Other software tools

The software tools described in this Section are the SOPAS Enginnering tool and the
flycapture application. Their purpose is changing settings that cannot be done in ROS,
such as the IP address.

SOPAS Engineering tool

The SOPAS Engineering tool (Figure 3.12) is an application developed by SICK to
display the detected SICK sensors, and choose its appropriate drivers [60]. With it, the
user can see the data from the sensors and change the settings, such as the IP address,
which cannot be done using the ROS packages.

Figure 3.12: SOPAS Engineering Tool

Sara Costa Pombinho Dissertação de Mestrado

34 3.Experimental Infrastructure

FlyCap

The FlyCap application (Figure 3.13) is a generic, easy-to-use streaming image viewer
included with the FlyCapture SDK, [61] which can be used to test many of the camera
capabilities. It enables a live video stream from the camera, to save individual images,
to adjust the various video formats, frame rates, properties, and settings of the camera,
as well as to access camera registers directly. As in the case of the SOPAS Engineering
tool, the IP address can only be changed in this application.

Figure 3.13: FlyCap application

Sara Costa Pombinho Dissertação de Mestrado

Chapter 4

Software Architecture

This chapter describes the advances and updates made to the software architecture of
the Atlascar2. Although there are many requirements like the ones described in Section
2.1, this project focuses on reliability, compatibility, scalability and maintainability since
these are more revelant in autonomous vehicles.

4.1 Processing unit performance

As mentioned in Section 2.1, compatibility is the proper communication between com-
ponents, external systems, and the system itself. To begin with, the main component to
be improved is the one that connects all the others, the processing unit.

The Atlascar2’s processing unit described in Chapter 3, while very powerful in com-
putational resources, is very slow in launching programs and even the system itself.
Hence, for the system to work correctly, we decided to wipe all the data from the PC, to
update the Ubuntu version 16.04 to the most recent one, 20.04 and to add a 120 Gb SSD
card to separate the Operating System (OS) and data that can take up a large amount
of space and processing capability. To achieve that separation, manual partitions were
made on the processing unit, as shown in Table 4.1.

Table 4.1: Processing unit partitions.

Disk Total space Partitions Space
HDD 2 TB /data 2 TB
SDD 120 GB /

swap
/home

50 GB
16 GB
54 GB

The boot time needs to be improved with the new system, which means that the
configuration files and services from the PC must be changed. These are going to be
described further in detail in Chapter 6.1.

35

36 4.Software Architecture

4.2 Communication infrastructure
In Section 3.2.2 Diogo Correia showed in his work [50] how the components communicate
with the processing unit. With the time passing, some components were removed and
others added for the students’ needs, which made this infrastructure outdated, requiring
it to be redone. Figure 4.1 shows a newly added switch to separate the networks of the
bumper and roof components, as well as a GPS+IMU that uses USB to communicate
with the processing unit.

Figure 4.1: Communications diagram.

Static addresses were created for each processing unit’s port, as well as to change
the IP addresses to a more straightforward approach since the previous works in this
area were confusing and not well dated. To change the IP addresses of the lasers and
the cameras, the SOPAS software and the flycapture program described in Section 3.2.6
were used respectively.

Table 4.2: Atlascar2’s ports addresses.

Port name Usage IP address
ens6f1 Front Bumper Switch 192.168.0.3
ens6f0 Roof Switch 169.254.0.3
enp5s0f1 UA Ethernet automatic

Table 4.3: IP addresses of sensors.

Sensors Old IP address New IP address
Sick LMS151 Right 192.168.0.231 192.168.0.4
Sick LMS151 Left 192.168.0.134 192.168.0.5
Sick LD-MRS 192.168.0.244 192.168.0.6
Flea2 Camera Right 169.254.0.102 169.254.0.4
Flea2 Camera Left 169.254.0.101 169.254.0.5
Novatel GPS + IMU - -

The 192.168.0.X and 169.254.0.X networks were chosen bearing in mind that they are

Sara Costa Pombinho Dissertação de Mestrado

4.Software Architecture 37

private IP addresses, being non-routable. That means they cannot be reached outside
their network, which helps with data protection and privacy and is more secure thanks
to the lack of access by the other networks [62].

4.3 Launching Nodes

The launch files and some of the driver’s code had to be enhanced to improve the
specifications this project focuses on. The launch files provide a convenient way to start
up multiple nodes and a master and other initialization requirements such as setting
parameters and loading YAML files.

4.3.1 Top level launch file

The main file for the Atlascar2, bringup.launch launches the sensors previously de-
scribed in Chapter 3.1.7 with the drivers_bringup.launch, Rviz with the visualize.launch
file and the Atlascar2’s URDF with the model.launch file. This launch file has ar-
guments for the sensors installed on the car and the ones that were already removed,
in case they need to be installed again. Users may choose if they want to launch the
sensors or not by setting the respective variable to true or false. The same can be done
for the visualize argument.

Listing 4.1: Main launch file
1 <?xml version="1.0"?>
2 <launch>
3 <arg name="visualize" default="true" />
4 <arg name="2DLidar_left_bringup" default="true"/>
5 <arg name="2DLidar_right_bringup" default="true"/>
6 <arg name="3DLidar_bringup" default="true"/>
7 <arg name="top_camera_right_bringup" default="true"/>
8 <arg name="top_camera_left_bringup" default="true"/>
9 <arg name="front_camera_bringup" default="false"/>

10 <arg name="RGBD_camera_bringup" default="false"/>
11 <arg name="novatel_bringup" default="false"/>
12 <arg name="vehicle_name" default="atlascar2"/>
13

14

15 <include file="$(find atlascar2_bringup)/launch/drivers_bringup.launch" >
16 <arg name="2DLidar_left_bringup" value="$(arg 2DLidar_left_bringup)"/>
17 <arg name="2DLidar_right_bringup" value="$(arg 2DLidar_right_bringup)"/

>
18 <arg name="3DLidar_bringup" value="$(arg 3DLidar_bringup)"/>
19 <arg name="top_camera_right_bringup" value="$(arg

top_camera_right_bringup)"/>
20 <arg name="top_camera_left_bringup" value="$(arg

top_camera_left_bringup)"/>
21 <arg name="front_camera_bringup" value="$(arg front_camera_bringup)"/>
22 <arg name="RGBD_camera_bringup" value="$(arg RGBD_camera_bringup)"/>
23 <arg name="novatel_bringup" value="$(arg novatel_bringup)"/>
24 </include>
25

26 <include file="$(find atlascar2_bringup)/launch/model.launch" />
27

28 <group if="$(arg visualize)">

Sara Costa Pombinho Dissertação de Mestrado

38 4.Software Architecture

29 <include file="$(find atlascar2_bringup)/launch/visualize.launch"/>
30 </group>
31

32 </launch>

This launch file makes the users prior knowledge about the files unnecessary since
they only need to change the variable value depending on the sensors they want to use.
Figure 4.2 shows the rqt_graph when the bringup.launch file is launched.

Figure 4.2: rqt_graph of the bringup.launch.

4.3.2 Launch file architecture

As previously mentioned, there are three major launch files in the architecture, the
drivers_ bringup.launch, the visualize.launch and the model.launch.

The drivers_bringup.launch is the one that includes the sensors launch files,
which are included in a different directory to maintain the system organized. Those files
are usually the launch files the drivers’ ROS packages provide. Listing 4.2 shows the
usage of the sensors’ arguments.

Listing 4.2: drivers_bringup launch file
1 <?xml version="1.0"?>
2 <launch>
3 <!-- args to specify what sensor to launch -->
4 <arg name="2DLidar_left_bringup" default="true"/>
5 <arg name="2DLidar_right_bringup" default="true"/>
6 <arg name="3DLidar_bringup" default="true"/>
7 <arg name="top_camera_right_bringup" default="true"/>
8 <arg name="top_camera_left_bringup" default="true"/>
9 <arg name="front_camera_bringup" default="false"/>

10 <arg name="RGBD_camera_bringup" default="false"/>
11 <arg name="novatel_bringup" default="false"/>
12

13 <!-- left 2D laser -->

Sara Costa Pombinho Dissertação de Mestrado

4.Software Architecture 39

14 <group if="$(arg 2DLidar_left_bringup)">
15 <include file="$(find atlascar2_bringup)/launch/include/laser2d_bringup

.launch">
16 <arg name="name" value="left" />
17 </include>
18 </group>
19

20 <!-- right 2D laser -->
21 <group if="$(arg 2DLidar_right_bringup)">
22 <include file="$(find atlascar2_bringup)/launch/include/laser2d_bringup

.launch">
23 <arg name="name" value="right" />
24 </include>
25 </group>
26

27 <!-- front 3D laser-->
28 <group if="$(arg 3DLidar_bringup)">
29 <group ns="frontal_laser">
30 <include file="$(find atlascar2_bringup)/launch/include/

sick_ldmrs_node.launch">
31 </include>
32 </group>
33 </group>
34

35 <!-- top left camera -->
36 <group if="$(arg top_camera_left_bringup)">
37 <include file="$(find atlascar2_bringup)/launch/include/

top_cameras_bringup.launch">
38 <arg name="name" value="left" />
39 </include>
40 </group>
41

42 <!-- top right camera -->
43 <group if="$(arg top_camera_right_bringup)">
44 <include file="$(find atlascar2_bringup)/launch/include/

top_cameras_bringup.launch">
45 <arg name="name" value="right" />
46 </include>
47 </group>
48

49 <!-- front camera -->
50 <group if="$(arg front_camera_bringup)">
51 <include file="$(find atlascar2_bringup)/launch/include/

pointgrey_zebra2.launch">
52 <arg name="camera_name" value="frontal_camera" />
53 <arg name="camera_serial" default="14233704" />
54 <arg name="frame_id" value="frontal_camera" />
55 </include>
56 <node pkg="free_space_detection" type="device_frame_publisher_node" name

="device_frame_publisher" required="true" output="screen"/>
57 </group>
58

59 <!-- RGBD camera -->
60 <group if="$(arg RGBD_camera_bringup)">
61 <include file="$(find atlascar2_bringup)/launch/include/asus_xtion.

launch">
62 <arg name="camera" value="top_center_rgbd_camera" />
63 <arg name="camera_serial" default="" />

Sara Costa Pombinho Dissertação de Mestrado

40 4.Software Architecture

64 <arg name="rgb_frame_id" default="/$(arg cammera_name)
_rgb_optical_frame" />

65 <arg name="depth_frame_id" default="/$(arg cammera_name)
_depth_optical_frame" />

66 </include>
67 </group>
68

69 <group if="$(arg novatel_bringup)">
70 <include file="$(find atlascar2_bringup)/launch/include/

novatel_simple_bringup.launch">
71 </include>
72 </group>
73

74 </launch>

The other two files the visualize.launch in Listing 4.3, which launches the
saved rviz file that appears in Figure 3.10 and the model.launch in Listing 4.4, which
launches the urdf from the Atlascar2 as well as the robot joints and the robot state
publisher, which calculates the forward kinematics and publishes it via tf.

Figure 4.3 shows the system hierarchy when launching the bringup.launch file.

Listing 4.3: visualize launch file
1 <?xml version="1.0"?>
2 <launch>
3 <arg name="model_name" default=""/>
4 <node pkg="rviz" type="rviz" name="rviz" required="false" args="-d $(find

atlascar2_bringup)/config/rviz$(arg model_name).rviz"/>
5 </launch>

Listing 4.4: model launch file
1 <?xml version="1.0"?>
2 <launch>
3 <arg name="robot_description" default="robot_description"/>
4 <param name="$(arg robot_description)" command="$(find xacro)/xacro ’$(

find atlascar2_description)/urdf/atlascar2.urdf.xacro’" />
5 <node pkg="joint_state_publisher" type="joint_state_publisher" name="

joint_state_publisher"></node>
6 <node pkg="robot_state_publisher" type="robot_state_publisher" name="

robot_state_publisher" />
7 </launch>

Sara Costa Pombinho Dissertação de Mestrado

4.Software Architecture 41

Bringup

Model drivers-bringupVisualize

Rviz
Joint-
state-

publisher
Atlascar2

Robot-
state-

publisher
novatel

laser2d-
bringup

top-
cameras-
bringup

pointgrey-
zebra2

sick-
ldrms-
node

sick-
ldrms-
nodeN

asus-
xtion

openni2

camera

novatel-
position

novatel-
imu lms1xx

lms1xxN

pointgrey-
flea3ROS node

Launch file

Xacro/Urdf

Figure 4.3: System hierarchy when launching the bringup file

4.4 Documentation
For a system to maintain its robustness, future users need to properly understand how
to use it. For that, documentation was created in the project’s README on github [63]
for the following projects to come, allowing the students to run the system efficiently.
The documentation includes:

• The core packages the project needs for it to work;

• How to turn on the vehicle and its components;

• How to configure the IP addresses;

• How to connect to the Atlascar2 with remote work;

• Testing the sensors;

• Launching the system;

• How to simulate the Atlascar2 on the PC.

Sara Costa Pombinho Dissertação de Mestrado

42 4.Software Architecture

Sara Costa Pombinho Dissertação de Mestrado

Chapter 5

Development of an Odometry
Solution

The second main objective of this dissertation is to develop an odometry solution for
the Atlascar2. To accomplish that, it is necessary to understand the components and
protocols needed and how to compute the odometry.

