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Abstract Nowadays the level of automation in industry is constantly increas-
ing. We can easily find completely automated production lines, but
for the moment the interactions between machines and human oper-
ators are limited to a small set of tasks. One possible way of increas-
ing the efficiency of a given plant is to use intelligent robots instead
of human resources for the transportation of objects across different
places in the same industrial complex. Traditional AGVs (Automat-
ically Guided Vehicles) are now commonly used for these tasks, but
most of them follow strict paths marked by “wires” or special lines
traced on the floor. There are also other solutions based on laser
and special reflectors that allow triangulation of the robot inside the
plant. Nonetheless, the “floor-based” solutions have properties that
limit their usage, whereas laser/reflector solutions, besides being ex-
pensive, require a rather elaborate procedure to set up the layout
changes. These restrictions open the way to explore and research
new vision based solutions, especially if they can be made easier to
configure and more cost-effective at the same time. The solution pro-
posed aims to use simple markers, namely simple Data Matrix codes,
to obtain a “raw” pose estimation through trilateration. Then the
results are combined with heterogeneous data provided by odom-
etry and (if present) from an inertial measurement unit using an
Extended Kalman Filter. The advantages of this solution are that it
is cheap, flexible and robust: the markers are common sheet of paper
and they can therefore easily be printed and placed in the environ-
ment. Moreover the AGVs are not forced to follow a fixed path and
this make it possible to use sophisticated path planning algorithms.
The obtained results are promising, but the performance of this type
of system depends on many factors: detection algorithm, localiza-
tion method, quality of the odometry and efficiency of the sensor
fusion algorithm. Despite these problems, the tests have shown that
even with a non fully optimized algorithm, a precision of 0.2m can
be reached, confirming the validity of this technology.
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Chapter 1

Introduction

1.1 Contex of the problem

Nowadays, the level of automation in industry is constantly on the rise. We can easily find com-
pletely automated production lines, but for the moment the interaction between machines and
human operators is limited to a small set of tasks. One possible way of increasing the efficiency
inside a given plant is to use smart robots to help human operators to transport objects and ma-
terials across different places in the same industrial complex. Traditional AGVs (Automatically
Guided Vehicles) are now commonly used for these tasks, and most of them follows strict paths
marked by “wires” or special lines traced on the floor (fig. 1.1a). There are also other solutions
based on laser (fig. 1.1b) and special reflectors to allow triangulation of the robot.
Nonetheless, the “floor-based” solutions have specificities that limit their usage, while laser/re-
flector solutions are not only expensive, but also require a rather elaborate procedure in order
to set up the layout changes. These restrictions open the way to research and develop vision
based solutions, especially if they can be made easier to configure and simultaneously more
cost-effective.
In real situations it is not always possible to predispose the environment to be fully robot-friendly
(for example by designing dedicated paths inside the complex), but we can have some a priori
information, such as the map of the environment. Magnetic stripes are cheap solution but, as
some companies have already noticed, they aren’t at all ideal in many environments, since other
vehicles and transporters can damage them in time. For this reason as well as to keep produc-
tions costs low, using vision based technologies becomes appealing, despite the expected higher
complexity of the needed algorithms.
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(a) Magnetic guided AGV (b) Laser guided AGV

Figure 1.1

1.2 State of the art

Nowadays, it is very common to find AGVs in many industry fields. It is interesting to notice
that many types of technologies can be used to allow the self-localization of these specials robots,
each one with its own advantages and disadvantages.
As it will be shown in subsection 1.2, using different approaches means using different kinds of
sensors. The problem of how to efficiently combine all the information provided by a number
of different (and in general heterogeneous) sensors is widely discussed in the literature of the
last years and it is usually referred as the problem of sensor fusion. A common solution to
this problem is using the Kalman Filter [1] or one of its declinations (for instance the Extended
Kalman Filter [2] or the Unscented Kalman Filter [3]).

In the particular case of this thesis, the robot used to test the algorithms (AtlasMV [4]) is
a car-like robot, and this makes the problem of the sensor fusion not much different from the
problem of outdoor localization of a common car with a GPS (Global Positioning System)[5];
instead of the estimation of the position provided by a GPS, the estimation of the position
provided by visual information can be used.
Also, the estimation of the position obtained through vision algorithms and special markers can
be obtained using trilateration and/or triangulation algorithms. Many authors are working on
this topic and the same problem can be solved using a variety of different approaches. [6] has
presented a method based on an Extended Kalman Filter with a state-vector composed of the
external angular measurements. [7] has presented a simple, fast and new three object triangu-
lation algorithm based on the power center of three circles. [8] has presented an algorithm for
automatic selection of optimal landmarks which can reduce the uncertainty by more than one
order of magnitude.

This thesis must be considered as the continuation of a previous thesis work accomplished
by Luís Carrão[9], where the library Libdmtx and the triangulation/trilateration algorithm have
been tested. Also, an extended analysis of the localization accuracy has been accomplished.
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Most common systems

This subsection gives a brief overview of which kind of systems are available on the market. One
of the most innovative systems available on the industry is the Kiva System[10][11]: this system
can coordinate hundreds of mobile robots in the same warehouse and the robot’s navigation
system involves a combination of dead reckoning and cameras that look for fiducial markers,
that are placed on the floor during system installation.

The most commonly used systems are:

• magnetic stripe system;

• optical guided system;

• inertial navigation system;

• laser guide system;

• vision system.

Further information is provided in the following subsections.

Magnetic stripe system

The magnetic stripe system works thanks to electric current passing through a guide wire in-
stalled along the travel route on or in the floor; the AGV travels along the magnetic field
produced by the current. This system is simple but any change on the route requires to remove
the old magnetic stripe and to install a new one. Moreover, especially if the stripe is on the
floor, constant maintenance is needed, since the stripe tends to deteriorate in time because of
mechanical stress, and any breakage of the wires makes it impossible to detect the route.

Optical guided system

With the optical guided system, reflective tape made of aluminium or a similar material is laid
along the travel route, and the AGV determines its route by optically detecting the tape. A
common problem of this system is the difficulty to detect the tape when it is dirty or damaged.

Inertial navigation system

An inertial sensor (gyro and accelerometer) mounted on the AGV is used to measure the vehicle’s
attitude angle and travel distance. The current position is calculated using measurement data,
and the AGV travels along the set route. Transponders embedded in the floor are used to verify
that the vehicle is following the correct path. This system requires the installation of corrective
markers along the paths because the error of inertial systems tend to accumulate as an integral
term.
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Laser guide system

A laser beam from the AGV is reflected by reflectors mounted on walls and the current position
is determined by the angle (and sometimes the distance) of the reflected light, and the vehicle
uses this data to travel along the set route. The collected information is compared to the map
of the reflector layout stored in the AGV’s memory and using a triangulation (or trilateration)
algorithm the robot can calculate its position and follow its route.

Vision guide system

Vision-guided AGVs work using cameras to record features along the route. A robot that uses
this system requires a map, in which the features have been previously recorded. It is possible
to use different combination of cameras, for instance stereo and omnidirectional. The extraction
of the features from an image requires a higher computational power in comparison to the one
needed for the other systems, but this system has the advantage of not requiring any kind of
landmarks, tape, wire or stripe.
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1.3 Proposed solution

Figure 1.2: Example
of data matrix

The proposed solution aims to use simple markers, namely stan-
dard data matrix codes (see the example in figure 1.2), to ob-
tain a “raw” pose estimation through trilateration and triangula-
tion. The idea is to encode in each data matrix the relative
pose with respect to a previously defined reference frame. Then,
knowing the length of the edge of each data matrix and the cal-
ibration parameters of the camera, it is possible to calculate the
relative pose of a given data matrix with respect to the camera
frame.

The relative pose gives important information such as the distance between the camera and
the marker, which is necessary for the trilateraion, and the angle of arrival, necessary for the
estimation of the orientation. The “raw” pose is then fused with heterogeneous data provided by
odometry and (if present) by an IMU (Inertial Measurement Unit) using an Extended Kalman
Filter. This filter provides an estimation of the state of the AGV, which includes all information
required to perform the motion control: position, velocity and orientation.

The advantages of this solution are that it is cheap, flexible and robust: the markers are
printed on simple sheet of papers and they can therefor be easily placed inside the map with a
given acceptable margin of error. Note that this approach allows the possibility to use sophisti-
cated path planning algorithms, since the AGVs are not forced to follow a fixed path.
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Overview

2.1 Development platform

During this work many tools have been used. This section presents a brief introduction of the
platform used, more details will be added in the following chapters.

2.1.1 ROS - Robot Operating System

ROS[12] is an open source framework used to build advanced robot applications. It was originally
developed in 2007 by the SAIL (Sanford Artificial Intelligence Laboratory) and through the years
it has become a de facto standard in the research field. Its appeal is growing even in the industry,
thanks to the ROS-Industrial consortium. ROS is designed to be flexible, general-purpose and
robust. It includes a constantly increasing number of tools, libraries and interfaces that can be
reused and improved by anyone.
One of the key features of this framework is the possibility to use virtually any programming
language. At this moment the main supported languages are C++, Java and Python. A ROS
program is typically subdivided in two or more “nodes”: which are is in fact a stand alone
programs, able both to provide functionalities and to use functionalities provided by others
nodes. The communication between nodes is made possible thanks to a standard common
interface based on “messages”. The interface is implemented over the TPC/IP protocol: this
means that each message sent by a node is converted in a series of TCP/IP packet received by
other nodes, even if they run in different machines connected to the same network.
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2.1.2 Robotics System Toolbox

The new Robotics System Toolbox (RST)[13] has been introduced in MATLAB R2015a. This
new toolbox successfully uses the Java implementation of ROS, presented by Google in 2011,
in order to provide an interface between MATLAB-Simulink and ROS. This toolbox allows the
rapid prototyping of algorithms and their integration directly in the ROS workspace, opening the
possibility of using MATLAB and Simulink algorithms with real (or simulated) ROS-compliant
robots with minimal code changes.
The following chapters will show how MATLAB and RST were widely used in order to perform
simulations, to test algorithms before writing them in C++ and to analyse the collected data.

