
Universidade de Aveiro Departamento de Engenharia Mecânica
2019

Tiago Miguel
Rodrigues de Almeida

Arquitetura Multi-Câmara e Multi-Algoritmo para
Perceção Visual a Bordo do ATLASCAR2

Multi-Camera and Multi-Algorithm Architecture for Visual
Perception onboard the ATLASCAR2

Universidade de Aveiro Departamento de Engenharia Mecânica
2019

Tiago Miguel
Rodrigues de Almeida

Arquitetura Multi-Câmara e Multi-Algoritmo para
Perceção Visual a Bordo do ATLASCAR2

Multi-Camera and Multi-Algorithm Architecture for Visual
Perception onboard the ATLASCAR2

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Mecânica, realizada sob orientação cient́ıfica de V́ıtor Manuel Ferreira dos
Santos, Professor Associado C/ Agregação do Departamento de Engenharia
Mecânica da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor Miguel Armando Riem de Oliveira
Professor Auxiliar da Universidade de Aveiro

vogais / committee Doutor Eurico Farinha Pedrosa
Bolseiro do Instituto de Engenharia Eletrónica e Telemática de Aveiro

Prof. Doutor V́ıtor Manuel Ferreira dos Santos
Professor Associado C/ Agregação da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Antes de mais agradeço com a máxima sinceridade posśıvel ao Professor
V́ıtor Santos pela forma como me orientou este semestre. Gostaria de deixar
realçado também a forma como impôs a sua dedicação, rigor e persistência
neste trabalho, o que nos levou ao sucesso.
Depois quero deixar um agradecimento também a todos os que me acom-
panharam durante os 5 anos mais gratificantes da minha vida. Em partic-
ular, ao Bernardo, ao Tavares e ao Pinho por me terem ajudado a crescer
em termos de intelecto e pela amizade.
Agradeço também, a ajuda imprescind́ıvel do pessoal do LAR, nomeada-
mente ao Engenheiro Rui Heitor pela parte operacional, ao Bernardo
Lourenço por me fazer elevar sempre um pouco mais a fasquia, ao João
Santos por todos os problemas resolvidos em conjunto que nos fizeram
muitas dores de cabeça e à Daniela pelo companheirismo durante as via-
gens no ATLAS e durante todo o procedimento de resolução de problemas
que nos foi aparecendo pela frente. Obrigado também a ti Manel, pela boa
disposição transmitida.
Quero agradecer à minha faḿılia pela forma como alicerçaram a minha es-
tadia na Universidade, durante todos estes 5 anos.
Por fim, agradeço também aos meus amigos pela forma como lidaram
comigo extra-curricularmente, pela paciência e apreço que demonstraram.

keywords visual perception, data combination, computer vision techniques, ROS ar-
chitecture, road lane lines, multiple cameras, multiple algorithms.

abstract Road detection is a crucial concern in Autonomous Navigation and Driving
Assistance. Despite the multiple existing algorithms to detect the road,
the literature does not offer a single effective algorithm for all situations.
A global more robust set-up would count on multiple distinct algorithms
running in parallel, or even from multiple cameras. Then, all these algo-
rithms’ outputs should be merged or combined to produce a more robust
and informed detection of the road lane, so that it works in more situations
than each algorithm by itself. This dissertation integrated in the ATLAS-
CAR2 project, developed at the University of Aveiro, proposes a ROS-based
architecture to manage and combine multiple sources of lane detection al-
gorithms ranging from the algorithms that return the spatial localisation
of the road lane lines and those whose results are the navigable zone re-
presented as a polygon. The architecture is fully scalable and has proved
to be a valuable tool to test and parametrise individual algorithms. The
combination of the algorithms’ results used in this work uses a confidence
based merging of individual detections.

palavras-chave percepção visual, combinação de dados, técnicas de visão computacional,
arquitetura ROS, linhas da via estrada, múltiplas câmaras, múltiplos algo-
ritmos.