5.1 Approach of the Odometry Solution

The first thing to establish is the required variables to compute the odometry and how
we can collect them. Since the odometry is the position estimation over time, the values
needed to obtain are the vehicle’s pose (x,y,θ) shown in Figure 5.1. Since we do not
know these values, we need to calculate them, which is possible if we know the speed
and wheel angle of the vehicle.

Figure 5.1: Ackermann kinematic model [64]

In a car such as the Atlascar2, there are ECUs (Eletronic Control Units), which gather
most of the vehicle’s information, including the vehicle’s speed and steering angle. We
can receive the ECUs information using the vehicle’s CAN bus, a standardized serial

43

44 5.Development of an Odometry Solution

communication protocol widely used in automobile internal control systems [65]. Some
of the most common vehicle’s ECUs are shown in Figure 5.2.

Figure 5.2: Some of the ECUs and CAN bus in a vehicle [66]

This approach looked very promising since the CAN bus also provides various ad-
vantages for this project [67, 68]:

• CAN speed can go up to 1Mb/s, allowing a considerable amount of data to be
exchanged.

• It is a simple wired structure, reducing errors, weight, wiring, and costs;

• It is robust system against electromagnetic interference and electric disturbances;

• It has message prioritization, avoiding data interruption and CAN errors.

After collecting the necessary variable values, we must choose a software infrastrcu-
ture to compute the odometry. ROS was the obvious choice since it can be integrated
with the Atlascar2’s software architecture, facilitating its implementation, which is one
of the objectives of this thesis.

5.2 CAN communication

The CAN communication is done using CAN frames. The structure of these messages
is presented in Figure 5.3, and explained below.

• SOF (Start of Frame): logic 0 to indicate the other nodes (ECUs) the beginning
of a CAN frame;

Sara Costa Pombinho Dissertação de Mestrado

5.Development of an Odometry Solution 45

Figure 5.3: Standard CAN frame structure [67].

• ID (Identifier): identifies the data content;

• RTR (Remote Transmission Request): specifies whether the frames sends data or
requests data from another node;

• Control: indicates the frame type and data length;

• Data: contains up to 8 bytes of data;

• CRC (Cyclic Redundancy Check): ensures data integrity checking for errors;

• ACK (Acknowledge): field used to specify if the node has received the data cor-
rectly;

• EOF (End of Frame): indicates the end of the CAN frame.

In this thesis, the two fields that require greater attention are Message Identifier and
Data. The ID field identifies the nature of the Data and is the first field to look for and
procress.

5.3 Mitsubishi i-MiEV CAN values

The works in [69, 70, 71, 72] indicate the most common informations in the CAN bus of
the Mitsubishi i-MiEV, such as their ID and respective function. For this project, the
more important values are presented in Table 5.1.

Table 5.1: CAN bus values.

Variable ID Bytes used Formula
Speed (V) 0x412 B1 V = B1 m/s
Motor rpm (RPM) 0x298 B6,B7 RPM = (B6× 256 +B7)− 10000 rpm
Steering angle (ψ) 0x236 B0,B1 ψ = (B0×256+B1)−4096

2 °

Sara Costa Pombinho Dissertação de Mestrado

46 5.Development of an Odometry Solution

5.3.1 Development of the First Solution

The first solution used the speed and steering angle from the CAN bus. A problem with
this method was discovered right at the beginning. As seen in the equations above, the
steering angle uses 2 bytes, which gives 0.5 degrees of resolution. Although this value is
suitable for this work, the speed value is not because it only has 1 km/h resolution (0.33
m/s). Since the goal is also to calibrate the Atlascar2 at low speeds, this resolution was
insufficient, so another solution had to be found.

The second solution used the vehicle’s electric motor revolutions with the vehicle’s
wheel radius (r) and gear ratio from the Mitsubishi specifications to calculate the velocity
(V) with the expression (5.1). This method provided a larger resolution which improved
the speed’s resolution.

V =
2πr ×RPM

60×GearRatio
m/s (5.1)

The problem with this method comes in practice. When the vehicle brakes or stops,
the motor still takes time to stop, which produces noise values. Comparing both solu-
tions, we get the result in Figure 5.4.

Figure 5.4: Comparison of the first and second solutions’ velocities

Figure 5.4 shows the imprecision of the first solution, using the speed, and the braking
noises in the beginning and ending from the second one, which uses the RPMs. So, a
new approach was chosen to increase the chance of a more precise result.

Sara Costa Pombinho Dissertação de Mestrado

5.Development of an Odometry Solution 47

Another method is needed and that involves adding a wheel encoder to the Atlascar2’s
back wheel, calculating the speed with the encoder’s pulses, and sending them using a
custom message identifier in the CAN bus.

5.4 Wheel Encoder Installation

The installation of the encoder on the Atlascar2 was based on the 2011 work of Tiago
Rocha [40], mentioned in Section 2.2.6. Most of the parts of that implementation were
used. The changes made were in the part that connects to the wheel’s rim and the
encoder. Also, it was decided to use an encoder with a higher pulse per revolution,
explained next.

5.4.1 Selection of a new Encoder

A new encoder was chosen due to the need of a precise odometry solution at low speeds.
The encoder is the RI32-0/1000ER.14KB (Figure 5.5), which has similar measures to
the one in Tiago’s thesis. Table 5.2 shows the encoder specifications.

Figure 5.5: Encoder RI32-0/1000ER.14KB [73].

Table 5.2: RI32-0/1000ER.14KB specifications [73].

Specifications
Type Incremental
IP rating IP40, IP50
Diameter 30 mm
Shaft Length 10 mm
Shaft Diameter 5 mm
Resolution 1000PPR
Max rotational speed 6000 rpm
No. of Channels 3 channels

For this encoder to operate properly, the vehicle’s RPMs cannot pass the encoder’s

Sara Costa Pombinho Dissertação de Mestrado

48 5.Development of an Odometry Solution

max rotational speed. Knowing that the Atlascar2 wheel diameter (D) is 0.57 m and
the top speed is 130 km/h (2166.6 m/min), we get the following revolutions per minute:

RPM =
V

π ×D
=

2166.6

π × 0.57
= 1210rpm (5.2)

This value is significantly below the encoder max value. Another critical factor is the
encoder’s resolution, which can be calculated using the wheel perimeter and the pulses
per revolution.

distancetraveled =
P

PPR
=
π × 0.57

1000
= 0.0017 m (5.3)

This value means that, for every 0.0017m that the car moves, the velocity value is
updated, giving us a precise value of the traveled distance each instance.

These two factors and having an allowed input voltage of 10-30VDC, which can be
connected to the 12V Atlascar2’s electric panel, make this encoder an adequate compo-
nent for the project.

5.4.2 Assembly of Encoder

This section focuses on the assembly of the encoder. Most of the manufactured parts
are presented in Tiago Rocha’s thesis [40].

Besides the different part that connects to the rim, there is also a minor difference
from Tiago Rocha’s work. The new encoder has a shaft diameter of 5mm, which is
a millimeter smaller than the previous one. The shaft was inserted in a plastic tube
heated to stick to the encoder and secure the part to accommodate that difference
without creating a new piece. The piece’s stud was also added for extra security. This
connection is shown in Figure 5.6.

Figure 5.6: The tube that connects the encoder to the manufactured parts.

Sara Costa Pombinho Dissertação de Mestrado

5.Development of an Odometry Solution 49

The assembly is presented in Figures 5.7 and 5.8 and finally, the final product is
shown in Figure 5.9. The encoder’s cable connects using the same pathway the Sick
DT20 Hi optoelectronic sensors’ back cables, shown in Figure 5.10.

Figure 5.7: Encoder assembly beginning. Figure 5.8: Encoder assembly intermediate.

5.4.3 Development of the Final Solution

Finally, the last solution consists of using the already acquired steering angle from the
CAN bus of the Atlascar2 and the calculated speed from the newly installed encoder’s
pulses. As already mentioned, the encoder pulses need to be acquired and sent to the
CAN bus with a custom message identifier. To count the encoder’s pulses, it was decided
to use an Arduino UNO wifi rev2 (Figure 5.11a) with a CAN-BUS shield (Figure 5.11b).
The Arduino specifications are shown in Table 5.3.

Table 5.3: Arduino UNO wifi rev2 specifications [75].

Specifications
Operating voltage 5V
Input voltage (recommended) 7 - 12V
Digital I/O pins 14 (5 Provide PWM Output)
Analog input pins 6
Clock speed 16 MHz
Dimensions 68.6×53.4 mm
Weight 25 g

Since the encoder has a high resolution, some calculations are necessary to check if
the Arduino is powerful enough to handle the encoder’s data flow. As mentioned before,
the Atlascar2’s top speed is 130 km/h (36.1m/s), and its wheel diameter is 0.57m. The
number of rotations the wheel gives in one second (RPS) at top speed is

Sara Costa Pombinho Dissertação de Mestrado

50 5.Development of an Odometry Solution

Figure 5.9: Encoder assembly in the Atlascar2.

RPS =
V

P
=

36.1

π × 0.57
= 20.16 rps (5.4)

Knowing the RPS and the number of pulses per rotation, which are specified in Table
5.2, it is possible to know the number of pulses per second (PPS).

PPS = PPR×RPS = 1000× 20.16 = 20160 pps (5.5)
For an encoder with two channels the maximum number of interrupts is 4, so this

encoder needs 80640 interrupts per second at its top speed, meaning that the Arduino
needs to run at more than 80 kHz to read all the encoder pulses.

Checking the Arduino’s specifications in Table 5.3, we can see that its clock speed is
16 MHz. However, each instruction and interruption takes time, decreasing the frequency
the Arduino is capable of running. In [77, 78] there is some information about this topic
that concludes that with a simple program this frequency should work.

Furthermore, the next step consists of connecting the Arduino to the encoder. Since
the 12V from the electric panel powers the encoder, its channels vary between 0V and
12V, which is too high because the Arduino operates at 5V. A voltage divider was added
in both channels, as shown in Figure 5.12.

The values of resistors R1 (R1=R2) and R3 (R3=R4) are 1k8W and 1k3W, respec-
tively. The Arduino code was then tested, by moving the car 1.80 m, which is the wheel’s
perimeter, meaning the encoder should give 1000 pulses. The acquired values were 1030
and -6, which is accurate enough since the measuring method is limited since the encoder
is very precise and we used a measuring tape. It was then modified to have triggers on
both channels in change mode, which gives four times more pulses, for better precision
in case the Arduino misses some pulses. The results were 4046 and 2 which dividing by
four show values closer to expected.

Sara Costa Pombinho Dissertação de Mestrado

5.Development of an Odometry Solution 51

Figure 5.10: Sick DT20 Hi optoelectronic back path [74].

(a) Arduino UNO wifi rev2 [75] (b) CAN-BUS SHIELD V2.0 [76]

Figure 5.11: Solution to send the CAN bus data.

5.5 Computation of the odometry

To use the speed and angle of the vehicle described above, a ROS node needs to sub-
scribe to those messages, converting them to odometry values, and publishing them. To
accomplish that, two programs were created. The first one obtains the CAN messages,
converts the encoder pulses and steering angle to the necessary values, and publishes
them as an AckermannDriveStamped message. The second one receives those values
and calculates the odometry, publishing it as an Odometry message. Both of these
messages are standard in ROS.

This implementation of the odometry solution is presented in Figure 5.13, which
shows the necessary data, the Python codes used, and the published and subscribed
topics for this project.

Sara Costa Pombinho Dissertação de Mestrado

52 5.Development of an Odometry Solution

Figure 5.12: Arduino and encoder connection.

5.5.1 Collecting the Ackermann values

The speed and angular velocity are necessary to calculate the odometry, and both can be
obtained using the encoder pulses and steering angle from the CAN-Bus of the vehicle.

To calculate the speed, we need to know the number of pulses of the encoder per
second (PPS), acquired by the difference of pulses dividing by the time, which dividing
by the max PPR of the encoder, converts into the number of rotations per second.
Then, that number can be converted into meters per second by multiplying the wheel’s
perimeter, finding the speed.

PPS =
∆Pulses

∆t
pps (5.6)

RPS =
PPS

PPR
rps (5.7)

V = RPS × P m/s (5.8)
Also, the speed and the steering angle are necessary to calculate the angular velocity.

After receiving the steering angle (ψ) from the CAN using the formula in Table 5.1 and
converting it to radians, we can use the formula (5.9) to obtain the wheel angle (φ), which
divides the steering angle by the steering ratio 16.06, the Mitsubishi’s difference of the
wheel and steering angle that can be obtained in the Mitsubishi i-Miev specifications
[79]. Finally, the angular velocity (ω) is calculated with formula (5.10), where W is the
wheelbase, the distance between the front and back wheels and V is the vehicle’s speed
[64].

φ =
ψ

16.06
rad (5.9)

ω =
V

W
× tan(φ) rad/s (5.10)

These values are sent in the AckermannDriveStamped message to use in the odom-
etry calculation.