2.1.3 Libdmtx library

Libdmtx[14] is an open source software for encoding and decoding Data Matrix. This library
is written in C, has a rather good performance level and a stability sufficient for the purpose
of this thesis. This library is also used by many ROS packages, fox example cob-marker and
visp-auto-tracker.

2.1.4 OpenCV library

OpenCV (Open Source Computer Vision)[15] is a cross-platform library mainly aimed at real-
time computer vision. The library is written in C (version 1.x) and C++ (version 2.x and 3.x)
and there are full interfaces in Python, Java, MATLAB and others languages. It is also the
primary vision package in ROS. As explained in the next pages, in this thesis it has been used
to handle the following operations:

• all geometrical transformations between different reference frames;

• the camera calibration;

• the calculation of the relative pose between data matrix and camera.

In addition to these features, a basic interface to usb cameras is provided.
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2.1.5 Qt framework

Qt ("cute")[16] is a cross-platform application framework used mainly for developing application
software with graphical user interfaces (GUI). It is perfectly integrated in ROS and it has been
used to develop a utility which allows to:

• easily import maps (in a bitmap format);

• collocate and automatically generate data matrices containing their poses relative to a
fixed reference frame;

• save and open projects;

• print or export each data matrix in .png or .pdf.

This application will be presented in the next chapter.

Figure 2.1: From left to right: OpenCV, ROS, Qt, Libdmtx, MATLAB logos.
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2.2 Validation hardware platform

A real robot equipped with two cameras, one looking forward and one looking backward, has
been used in order to validate the developed algorithms and to collect data. The collected
information has been fundamental to understand which were the main sources of uncertainty
and problems.

2.2.1 AtlasMV robot

The robot, named AtlasMV[4] (fig. 2.2a), has been developed by the University of Aveiro in 2008
to participate in robotics competitions. AtlasMV is a car-like robot with a fully functioning
ROS interface. Through this interface, it is possible to control both speed and steering angle
and to read their relative estimations at a frequency of 30Hz. Also, it is possible to get further
information regarding the status of the robot.

2.2.2 Video capturing devices

Two Logitech® c310 cameras (fig. 2.2b) have been used for capturing visual information. These
cameras are capable of capturing images with a frequency up to 30hz (depending on the exposure
time) and at a resolution up to 1280x960 pixel. These cameras are not oriented to computer
vision, with a good tuning it was nevertheless possible to obtain images with a sufficient quality
even in non static situations.

(a) AtlasMV equipped with two cameras (red
cirle) (b) Logitech® c310 usb camera

Figure 2.2
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Map characterization, information
encoding and tools creation

3.1 Map characterization

The first problem that has been considered was how to properly prepare a given environment to
allow the localization of a robot using visual information.
As a starting point it has been assumed that the map of the environment is known and available
as a bitmap image. Then, the following step has been to take an arbitrary frame of the map as
origin of the 2D Cartesian coordinate system, defined as map frame and indicated with Omap.
In analogy to the coordinate system often used in computer vision libraries (like OpenCV) the
top-left corner of the image has been fixed as origin of the coordinate system, with X axis
pointing right and the Y axis pointing up.
The figure 3.1 shows a partial map of LAR1, where most of the tests with the AtlasMV have
been executed. The fig.3.1 shows the map frame at the top-left corner of the image (the border
of the image represented with a blue line).

Figure 3.1: The map of LAR

1Laboratory for Automation and Robotics - Department of Mechanical Engineering at the University of Aveiro.
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3.2 Information encoding

The second problem that has been considered was that of finding the best trade-off between
the amount of information encoded in a data matrix and the dimension of the symbol. This
problem is related to the fact that the robot must be able to detect and decode a given data
matrix from a distance of at least 4/5 meters, otherwise the localization system would be useless.

According to the last standard ECC 200[17][18], the symbol size can vary from 9x9 to
144x144; the table 3.1 resumes some interesting properties of the data matrices (not all the
format numbers are reported for brevity).

It is reasonable to approximate the 2D coordinate system previously defined with a grid-
based representation obtained by embedding the map into a discretized coordinate system with
a step of 0.1m (one order of magnitude smaller than the typical dimensions of an AGV).

As reported in the table 3.1, the minimum symbol size is 10x10 (format number 0 ) and in
it 1 byte of information can be stored. A symbol with this size and printed on a A4 sheet of
paper can be easily decoded2, but 1 byte is not sufficient most in practical cases: if the byte is
equally divided (4 bits for the X axis and 4 for the Y axis) then it is possible to represent only
a map with a size of 1.6m x 1.6m.

The second option that was taken into consideration is the format number 1. With a symbol
size of 12x12, the format number 1 can store 3 bytes of data. Dividing the bytes equally (12
bits for the X axis and 12 for the Y axis) it is possible to represent a map with a size of 409.6m
x 409.6m, that is more than enough for most applications.

In order to encode the orientation of a given data matrix as well as the format of the sheet of
paper (for example A4 and A5, or A4 and A3), it has been chosen the following configuration:

• 10 bits for the X axis;

• 10 bits for the Y axis;

• 3 bits for the orientation (step of 45 degrees);

• 1 bit for the size (A4 and A5).

Using this method it is possible to represent a map with a size of 102.4m x 102.4m, the orien-
tation (8 possible angles) and 1 bit for the dimension of the sheet of paper (figure 3.2).
Saving 4 extra bits for the orientation and the size can be useful for future application. In this

2In practical cases, if the image is not blurred and if the light condition is good, the decoding process is
possible even with a 640x480 resolution camera and from a distance up of 5 meters.



Chapter 3. Map characterization, information encoding and tools creation 12

bit

Y

x
Orientation

A4A5

10bits       10bits    3bits  1

Figure 3.2: Data package encoded

thesis only the X and Y fields of the package have been used.

It is important to notice that with the chosen coordinate system, the X value is always
positive, and the Y value is always negative. In order to save data, it has been chosen to encode
only the absolute value of Y. The minus sign is later reintroduced during the decoding process.

Table 3.1: Data Matrix Formats

Format number Size Max binary capacity % of codewords for
error correction

correctable
codewords

0 10x10 1 62.5 2-0
1 12x12 3 58.3 3-0
2 14x14 6 55.6 5-7
3 16x16 10 50 6-9
... ... ... ... ...
20 104x104 814 29.2 168-318
21 120x120 1048 28 204-390
22 132x132 1302 27.6 248-472
23 144x144 1556 28.5 310-590

Each codeword is represented in the data matrix by a square part of 8 modules, correspond-
ing to 8 bits. Depending on the symbol size, there is a portion of codewords used to correct
errors. The error-correction codes used are the Reed-Solomon codes[19]. For instance, the for-
mat number 2 has 58.3% of codewords dedicated to error correction and up 3 codewords can be
corrected.
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3.3 Application: "Datamatrix generator"

In order to provide a simple tool for generating special data matrices, it has been developed an
application using the Qt framework. As anticipated in the sub section 2.1.5, this application
covers all the processes of landmarks creation and is specifically dedicated to the generation of
datamatrix for indoor labeling and localization.

The figure 3.3 shows how the application looks like on its first run. Six areas have been
highlighted:

1. Open or save projects (a project contains the map, the scale and the list of data matrices);

2. zoom in and out the map view;

3. add a new marker with a given position and a given orientation;

4. load a map from an image (png, jpg and other formats are supported);

5. print an item (the marker is converted to a data matrix during the printing process);

6. display all the data matrices added to the map in a dedicated table.

1

2 3 4
5

6

Figure 3.3: Data matrix application
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By pressing the Load Map button, it is possible to select an image containing a map. The
following step is to enter the correct scale factor (figure 3.4).

Figure 3.4: Set the scale factor.

The figure 3.5 shows how the creation and the positioning of a given data matrix works:
each data matrix can be moved by using the drag and drop functionality or using the Edit item
window, which opens with a double-click on the item. Using the Edit item window it is also
possible to change the orientation or to delete a given item.

Figure 3.5: Add a new item.
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As last step it is possible to print an item listed on the table by clicking the Print button.

Figure 3.6: Select an item.

By clicking on the Print button, the data matrix will be automatically created and shown
on a new window; it is then possible to Export or Print it using the relative buttons.

Figure 3.7: Print and export an item.

Note: the development of this software is still in progress. The GUI (Graphical User Inter-
face) must be considered as a draft and some interesting features are still missing. For instance,
it would be useful to have a support for CAD format files (such as dxf files).
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Perception

This chapter covers the topics relative to perception: from camera calibration to the calculation
of the relative pose of a camera according to a data matrix.

4.1 Pinhole camera

The pinhole camera model [20] describes the mathematical relationship between the coordinates
of a 3D point and its projection onto the image plane of an ideal pinhole camera (figure 4.1).
This model is only a first order approximation of how a modern camera works and it does not
take into account the effects introduced by the lens, the finite size apertures and other non-ideal
parameters of a real camera. This model is widely used in computer vision applications because
it is simple and because many of its limitations can be compensated by the software after a
calibration process.

