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Dissertação apresentada à Universidade de Aveiro para cumprimento dos
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abstract Road detection is a crucial concern in Autonomous Navigation and Driving
Assistance. Despite the multiple existing algorithms to detect the road,
the literature does not offer a single effective algorithm for all situations.
A global more robust set-up would count on multiple distinct algorithms
running in parallel, or even from multiple cameras. Then, all these algo-
rithms’ outputs should be merged or combined to produce a more robust
and informed detection of the road lane, so that it works in more situations
than each algorithm by itself. This dissertation integrated in the ATLAS-
CAR2 project, developed at the University of Aveiro, proposes a ROS-based
architecture to manage and combine multiple sources of lane detection al-
gorithms ranging from the algorithms that return the spatial localisation
of the road lane lines and those whose results are the navigable zone re-
presented as a polygon. The architecture is fully scalable and has proved
to be a valuable tool to test and parametrise individual algorithms. The
combination of the algorithms’ results used in this work uses a confidence
based merging of individual detections.





palavras-chave percepção visual, combinação de dados, técnicas de visão computacional,
arquitetura ROS, linhas da via estrada, múltiplas câmaras, múltiplos algo-
ritmos.

resumo A deteção de estradas é uma questão crucial na Navegação Autónoma e
na Assistência à Condução. Apesar de os múltiplos algoritmos existentes
para detetar a estrada, a literatura não oferece um único algoritmo eficaz
para todas as situações. Uma configuração global mais robusta incorporaria
vários algoritmos distintos e executados em paralelo, ou mesmo baseado em
múltiplas câmaras. Então, todos os resultados destes algoritmos devem ser
fundidos ou combinados para produzir uma deteção mais robusta e infor-
mada da via da estrada, para que funcione em mais situações do que cada
algoritmo funcionando individualmente. Esta dissertação integrada no pro-
jeto ATLASCAR2, desenvolvido na Universidade de Aveiro, propõe uma
arquitetura baseada em ROS para gerir e combinar múltiplas fontes de al-
goritmos de deteção de vias da estrada, desde algoritmos que devolvem a
localização espacial da faixa de rodagem até àqueles cujos resultados são a
zona navegável representada como um poĺıgono. A arquitetura é totalmente
escalável e provou ser uma ferramenta valiosa para testar e parametrizar al-
goritmos individuais. A combinação dos resultados dos algoritmos utilizados
neste trabalho utiliza uma combinação de deteções individuais baseada na
confiança.
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Chapter 1

Introduction

The �elds of Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS)
have developed a wide range of studies that can bring new possibilities to the drivers.
When AD achieves all of the aims that are foreseen, it would provide a decrease in the
number of accidents on the roads around the world. Also, it will lead to a reduction in
tra�c jams since its next step is providing communication between cars, which would
help in identifying tra�c problems early on. Finally, the system relieves the drivers from
the daily commuting task, improving their life.

For this, it is important that the car is equipped with all sensors that are determinant
to extract information from the real scenario. One of the functions of an autonomous
vehicle is to identify the road boundaries to ensure that it is within the lane in order
to minimise chances of collisions with other vehicles. Di�erent approaches have been
implemented over the years and they are divided into two types: methods that use classic
computer vision techniques and more recent approaches that contemplate techniques of
learning, based on AI (Arti�cial Intelligence) [1].

This dissertation is the development of a road boundary detection method that in-
cludes a robust architecture, which enables the use of di�erent road detection algorithms
to be suitable for both structured and unstructured roads. The former are roads with no
lane lines on it, commonly presented on rural locations and the latter are normal roads
that have clear lane marks and road boundaries. This is a problem since it is necessary
to perceive two di�erent types of features. In addition to this, three main problems have
to be considered: lighting change, shadows and vehicle occlusions [2].

1.1 The ATLAS Project

The study inherent in this dissertation is a contribution to the ATLAS project. This
project was created by the Group of Automation and Robotics at the Department of
Mechanical Engineering of the University of Aveiro, Portugal [3]. It is related to au-
tonomous driving and it aims to develop a sensory architecture that allows the creation of
an autonomous car. Therefore, this project has promoted the improvement of advanced
active systems and the development of new methods to deal with real road scenarios.

The ATLAS Project started by developing several prototypes of robots, which com-
peted in autonomous driving competitions at the Portuguese National Robotics Festival.
Due to the success and the experience acquired in these competitions, the ATLAS Project

1
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