Sara Costa Pombinho Dissertação de Mestrado

5.Development of an Odometry Solution 53

Figure 5.13: Diagram of the implemented odometry solution

5.5.2 Computing the odometry

Computing the odometry is rather straightforward, thanks to the ROS tutorials and
ROS community1. With the speed, wheel angle, and the previous positions, we can get
the current (x,y,θ) values with the expression (5.11).xiyi

θi

 =

 xi−1 + V × sin θi−1∆t

yi−1 + V × cos θi−1 ×∆t

θi−1 + ω ×∆t

 (5.11)

Expression (5.11) is approximated, since it approximates an arc to a straight line
and disregards errors and noises, which have consequences in Section 6.2.2.

To integrate these scripts in the software architecture, a launch file was created to
launch the bringup.launch odometry code with the name bringup_odom.launch.
Figure 5.14 shows the rqt_graph of the bringup_odom.launch.

With the software architecture more organized, integrating these two nodes was
easier, which with a system more unnecessarily complex could take a lot more time. The
bringup_odom.launch shows that the bringup file can have a top-level file where
the user can choose which algorithm is to be launched.

1http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom

Sara Costa Pombinho Dissertação de Mestrado

54 5.Development of an Odometry Solution

Figure 5.14: Rqt_graph of the bringup_odom.launch.

Sara Costa Pombinho Dissertação de Mestrado

Chapter 6

Tests and Results

This chapter has two types of results: From the software architecture results and from
the odometry system. The software architecture was tested following the Atlascar2’s
documentation especially prepared where the results can be seen in video. The odom-
etry solution is tested using simulated data to compare the algorithm results with the
ackermann controller, and with real data taken from the CAN bus, which is compared
with the estimated trajectory made by the vehicle.

6.1 Software Architecture
The software architecture results cover the processing unit and the architecture perfor-
mance. The processing unit is evaluated by comparing the Atlascar2’s computer booting
time before and after the intervention. Concerning the software architecture, although
there isn’t prior information about the system before, videos of the system working were
taken to show its performance and ease to use.

6.1.1 Processing Unit Evaluation

At the start of this project, the boot time of the Atlascar2 was checked using the
system-analize command. This gave the following output:

1 Startup finished in 2.079s (kernel) + 5min 17.273s (userspace) = 5min
19.353s graphical.target reached after 5min 17.236s in userspace

This value is a very big time for a system to boot. The main cause for this was that
the Ubuntu was trying to raise the network interfaces during those 5 minutes. To prevent
that, the networking.service was edited, changing the TimeoutStartSec from
5 minutes to 5 seconds. After this step, another system-analize was made, which
gave the output:

1 Startup finished in 2.131s (kernel) + 1min 45.568s (userspace) = 1min
47.699s graphical.target reached after 1min 41.196s in userspace

Being almost 4 minutes faster. Although it is already a good value, the timeout from
the start and stop jobs was also configurated in the system.conf file, changing the
DefaultTimeoutStartSec from 90s to 5s. This gave the final output:

55

56 6.Tests and Results

1 Startup finished in 2.124s (kernel) + 18.435s (userspace) = 20.560s
graphical.target reached after 18.417s in userspace

Comparing the initial and final values, the booting time is now approximately 5 min-
utes faster than before. The advantage of this change is giving the user the best possible
conditions to work without losing time when booting the Atlascar2’s main computer.

6.1.2 Performance of the Software Architecture

To show the Software Architecture’s performance, two videos were made following the
Atlascar2’s README file, which is included in Appendix A.

Launching the System

The improvement with the system’s launch is the capability of choosing which sensor
the user wants to see, not needing to comment code or change lower-level files by hand.
Launching the system can be seen in the following link: https://www.youtube.
com/watch?v=dkipOMLDfOE

Testing the Sensors

To test the sensors one of a time, although the user could only get one argument to true
when launching the system, the documentation gives the possibility to use the lower
level files, which gives more versatility to the system. A file was created for both the
cameras and 2D LiDARs, where the users only need to change a variable to choose if
they want the left or right sensor. Testing the sensors can be seen in the following link:
https://www.youtube.com/watch?v=Vudxz4I5coU

6.2 Odometry

The odometry results can be divided into two sections: the performance in the simulation
and the performance in the real vehicle. The first shows the accuracy of the odometry
values using simulated data, by modifying the ackermann_steering _controller
from the ros_controllers package. The second shows the algorithm performance
using the Atlascar2’s CAN bus data.

6.2.1 Performance with the Simulation Values

To acquire data to compare the values between the algorithm and the simulation, the user
publishes a Twist message1 in the ackermann_steering_controller/cmd_vel
topic, using the robot steering from the rqt ROS tool. Receiving those values, the
modified controller publishes two topics:
The /ackermann_steering_controller/ackermann_drive and the /Ackermann
_steering_controller/odom. The python script subscribes to the /ackermann_drive

1https://docs.ros.org/en/diamondback/api/geometry_msgs/html/msg/Twist.html

Sara Costa Pombinho Dissertação de Mestrado

https://www.youtube.com/watch?v=dkipOMLDfOE
https://www.youtube.com/watch?v=dkipOMLDfOE
https://www.youtube.com/watch?v=Vudxz4I5coU

6.Tests and Results 57

which publishes the calculated odometry in the /odom topic, with a different transfor-
mation to avoid overlapping data. Figures 6.1 and 6.2 show the created simulation and
a diagram showing the subscribed/published topics for this comparison, respectively.

Figure 6.1: Atlascar2 odometry simulation.

Both odometry topics were recorded simultaneously and performed in the same tra-
jectory, with the car moving 30, 50 and 100 meters straight, moving in a circle and doing
a random trajectory. Figure 6.3 shows the traveled route and Figures 6.4 and 6.5 show
the difference between the values of the controller code and the created python script
ackermann_to_odom, developed in Section 5.5.2 and included in Appendix D, during
the course. The rest of the Figures from the tests can be seen in Appendix F. Rviz shows
the comparison side-by-side (Figure 6.6).

To summarize, Table 6.1 shows the biggest difference between the tests’ x and y
values. Overall, the values do not much: the longest error is 0.023 m, and looking at
the difference pictures we can notice that, although odometry usually has a cumulative
error, this does not happen in the simulation. The difference is primarily due to the fact
that the Ackermann controller uses integration methods such as the Runge Kutta and
the exact integration method to improve the accuracy of the values, which produces the
observed difference [80].

Table 6.1: Comparison between odometry values in six experiments.

30m forward 100m forward 200m forward
x (m) y (m) x (m) y (m) x (m) y (m)
0.0099 8.63× 10−5 0.0107 1.03× 10−4 0.0096 1.07× 10−4

0.20 rad/s turn 0.75 rad/s turn Random course
x (m) y (m) x (m) y (m) x (m) y (m)
0.0193 0.0144 0.0229 0.0174 0.0146 0.0130

Sara Costa Pombinho Dissertação de Mestrado

58 6.Tests and Results

Figure 6.2: Comparison of the odometry topics using the simulation.

6.2.2 Performance with Real Vehicle Data

The created algorithm was tested in the Crasto’s parking lot (Figure 6.7), where with
types of tests were performed. The first test varied velocities from 5, 10 and 15 km/h,
with the same starting point and travel the same distance. The second test was travelling
two paths with the vehicle: a simple path and a more complex course in the parking lot
and stopping in the same spot, to check the performance of the received values.

For the first test, the distance was measured using a measuring tape on one of the
parking spots. Knowing the parking space width we counted the number of spots the
car travelled and got the distance. Since one parking spot measures 2.44 m and the car
travelled 15 parking spots, the final distance the Atlascar2 moved was 36.6 m.

In Table 6.2, we can see that this value is inaccurate since the 2 m difference is a
considerable distance in such a short course. However, these values are fairly precise
because they are all approximately 38 m, which shows that varying the velocity does
not influence the odometry values, at least at low speeds.

Table 6.2: Comparing travelled distances using different velocities.

Measured Distance Vehicle Velocity Travelled
Distance

36.6 m 5 km/h
10 km/h
15 km/h

38.01 m
37.98 m
38.06 m

The second test involved travelling a path which started and ended in the same
stop, to observe if the odometry values received would stop close or far away from the

Sara Costa Pombinho Dissertação de Mestrado

6.Tests and Results 59

Figure 6.3: 0.75 rad/s trajectory with the ackermann controller and python script.

starting point. Figures 6.8 and 6.9 show the results from both courses. Although these
values are weak, it was expected since the odometry solution is not calibrated, which
consists of the identification of a set of kinematic parameters that allow reconstructing
the vehicle’s absolute position and orientation [81]. The green line in Figures 6.8 and
6.9 show a very simple calibration, which was possible by changing the wheel’s radius
and the vehicle’s wheelbase from the previous values without the calibration, which
are considered systematic errors. With a simple route, like the one in Figure 6.8, this
calibration looks moderately good, since the vehicle gets close to the starting point.
However, with more complex routes, this simple calibration no longer works. This topic
is going to be discussed in Section 7, since it is a vital matter to obtain a fully functional
odometry algorithm.

Sara Costa Pombinho Dissertação de Mestrado

60 6.Tests and Results

Figure 6.4: 0.75 rad/s trajectory difference of x values.

Figure 6.5: 0.75 rad/s trajectory difference of y values.

Sara Costa Pombinho Dissertação de Mestrado

6.Tests and Results 61

(a) Odometry calculated with the
python script

(b) Odometry calculated with the ack-
ermann controller

Figure 6.6: Comparison side-by-side of the odometry values from the controller and the
python script

Figure 6.7: Atlascar2 in the Crastro’s parking lot.

Sara Costa Pombinho Dissertação de Mestrado

62 6.Tests and Results

Figure 6.8: Odometry values from the Atlascar2 with the first route. Results presented
using the Mapviz application.

Figure 6.9: Odometry values from the Atlascar2 with the second route. Results presented
using the Mapviz application.

Sara Costa Pombinho Dissertação de Mestrado

Chapter 7

Conclusions and Future Work

This chapter is a summary of the work developed in the matter of Atlascar2’s software
architecture and the development of an odometry solution. Based on these conclusions
a few proposals for future works using Atlascar2 are presented.

7.1 Conclusions

The two primary purposes of this project were the improvement of the Atlascar2’s soft-
ware architecture and the development of an odometry solution.

Regarding the software architecture, this work presents an update to the previous
architecture. The files necessary to launch the system are more efficient, the processing
unit is faster and updated, and the required documentation was created to understand
the system. The vehicle’s current status is crucial for the better development of AD and
ADAS projects.

In terms of developing the odometry solution, this work presents a solution that
sends the needed values to the CAN Bus, which is a practical and efficient way to send
the required data. The odometer installation was completed, and the solution already
sends the values and can create an odometry trajectory, which can be very useful for
other AD projects when adequately calibrated. The integration of the odometry was also
accomplished since using ROS gave a compact solution without needing extra software
and offered new ideas for future work.

Broadly, the initially defined goals have been met. This work led to an update on the
Atlascar2’s architecture which functions well, without errors that used to occur often.
The development of the odometry solution was completed and tested, which can provide
essential information for the Atlascar2 navigation module in the future.

The code and the Atlascar2’s documentation can be seen in the Atlascar2 repository
in https://github.com/lardemua/atlascar2 and most of the developed work
is documented in the opened and closed repository issues https://github.com/
lardemua/atlascar2/issues.

7.2 Future Work

A wide variety of work can be done following this thesis. The camera calibration was
not performed in the software architecture, which is necessary for works involving per-

63

https://github.com/lardemua/atlascar2
https://github.com/lardemua/atlascar2/issues.
https://github.com/lardemua/atlascar2/issues.

64 7.Conclusions and Future Work

ception and navigation algorithms. Regarding the launch files, with the development of
more algorithms, a new launch file or even changing the bringup.launch could be
interesting, providing arguments where the user could choose which node to launch.

Regarding future work in the odometry solution, the essential is its calibration. The
implemented odometry has two types of errors: systematic and non-systematic errors
[82]. The odometry calibration can improve on the systematic errors, which are corre-
lated with incorrect odometry parameters such as wheel misalignment, unequal wheel
diameter, effective wheelbase and length between the front and rear axle [83]. For the
non-systematic, also called random errors, calibration can’t tackle, and so, to improve
the navigation method, the odometry can be integrated with the GPS and IMU.

Sara Costa Pombinho Dissertação de Mestrado

Bibliography

[1] Shaoshan Liu, Liyun Li, Jie Tang, Shuang Wu, and Jean-Luc Gaudiot. Creating
autonomous vehicle systems. Synthesis Lectures on Computer Science, 6(1):i–186,
2017.

[2] SAE. Sae levels of driving automation refined for clarity and international audience.
May 2021. Last accessed 23/01/2022.

[3] Synopsis. The 6 levels of vehicle autonomy explained. https://www.synopsys.
com/automotive/autonomous-driving-levels.html, 2020. Last accessed
21/01/2022.

[4] Group of Automation and Robotics. Atlascar project. http://atlas.web.ua.
pt/index.html, 2012.

[5] Sagar Behere and Martin Törngren. A functional reference architecture for au-
tonomous driving. Information and Software Technology, 73:136–150, 2016.