4.1.1 Pinhole camera model

The pinhole camera model (the geometry is reported in figure 4.2) is composed of a 3D orthog-
onal coordinate system, which is used to represent the coordinate of a point in the 3D space
with respect to the camera frame, and a 2D orthogonal coordinate system, which represents the

Figure 4.1: Pinhole camera diagram
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projection of that point onto a plane called image plane.

The origin O of the 3D orthogonal coordinate system is located where the aperture is located
(or in the geometric center of the aperture in case of a real camera with finite size aperture),
the X3 axis is pointing in the viewing direction of the camera and it refers to its optical axis
(or principal axis). The X1 and X2 axes locate the principal plane.

The image plane is parallel to the axes X1 and X2 and it is located at a distance f from
the origin O in the negative direction of the X3 axis. The value f is referred to as the focal
length. The point R is placed at the intersection of the optical axis and the image plane and it
is called principal point (or image center).

A given point P at coordinate (x1,x2,x3) relative to the axes X1,X2,X3 projected onto the
image plane is defined as Q. The coordinate of the point Q relative to the 2D coordinate system
are expressed as (y1,y2).

Image plane

f

Y1

Y2

Q
R

O

X2

X1

X3

P

x1

x2

x3

Figure 4.2: Pinhole model
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The relation between the 3D coordinates (x1,x2,x3) of point P and its image coordinates
(y1,y2) given by point Q in the image plane is expressed by(

y1

y2

)
= − f

x3

(
x1

x2

)
. (4.1)

Note that the image in the image plane is rotate by π. In order to produce an unrotated image,
it is useful to define a virtual plane so that it intersects the X3 axis at f instead of −f . The
resulting mapping from 3D to 2D coordinates is given by(

y1

y2

)
=

f

x3

(
x1

x2

)
. (4.2)

The relation 4.2 can’t provide the 3D coordinate of a point from its 2D projection but only the
ratios x1

x3
and x2

x3
(fig.4.3): which means that with a single camera it is impossible to determine

the 3D coordinate of a point.

Figure 4.3: Relation between y1
f and x1

x3

In the general case, in order to determine the position of a given point it is necessary to
use a stereo vision system and the epipolar geometry [21]. In the particular case that has been
considered, it has not been necessary to use more than one camera: knowing the geometry of
a data matrix, which is approximable to a square with a given edge length, it is possible to
calculate its pose with only one camera if at least three correspondences between image points
and objects points have been identified[22].
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4.1.2 Camera calibration

The calibration process allows the identification of the intrinsic parameters and distortion coef-
ficients of the camera. Without this step it is impossible to obtain a good accuracy, especially
when the lens introduce a high distortion.
The intrinsic parameters are necessary for defining the camera matrix, that is

K := KsKf =

sx sθ Ox

0 sy Oy

0 0 1


f 0 0

0 f 0

0 0 1

 =

fsx fsθ Ox

0 fsy Oy

0 0 1

 , (4.3)

where

• sx and sy are scale factors;

• sθ is the skew factor;

• Ox and Oy are the offsets of the central point;

• f is the focal length.

Using the homogeneous coordinates, the camera matrix defines the relation

λ

y1

y2

1

 = K

x1

x2

x3

 , λ 6= 0 . (4.4)

The distortion coefficients are used to compensate the radial and tangential distortion introduced
by lens. Figure 4.4 shows distorted chessboard (figure 4.4a) during the calibration procedure
and the undistorted chessboard after the calibration (figure 4.4b). The software used for the
calibration is the ROS package camera-calibration[23].

(a) A chessboard during the calibration (b) A chessboard after the calibration

Figure 4.4: Camera calibration process
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4.2 Data Matrix pose with respect to the camera frame

In the previous chapter the pinhole model and the concept of camera calibration were discussed.
This section presents the approach used for obtaining the pose of a given Data Matrix with
respect to the camera frame, defined as Ocam.

The library Libdmtx allows to obtain extra information regarding each detected data matrix
code, including the pixel coordinate of each corner. The figure 4.5a shows an example of detec-
tion: the green circles indicate the corners detected by the library (the red circle is simply the
middle point between the top-left corner and the bottom-right).

Note that the data matrix does not have the top-right corner: Libdmtx, in fact, calculates
the coordinates of the corners of a square that fits the detected data matrix.

Let Odm be the reference frame attached to the data matrix (figure 4.5b) and let l be the
length of the data matrix edges. Then, the coordinates of the corners detected by the Libdmtx
library with respect to the reference frame Odm are:

• top-left corner: Cdmtl := (− l
2 ,
l
2 ,0);

• top-right corner: Cdmtr := ( l2 ,
l
2 ,0);

• bottom-left corner : Cdmbl := (− l
2 ,−

l
2 ,0);

• bottom-right corner: Cdmbr := ( l2 ,−
l
2 ,0).

Let the respective corners in the image coordinates be:

• top-left corner: Cimgtl ;

• top-right corner: Cimgtr ;

(a) Example of data matrix detection

L

xdm

ydm

zdm
Odm

(b) Frame Odm attached to data matrix

Figure 4.5: Data matrix detection and reference frame Odm
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• bottom-left corner : Cimgbl ;

• bottom-right corner: Cimgbr .

The OpenCV function solvePnP [24] was then used; this function allows to find the data
matrix pose using the 3D-2D correspondences of the previously defined corners (figure 4.6).
The function requires the following inputs:

• a Vector containing the 2D coordinates (image points):
[
Cimgtl , Cimgtr , Cimgbl , Cimgbr

]
;

• a Vector containing the 3D coordinates (object points):
[
Cdmtl , C

dm
tr , C

dm
bl , C

dm
br

]
;

• the calibration file of the camera containing the camera matrix and the distortion coeffi-
cients.

The outputs of the function are:

• the rotation matrix Rcamdm ;

• the translation vector T camdm ;

that are the pose of the data matrix with respect to the camera frame Tcam
dm = (Rcamdm , T camdm ).

The function solvePnP includes three different algorithms for computing the pose. The algo-
rithm has been used is the iterative method based on Levenberg-Marquardt optimization [25][26].

The Levenberg-Marquardt optimization algorithm minimize the reprojection error, that is,
the total sum of squared distances between the observed feature points imagePoints and the
projected object points objectPoints.

zc

xc

yc

xdm

ydm

zdm

Figure 4.6: Correspondence between 2D corners e 3D corners
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4.3 Data matrix pose with respect to the robot frame

One of the aims of the localization algorithm was to use two or more cameras to scan a wider
area around the robot. In order to simplify the localization algorithm, it has been necessary to
calculate the pose of each data matrix with respect to a given reference frame.

The adopted approach makes the whole algorithm modular : the part of the algorithm that
estimates the position doesn’t have to be aware of how many cameras the robot employs but
only it needs to know the pose of each data matrix in relation to that given reference frame.

The natural choice has been to define the robot frame Or attached at the geometric center
of the robot (fig. 4.7a) and to consider all the poses referred to this frame.

Let be

• Tci
dmj

=
(
Rcidmj

, T cidmj

)
the pose of the data matrix j with respect to the camera i frame;

• Tr
ci =

(
Rrci , T

r
ci

)
the pose of the camera i with respect to the robot frame;

• Tr
dmj

=
(
Rrdmj

, T rdmj

)
the pose of the data matrix j with respect to the robot frame.

The pose Tr
dmj

can be calculated using the following relations

Rrdmj
= Rrci ·R

ci
dmj

, T rdmj
= Rrci · T

ci
dmj

+ T rci . (4.5)

Note that the pose Tr
ci must be calculated through a calibration process as detailed in the

following paragraph.

x

y

z

(a) Robot frame Or (b) Relation between reference frames

Figure 4.7
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Extrinsic camera parameters

The calculation of the pose Tr
ci has required to develop a specific calibration process since only

the pose of Tci
dmj

is computed and the direct calculation of the pose Tr
ci (especially the orienta-

tion) is not easy in practice.

The calibration process uses a chessboard situated in a known position with respect to the
robot frame Or. The pose of the chessboard with respect to the camera i frame Tci

cb :=
(
Rcicb, T

ci
cb

)
has been calculated using the built-in OpenCV function findChessboardCorners (in order to get
the corners coordinates) and then again the function solvePnP.
The relations that were used are the following:

Rrci = Rrcb ·
(
Rcicb
)−1

, (4.6)

T rci = T rcb −Rrci · T
ci
cb = T rcb −Rrcb ·

(
Rcicb
)−1 · T cicb . (4.7)

Let Oc1 be the coordinate system of the camera that looks forward and Oc2 the coordinate
system of the camera that looks backward. The figure 4.7b shows the relation between the
reference frames Or, Oc1 and Ocb.
In the example shown in figure 4.8, the chessboard has been positioned in a specific point such
that the resulting pose Tr

cb (measured with a measuring tape) was

T rcb =

1.54

0

0.75

 [meters] , Rrcb =

cosπ − sinπ 0

sinπ cosπ 0

0 0 1

 . (4.8)

The calibration has been executed using a C++ program developed for this task and the pose Tr
ci

has been calculated using the relations 4.6 and 4.7 and the OpenCV function composeRT [24].

Figure 4.8: Extrinsic parameters calibration
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4.4 Implementation of the algorithm

The algorithm described in this chapter has been implemented as a single ROS node called
datamatrix-pose-pub. This node includes the following components:

• an interface to the cameras, using OpenCV’s APIs;

• a data matrix detector, using Libdmtx;

• the computation of Tci
dmj

, for each camera i and each data matrix j, using solvePnP ;

• the computation of Tr
dmj

, using composeRT.

The figure 4.9 is a schematic of the internal architecture of this node.

Figure 4.9: Structure of the node datamatrix-pose-pub

The frames are captured using the same target, timestamped for both cameras. This has
been necessary for two reasons:

• to keep track of the acquisition timestamp (this information is important because the delay
introduced by the datamatrix detection process must be taken into account);

• to avoid errors introduced when the localization algorithm attempts to estimate the po-
sition of the robot using a couple of data matrices detected in two different frames with
different timestamps.
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The frame is elaborated by the Libdmtx library and the pose of each detected data matrix
is calculated using the proper calibration file and the OpenCV function solvePnP.

The output of this procedure is a vector of dataMatrixData, which is a special struct defined
as

struct dataMatrixData{

/* Encoded Information */

unsigned char byte0, byte1, byte2;

/* Dmtx region information */

float topleftx; float toplefty;

float toprightx; float toprighty;

float bottomleftx; float bottomlefty;

float bottomrightx; float bottomrighty;

/* Datamatrix Encoded Information */

int x, y, theta, size;

/* ROI (rectangle) */

float roiX;

float roiY;

float roiWidth;

float roiHeight;

/* Datamatrix Center */

float centerX;

float centerY;

/* Datamatrix Pose */

dataMatrixPose dmPose;

};

and the type dataMatrixPose is another struct defined as

struct dataMatrixPose{

float tx; float ty; float tz; // translation

float rx; float ry; float rz; // rotation

};
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which contains the pose Tci
dmj

.

The procedure can be distributed to be implemented on multiple cases: the cameras can
grab and elaborate frames simultaneously on two different CPUs and the resulting elaboration
process is twice as fast.
Reducing the elaboration time has been a critical step: if the elaboration takes too much time
(for instance 250ms) the poses of the data matrices detected will be, in fact, referred to a data
matrix detected 250ms in the past. Considering a speed of 2m/s and an elaboration time of
250ms, the resulting error is 0.5m.

The vectors relative to each elaboration thread are finally processed sequentially using the
function composeRT and the extrinsic parameters of each camera. The resulting output is a
data structure called DataMatrixPoseSet, which is a custom ROS message with the following
structure

Header header

float64 acq_timestamp

datamatrix_detection/DatamatrixPose[] dmpose

where header is a ROS data type used for managing the messages, acq-timestamp is the acqui-
sition timestamp and dmpose is a vector of DatamatrixPose, which is a custom ROS message
defined as

float64 dm_msg_x

float64 dm_msg_y

float64 dm_msg_or

float64 dm_msg_size

geometry_msgs/PoseWithCovariance pose

The message DatamatrixPoseSet is finally published on the ROS topic datamatrix-pose at a
frequency between 10Hz and 15Hz. This frequency has been determined by the computational
power of CPU used, an Intel® CoreTM i3-2310m (dual-core processor with a frequency up to
2,1GHz).

The messages published on this topic are read by the ROS node named atlasmv-ekf, which
is presented in the chapter 5.
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Estimation of position and sensor
fusion

This chapter covers the part of the thesis regarding position estimation and sensor fusion of the
moving robot.
The covered topics are:

• localization using trilateration and triangulation techniques;

• AtlasMV modelling using a bicycle-like model;

• sensor fusion using an Extended Kalman Filter;

• model verification using Simulink.

5.1 Localization using trilateration and triangulation

In the context of this problem, the robot should be able to estimate its own position in the
environment every time at least two data matrices are detected by its own camera system.
Let be:

• raw-robot-pose, the pose of the robot obtained using only the visual information at a given
time t;

• ekf-robot-pose, the filtered pose of the robot obtained using the Extended Kalman Filter.

This section presents how raw-robot-pose is calculated.
As seen in the previous chapter, the datamatrix-pose-pub node provides a vector containing

the poses of the j− th data matrix with respect to the robot frame, Tr
dmj

: the poses are referred
to the 3D coordinate frame of the robot, Or. On the contrary, the estimated position is referred
to the coordinate system of the map, Omap.
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Assuming that the robot is moving on a plane domain and hence the axes xr and yr of the
robot frame Or are parallel to the axes xmap and ymap of the map frame Omap, it is possible to
simply ignore the zr axis and to keep on working on a 2D coordinate system. In this context,
the robot pose with respect to the map frame Omap can be determined using the coordinates
(x, y, θ)(fig. 5.1), where x and y are the coordinates with respect to the axes xmap and ymap,
and θ is the orientation (rotation angle with respect to the z axis).

Let dmj be the j − th detected data matrix. The localization algorithm uses the following
information extracted from the dataMatrixData structure:

• xencj and yencj , the encoded pose of the data matrix with respect to the map frame;

• Tr,2D
dmj

:= (xj , yj), 2D translation vector extracted from Tr
dmj

= (xj , yj , zj);

To keep the notation light, the vector Tr
dmj

will indicate both Tr
dmj

and Tr,2D
dmj

.

If dm1 and dm2 are two detected data matrices, it is possible to define the distance and the
angle with respect to the robot frame using the relations:

dj :=
√
x2
j + y2

j , αj = arctan 3

(
yj
xj

)
, j = 1, 2 (5.1)

where arctan 3 (·) is an arctan (·) function defined in [0, 2π].

Let C1 and C2 be the circumferences with center in (xenc1 , yenc1 ) and (xenc2 , yenc2 ), and with radius
d1 and d2, respectively. The robot position (x, y) is in one of the intersection points P1 and P2

(fig. 5.2) of the circumferences (the cases with one or zero intersections are simply ignored by
the algorithm).

Figure 5.1: Robot pose (x, y, θ).
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Figure 5.2: Intersection points P1 and P2 of the circumferences

It is easy to ascertain which position is the correct one, namely through a simple comparison
between the measured angles αj and the angles obtained using the coordinates points P1 and
P2 and the coordinates xencj and yencj , with j = 1,2.

Finally, the orientation θ can be calculated using a single data matrix dmj , the estimated
position (x, y), αj and Tr

dmj
:

θj = arctan 3

(
yj − y
xj − x

)
− αj . (5.2)

If n >= 2 is the number of detected data matrices, the estimation of the orientation θ can be
improved using the mean angle:

θ = arctan 3

(∑n
k=1 sin (θj)∑n
k=1 cos (θj)

)
. (5.3)

In order to use Extended Kalman Filter it is necessary to know the error associated to the
pose estimation.

It was possible to identify three main sources of uncertainties:

• the discretization error umj in the encoded coordinates
(
xencj , yencj

)
;

• a proportional error udj in the distance dj ;

• an error uαj in the estimation of the angle αj .

The uncertainties have been modelled with the Gaussian distributions:

• umj ∼ N (0, 0.12) , standard deviation equal to the map resolution;
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• udj ∼ N (0, (0.05dj)
2) , standard deviation equal to the distance dj multiplied by the

coefficient 0.05;

• uαj ∼ N (0, ( 5π
180)2) , standard deviation of 5 degrees.

It has been assumed by hypothesis that the uncertainties are uncorrelated.

Let xy
θ

 = p



xencj

yencj

dj

αj

 , j = 1, ..., n

 (5.4)

be the function that calculates the estimation of the pose.
The resulting error has been calculated numerically using the first order propagation of uncer-
tainty formula:

u


xy
θ


 =

n∑
j=1

√(
∂p

∂xj

)2

(umj )2 +

(
∂p

∂yj

)2

(umj )2 +

(
∂p

∂dj

)2

(udj )
2 +

(
∂p

∂αj

)2

(uαj )2

, j = 1, ..., n. (5.5)

Let

e =

exey
eθ

 := u


xy
θ


 (5.6)

be the error vector associated to the estimation of the pose. The measurement obtained at the
time t can be written as

yv(t) =

x(t)

y(t)

θ(t)

 , cov
(
yv(t) · yTv (t)

)
:=

ex(t) 0 0

0 ey(t) 0

0 0 eθ(t)

 , (5.7)

where the subscript v stands for vision.



31 5.2. AtlasMV modelling using a bicycle-like model

5.2 AtlasMV modelling using a bicycle-like model

The robot has been modelled using a simple bicycle-like model. This model provides a basic
kinematics, which is sufficient for filtering and estimation purposes.
According to chapter 3, the robot lies in the map with a Cartesian coordinate system and its
pose is defined by (x, y, θ).
The discrete-time state-space description of its kinematics can be expressed using the following
relation: x(tk+1)

y(tk+1)

θ(tk+1)

 =

x(tk) + ∆t s(tk) cos(θ(tk))

y(tk) + ∆t s(tk) sin(θ(tk))

θ(tk) + ∆t s(tk)
tan(ψ(tk))

l

 (5.8)

where:

• l is the wheelbase length;

• ψ(tk) is the steering angle;

• s(tk) is the speed;

• ∆t = tk+1 − tk is the sample time;

• tk ∈ Z is the time index.

This model is used as starting base to design the Extended Kalman Filter. Note that s(t) and
ψ(t) are measurements provided by the ROS node atlasmv, which will be described in section 6.