[6] Alexandru Constantin Serban, Erik Poll, and Joost Visser. A standard driven
software architecture for fully autonomous vehicles. In 2018 IEEE International
Conference on Software Architecture Companion (ICSA-C), pages 120–127, April
2018.

[7] ISO 26262-1:2018. Road vehicles functional safety. https://www.iso.org/
standard/68383.html, 12 2018.

[8] Van Chan Ngo. https://channgo2203.github.io/av_software/, 07 2020.

[9] Scott Pendleton, Hans Andersen, Xinxin Du, Xiaotong Shen, Malika Meghjani, You
Eng, Daniela Rus, and Marcelo Jr. Perception, planning, control, and coordination
for autonomous vehicles. Machines, 5:6, 02 2017.

[10] Tilo Linz. Testing Autonomous Systems, pages 61–75. Springer International Pub-
lishing, Cham, 2020.

[11] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei
Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann,
Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang, Sven Stro-
hband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen, Charles Markey,
Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessandrini, Gary Bradski,
Bob Davies, Scott Ettinger, Adrian Kaehler, Ara Nefian, and Pamela Mahoney.
Stanley: The Robot That Won the DARPA Grand Challenge, pages 1–43. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

65

https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://www.synopsys.com/automotive/autonomous-driving-levels.html
http://atlas.web.ua.pt/index.html
http://atlas.web.ua.pt/index.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html
https://channgo2203.github.io/av_software/

66 BIBLIOGRAPHY

[12] Erann Gat, R. Peter Bonnasso, Robin Murphy, and Aaai Press. On three-layer
architectures. In Artificial Intelligence and Mobile Robots, pages 195–210. AAAI
Press, 1997.

[13] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri Dolgov,
Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe Hoffmann, Burkhard Huhnke,
Doug Johnston, Stefan Klumpp, Dirk Langer, Anthony Levandowski, Jesse Levin-
son, Julien Marcil, David Orenstein, Johannes Paefgen, Isaac Penny, Anna Petro-
vskaya, Mike Pflueger, Ganymed Stanek, David Stavens, Antone Vogt, and Sebas-
tian Thrun. Junior: The Stanford Entry in the Urban Challenge, pages 91–123.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[14] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,
M. N. Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, Michele
Gittleman, Sam Harbaugh, Martial Hebert, Thomas M. Howard, Sascha Kolski,
Alonzo Kelly, Maxim Likhachev, Matt McNaughton, Nick Miller, Kevin Peterson,
Brian Pilnick, Raj Rajkumar, Paul Rybski, Bryan Salesky, Young-Woo Seo, Sanjiv
Singh, Jarrod Snider, Anthony Stentz, William “Red” Whittaker, Ziv Wolkowicki,
Jason Ziglar, Hong Bae, Thomas Brown, Daniel Demitrish, Bakhtiar Litkouhi, Jim
Nickolaou, Varsha Sadekar, Wende Zhang, Joshua Struble, Michael Taylor, Michael
Darms, and Dave Ferguson. Autonomous Driving in Urban Environments: Boss and
the Urban Challenge, pages 1–59. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[15] Dave Ferguson, Thomas M. Howard, and Maxim Likhachev. Motion Planning in
Urban Environments, pages 61–89. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[16] Christopher R. Baker, David Ferguson, and John M. Dolan. Robust mission execu-
tion for autonomous urban driving. In Proceedings of 10th International Conference
on Intelligent Autonomous Systems (IAS ’08), pages 155 – 163, July 2008.

[17] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, and Myoungho Sunwoo.
Development of autonomous carpart i: Distributed system architecture and devel-
opment process. IEEE Transactions on Industrial Electronics, 61(12):7131–7140,
2014.

[18] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, and Myoungho Sunwoo.
Development of autonomous carpart ii: A case study on the implementation of an
autonomous driving system based on distributed architecture. IEEE Transactions
on Industrial Electronics, 62(8):5119–5132, 2015.

[19] Wuwei Chen, Hansong Xiao, Qidong Wang, Linfeng Zhao, and Maofei Zhu. Inte-
grated vehicle dynamics and control. John Wiley & Sons, 2016.

[20] AUTOSAR. General information about autosar. https://www.autosar.org/
about/, 2022. Last accessed 8/02/2022.

[21] Andras Kokuti, Ahmed Hussein, Arturo de la Escalera, and Fernando Garcia.
Market-based approach for cooperation and coordination among multiple au-
tonomous vehicles. pages 534–539, 10 2017.

Sara Costa Pombinho Dissertação de Mestrado

https://www.autosar.org/about/
https://www.autosar.org/about/

BIBLIOGRAPHY 67

[22] David Martín Gómez, Pablo Marín, Ahmed Hussein, Arturo de la Escalera, and J.M.
Armingol. ROS-based Architecture for Autonomous Intelligent Campus Automobile
(iCab), pages 257–272. 01 2016.

[23] Vitor Santos, Jorge Almeida, E. Ávila, D. Gameiro, Miguel Oliveira, R. Pascoal,
R. Sabino, and Procópio Stein. Atlascar - technologies for a computer assisted
driving system on board a common automobile. pages 1421 – 1427, 10 2010.

[24] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardization in mobile
robot programming: the carnegie mellon navigation (carmen) toolkit. In Proceedings
2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2003) (Cat. No.03CH37453), volume 3, pages 2436–2441 vol.3, 2003.

[25] Mohammad Mozaffari, Ali Broumandan, Kyle O’Keefe, and Gérard Lachapelle.
Weak gps signal acquisition using antenna diversity. NAVIGATION, 62(3):205–218,
2015.

[26] Daniele Borio, Laura Camoriano, and Letizia Lo Presti. Impact of gps acquisition
strategy on decision probabilities. IEEE Transactions on Aerospace and Electronic
Systems, 44(3):996–1011, 2008.

[27] Tomislav Kos, Ivan Markezic, and Josip Pokrajcic. Effects of multipath reception
on gps positioning performance. In Proceedings ELMAR-2010, pages 399–402, 2010.

[28] Shunsuke Miura, Shoma Hisaka, and Shunsuke Kamijo. Gps multipath detection
and rectification using 3d maps. In 16th International IEEE Conference on Intelli-
gent Transportation Systems (ITSC 2013), pages 1528–1534, 2013.

[29] Sherif A. S. Mohamed, Mohammad-Hashem Haghbayan, Tomi Westerlund, Jukka
Heikkonen, Hannu Tenhunen, and Juha Plosila. A survey on odometry for au-
tonomous navigation systems. IEEE Access, 7:97466–97486, 2019.

[30] Shaojiang Zhang, Yanning Guo, Qiang Zhu, and Zhiyuan Liu. Lidar-imu and wheel
odometer based autonomous vehicle localization system. In 2019 Chinese Control
And Decision Conference (CCDC), pages 4950–4955, 2019.

[31] Martin BROSSARD and Silvère BONNABEL. Learning wheel odometry and imu
errors for localization. In 2019 International Conference on Robotics and Automa-
tion (ICRA), pages 291–297, 2019.

[32] CHARLES PAO. What is an imu sensor? https://www.ceva-dsp.com/
ourblog/what-is-an-imu-sensor/, 2018. Last accessed 11/02/2022.

[33] Eric B. Quist, Peter C. Niedfeldt, and Randal W. Beard. Radar odometry
with recursive-ransac. IEEE Transactions on Aerospace and Electronic Systems,
52(4):1618–1630, 2016.

[34] Mostafa Mostafa, Shady Zahran, Adel Moussa, Naser El-Sheimy, and Abu Sesay.
Radar and visual odometry integrated system aided navigation for uavs in gnss
denied environment. Sensors, 18(9), 2018.

Sara Costa Pombinho Dissertação de Mestrado

https://www.ceva-dsp.com/ourblog/what-is-an-imu-sensor/
https://www.ceva-dsp.com/ourblog/what-is-an-imu-sensor/

68 BIBLIOGRAPHY

[35] Antonio Scannapieco, Alfredo Renga, Giancarmine Fasano, and Antonio Moccia.
Experimental analysis of radar odometry by commercial ultralight radar sensor for
miniaturized uas. Journal of Intelligent Robotic Systems, 90, 06 2018.

[36] LeddarTech. Why lidar. https://leddartech.com/why-lidar/, 2022. Last
accessed 13/02/2022.

[37] Mohammad OA Aqel, Mohammad H Marhaban, M Iqbal Saripan, and Napsiah Bt
Ismail. Review of visual odometry: types, approaches, challenges, and applications.
SpringerPlus, 5(1):1–26, 2016.

[38] Salim Sirtkaya, Burak Seymen, and A. Aydin Alatan. Loosely coupled kalman
filtering for fusion of visual odometry and inertial navigation. In Proceedings of the
16th International Conference on Information Fusion, pages 219–226, 2013.

[39] Giovanni Cioffi and Davide Scaramuzza. Tightly-coupled fusion of global po-
sitional measurements in optimization-based visual-inertial odometry. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5089–5095, 2020.

[40] Tiago Nunes da Rocha. Piloto automático para controlo e manobras de navegação
do atlascar. Master’s thesis, Universidade de Aveiro, 2011.

[41] Ricardo Luís da Mota Silva. Removable odometry unit for vehicles with ackerman
steering. Master’s thesis, Universidade de Aveiro, 2014.

[42] Jorge Manuel Soares de Almeida. Active Tracking of Dynamic Multivariate Agents
using Vectorial Range Data. PhD thesis, Universidade de Aveiro, 2016.

[43] Chris Urmson, Joshua Anhalt, Daniel Bartz, Michael Clark, Tugrul Galatali,
Alexander Gutierrez, Sam Harbaugh, Josh Johnston, Hiroki “Yu” Kato, Phillip
Koon, William Messner, Nick Miller, Aaron Mosher, Kevin Peterson, Charlie Ra-
gusa, David Ray, Bryon Smith, Jarrod Snider, Spencer Spiker, Josh Struble, Jason
Ziglar, and William “Red” Whittaker. A Robust Approach to High-Speed Navigation
for Unrehearsed Desert Terrain, pages 45–102. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[44] Andrew Bacha, Cheryl Bauman, Ruel Faruque, Michael Fleming, Chris Terwelp,
Charles Reinholtz, Dennis Hong, Alfred Wicks, Thomas Alberi, David Anderson,
Stephen Cacciola, Patrick Currier, Aaron Dalton, Jesse Farmer, Jesse Hurdus,
Shawn Kimmel, Peter King, Andrew Taylor, David Covern, and Mike Webster.
Odin: Team victortango’s entry in the darpa urban challenge. J. Field Robotics,
25:467–492, 01 2008.

[45] John Leonard, Jonathan How, Seth Teller, Mitch Berger, Stefan Campbell, Gaston
Fiore, Luke Fletcher, Emilio Frazzoli, Albert Huang, Sertac Karaman, Olivier Koch,
Yoshiaki Kuwata, David Moore, Edwin Olson, Steve Peters, Justin Teo, Robert
Truax, Matthew Walter, David Barrett, Alexander Epstein, Keoni Maheloni, Katy
Moyer, Troy Jones, Ryan Buckley, Matthew Antone, Robert Galejs, Siddhartha
Krishnamurthy, and Jonathan Williams. A Perception-Driven Autonomous Urban
Vehicle, pages 163–230. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Sara Costa Pombinho Dissertação de Mestrado

https://leddartech.com/why-lidar/

BIBLIOGRAPHY 69

[46] Pablo Marín, Ahmed Hussein, David Martín Gómez, Fernando Garcia, Arturo de la
Escalera, and J.M. Armingol. Ros-based architecture for autonomous vehicles. 11
2016.

[47] Motional. Motional home page. https://motional.com/, 2021. Last accessed
29/01/2022.

[48] Waymo. Waymo driver. https://waymo.com/waymo-driver/, 2019. Last
accessed 29/01/2022.

[49] Tesla. About autopilot. https://www.tesla.com/ownersmanual/model3/
en_eu/GUID-EDA77281-42DC-4618-98A9-CC62378E0EC2.html, 2022.
Last accessed 29/01/2022.

[50] José Diogo Madureira Correia. Visual and depth perception unit for atlascar2.
Master’s thesis, Universidade de Aveiro, 2017.

[51] Kenny Kuchera. Canalyze - native can interface for linux. https://kkuchera.
github.io/canalyze/, 06 2017.

[52] Automation. Point grey announces flea3 fl3-ge-28s4 2.8 megapixel digital cameras.
2020. Last accessed 20/02/2022.

[53] SICK. 2d lidar sensors lms1xx. https://www.sick.com/ag/en/
detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/
c/g91901, 2022. Last accessed 19/02/2022.

[54] SICK. 3d lidar sensors ld-mrs. https://www.sick.com/fi/en/
detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/
c/g91913, 2022. Last accessed 19/02/2022.

[55] Novatel. Span-igm user manual. https://portal.hexagon.com/public/
Novatel/assets/Documents/Manuals/OM-20000141, 2 2020.

[56] Novatel. Gps-702-gg/gps-701-gg/gps-702-gg-n antenna. https://
portal.hexagon.com/public/Novatel/assets/Documents/Manuals/
om-20000095, 5 2020.

[57] Nexus. P-1308h3/hr3. https://nexus-solutions.pt/sistemas/
servidores/servidor-nexus-p-1308h3hr3/, 2014.