Figure 5.3: Bicycle model
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5.3 Sensor fusion using an Extended Kalman Filter

This section introduces the problem of how to obtain sensor fusion using an Extended Kalman
Filter. The goal is to obtain a filtered pose, namely ekf-robot-pose, which can be used by a client
node for controlling and path planning purposes.
The topics of this section are:

• introduction to the Extended Kalman Filter framework;

• sensor fusion using visual and odometry information;

• sensor fusion using visual, odometry and inertial information;

5.3.1 Extended Kalman Filter framework

At first it is necessary to recall the equations of the Extended Kalman Filter framework. The
notation used in sections 5.3.2 and 5.3.3 follows the notation introduced in this section.
Let t ∈ R be the t continuous-time variable. The reference model is

ẋ(t) = f(x(t)) + ξ(t) (5.9)

y(tk) = h(x(tk)) + w(tk) (5.10)

where:

• x(t) is the n dimensional state;

• f(·) is the process function;

• h(·) is the observing function;

• x(t0) = x0 is the initial state;

• {ξ(t)} is the continuous-time n-dimensional process noise, with zero mean and covariance
matrix Q = QT ≥ 0;

• {w(tk); k = 0, 1, ...} is the continuous-time andm-dimensional observation noise, with zero
mean and variance R > 0;

• {ξ(t)}, {w(tk)} and x(t0) are uncorrelated;

• f, h,Q,R are, in general, time-varying;

• tk, k = 0,1,... is the sample time, in general aperiodic.
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Let be x̄(t) the reference state trajectory, the Jacobian matrices are:

F (x̄(t)) :=
∂f

∂x

∣∣∣
x=x̄(t)

, (5.11)

H(x̄(t)) :=
∂h

∂x

∣∣∣
x=x̄(t)

. (5.12)

The algorithm works in two steps: prediction and update.

Prediction step

Assuming that the dynamic of the robot is slow with respect to the sampling time, it is possible
to calculate the a priori state using the Euler discretization:

x̂(k + 1|k) := f̂k(x̂(k|k)) , (5.13)

in the interval [tk, tk+1], where:

f̂k(x̂(k|k)) = x̂(k|k) + (tk+1 − tk)f(x̂(k|k)) . (5.14)

The a priori variance is:

P (k + 1|k) = Φ̂(k|k)P (k|k)Φ̂T +Q(k) , (5.15)

where:

Φ̂(k|k) =
∂f̂k
∂x

∣∣∣
x=x̂(k|k)

. (5.16)

Update step

The a posteriori state is:

x̂(k + 1|k + 1) = x̂(k + 1|k) + L(k + 1) [y(k + 1)− h(x̂(k + 1|k))] , (5.17)

where the gain L(k + 1) is calculated using:

Λ(k + 1) = Ĥ(k + 1|k)P (k + 1|k)Ĥ(k + 1|k)T +R(k), (5.18)

L(k + 1) = P (k + 1|k)Ĥ(k + 1|k)TΛ(k + 1)−1 , (5.19)

where
Ĥ(k + 1|k) := H(x̂(tk+1|tk)) . (5.20)
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The a posteriori variance is:

P (k + 1|k + 1) = [I − L(k + 1)Ĥ(k + 1|k)]P (k + 1|k)[I − L(k + 1)Ĥ(k + 1|k)]T

+ L(k + 1)RL(k + 1)T . (5.21)

Initial values

The initial values of the filter are:

x̂(0| − 1) = E[x(t0)] P (0| − 1) = V ar(x(t0)) . (5.22)

Innovation for angular quantities

The third state variable that will be defined in the following section is the orientation θ ∈
[0,2π], which is an angular quantity. The equation 5.17 needs to be modified in order to avoid
unexpected behaviours.
Let

I(k + 1) := y(k + 1)− h(x̂(k + 1|k)) (5.23)

be the innovation vector and let i3(k + 1) be the third component of this vector.
Let y3(k + 1) and h3(x̂(k + 1|k)) be the third component of y(k + 1) and h(x̂(k + 1|k), respec-
tively. For instance, if y3(k + 1) = 0.1 and h3(x̂(k + 1|k)) = 6.2, the respective innovation is
i3(k + 1) = −6.1: this makes the filter unstable.

The innovation i3(k + 1) must be calculated using

i3(k + 1) = atan2

(
sin(y3(k + 1)− h3(x̂(k + 1|k)))

cos(y3(k + 1)− h3(x̂(k + 1|k)))

)
, (5.24)

where atan2(·) is the four-quadrant inverse tangent defined in [−π, π].
After this correction the third state variable must be remapped into the interval [0, 2π] using
the function atan3(·).
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5.3.2 Sensor fusion using visual and odometry information

This section introduces a model for the sensor fusion using the pose calculated by the node
datamatrix-pose-pub, as discussed in the chapter 4 and using the the speed s(·) and the steering
angle ψ(·) published by the atlasmv-base node on the topic atlasmv-base/AtlasmvStatus1.

Model 1: equations

Let

x(t) =


x(t)

y(t)

θ(t)

s(t)

ψ(t)

 (5.25)

be the state vector.
The f(·) function is defined as:

f(x(t)) =


s(t) cos θ(t)

s(t) sin θ(t)

s(t) tan(ψ(t))1
l

0

0

 , (5.26)

where the components 1, 2, 3 are the continuous equivalent of the 5.8 and the components 4
and 5 are set to zero because the acceleration ṡ(·) and the steering angular velocity ψ̇(·) are
not measurable without an IMU. The dynamic of the components 4 and 5 is determined by the
process noise.

Since we have two different sources of information, there are also two observation functions:

hv(x(t)) =

x(t)

y(t)

θ(t)

 , ha(x(t)) =

[
s(t)

ψ(t)

]
, (5.27)

where subscript v is for vision and a is for AtlasMV.

The Jacobian matrices are defined as:

Hv(x(tk)) =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 , Ha(x(tk)) =

[
0 0 0 1 0

0 0 0 0 1

]
, (5.28)

1More details about this node are discussed in chapter 6.
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and the sampled state equation is defined as:

f̂tk(x̂(tk|tk)) =


x(tk) + s(tk)∆tk cos(θ(tk))

y(tk) + s(tk)∆tk sin(θ(tk))

θ(tk) + s(tk)∆tk tan(ψ(tk))
1
l

0

0

 , (5.29)

where ∆tk := tk+1 − tk. The remaining matrices are:

Φ̂(tk|tk) =


1 0 −s(tk)∆t sin(θ(tk)) T cos(θ(tk)) 0

0 1 s(tk)∆t cos(θ(tk)) T sin(θ(tk)) 0

0 0 1 ∆t
l tan(ψ(tk))

∆t
l s(tk) sec(ψ(tk))

2

0 0 0 1 0

0 0 0 0 1

 , (5.30)

Q(tk) = (ki∆t)
2I5+
(s(tk)∆t ks)

2 0 0 0 0

0 (s(tk)∆t ks)
2 0 0 0

0 0 (s(tk)∆t ks)
2 0 0

0 0 0 (∆t amax)2 0

0 0 0 0 (∆t ψ̇max)2

 (5.31)

where
∆t = tmeasure − tekfState > 0

is the difference between the measurement timestamp and the EKF state timestamp.
Finally, the covariance matrices associated to the observation functions are:

Rv(tk) =

ex(tk) 0 0

0 ey(tk) 0

0 0 eθ(tk)

 , Ra(tk) =

[
es 0

0 epsi

]
, (5.32)

where ex(tk), ey(tk) and eθ(tk) are the error variance relative to the measure yv(tk), es is the
error variance relative to the measure of speed and eψ is the error variance relative to the measure
of steering angle.

Note that Q(tk) uses the maximum acceleration and the maximum steering angle speed to
regulate the covariance matrix. The matrix (ki∆t)

2I5 is used in order to keep the matrix
positive even when the speed is zero (I5 is the identity matrix of order 5).
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The numerical values of the parameters are reported in the table 5.2. The coefficients ks, ki, es,

Table 5.1: Extended Kalman Filter 1 parameters

Parameter Value
l 0.497 [m]

ks 0.2 [ ]

ki 0.5 [ ]

amax 4 [m
s2

]

ψ̇max 1.5 [ rads ]

es (0.2)2 [(m/s)2]

eψ (5π/180)2 [rad2]

eψ have been found experimentally using the real robot.

This model has been implemented in MATLAB and used with the robot (both with real one
and with a robot that was simulated using Gazebo). Its implementation is thoroughly described
in the chapter 6.

5.3.3 Sensor fusion using visual, odometry and inertial information

This section introduces a model for the sensor fusion in which an IMU (inertial measurements
unit) is also used. An additional sensor can be very useful both to increase the redundancy of
the system and to increase the accuracy of the pose estimation.
Moreover, the redundancy of information opens to the possibility of identifying some parameters
of the model. For instance, the model proposed in this section can identify and correct a
proportional error in the speed measurement.

Since the IMU wasn’t available, this model hasn’t been used with the real robot. Its validity
was nonetheless studied and clearly proven through simulations.

Model 2: equations

In order to simplify the analysis, the discrete-time model have reported assumes that the vari-
ables are sampled at a fixed sample time T .
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Let

x(k) =



x(k)

y(k)

θ(k)

s(k)

ψ(k)

a(k)

ω(k)

sg(k)


(5.33)

be the state vector, where:

• a(k) is the acceleration along xr axis;

• ω(k) is the angular velocity around zr axis;

• sg(k) is the time-varying coefficient relative to a multiplicative error in speed measurement.

The state equation is defined as:

f̂k(x(k)) =



x(k) +
(
s(t)T + a(k)T

2

2

)
cos θ(k)

y(k) +
(
s(t)T + a(k)T

2

2

)
sin θ(k)

θ(k) + T (s(k) tanψ(t)) 1
l α+ Tω(k)(1− α)

s(k) + a(k)T

ψ(k)

a(k)

ω(k)

sg(k)


, (5.34)

where α ∈ (0,1) is used to calculate a weighted mean between the orientation obtained using
the steering angle and the speed:

θ(k + 1) = θ(k) + Ts(k) tanψ(k)
1

l
,

and the orientation calculated using angular velocity provided by the IMU:

θ(k + 1) = θ(k) + Tω(k) .
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The observation function is:

h(x(k)) =
[
x(k) y(k) θ(k) s(k)sg(k) ψ(k) a(k) ω(k)

]T
, (5.35)

where the s(k)sg(k) is used to model the fact that the measured speed is the real speed s(k)

multiplied by a gain sg(k).

Assuming that the speed is estimated using an encoder attached to a wheel, this model can
explain and correct those errors which are due to a wrong estimation of the wheel diameter,
which can be caused, for example, by the variable tire pressure.

The Jacobian matrices is defined as:

H(x(tk)) =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 sg(k) 0 0 0 s(k)

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0


. (5.36)

The remaining matrices are:

Q(k) =

(0.1∆t)2 0 0 0 0 0 0 0

0 (0.1∆t)2 0 0 0 0 0 0

0 0 (0.1∆t)2 0 0 0 0 0

0 0 0 (20amax∆t)2 0 0 0 0

0 0 0 0 (10ψ̇max∆t)2 0 0 0

0 0 0 0 0 (10∆t)2 0 0

0 0 0 0 0 0 (20∆t)2 0

0 0 0 0 0 0 0 0


,

(5.37)

Φ̂(k|k) =



1 0 −(s(k)∆t+ a(k)∆t2) sin θ(k) ∆t cos θ(k) 0 ∆t2 cos θ(k) 0 0

0 1 (s(k)∆t+ a(k)∆t2) cos θ(k) ∆t sin θ(k) 0 ∆t2 sin θ(k) 0 0

0 0 1 ∆t
l tanψ(k)α ∆t

l αs(k)(secψ(k))2 0 ∆t(1− α) 0

0 0 0 1 0 ∆t 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0


, (5.38)
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R(k) = diag {ex, ey, eθ, es, eψ, ea, eω} , ∆t := tk+1 − tk . (5.39)

Note 1 Q(k) has a less complex structure in comparison to the previous case, in order to
underline the impact of the IMU.
Note 2 The variance of the error associated to the process sg(·) is zero because it has been
assumed that it is a constant, though not exactly known value, and that is ideally equal to 1.
Otherwise, if sg(·) is not constant but slowly variable, the associated variance can be a small
but non-zero value (for example sg(·) = 10−6). In order to initialize correctly the filter, the state
variable sg(0) must be set to 1 with an associated variance grater then zero.

The numerical values of the parameters are reported in the table 5.2.

Table 5.2: Extended Kalman Filter 2 parameters

Parameter Value
l 0.497 [m]

amax 4 [m
s2

]

ψ̇max 1.5 [ rads ]

α 0.1 []

es (0.2)2 [(m/s)2]

eψ (5π/180)2 [rad2]

ex (0.2)2 [m2]

ey (0.4)2 [m2]

eθ (15π/180)2 [rad2]

ea 0.001 [(m/s2)2]

eω 0.001 [(rad/s)2]
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5.3.4 Model verification using Simulink

This subsection presents a simulation used to prove the effectiveness of the model presented in
the previous section.
The simulator is based on a realistic car-like model with equation:

d

dt


x(t)

y(t)

s(t)

θ(t)

 =


s(t) cos θ(t)

s(t) sin θ(t)

a(t)

s(t) tan(uψ(t))1
l

 . (5.40)

The acceleration has equation:

a(t) =

(
P
uT (t)

s(t)
−ACds(t)2

)
1

m
, (5.41)

where

• A = 0.5m is the frontal area of the car;

• Cd = 0.3 is the drag coefficient;

• m = 100kg is the mass;

• l = 1m is the wheelbase length;

• uT (t) ∈ [−1,1] is the throttle position;

• uψ(t) ∈ [−0.3,0.3] is the steering angle;

• P = 150W is the engine power.
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The Simulink model is contained in the following block: The throttle position and the steering

ThrottlePosition [-]

SteeringAngle [rad]

X [m]

Y [m]

DX [m/s]

DY [m/s]

ds [m/s2]

s [m/s]

theta [deg]

omega [deg/s]

Vehicle Model

Figure 5.4: Vehicle Simulink block

angle are driven by two random signals in order to obtain a random path.
The inputs and outputs are used to simulate the sensors:

• x(·), y(·) and θ(·) are used to simulate the pose calculated using visual information;

• s(·) and the steering angle are used to simulate the information provided by AtlasMV;

• ds (ṡ(·)) and ω(·) are used to simulate the IMU.

A Gaussian additive noise has been added to each signal, and all the signals have been sampled
at the same frequency fs = 30Hz.
The table 5.3 resumes the noise characteristics.

Table 5.3: Gaussian noise parameters

signal mean variance
x(·) 0 0.42

y(·) 0 0.42

θ(·) 0 (15π/180)2

s(·) 0 0.022

ṡ(·) 0 0.001

ψ(·) 0 (5π/180)2

ω(·) 0 0.001
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Simulations

The simulation parameters are as follows:

• the initial condition of the simulated robot have been set to zero (x(0) = y(0) = θ(0) =

s(0) = ψ(0) = 0) and the coefficient sg (constant) is equal to 1.2;

• the initial values of the EKF have been set to zero, each variable with a variance 0.1,
except for sg, which is initialized to 1 with a variance of 0.152;

• the simulation time is 15s;

• the model with IMU corresponds to the model introduced in section 5.3.3 and the model
without IMU corresponds to the model introduced in section 5.3.2;

• Where applicable, the model without IMU uses the same parameters as the model with
IMU, and it reads the real speed (not the real speed multiplied by 1.2).

The figure 5.5 shows the random path followed by the robot. The blue line represents the
real trajectory, and the green and black line the estimated trajectory without and with IMU,
respectively.
Note that, as expected, the trajectory estimated using the IMU is less noisy.

Figure 5.5: Path traveled



Chapter 5. Estimation of position and sensor fusion 44

The figures 5.6 and 5.7 show the errors relative to the pose estimation (orientation and
position).

Figure 5.6: Orientation error

Figure 5.7: Position error
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The figures 5.8 and 5.9 show how the model with IMU can properly identify the parameter
sg and can also correct the speed estimation in less than 200 steps (about 6.6s).

Figure 5.8: Sg identification

Figure 5.9: Real vs estimated speed s(·)
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Table 5.4 shows a quantitative comparison between the EKF with and without IMU. The
EKF works fine in both the cases, but an additional improvement can be obtained using an
IMU.

Table 5.4: Average mean error

- Measurements EKF w-o IMU EKF with IMU Gain
position [m] 0.531 0.138 0.084 +63.2%

orientation [rad] 0.288 0.043 0.030 +39.7%

Final consideration about the IMU

Adding an IMU is probably the best method to increase the efficiency of the EKF. The reason
is that the EKF works with the hypothesis of Gaussian error with zero mean, but in fact
odometry information and expecially vision information are affected by systematics errors with
a completely different statistical distribution, which compromises the performance of the filter.
The proposal would be to add an IMU and then to overstimate the errors associated to the
remaining sources of infomation (vision and odometry). This problem could and should be
studied in a future, as a separated work.



Chapter 6

Implementation in MATLAB

During the creation of an Extended Kalman Filter for ROS, it has been necessary to deal with
a problem connected to ROS and its implementation: ROS is not a real-time system and the
messages are exchanged between nodes using the TCP/IP protocol. For this reason, the non
deterministic behaviour of ROS causes some uncertainty. Furthermore, the elaboration of visual
information introduces a non-negligible delay. These problems have been solved using a time-
varying Extended Kalman Filter.
The EKF has been implemented in MATLAB and connected to ROS using the Robotics System
ToolboxTM (RST) introduced in MATLAB r2015a.
During the practical implementation of the filter two main problems have been highlighted:

1. the measurements from the nodes atlasmv and datamatrix-pose-pub are aperiodic and can
be received Out-of-Order;

2. MATLAB doesn’t provide any native mechanism for regulating the access to the variables,
like mutex (mutual exclusion)[27] does in C++. The multi-thread programming is also
limited.

These problems have been partially solved using an algorithm specifically designed for MATLAB.

6.1 First proposed algorithm

The first proposed algorithm is the algorithm represented in fig. 6.1. This algorithm is subdi-
vided in three different execution threads:

1. a first thread for the buffer management, for it to receive new measurements and store
them ordered by timestamp;

2. a second thread for updating the state x̂(tk|tk) when the contents of the buffer changes;
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Figure 6.1: EKF - Structure of the algorithm

3. a third thread that publishes the predicted pose of the robot ekf-robot-pose on a specific
ROS topic at a fixed publishing frequency fp (for example fp = 30Hz) and using the last
estimated state, as calculated by the second thread.