[58] M.S. Achmad, Gigih Priyandoko, R. Roali, and Mohd Daud. Tele-operated mo-
bile robot for 3d visual inspection utilizing distributed operating system platform.
International Journal of Vehicle Structures and Systems, 9, 09 2017.

[59] The construct. [ros in 5 mins] 025 what is rviz? https://www.
theconstructsim.com/ros-5-mins-025-rviz/, 9 2019.

[60] Sick. Sopas engineering tool. https://www.sick.com/cn/en/
sopas-engineering-tool/p/p367244, 2022.

[61] Teledyne Flir. Flycapture sdk. https://www.flir.com/products/
flycapture-sdk/, 2022.

Sara Costa Pombinho Dissertação de Mestrado

https://motional.com/
https://waymo.com/waymo-driver/
https://www.tesla.com/ownersmanual/model3/en_eu/GUID-EDA77281-42DC-4618-98A9-CC62378E0EC2.html
https://www.tesla.com/ownersmanual/model3/en_eu/GUID-EDA77281-42DC-4618-98A9-CC62378E0EC2.html
https://kkuchera.github.io/canalyze/
https://kkuchera.github.io/canalyze/
https://www.sick.com/ag/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/c/g91901
https://www.sick.com/ag/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/c/g91901
https://www.sick.com/ag/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/c/g91901
https://www.sick.com/fi/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/c/g91913
https://www.sick.com/fi/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/c/g91913
https://www.sick.com/fi/en/detection-and-ranging-solutions/3d-lidar-sensors/ld-mrs/c/g91913
https://portal.hexagon.com/public/Novatel/assets/Documents/Manuals/OM-20000141
https://portal.hexagon.com/public/Novatel/assets/Documents/Manuals/OM-20000141
https://portal.hexagon.com/public/Novatel/assets/Documents/Manuals/om-20000095
https://portal.hexagon.com/public/Novatel/assets/Documents/Manuals/om-20000095
https://portal.hexagon.com/public/Novatel/assets/Documents/Manuals/om-20000095
https://nexus-solutions.pt/sistemas/servidores/servidor-nexus-p-1308h3hr3/
https://nexus-solutions.pt/sistemas/servidores/servidor-nexus-p-1308h3hr3/
https://www.theconstructsim.com/ros-5-mins-025-rviz/
https://www.theconstructsim.com/ros-5-mins-025-rviz/
https://www.sick.com/cn/en/sopas-engineering-tool/p/p367244
https://www.sick.com/cn/en/sopas-engineering-tool/p/p367244
https://www.flir.com/products/flycapture-sdk/
https://www.flir.com/products/flycapture-sdk/

70 BIBLIOGRAPHY

[62] Frontier Business. What is a private ip address and how can it ben-
efit your business? https://enterprise.frontier.com/blog/
What-Is-a-Private-IP-Address-and-How-Can-It-Benefit-Your-Business,
6 2018.

[63] Group of Automation and Robotics. Atlascar2 manual. https://github.com/
lardemua/atlascar2, 2022.

[64] Robert Eisele. Ackerman steering. https://www.xarg.org/book/
kinematics/ackerman-steering/, 2022.

[65] Michael Muter and Naim Asaj. Entropy-based anomaly detection for in-vehicle
networks. IEEE Intelligent Vehicles Symposium, Proceedings, pages 1110–1115, 06
2011.

[66] Zhenwang Li and Shen. Anomaly detection of can bus messages using a deep neural
network for autonomous vehicles. Applied Sciences, 9:3174, 08 2019.

[67] Martin Falch. Can bus explained - a simple intro [2022]. https://www.
csselectronics.com/pages/can-bus-simple-intro-tutorial, 4 2022.

[68] Staff Writer. What is can bus protocol? https://www.totalphase.com/
blog/2019/08/5-advantages-of-can-bus-protocol/, 9 2020.

[69] Pritt Laes. Mitsubishi i-miev obd-ii pid documentation. https://github.com/
plaes/i-miev-obd2, 03 2013.

[70] Mitsubishi I-Miev Forum. Decyphering imiev and ion car-can message
data. http://myimiev.com/forum/viewtopic.php?f=25&t=763&hilit=
send+messages+to+can/, 05 2013.

[71] Diogo Augusto Rodrigues de Figueiredo. Remote control for operation and driving
of atlascar2. Master’s thesis, Universidade de Aveiro, 2020.

[72] Luís Cristovão. Interface obd para o atlascar2 e monitorização do seu estado. Tech-
nical report, Universidade de Aveiro, 2018.

[73] Farnell. Ri32-0/1000er.14kb. https://pt.farnell.com/hengstler/
ri32-0-1000er-14kb/encoder-rotary/dp/615985, 2022.

[74] Armindo Silva. Inclinómetro planar de precisão para o atlascar-2. Technical report,
Universidade de Aveiro, 6 2016.

[75] ARDUINO. Arduino uno wifi rev2. https://store.arduino.cc/products/
arduino-uno-wifi-rev2, 2021.

[76] botnroll. Can-bus shield v2.0. https://www.botnroll.com/pt/arduinos/
2470-can-bus-shield-v20.html, 2022.

[77] Arduino Community. Max interrupts / second. https://forum.arduino.cc/
t/max-interrupts-second/357256/8, 01 2016.

Sara Costa Pombinho Dissertação de Mestrado

https://enterprise.frontier.com/blog/What-Is-a-Private-IP-Address-and-How-Can-It-Benefit-Your-Business
https://enterprise.frontier.com/blog/What-Is-a-Private-IP-Address-and-How-Can-It-Benefit-Your-Business
https://github.com/lardemua/atlascar2
https://github.com/lardemua/atlascar2
https://www.xarg.org/book/kinematics/ackerman-steering/
https://www.xarg.org/book/kinematics/ackerman-steering/
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.totalphase.com/blog/2019/08/5-advantages-of-can-bus-protocol/
https://www.totalphase.com/blog/2019/08/5-advantages-of-can-bus-protocol/
https://github.com/plaes/i-miev-obd2
https://github.com/plaes/i-miev-obd2
http://myimiev.com/forum/viewtopic.php?f=25&t=763&hilit=send+messages+to+can/
http://myimiev.com/forum/viewtopic.php?f=25&t=763&hilit=send+messages+to+can/
https://pt.farnell.com/hengstler/ri32-0-1000er-14kb/encoder-rotary/dp/615985
https://pt.farnell.com/hengstler/ri32-0-1000er-14kb/encoder-rotary/dp/615985
https://store.arduino.cc/products/arduino-uno-wifi-rev2
https://store.arduino.cc/products/arduino-uno-wifi-rev2
https://www.botnroll.com/pt/arduinos/2470-can-bus-shield-v20.html
https://www.botnroll.com/pt/arduinos/2470-can-bus-shield-v20.html
https://forum.arduino.cc/t/max-interrupts-second/357256/8
https://forum.arduino.cc/t/max-interrupts-second/357256/8

BIBLIOGRAPHY 71

[78] Majenko. Arduino uno’s timer maximum frequency using
timer compare interrupt, not timer output pins (e.g. oc0a).
https://arduino.stackexchange.com/questions/83426/
arduino-unos-timer-maximum-frequency-using-timer-compare-interrupt-not-timer-o,
04 2021.

[79] Car and Driver. 2012 mitsubishi i-miev se 4dr hb features and specs.
https://www.caranddriver.com/mitsubishi/i-miev/specs/2012/
mitsubishi_i-miev_mitsubishi-i-miev_2012, 2016.

[80] GIANNI A. DI CARO. Lecture 8: Kinematics equations odometry, dead reckon-
ing. https://web2.qatar.cmu.edu/~gdicaro/16311-Fall17/slides/
16311-8-Kinematics-DeadReckoning.pdf.

[81] G. Antonelli, S. Chiaverini, and G. Fusco. A calibration method for odometry
of mobile robots based on the least-squares technique: theory and experimental
validation. IEEE Transactions on Robotics, 21(5):994–1004, 2005.

[82] Johann Borenstein, Hobart R. Everett, and Liqiang Feng. Where am i?" sensors
and methods for mobile robot positioning. 1996.

[83] Kooktae Lee and Woojin Chung. Calibration of kinematic parameters of a car-like
mobile robot to improve odometry accuracy. In 2008 IEEE International Conference
on Robotics and Automation, pages 2546–2551, 2008.

Sara Costa Pombinho Dissertação de Mestrado

https://arduino.stackexchange.com/questions/83426/arduino-unos-timer-maximum-frequency-using-timer-compare-interrupt-not-timer-o
https://arduino.stackexchange.com/questions/83426/arduino-unos-timer-maximum-frequency-using-timer-compare-interrupt-not-timer-o
https://www.caranddriver.com/mitsubishi/i-miev/specs/2012/mitsubishi_i-miev_mitsubishi-i-miev_2012
https://www.caranddriver.com/mitsubishi/i-miev/specs/2012/mitsubishi_i-miev_mitsubishi-i-miev_2012
https://web2.qatar.cmu.edu/~gdicaro/16311-Fall17/slides/16311-8-Kinematics-DeadReckoning.pdf
https://web2.qatar.cmu.edu/~gdicaro/16311-Fall17/slides/16311-8-Kinematics-DeadReckoning.pdf

72 BIBLIOGRAPHY

Sara Costa Pombinho Dissertação de Mestrado

Appendix A

Project’s README information

A.1 Core packages

The core packages presents the essential links for the drivers of this project.

Figure A.1: Core packages for the Atlascar2

A.2 Turning on the vehicle and its components

Shows the necessary steps to turn on the vehicle and its components.

73

74 A.Project’s README information

Figure A.2: Steps to turn on the vehicle

Sara Costa Pombinho Dissertação de Mestrado

A.Project’s README information 75

Figure A.3: Steps to turn on the vehicle

A.3 Configuring the IP addresses

Check if the static addresses and the ethernet cables are connected.

Sara Costa Pombinho Dissertação de Mestrado

76 A.Project’s README information

Figure A.4: Configuring IP addresses of the switches

Sara Costa Pombinho Dissertação de Mestrado

A.Project’s README information 77

Figure A.5: Configuring IP addresses of the switches

A.4 Connecting to the Atlascar2 with remote work

Using the teamwork viewer to use the atlascar2 with remote work.

Figure A.6: Remote work configuration

Sara Costa Pombinho Dissertação de Mestrado

78 A.Project’s README information

A.5 Testing the sensors

Figure A.7: Testing the sensors

Sara Costa Pombinho Dissertação de Mestrado

A.Project’s README information 79

A.6 Launching the system

Figure A.8: Launching the system

Sara Costa Pombinho Dissertação de Mestrado

80 A.Project’s README information

Sara Costa Pombinho Dissertação de Mestrado

Appendix B

Arduino IDE code

Listing B.1: Arduino code
1 #include <SPI.h>
2
3 #define encoder0PinA 5
4 #define encoder0PinB 3
5 #define PI 3.1415926535897932384626433832795
6 #define CAN_2515
7 // #define CAN_2518FD
8
9 // Set SPI CS Pin according to your hardware

10 // For Arduino MCP2515 Hat:
11 // the cs pin of the version after v1.1 is default to D9
12 // v0.9b and v1.0 is default D10
13 const int SPI_CS_PIN = 9;
14 const int CAN_INT_PIN = 2;
15
16 #ifdef CAN_2515
17 #include "mcp2515_can.h"
18 mcp2515_can CAN(SPI_CS_PIN); // Set CS pin
19 #endif
20
21
22 volatile long encoder0Pos=0;
23 volatile long newposition;
24 volatile long oldposition = 0;
25 long newtime;
26 long oldtime = 0;
27
28
29 void setup() { //Setup runs once//
30
31 pinMode(encoder0PinA, INPUT);
32 pinMode(encoder0PinB, INPUT);

81

82 B.Arduino IDE code

33 digitalWrite(encoder0PinA, HIGH);
34 digitalWrite(encoder0PinB, HIGH);
35 // checking the four pulses from the encoder
36 attachInterrupt(encoder0PinA, doEncoderA, CHANGE); //Interrupt

trigger mode: RISING
37 attachInterrupt(encoder0PinB, doEncoderB, CHANGE); //Interrupt

trigger mode: RISING
38
39 // connection to the CAN bus
40 SERIAL_PORT_MONITOR.begin(115200);
41 while(!Serial){};
42 //
43 while (CAN_OK != CAN.begin(CAN_500KBPS)) { // init can bus :

baudrate = 500k
44 SERIAL_PORT_MONITOR.println("CAN init fail, retry...");
45 delay(100);
46 }
47 SERIAL_PORT_MONITOR.println("CAN init ok!");
48 }
49
50
51 byte signed stmp[8] = {0, 0, 0, 0, 0, 0, 0, 0};
52 void loop() { //Loop runs forever//
53
54 newposition = encoder0Pos;
55 newtime = millis();
56 if (newtime - oldtime >= 10) {
57 // encoder ticks
58 SERIAL_PORT_MONITOR.print ("position = ");
59 SERIAL_PORT_MONITOR.println (newposition);
60 oldposition = newposition;
61 oldtime = newtime;
62
63 // Encoder ticks to bytes
64 stmp[0] = (newposition >> 56);
65 stmp[1] = (newposition >> 48);
66 stmp[2] = (newposition >> 40);
67 stmp[3] = (newposition >> 32);
68 stmp[4] = (newposition >> 24);
69 stmp[5] = (newposition >> 16);
70 stmp[6] = (newposition >> 8);
71 stmp[7] = newposition;
72
73 // prints values
74 long newLong = (stmp[4] << 24) | (stmp[5] << 16) | (stmp[6]