The timestamp ts in fig. 6.1 must satisfy the following conditions:

ts ≥ tk , ts+1 = ts +
1

fp
,

where tk is the timestamp of the last received measurement.
Note that the use of two mutex (one to exchange data between thread 1 and 2, and the other one
exchange data between thread 2 and 3) is required to preserve the consistency of the information.

This algorithm provides the prediction of the robot pose at a given fixed frequency (useful
for controlling purposes) and at the same time it can solve the problems related to the long
elaboration time of the visual information and, in general, to the non deterministic behaviour
of ROS. It hasn’t been possible to develop this algorithm using MATLAB because of its lack of
native multithread programming.
Nonetheless, the possibility of developing the algorithm in C++ using the library ecl-linear-
algebra[28] officially included in ROS has been studied, but this option has been abandoned for
time reason and because it is difficult to monitor the behaviour of the algorithm without the
tools included in MATLAB.
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6.2 Second proposed algorithm

The second algorithm has been redesigned taking into account the limitations of MATLAB.
The buffer has been removed, and the second and third threads have been merged into a single
thread.
The resulting pseudo code is:

1 initializeROS()

2 initializeEKF()

3 while 1 {

4 if newDatamatrixVectorAvailable() == TRUE {

5 msg = getNewDatamatrixVector()

6 rawRobotPose = poseMsg2rawPoseEst(msg)

7 rawRobotPose = forwardEulerCorrection(rawRobotPose)

8 publishRaw(rawRobotPose)

9 ekfState = ekfUpdate(rawRobotPose)

10 }

11 if newAtlasMsgAvailable() == TRUE {

12 pose = getNewAtlasMsg()

13 ekfState = ekfUpdate(pose)

14 }

15 currentTime = getCurrentTime()

16 prediction = ekfPrediction(ekfState,currentTime)

17 publishOnRos(prediction)

18 sleep(20ms)

19 }

This code runs on MATLAB and it can be seen as a single execution thread 1.

1 In fact, the RST hides a low-level layer based on the Java implementation of ROS, which uses multiple
threads to manage the connections between ROS nodes.
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Explanation of the code

ROS initialization

The first line of code

1 initializeROS()

creates the node atlasmv-ekf and initializes the connections. The correspondent MATLAB code
is

...

% node creation

roscoreIp = ’127.0.0.1’;

nodeName = ’atlasmv_ekf’;

rosinit(roscoreIp,’NodeName’,nodeName);

...

% subscribers

dmPoseTopicName = ’/datamatrix_pose_pub/datamatrix_pose’;

dmPoseSet_sub = rossubscriber(dmPoseTopicName,’BufferSize’, 1);

...

atlasmvStatusTopicName = ’/atlasmv/base/status’;

atlasStatus_sub = rossubscriber(atlasmvStatusTopicName, ...

’atlasmv_base/AtlasmvStatus’,’BufferSize’, 1);

...

% publishers

poseEkf_pub = rospublisher(strcat(nodeName,’/ekf_robot_pose’), ...

’geometry_msgs/PoseWithCovarianceStamped’ );

poseRaw_pub = rospublisher(strcat(nodeName,’/raw_robot_pose’), ...

’geometry_msgs/PoseWithCovarianceStamped’ );

This section of code is divided in three parts:

1. node creation and its connection to the roscore node;

2. connection to the subscribed topics datamatrix-pose-pub/datamatrix-pose and atlasmv-
base/AtlasmvStatus;

3. initialization of the topics atlasmv-ekf/ekf-robot-pose and atlasmv-ekf/raw-robot-pose.

Note 1 In the case here examined, the roscore node has address 127.0.0.1 because it has been
executed in the same machine. This node provides basics ROS functionalities and it must always
be the first node to be launched.
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Note 2 The parameter BufferSize is setted to 1 because only the last message published on the
relative topic has to be processed by the algorithm.

EKF initalization

The variable ekfState is a structure with the following fields:

1. wheelbase length l [m];

2. maximum velocity vmax [m/s];

3. maximum acceleration amax [m/s2];

4. maximum steering angle ψmax [rad];

5. maximum steering angle speed ψ̇max [rad/s];

6. state vector stateVec [[m][m][rad][m/s][rad]]T ;

7. covariance matrix covMatrix [unit of measurement derivable from stateVec];

8. timestamp of associated to the data structure timeStamp [s];

where parameters 1 to 5 are characteristics of the robot. Parameters 6 and 7 represent the state
of the filter.

When the initialization step is finished, the function

2 initializeEKF()

waits for a message from datamatrix-pose-pub/datamatrix-pose and tries to calculate the robot
pose (x, y, θ). The filter is initialized with the first valid pose (x, y, θ) that was calculated.
This approach requires that at least two data matrices are visible during the node initialization,
otherwise the filter can’t be initialized and the main loop doesn’t starts.

EKF loop

At line 3, the EKF starts to work.
The code

4 if newDatamatrixVectorAvailable() == TRUE {

5 msg = getNewDatamatrixVector()

6 rawRobotPose = poseMsg2rawPoseEst(msg)

7 rawRobotPose = forwardEulerCorrection(rawRobotPose)

8 publishRaw(rawRobotPose)

9 ekfState = ekfUpdate(rawRobotPose)

10 }
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checks if a new vector of data matrices has been published on the topic datamatrix-pose-
pub/datamatrix-pose. If it has been received, the message is processed by the function:

6 rawRobotPose = poseMsg2rawPoseEst(msg)

which implements the algorithm presented in section 5.1. If three or more data matrices have
been detected, the function selects only two of them at random. It does so in order to make the
error associated to the measure as less systematic and more random as possible.
The input message is the vector of datamatrixData, which is the structure defined in section 4.4.
The output is a structure containing the measurement, the relative covariance matrix defined in
(5.7) and the acquisition timestamp tacq.

The function

7 rawRobotPose = forwardEulerCorrection(rawRobotPose)

applies the forward Euler method in order to reduce the effect of the systematic error due to
the high elaboration time of visual information. The “raw” robot pose is published on the ROS
topic atlasmv-ekf/raw-robot-pose.
Let tekfState be the timestamp of the EKF state and tcurrent the current time. Considering the
(5.7), the correction applied to yv(tacq) isx(tcurrent)

y(tcurrent)

θ(tcurrent)

 =

x(tacq)

y(tacq)

θ(tacq)

+

 (tcurrent − tacq)s(tekfState) cos θ(tekfState)

(tcurrent − tacq)s(tekfState) sin θ(tekfState)

(tcurrent − tacq)s(tekfState) tanψ(tekfState)
1
l

 . (6.1)

To keep in account the fact that this correction increases the uncertainty associated with the
measure, the covariance matrix has been multiplied by a scale factor proportional to (tcurrent −
tacq).
The resulting covariance matrix is

cov
(
yv(tcurrent) · yTv (tcurrent)

)
= (1 + tcurrent − tacq)cov

(
yv(tacq) · yTv (tacq)

)
. (6.2)

Finally, the timestamp associated to the measure changes from tacq to tcurrent. This approach
has revealed itself to be good in practical cases, because it actually reduces systematics errors.

The line of code

8 ekfState = ekfUpdate(rawRobotPose)

calls the function ekfUpdate, which updates the status using the received measurement.
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The following instructions

11 if newAtlasMsgAvailable() == TRUE {

12 pose = getNewAtlasMsg()

13 ekfState = ekfUpdate(pose)

14 }

check if a new status message has been published on the /atlasmv/base/status topic. If a new
message has been received, the speed and the steering angle are used to update the EKF status.

In computer science, this particular activity is called polling.
In this case there are two buffers:

• one containing the messages published on the datamatrix-pose-pub/datamatrix-pose topic;

• one containing the messages published on the /atlasmv/base/status topic.

Polling is the process which involves checking of one or more “client programs”. In this case
the RST can be considered the client program, which is repeatedly called in order to check if
the buffers have received new messages. This method is not efficient, but it represents the only
choice in all those cases where the multithread programming isn’t possible.

The last code section

15 currentTime = getCurrentTime()

16 prediction = ekfPrediction(ekfState,currentTime)

17 publishOnRos(prediction)

18 sleep(20ms)

is dedicated to the prediction of the robot status. The prediction is based on the actual time
of the system (currentTime) and on the last calculated state (ekfState). Finally, the EKF
prediction is published on the ROS topic atlasmv-ekf/ekf-robot-pose.

6.3 Connection between nodes

This sections presents a final overview of how the ROS nodes are connected and which messages
they exchange.
The figure 6.2 shows four different nodes:

• datamatrix-pose-pub - used to detect the data matrices and to calculate the poses Tr
dmj

;

• atlasmv - used to control the robot and to read odometry information;

• atlasmv-ekf - used to estimated the pose using to output of the node datamatrix-pose-pub;
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Figure 6.2: Node graph

• atlasmv-dataviewer - used to collect and visualize data.

The nodes datamatrix-pose-pub and atlasmv-ekf have already been discussed respectively in
chapter 4 and in chapter 6.

The node atlasmv has been developed by the Laboratory for Automation and Robotics of the
University of Aveiro. This node provides a ROS interface for the robot.
A message containing the status of the robot is published on a topic called atlasmv-base-status.
This particular message is called AtlasmvStatus and it has the following structure:

Header header

float64 brake

float64 dir

float64 speed

float64 x

float64 y

float64 orientation

float64 distance_traveled

int32 turnright

int32 turnleft

int32 headlights

int32 taillights

int32 reverselights

int32 cross_sensor

int32 vert_sign

int32 errors

When the node atlasmv-ekf receives this type of message, it extracts the timestamp (from the
Header), the speed s(·) and the steering angle dir ψ(·).
Header is a standard ROS message with the following structure:

uint32 seq
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time stamp

string frame_id

where seq is a sequential number, stamp is the timestamp and frame-id is an optional string.

Finally, the node atlasmv-dataviewer is created using MATLAB and it is used only to collect
and analyse data.
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Experimental results

This chapter presents the experimental results obtained using AtlasMV and its simulated version
in Gazebo. Using the real robot, only qualitative considerations could be expressed, since it
wasn’t possible to measure the real position of the robot.
On the contrary, through Gazebo it was possible to perform a quantitative analysis: the robot
pose can be obtained reading the messages published by Gazebo on the topic /ackermann-
vehicle/gazebo/model-states, which contains a vector of poses, one pose for each object included
in the simulated world.

7.1 Test environment

Figure 7.1 shows 21 data matrices generated and positioned inside the LAR. In order to recreate
a similar scenario, the same data matrices have been included in the simulator.

Figure 7.1: Data matrices positioned inside the LAR.
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The figure 7.2 shows the simulated robot, the data matrices and the simulated cameras out-
puts (front and rear cameras).
For hardware limitations1, cameras output have been limited to a VGA resolution (640x480
pixels) at 5 frames per second. A Gaussian noise with standard deviation 0.01 has been added
to the generated frames.

Figure 7.2: Gazebo simulator

The tests with the real robot have been executed at a resolution of 1280x960 pixels and at
10 frames per second. The exposure time has been manually set to 8−11ms (depending on light
conditions). The detection algorithm doesn’t work if the image is blurred, because it is based on
a corner detector (which is a gradient-based function). The low exposure time produces images
with a low contrast but also with a low blur effect: many tests have been executed in order to
find the best Libdmtx parameters.

Figure 7.3: Data matrices inside the LAR

1The processor Intel® CoreTM i3-2310m wasn’t able to run the nodes and the simulator using two virtual
cameras at resolution of 1280x960 pixels.
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7.2 Simulations using Gazebo

7.2.1 First simulation: “S” trajectory

In the first simulation, the robot was driven manually using an XboxTM 360 controller. The
figure 7.4 shows the path travelled by the robot. There is a small offset between real position
(blu dots) and estimated position (black dots) (the measurements are indicated with the red
crosses). Considering that this simulation was running in real time, this problem can be caused
by the low MATLAB performance, which introduces a considerable delay on data processing.

Figure 7.4: Gazebo simulation 1: trajectory

The figures 7.5 and 7.6 show a comparison between real and estimated position and between
real and estimated orientation. It has been used the EKF without IMU introduced in chapter
6.

It is very interesting to note that the mean errors associated to this simulation are very
similar to the errors (table 5.4, reported below) obtained using the Simulink model presented in
section 5.3.4.
The table 7.1 shows a comparison between the mean error obtained with Simulink and the one
obtained with Gazebo.
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Figure 7.5: Gazebo simulation 1: position error

Figure 7.6: Gazebo simulation 1: orientation error
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Table 7.1: Average mean error (Simulink-Gazebo) and standard error (Gazebo)

- Simulink Mean error Gazebo mean error Gazebo Str.Dev
position [m] 0.138 0.183 0.121

orientation [rad] 0.043 −0.061 0.091

In general, this level of precision can be considered acceptable for many real life applications
(the standard error is smaller than the robot dimension). A better performance could probably
be obtained using a high optimized EKF, such as the one proposed in section 6.1.
Note that also in this case the relative poses Tr

c1 and Tr
c2 have been calculated using the same

procedure used with the real robot. This choice has been made in order to keep the results as
more realistic as possible.

7.2.2 Second simulation: “round trip”

This simulation is similar to the first, except that the robot comes back to the starting point.
Figure 7.7 shows the path followed by the robot. Note that, often, the estimated position and
the real position are almost the same.

Figure 7.7: Gazebo simulation 2: trajectory

Figure 7.8 and 7.9 show the respective errors.
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Figure 7.8: Gazebo simulation 2: position error

Figure 7.9: Gazebo simulation 2: orientation error

Finally, table 7.2 confirms the results reported in table 7.1.
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Table 7.2: Mean error and standard deviation

- Standard deviation Mean error
position [m] 0.130 0.177

orientation [rad] 0.120 −0.081

7.2.3 Third simulation: straight trajectory

The third simulation shows the robot following a straight trajectory. Four data matrices have
been positioned, as shown in figure 7.10.

Figure 7.10: Gazebo simulation 3: straight trajectory - screenshot

Figure 7.11 shows the real position (blue dots) and the estimated one (black dots). As
reported in table 7.3, the offset (mean error) is about 0.11m and its standard deviation is about
0.06m: this means that there is a small systematic error. This systematic error is probably
related to the vision algorithm; it should therefore be furtherly investigated. Nonetheless, this
level of accuracy seems acceptable. Figures 7.12 and 7.13 show respectively the position and the
orientation errors.

Table 7.3: Mean error and standard deviation

- Standard deviation Mean error
position [m] 0.061 0.111

orientation [rad] 0.019 −0.063
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Figure 7.11: Gazebo simulation 3: straight trajectory

Figure 7.12: Gazebo simulation 3: straight trajectory - position error
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Figure 7.13: Gazebo simulation 3: straight trajectory - orientation error
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7.3 Test using the real robot

The following tests show the behaviour of the localization system using the AtlasMV robot.
Unfortunately it has not been possible to compare the estimated pose with the real pose for
the lack of ground truth, but this tests remain important because they show a behaviour very
similar to the one obtained in the simulator.

7.3.1 First test: “S” trajectory

This simulation shows a “S” trajectory similar to the one obtained using Gazebo.

Figure 7.14: AtlasMV: “S” trajectory

The figure 7.14 shows the trajectory obtained using the AtlasMV robot with two enabled
cameras. The trajectory results less smooth if compared to the one obtained with Gazebo, and
this for two reasons:

• difficulties in positioning the data matrices correctly;

• the speed estimation provided by AtlasMV is not accurate since the encoder is attached
to the engine rotor and not to the wheel(s). Also, the differential introduces an additional
error proportional to the steering angle.

Despite these problems, the result seems promising.
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7.3.2 Second test: “S” trajectory - one camera

This second test is similar to the first one: the only difference is that the rear camera was
disabled.

Figure 7.15: AtlasMV: “S” trajectory - only frontal camera

The trajectory presents discontinuities, probably caused by the lower number of data matrices
detected as well as the poor odometry, which introduces and error that grows over time.
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7.3.3 Third test: straight trajectory

In analogy to the third simulation, this third test shows the AtlasMV following a straight
trajectory. The figure 7.16 shows the corridor with four data matrices.

Figure 7.16: LAR’s corridor

The figure 7.17 shows the estimated position. This test shows results very similar to those
obtained using Gazebo; probably thanks to the fact that only four data matrices (although
positioned accurately) have been used.

Figure 7.17: AtlasMV: straight trajectory
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The tests with the real robot have confirmed that the localization system works as expected.

The results does not seems as good as the results obtained with Gazebo, but this can be
easily explained keeping in consideration the following facts:

• every data matrix has been manually positioned with a given error;

• the map used was only an approximation of the real map;

• the odometry system was poor (encoders attached to the motors).

In this particular case, the main source of errors was determined by the measure of speed pro-
vided by the robot (as already mentioned, the differential causes an error proportional to the
steering angle of the robot). Similar results to the ones obtained using Gazebo can be obtained
using a robot with a more accurate odometry system.
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Conclusions

The aim of this thesis was to implement an indoor localization system using visual information
and passive markers. The obtained results are promising, but the performance of this type
of system depends on many factors: detection algorithm, localization method, quality of the
odometry and efficiency of the sensor fusion algorithm.

In chapter 3 the problem was discussed of how to encode efficiently the required information.
Moreover, a graphic tool has been developed in order the create the required markers. The
encoding system was well dimensioned for this application: the resolution of 0.1m was resulted
sufficient (in practice it is difficult to position a data matrix with an error smaller than 0.1m).

Chapter 4 has described the perception algorithm based on the open source library Libdmtx,
which was in general slow and not always stable. Despite these limitations, it was accurate
enough for this kind of application and it didn’t represent a bottleneck. The most delicate part
of the operation has revealed itself to be the calibration: a bad calibration adds a systematic
error to every single measurement.

Chapter 5 deals with the EKF as well as with the problem of sensor fusion. In order to reduce
the errors and also to eventually identify and correct systematic errors, the use of an inertial
sensor was suggested. Since the systematic errors are the main problem of this technology, it
would be advisable to further study this solution.

Chapter 6 deals with the implementation of the EKF and the problems connected to its
MATLAB implementation and its integration in ROS. The EKF has a big impact on the final
accuracy of the localization system and its further optimization should be considered in future
works.

In Chapter 7 have been introduced the experimental results obtained using the simulator



Chapter 8. Conclusions 70

Gazebo and the robot AtlasMV. These tests show that the localization algorithm can reach a
precision smaller than 0.2m, which is acceptable for indoor autonomous navigation. On the
other hand, the tests with the real robot show that the performance can degrade quickly if the
system is not well calibrated, if the data matrices are not positioned exactly in the right position
and if the robot odometry is not accurate.

An interesting continuation of this thesis would be to optimize the EKF, as suggested in
section 6.1. Also, it is crucial to tackle the problems caused by systematic errors. The best way
to deal with this problem could be to add an inertial unit.
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