<< 8) | (stmp[7]);
75 Serial.println(newLong);

Sara Costa Pombinho Dissertação de Mestrado

B.Arduino IDE code 83

76 Serial.print(stmp[4],HEX);
77 Serial.print(" ");
78 Serial.print(stmp[5],HEX);
79 Serial.print(" ");
80 Serial.print(stmp[6],HEX);
81 Serial.print(" ");
82 Serial.println(stmp[7],HEX);
83 // sends value to the CAN bus
84 CAN.sendMsgBuf(0x500, 0, 8,stmp);
85 SERIAL_PORT_MONITOR.println("CAN BUS sendMsgBuf ok!");
86 }
87 }
88
89 void doEncoderA()
90 {
91 if (digitalRead(encoder0PinA) != digitalRead(encoder0PinB)) {
92 encoder0Pos++;
93 } else {
94 encoder0Pos--;
95 }
96 }
97
98 void doEncoderB()
99 {

100 if (digitalRead(encoder0PinA) == digitalRead(encoder0PinB)) {
101 encoder0Pos++;
102 } else {
103 encoder0Pos--;
104 }
105 }0

Sara Costa Pombinho Dissertação de Mestrado

84 B.Arduino IDE code

Sara Costa Pombinho Dissertação de Mestrado

Appendix C

CAN messages to ackermann
values program

Listing C.1: CANmsgs_to_ackermann script
1

2 #!/usr/bin/env python
3

4 import rospy
5 import can
6 from can.bus import BusState
7 from ackermann_msgs.msg import AckermannDriveStamped
8 import math
9

10 ack_pub = rospy.Publisher(’ackermann_steering_controller/ackermann_drive’,
AckermannDriveStamped, queue_size=10)

11

12

13 def receive_all():
14 """Receives the steering angle and encoder tick messages"""
15 global ack_pub
16 steering_angle = 0
17 steer_velocity = 0
18 speed = 0
19 ackMsg = AckermannDriveStamped()
20 oldposition = 0
21 maxPPR = 1000
22 wheelbase = rospy.get_param(’~wheelbase’, 2.55)
23 wheel_radius = 0.285
24 oldtime_pos = rospy.Time.now()
25

26 with can.interface.Bus(bustype="socketcan", channel="can0", bitrate
=500000) as bus:

27 # filter all the messages and only let’s the 0x500 and 0x236 message ID
28 bus.set_filters([{"can_id": 0x500, "can_mask": 0x530}, {"can_id": 0x236

, "can_mask": 0x237}])
29 while not rospy.is_shutdown():
30 # receives the message
31 msg = bus.recv(1)
32 # print(msg)
33 if msg is not None:
34 if msg.arbitration_id == 0x500:

85

86 C.CAN messages to ackermann values program

35 # gets the encoder ticks
36 newposition = int.from_bytes(msg.data, "big", signed=True)
37 newtime_pos = rospy.Time.now()
38 if newtime_pos.to_sec() - oldtime_pos.to_sec() < 0.1:
39 continue
40 # calculates the speed in m/s
41 frequency = (newposition - oldposition) / (newtime_pos.to_sec

() - oldtime_pos.to_sec())
42 rps = frequency / maxPPR
43 speed = (rps * math.pi * wheel_radius * 2)
44 ackMsg.header.stamp = rospy.Time.now()
45 ackMsg.header.frame_id = "atlascar2/ackermann_msgs"
46 ackMsg.drive.speed = speed
47 ackMsg.drive.steering_angle_velocity = steer_velocity
48 ackMsg.drive.steering_angle = steering_angle
49 # print(f"newposition: {newposition} , oldposition: {

oldposition}")
50 print(speed, steer_velocity, steering_angle)
51 oldposition = newposition
52 oldtime_pos = newtime_pos
53 ack_pub.publish(ackMsg)
54

55 if msg.arbitration_id == 0x236:
56 # to get the steering angle its the following formula:
57 # ((B0*256 + B1) -4096)/2
58 # to get the wheel angle : divide the formula by 16.06
59 steering_angle = ((msg.data[0] * 256 + msg.data[1]) - 4096) /

(2 * 16.06)
60 steering_angle = (math.pi * steering_angle) / 180
61 # calculate the angular velocity
62 steer_velocity = math.tan(steering_angle)*(speed/wheelbase)
63 ackMsg.header.stamp = rospy.Time.now()
64 ackMsg.header.frame_id = "atlascar2/ackermann_msgs"
65 ackMsg.drive.speed = speed
66 ackMsg.drive.steering_angle_velocity = steer_velocity
67 ackMsg.drive.steering_angle = steering_angle
68 print(speed, steer_velocity, steering_angle)
69 ack_pub.publish(ackMsg)
70

71

72 def main():
73 rospy.init_node(’ackermann_publisher’)
74 receive_all()
75 rospy.spin()
76

77

78 if __name__ == ’__main__’:
79 main()

Sara Costa Pombinho Dissertação de Mestrado

Appendix D

Ackermann to Odometry script

Listing D.1: ackermann_to_odom script
1

2 #!/usr/bin/env python
3

4 import math
5 from math import sin, cos, pi
6

7 import rospy
8 import tf
9 from nav_msgs.msg import Odometry

10 from geometry_msgs.msg import Point, Pose, Quaternion, Twist, Vector3
11 from ackermann_msgs.msg import AckermannDriveStamped
12

13

14 def odom_callback(data):
15 global last_time, current_time, x, y, th, vx, vy, vth, wheelbase,

covariance_twist, covariance_pose
16 global odom_pub, odom_broadcaster
17 current_time = rospy.Time.now()
18

19 # compute odometry in a typical way given the velocities of the robot
20 dt = (current_time - last_time).to_sec()
21 delta_x = vx * cos(th) * dt
22 delta_y = vx * sin(th) * dt
23 delta_th = vth * dt
24 x += delta_x
25 y += delta_y
26 th += delta_th
27

28

29 # vx of the vehicle is the speed and vth is the angular velocity
30 vx = data.drive.speed
31 vy = 0.0
32 vth = data.drive.steering_angle_velocity
33

34 odomMsg = Odometry()
35 odomMsg.header.stamp = rospy.Time.now()
36 odomMsg.twist.twist.linear.x = vx
37 odomMsg.twist.twist.linear.y = vy
38 odomMsg.twist.twist.angular.z = vth

87

88 D.Ackermann to Odometry script

39 odomMsg.twist.covariance = covariance_twist
40

41 odomMsg.header.frame_id = ’atlascar2/odom’
42 odomMsg.child_frame_id = ’atlascar2/base_footprint’
43

44 # since all odometry is 6DOF we’ll need a quaternion created from yaw
45 odom_quat = tf.transformations.quaternion_from_euler(0, 0, th)
46

47 # first, we’ll publish the transform over tf
48 odom_broadcaster.sendTransform(
49 (x, y, 0.),
50 odom_quat,
51 current_time,
52 "atlascar2/base_footprint",
53 "atlascar2/odom"
54)
55

56 # set the position
57 odomMsg.pose.pose = Pose(Point(x, y, 0.), Quaternion(*odom_quat))
58 odomMsg.pose.covariance = covariance_pose
59

60 # publish the message
61 odom_pub.publish(odomMsg)
62 last_time = current_time
63

64

65 def main():
66 global last_time, current_time, x, y, th, vx, vy, vth, wheelbase,

covariance_twist, covariance_pose
67 global odom_pub, odom_broadcaster, twist_pub
68

69 rospy.init_node(’odometry_publisher’)
70 odom_pub = rospy.Publisher("atlascar2/odom", Odometry, queue_size=10)
71 odom_broadcaster = tf.TransformBroadcaster()
72 wheelbase = rospy.get_param(’~wheelbase’, 2.55)
73 current_time = rospy.Time.now()
74 last_time = rospy.Time.now()
75

76 covariance_twist = [0.001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1000000.0, 0.0, 0.0,

77 0.0, 0.0, 0.0, 0.0, 1000000.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1000000.0, 0.0, 0.0, 0.0, 0.0, 0.0,

78 0.0, 1000.0]
79 covariance_pose = [0.001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 1000000.0, 0.0, 0.0, 0.0,
80 0.0, 0.0, 0.0, 1000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

1000000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
81 1000.0]
82

83 # subscribe to the ackermann messages
84 rospy.Subscriber(’ackermann_steering_controller/ackermann_drive’,

AckermannDriveStamped, odom_callback, queue_size=10)
85 x = 0.0
86 y = 0.0
87 th = 0.0
88

89 vx = 0.0
90 vy = 0.0

Sara Costa Pombinho Dissertação de Mestrado

D.Ackermann to Odometry script 89

91 vth = 0.0
92

93 rospy.spin()
94

95

96 if __name__ == ’__main__’:
97 main()

Sara Costa Pombinho Dissertação de Mestrado

90 D.Ackermann to Odometry script

Sara Costa Pombinho Dissertação de Mestrado

Appendix E

Modified Ackermann controller

Listing E.1: ackermann_steering_controller script
1

2 /***
3 * Software License Agreement (BSD License)
4 *
5 * Copyright (c) 2013, PAL Robotics, S.L.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions

10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 * * Neither the name of the PAL Robotics nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 ***/
35

36 /*
37 * Author: Masaru Morita, Bence Magyar, Enrique Fernández
38 */
39

91

92 E.Modified Ackermann controller

40 #include <cmath>
41 #include <pluginlib/class_list_macros.h>
42 #include <tf/transform_datatypes.h>
43 #include <urdf_parser/urdf_parser.h>
44

45 #include <ackermann_steering_controller/ackermann_steering_controller.h>
46

47 static double euclideanOfVectors(const urdf::Vector3& vec1, const urdf::
Vector3& vec2)

48 {
49 return std::sqrt(std::pow(vec1.x-vec2.x,2) +
50 std::pow(vec1.y-vec2.y,2) +
51 std::pow(vec1.z-vec2.z,2));
52 }
53

54 /*
55 * \brief Check if the link is modeled as a cylinder
56 * \param link Link
57 * \return true if the link is modeled as a Cylinder; false otherwise
58 */
59 static bool isCylinder(const urdf::LinkConstSharedPtr& link)
60 {
61 if (!link)
62 {
63 ROS_ERROR("Link pointer is null.");
64 return false;
65 }
66

67 if (!link->collision)
68 {
69 ROS_ERROR_STREAM("Link " << link->name << " does not have collision

description. Add collision description for link to urdf.");
70 return false;
71 }
72

73 if (!link->collision->geometry)
74 {
75 ROS_ERROR_STREAM("Link " << link->name << " does not have collision

geometry description. Add collision geometry description for link to
urdf.");

76 return false;
77 }
78

79 if (link->collision->geometry->type != urdf::Geometry::CYLINDER)
80 {
81 ROS_ERROR_STREAM("Link " << link->name << " does not have cylinder

geometry");
82 return false;
83 }
84

85 return true;
86 }
87

88 /*
89 * \brief Get the wheel radius
90 * \param [in] wheel_link Wheel link
91 * \param [out] wheel_radius Wheel radius [m]
92 * \return true if the wheel radius was found; false other

Sara Costa Pombinho Dissertação de Mestrado

E.Modified Ackermann controller 93

93 wise
94 */
95 static bool getWheelRadius(const urdf::LinkConstSharedPtr& wheel_link, double

& wheel_radius)
96 {
97 if (!isCylinder(wheel_link))
98 {
99 ROS_ERROR_STREAM("Wheel link " << wheel_link->name << " is NOT modeled as

a cylinder!");
100 return false;
101 }
102

103 wheel_radius = (static_cast<urdf::Cylinder*>(wheel_link->collision->
geometry.get()))->radius;

104 return true;
105 }
106

107 namespace ackermann_steering_controller{
108

109 AckermannSteeringController::AckermannSteeringController()
110 : open_loop_(false)
111 , command_struct_()
112 , wheel_separation_h_(0.0)
113 , wheel_radius_(0.0)
114 , wheel_separation_h_multiplier_(1.0)
115 , wheel_radius_multiplier_(1.0)
116 , steer_pos_multiplier_(1.0)
117 , cmd_vel_timeout_(0.5)
118 , allow_multiple_cmd_vel_publishers_(true)
119 , base_frame_id_("base_link")
120 , odom_frame_id_("odom")
121 , enable_odom_tf_(true)
122 , wheel_joints_size_(0)
123 , publish_ackermann_drive_(false)
124 {
125 }
126

127 bool AckermannSteeringController::init(hardware_interface::RobotHW*
robot_hw,

128 ros::NodeHandle& root_nh,
129 ros::NodeHandle& controller_nh)
130 {
131 typedef hardware_interface::VelocityJointInterface VelIface;
132 typedef hardware_interface::PositionJointInterface PosIface;
133 typedef hardware_interface::JointStateInterface StateIface;
134

135 // get multiple types of hardware_interface
136 VelIface *vel_joint_if = robot_hw->get<VelIface>(); // vel for wheels
137 PosIface *pos_joint_if = robot_hw->get<PosIface>(); // pos for steers
138

139 const std::string complete_ns = controller_nh.getNamespace();
140

141 std::size_t id = complete_ns.find_last_of("/");
142 name_ = complete_ns.substr(id + 1);
143

144 //-- single rear wheel joint
145 std::string rear_wheel_name = "rear_wheel_joint";
146 controller_nh.param("rear_wheel", rear_wheel_name, rear_wheel_name);

Sara Costa Pombinho Dissertação de Mestrado

94 E.Modified Ackermann controller

147

148 //-- single front steer joint
149 std::string front_steer_name = "front_steer_joint";
150 controller_nh.param("front_steer", front_steer_name, front_steer_name);
151

152 // Publish ackermannDrive message (speed and steering angle of the robot
153 controller_nh.param("publish_ackermann_drive", publish_ackermann_drive_,

publish_ackermann_drive_);
154

155 // resets the ackermannDrive message
156 if (publish_ackermann_drive_)
157 {
158 cmd_ackermann_drive_pub_.reset(new realtime_tools::RealtimePublisher<

ackermann_msgs::AckermannDriveStamped>(controller_nh, "
ackermann_drive", 100));

159 }
160

161 // Odometry related:
162 double publish_rate;
163 controller_nh.param("publish_rate", publish_rate, 50.0);
164 ROS_INFO_STREAM_NAMED(name_, "Controller state will be published at "
165 << publish_rate << "Hz.");
166 publish_period_ = ros::Duration(1.0 / publish_rate);
167

168 controller_nh.param("open_loop", open_loop_, open_loop_);
169

170 controller_nh.param("wheel_separation_h_multiplier",
wheel_separation_h_multiplier_, wheel_separation_h_multiplier_);

171 ROS_INFO_STREAM_NAMED(name_, "Wheel separation height will be multiplied
by "

172 << wheel_separation_h_multiplier_ << ".");
173

174 controller_nh.param("wheel_radius_multiplier", wheel_radius_multiplier_,
wheel_radius_multiplier_);

175 ROS_INFO_STREAM_NAMED(name_, "Wheel radius will be multiplied by "
176 << wheel_radius_multiplier_ << ".");
177

178 controller_nh.param("steer_pos_multiplier", steer_pos_multiplier_,
steer_pos_multiplier_);

179 ROS_INFO_STREAM_NAMED(name_, "Steer pos will be multiplied by "
180 << steer_pos_multiplier_ << ".");
181

182 int velocity_rolling_window_size = 10;
183 controller_nh.param("velocity_rolling_window_size",

velocity_rolling_window_size, velocity_rolling_window_size);
184 ROS_INFO_STREAM_NAMED(name_, "Velocity rolling window size of "
185 << velocity_rolling_window_size << ".");
186

187 odometry_.setVelocityRollingWindowSize(velocity_rolling_window_size);
188

189 // Twist command related:
190 controller_nh.param("cmd_vel_timeout", cmd_vel_timeout_, cmd_vel_timeout_)

;
191 ROS_INFO_STREAM_NAMED(name_, "Velocity commands will be considered old if

they are older than "
192 << cmd_vel_timeout_ << "s.");
193

194 controller_nh.param("allow_multiple_cmd_vel_publishers",

Sara Costa Pombinho Dissertação de Mestrado

E.Modified Ackermann controller 95

allow_multiple_cmd_vel_publishers_, allow_multiple_cmd_vel_publishers_
);

195 ROS_INFO_STREAM_NAMED(name_, "Allow mutiple cmd_vel publishers is "
196 << (allow_multiple_cmd_vel_publishers_?"enabled":"

disabled"));
197

198 controller_nh.param("base_frame_id", base_frame_id_, base_frame_id_);
199 ROS_INFO_STREAM_NAMED(name_, "Base frame_id set to " << base_frame_id_);
200

201 controller_nh.param("odom_frame_id", odom_frame_id_, odom_frame_id_);
202 ROS_INFO_STREAM_NAMED(name_, "Odometry frame_id set to " << odom_frame_id_

);
203

204 controller_nh.param("enable_odom_tf", enable_odom_tf_, enable_odom_tf_);
205 ROS_INFO_STREAM_NAMED(name_, "Publishing to tf is " << (enable_odom_tf_?"

enabled":"disabled"));
206

207 // Velocity and acceleration limits:
208 controller_nh.param("linear/x/has_velocity_limits" , limiter_lin_.

has_velocity_limits , limiter_lin_.has_velocity_limits);
209 controller_nh.param("linear/x/has_acceleration_limits", limiter_lin_.

has_acceleration_limits, limiter_lin_.has_acceleration_limits);
210 controller_nh.param("linear/x/has_jerk_limits" , limiter_lin_.

has_jerk_limits , limiter_lin_.has_jerk_limits);
211 controller_nh.param("linear/x/max_velocity" , limiter_lin_.max_velocity ,

limiter_lin_.max_velocity);
212 controller_nh.param("linear/x/min_velocity" , limiter_lin_.min_velocity ,

-limiter_lin_.max_velocity);
213 controller_nh.param("linear/x/max_acceleration" , limiter_lin_.

max_acceleration , limiter_lin_.max_acceleration);
214 controller_nh.param("linear/x/min_acceleration" , limiter_lin_.

min_acceleration , -limiter_lin_.max_acceleration);
215 controller_nh.param("linear/x/max_jerk" , limiter_lin_.max_jerk ,

limiter_lin_.max_jerk);
216 controller_nh.param("linear/x/min_jerk" , limiter_lin_.min_jerk , -

limiter_lin_.max_jerk);
217

218 controller_nh.param("angular/z/has_velocity_limits" , limiter_ang_.
has_velocity_limits , limiter_ang_.has_velocity_limits);

219 controller_nh.param("angular/z/has_acceleration_limits", limiter_ang_.
has_acceleration_limits, limiter_ang_.has_acceleration_limits);

220 controller_nh.param("angular/z/has_jerk_limits" , limiter_ang_.
has_jerk_limits , limiter_ang_.has_jerk_limits);

221 controller_nh.param("angular/z/max_velocity" , limiter_ang_.max_velocity ,
limiter_ang_.max_velocity);

222 controller_nh.param("angular/z/min_velocity" , limiter_ang_.min_velocity ,
-limiter_ang_.max_velocity);

223 controller_nh.param("angular/z/max_acceleration" , limiter_ang_.
max_acceleration , limiter_ang_.max_acceleration);

224 controller_nh.param("angular/z/min_acceleration" , limiter_ang_.
min_acceleration , -limiter_ang_.max_acceleration);

225 controller_nh.param("angular/z/max_jerk" , limiter_ang_.max_jerk ,
limiter_ang_.max_jerk);

226 controller_nh.param("angular/z/min_jerk" , limiter_ang_.min_jerk , -
limiter_ang_.max_jerk);

227

228 // If either parameter is not available, we need to look up the value in
the URDF

Sara Costa Pombinho Dissertação de Mestrado

96 E.Modified Ackermann controller

229 bool lookup_wheel_separation_h = !controller_nh.getParam("
wheel_separation_h", wheel_separation_h_);

230 bool lookup_wheel_radius = !controller_nh.getParam("wheel_radius",
wheel_radius_);

231

232 if (!setOdomParamsFromUrdf(root_nh,
233 rear_wheel_name,
234 front_steer_name,
235 lookup_wheel_separation_h,
236 lookup_wheel_radius))
237 {
238 return false;
239 }
240

241 // Regardless of how we got the separation and radius, use them
242 // to set the odometry parameters
243 const double ws_h = wheel_separation_h_multiplier_ * wheel_separation_h_;
244 const double wr = wheel_radius_multiplier_ * wheel_radius_;
245 odometry_.setWheelParams(ws_h, wr);
246 ROS_INFO_STREAM_NAMED(name_,
247 "Odometry params : wheel separation height " << ws_h
248 << ", wheel radius " << wr);
249

250 setOdomPubFields(root_nh, controller_nh);
251

252 //-- rear wheel
253 //---- handles need to be previously registerd in ackermann_steering_test.

cpp
254 ROS_INFO_STREAM_NAMED(name_,
255 "Adding the rear wheel with joint name: " <<

rear_wheel_name);
256 rear_wheel_joint_ = vel_joint_if->getHandle(rear_wheel_name); // throws on

failure
257 //-- front steer
258 ROS_INFO_STREAM_NAMED(name_,
259 "Adding the front steer with joint name: " <<

front_steer_name);
260 front_steer_joint_ = pos_joint_if->getHandle(front_steer_name); // throws

on failure
261 ROS_INFO_STREAM_NAMED(name_,
262 "Adding the subscriber: cmd_vel");
263 sub_command_ = controller_nh.subscribe("cmd_vel", 1, &

AckermannSteeringController::cmdVelCallback, this);
264 ROS_INFO_STREAM_NAMED(name_, "Finished controller initialization");
265

266 return true;
267 }
268

269 void AckermannSteeringController::update(const ros::Time& time, const ros::
Duration& period)

270 {
271 // COMPUTE AND PUBLISH ODOMETRY
272 if (open_loop_)
273 {
274 odometry_.updateOpenLoop(last0_cmd_.lin, last0_cmd_.ang, time);
275 }
276 else
277 {

Sara Costa Pombinho Dissertação de Mestrado

E.Modified Ackermann controller 97

278 double wheel_pos = rear_wheel_joint_.getPosition();
279 double steer_pos = front_steer_joint_.getPosition();
280

281 if (std::isnan(wheel_pos) || std::isnan(steer_pos))
282 return;
283

284 // Estimate linear and angular velocity using joint information
285 steer_pos = steer_pos * steer_pos_multiplier_;
286 odometry_.update(wheel_pos, steer_pos, time);
287 }
288

289

290 // MOVE ROBOT
291 // Retreive current velocity command and time step:
292 Commands curr_cmd = *(command_.readFromRT());
293 const double dt = (time - curr_cmd.stamp).toSec();
294

295 // Brake if cmd_vel has timeout:
296 if (dt > cmd_vel_timeout_)
297 {
298 curr_cmd.lin = 0.0;
299 curr_cmd.ang = 0.0;
300 }
301

302 // Limit velocities and accelerations:
303 const double cmd_dt(period.toSec());
304

305 limiter_lin_.limit(curr_cmd.lin, last0_cmd_.lin, last1_cmd_.lin, cmd_dt);
306 limiter_ang_.limit(curr_cmd.ang, last0_cmd_.ang, last1_cmd_.ang, cmd_dt);
307

308 last1_cmd_ = last0_cmd_;
309 last0_cmd_ = curr_cmd;
310

311 // Set Command
312 const double wheel_vel = curr_cmd.lin/wheel_radius_; // omega = linear_vel

/ radius
313 rear_wheel_joint_.setCommand(wheel_vel);
314 front_steer_joint_.setCommand(curr_cmd.ang);
315

316 // Publish odometry message
317 if (last_state_publish_time_ + publish_period_ < time)
318 {
319 last_state_publish_time_ += publish_period_;
320 // Compute and store orientation info
321 const geometry_msgs::Quaternion orientation(
322 tf::createQuaternionMsgFromYaw(odometry_.getHeading()));
323

324 // Populate odom message and publish
325 if (odom_pub_->trylock())
326 {
327 odom_pub_->msg_.header.stamp = time;
328 odom_pub_->msg_.pose.pose.position.x = odometry_.getX();
329 odom_pub_->msg_.pose.pose.position.y = odometry_.getY();
330 odom_pub_->msg_.pose.pose.orientation = orientation;
331 odom_pub_->msg_.twist.twist.linear.x = odometry_.getLinear();
332 odom_pub_->msg_.twist.twist.angular.z = odometry_.getAngular();
333 odom_pub_->unlockAndPublish();
334 }

Sara Costa Pombinho Dissertação de Mestrado

98 E.Modified Ackermann controller

335

336 // Publish tf /odom frame
337 if (enable_odom_tf_ && tf_odom_pub_->trylock())
338 {
339 geometry_msgs::TransformStamped& odom_frame = tf_odom_pub_->msg_.

transforms[0];
340 odom_frame.header.stamp = time;
341 odom_frame.transform.translation.x = odometry_.getX();
342 odom_frame.transform.translation.y = odometry_.getY();
343 odom_frame.transform.rotation = orientation;
344 tf_odom_pub_->unlockAndPublish();
345 }
346

347 double steer_angle = odometry_.getAngular();
348 double speed = odometry_.getLinear();
349 // double steer_angle = curr_cmd.ang;
350 // double speed = curr_cmd.lin;
351

352 // Publish robot speed and steering angle
353 if (publish_ackermann_drive_ && cmd_ackermann_drive_pub_ &&

cmd_ackermann_drive_pub_->trylock())
354 {
355 cmd_ackermann_drive_pub_->msg_.header.stamp = time;
356 cmd_ackermann_drive_pub_->msg_.header.frame_id = base_frame_id_;
357 cmd_ackermann_drive_pub_->msg_.drive.speed = speed;
358 cmd_ackermann_drive_pub_->msg_.drive.steering_angle_velocity = 0.0;
359 cmd_ackermann_drive_pub_->msg_.drive.steering_angle = steer_angle;
360 cmd_ackermann_drive_pub_->msg_.drive.acceleration = 0;
361 cmd_ackermann_drive_pub_->msg_.drive.jerk = 0;
362 cmd_ackermann_drive_pub_->unlockAndPublish();
363 }
364 }
365

366 }
367

368 void AckermannSteeringController::starting(const ros::Time& time)
369 {
370 brake();
371

372 // Register starting time used to keep fixed rate
373 last_state_publish_time_ = time;
374

375 odometry_.init(time);
376 }
377

378 void AckermannSteeringController::stopping(const ros::Time& /*time*/)
379 {
380 brake();
381 }
382

383 void AckermannSteeringController::brake()
384 {
385 const double steer_pos = 0.0;
386 const double wheel_vel = 0.0;
387

388 rear_wheel_joint_.setCommand(steer_pos);
389 front_steer_joint_.setCommand(wheel_vel);
390 }

Sara Costa Pombinho Dissertação de Mestrado

E.Modified Ackermann controller 99

391

392 void AckermannSteeringController::cmdVelCallback(const geometry_msgs::Twist
& command)

393 {
394 if (isRunning())
395 {
396 // check that we don’t have multiple publishers on the command topic
397 if (!allow_multiple_cmd_vel_publishers_ && sub_command_.getNumPublishers

() > 1)
398 {
399 ROS_ERROR_STREAM_THROTTLE_NAMED(1.0, name_, "Detected " << sub_command_

.getNumPublishers()
400 << " publishers. Only 1 publisher is allowed. Going to brake.");
401 brake();
402 return;
403 }
404

405 command_struct_.ang = command.angular.z;
406 command_struct_.lin = command.linear.x;
407 command_struct_.stamp = ros::Time::now();
408 command_.writeFromNonRT (command_struct_);
409 ROS_DEBUG_STREAM_NAMED(name_,
410 "Added values to command. "
411 << "Ang: " << command_struct_.ang << ", "
412 << "Lin: " << command_struct_.lin << ", "
413 << "Stamp: " << command_struct_.stamp);
414 }
415 else
416 {
417 ROS_ERROR_NAMED(name_, "Can’t accept new commands. Controller is not

running.");
418 }
419 }
420

421

422 bool AckermannSteeringController::setOdomParamsFromUrdf(ros::NodeHandle&
root_nh,

423 const std::string rear_wheel_name,
424 const std::string front_steer_name,
425 bool lookup_wheel_separation_h,
426 bool lookup_wheel_radius)
427 {
428 if (!(lookup_wheel_separation_h || lookup_wheel_radius))
429 {
430 // Short-circuit in case we don’t need to look up anything, so we don’t

have to parse the URDF
431 return true;
432 }
433

434 // Parse robot description
435 const std::string model_param_name = "robot_description";
436 bool res = root_nh.hasParam(model_param_name);
437 std::string robot_model_str="";
438 if (!res || !root_nh.getParam(model_param_name,robot_model_str))
439 {
440 ROS_ERROR_NAMED(name_, "Robot descripion couldn’t be retrieved from

param server.");
441 return false;

Sara Costa Pombinho Dissertação de Mestrado

100 E.Modified Ackermann controller

442 }
443

444 urdf::ModelInterfaceSharedPtr model(urdf::parseURDF(robot_model_str));
445

446 urdf::JointConstSharedPtr rear_wheel_joint(model->getJoint(rear_wheel_name
));

447 urdf::JointConstSharedPtr front_steer_joint(model->getJoint(
front_steer_name));

448

449 if (lookup_wheel_separation_h)
450 {
451 // Get wheel separation
452 if (!rear_wheel_joint)
453 {
454 ROS_ERROR_STREAM_NAMED(name_, rear_wheel_name
455 << " couldn’t be retrieved from model description");
456 return false;
457 }
458

459 if (!front_steer_joint)
460 {
461 ROS_ERROR_STREAM_NAMED(name_, front_steer_name
462 << " couldn’t be retrieved from model description");
463 return false;
464 }
465

466 ROS_INFO_STREAM("rear wheel to origin: "
467 << rear_wheel_joint->parent_to_joint_origin_transform.

position.x << ","
468 << rear_wheel_joint->parent_to_joint_origin_transform.

position.y << ", "
469 << rear_wheel_joint->parent_to_joint_origin_transform.

position.z);
470

471 ROS_INFO_STREAM("front steer to origin: "
472 << front_steer_joint->parent_to_joint_origin_transform.

position.x << ","
473 << front_steer_joint->parent_to_joint_origin_transform.

position.y << ", "
474 << front_steer_joint->parent_to_joint_origin_transform.

position.z);
475

476 wheel_separation_h_ = fabs(
477 rear_wheel_joint->parent_to_joint_origin_transform.position.x
478 - front_steer_joint->parent_to_joint_origin_transform.position.

x);
479

480 ROS_INFO_STREAM("Calculated wheel_separation_h: " << wheel_separation_h_
);

481 }
482

483 if (lookup_wheel_radius)
484 {
485 // Get wheel radius
486 if (!getWheelRadius(model->getLink(rear_wheel_joint->child_link_name),

wheel_radius_))
487 {
488 ROS_ERROR_STREAM_NAMED(name_, "Couldn’t retrieve " << rear_wheel_name

Sara Costa Pombinho Dissertação de Mestrado

E.Modified Ackermann controller 101

<< " wheel radius");
489 return false;
490 }
491 ROS_INFO_STREAM("Retrieved wheel_radius: " << wheel_radius_);
492 }
493

494 return true;
495 }
496

497 void AckermannSteeringController::setOdomPubFields(ros::NodeHandle& root_nh
, ros::NodeHandle& controller_nh)

498 {
499 // Get and check params for covariances
500 XmlRpc::XmlRpcValue pose_cov_list;
501 controller_nh.getParam("pose_covariance_diagonal", pose_cov_list);
502 ROS_ASSERT(pose_cov_list.getType() == XmlRpc::XmlRpcValue::TypeArray);
503 ROS_ASSERT(pose_cov_list.size() == 6);
504 for (int i = 0; i < pose_cov_list.size(); ++i)
505 ROS_ASSERT(pose_cov_list[i].getType() == XmlRpc::XmlRpcValue::TypeDouble

);
506

507 XmlRpc::XmlRpcValue twist_cov_list;
508 controller_nh.getParam("twist_covariance_diagonal", twist_cov_list);
509 ROS_ASSERT(twist_cov_list.getType() == XmlRpc::XmlRpcValue::TypeArray);
510 ROS_ASSERT(twist_cov_list.size() == 6);
511 for (int i = 0; i < twist_cov_list.size(); ++i)
512 ROS_ASSERT(twist_cov_list[i].getType() == XmlRpc::XmlRpcValue::

TypeDouble);
513

514 // Setup odometry realtime publisher + odom message constant fields
515 odom_pub_.reset(new realtime_tools::RealtimePublisher<nav_msgs::Odometry>(

controller_nh, "odom", 100));
516 odom_pub_->msg_.header.frame_id = odom_frame_id_;
517 odom_pub_->msg_.child_frame_id = base_frame_id_;
518 odom_pub_->msg_.pose.pose.position.z = 0;
519 odom_pub_->msg_.pose.covariance = {
520 static_cast<double>(pose_cov_list[0]), 0., 0., 0., 0., 0.,
521 0., static_cast<double>(pose_cov_list[1]), 0., 0., 0., 0.,
522 0., 0., static_cast<double>(pose_cov_list[2]), 0., 0., 0.,
523 0., 0., 0., static_cast<double>(pose_cov_list[3]), 0., 0.,
524 0., 0., 0., 0., static_cast<double>(pose_cov_list[4]), 0.,
525 0., 0., 0., 0., 0., static_cast<double>(pose_cov_list[5]) };
526 odom_pub_->msg_.twist.twist.linear.y = 0;
527 odom_pub_->msg_.twist.twist.linear.z = 0;
528 odom_pub_->msg_.twist.twist.angular.x = 0;
529 odom_pub_->msg_.twist.twist.angular.y = 0;
530 odom_pub_->msg_.twist.covariance = {
531 static_cast<double>(twist_cov_list[0]), 0., 0., 0., 0., 0.,
532 0., static_cast<double>(twist_cov_list[1]), 0., 0., 0., 0.,
533 0., 0., static_cast<double>(twist_cov_list[2]), 0., 0., 0.,
534 0., 0., 0., static_cast<double>(twist_cov_list[3]), 0., 0.,
535 0., 0., 0., 0., static_cast<double>(twist_cov_list[4]), 0.,
536 0., 0., 0., 0., 0., static_cast<double>(twist_cov_list[5]) };
537 tf_odom_pub_.reset(new realtime_tools::RealtimePublisher<tf::tfMessage>(

root_nh, "/tf", 100));
538 tf_odom_pub_->msg_.transforms.resize(1);
539 tf_odom_pub_->msg_.transforms[0].transform.translation.z = 0.0;
540 tf_odom_pub_->msg_.transforms[0].child_frame_id = base_frame_id_;

Sara Costa Pombinho Dissertação de Mestrado

102 E.Modified Ackermann controller

541 tf_odom_pub_->msg_.transforms[0].header.frame_id = odom_frame_id_;
542 }
543

544 PLUGINLIB_EXPORT_CLASS(ackermann_steering_controller::
AckermannSteeringController, controller_interface::ControllerBase)

545 } // namespace ackermann_steering_controller

Sara Costa Pombinho Dissertação de Mestrado

Appendix F

Odometry simulation results

The various tests made to compare the results of the ackermann controller and the
python script.

Figure F.1: 30m forward odometry simulation.

103

104 F.Odometry simulation results

Figure F.2: 30m forward x values difference.

Figure F.3: 30m forward y values difference.

Sara Costa Pombinho Dissertação de Mestrado

F.Odometry simulation results 105

Figure F.4: 100m forward odometry simulation.

Sara Costa Pombinho Dissertação de Mestrado

106 F.Odometry simulation results

Figure F.5: 100m forward x values difference.

Figure F.6: 100m forward y values difference.

Sara Costa Pombinho Dissertação de Mestrado

F.Odometry simulation results 107

Figure F.7: 200m forward odometry simulation.

Sara Costa Pombinho Dissertação de Mestrado

108 F.Odometry simulation results

Figure F.8: 200m forward x values difference.

Figure F.9: 200m forward y values difference.

Sara Costa Pombinho Dissertação de Mestrado

F.Odometry simulation results 109

Figure F.10: 20rad/s turn odometry simulation.

Sara Costa Pombinho Dissertação de Mestrado

110 F.Odometry simulation results

Figure F.11: 20rad/s turn x values difference.

Figure F.12: 20rad/s turn y values difference.

Sara Costa Pombinho Dissertação de Mestrado

F.Odometry simulation results 111

Figure F.13: Random course odometry simulation.

Sara Costa Pombinho Dissertação de Mestrado

112 F.Odometry simulation results

Figure F.14: Random course x values difference.

Figure F.15: Random course y values difference.

Sara Costa Pombinho Dissertação de Mestrado

	Introduction
	ATLAS project
	Problem Description
	Objectives
	Document structure

	State of the Art
	Software architecture
	Related Work
	Work developed at the University of Aveiro.

	Odometry
	Wheel Odometry
	Inertial Odometry
	Radar Odometry
	Laser Odometry
	Visual Odometry
	Work developed at the University of Aveiro.

	Summary

	Experimental Infrastructure
	Hardware
	CANalyze
	Camera Point Grey FL3-GE-28S4-C
	Sick LMS151 LIDAR
	Sick LD-MRS400001 LIDAR
	 Novatel SPAN-IGM-A1 and Novatel GPS-702-GG
	Nexus P-2308H4/HR4
	Atlascar2

	Software
	Robot Operating System (ROS)
	Rviz
	Mapviz
	Rqt
	ROS packages used in this project
	Other software tools

	Software Architecture
	Processing unit performance
	Communication infrastructure
	Launching Nodes
	Top level launch file
	Launch file architecture

	Documentation

	Development of an Odometry Solution
	Approach of the Odometry Solution
	CAN communication
	 Mitsubishi i-MiEV CAN values
	Development of the First Solution

	Wheel Encoder Installation
	Selection of a new Encoder
	Assembly of Encoder
	Development of the Final Solution

	Computation of the odometry
	Collecting the Ackermann values
	Computing the odometry

	Tests and Results
	Software Architecture
	Processing Unit Evaluation
	Performance of the Software Architecture

	Odometry
	Performance with the Simulation Values
	Performance with Real Vehicle Data

	Conclusions and Future Work
	Conclusions
	Future Work

	Project's README information
	Core packages
	Turning on the vehicle and its components
	Configuring the IP addresses
	Connecting to the Atlascar2 with remote work
	Testing the sensors
	Launching the system

	Arduino IDE code
	CAN messages to ackermann values program
	Ackermann to Odometry script
	Modified Ackermann controller
	Odometry simulation results