resumo A deteção de estradas é uma questão crucial na Navegação Autónoma e
na Assistência à Condução. Apesar de os múltiplos algoritmos existentes
para detetar a estrada, a literatura não oferece um único algoritmo eficaz
para todas as situações. Uma configuração global mais robusta incorporaria
vários algoritmos distintos e executados em paralelo, ou mesmo baseado em
múltiplas câmaras. Então, todos os resultados destes algoritmos devem ser
fundidos ou combinados para produzir uma deteção mais robusta e infor-
mada da via da estrada, para que funcione em mais situações do que cada
algoritmo funcionando individualmente. Esta dissertação integrada no pro-
jeto ATLASCAR2, desenvolvido na Universidade de Aveiro, propõe uma
arquitetura baseada em ROS para gerir e combinar múltiplas fontes de al-
goritmos de deteção de vias da estrada, desde algoritmos que devolvem a
localização espacial da faixa de rodagem até àqueles cujos resultados são a
zona navegável representada como um poĺıgono. A arquitetura é totalmente
escalável e provou ser uma ferramenta valiosa para testar e parametrizar al-
goritmos individuais. A combinação dos resultados dos algoritmos utilizados
neste trabalho utiliza uma combinação de deteções individuais baseada na
confiança.

Contents

1 Introduction 1

1.1 The ATLAS Project . 1

1.2 Project Context and Motivation . 3

1.3 Objectives . 3

1.4 Document Structure . 3

2 State of the Art 5

2.1 Genesis of the Technology . 5

2.2 Current Implementations . 6

2.3 Related Work Developed at LAR . 7

2.4 Related Work Developed in Other Contexts 8

3 Experimental Infrastructure 13

3.1 Hardware Used and Designed . 13

3.1.1 Point Grey FL3-GE-28S4-C . 13

3.1.2 Camera Setup on ATLASCAR2 . 14

3.2 Software Used . 18

3.2.1 ROS - Robot Operating System . 18

3.2.2 ROS Packages used in this Project 19

3.2.3 Other Software Tools . 20

3.3 Summary . 21

4 Calibration 23

4.1 Intrinsic Calibration . 23

4.2 Extrinsic Calibration . 24

5 Multi-Camera and Multi-Algorithm Architecture 29

5.1 The Base Architecture . 29

5.1.1 Nodes and Topics Presentation . 31

5.1.2 Time Stamps and Asynchronous Sources 33

5.2 Image Processors . 34

5.2.1 Algorithm 1: lane detector ROS Package 34

5.2.2 Algorithm 2: advanced lane detection ROS Package 34

5.2.3 Algorithms based on the Deep Learning Approach 38

5.3 Data Combination . 41

5.3.1 Node draw poly node . 41

5.3.2 Node calc prob map node . 42

i

5.3.3 Node combine multi cams node 47
5.4 Launching Nodes . 47

5.4.1 Main Launch Files . 47
5.4.2 Architecture Launch Files . 49
5.4.3 Launch Files Summary . 53

6 Experiments and Results 57
6.1 One Camera and One Algorithm . 59

6.1.1 Active Processor Node: lane detector node 59
6.1.2 Active Processor Node: advanced algorithm node 64

6.2 One Camera and Two Algorithms . 69
6.3 Two Cameras and One Algorithm . 72

6.3.1 Active Processor Node: lane detector node 72
6.3.2 Active Processor Node: advanced algorithm node 77

6.4 Two Cameras and Two Algorithms . 80
6.5 Deep Learning Techniques Results . 83

6.5.1 LaneNet ROS Node Results . 84
6.5.2 UNet Model Results . 85

7 Conclusions and Future Work 89
7.1 Conclusions . 89
7.2 Future Work . 90

A Plate to fix the box to the rotative support 93

B Box to protect the camera 95

C Box’s carton 97

Bibliography 99

ii

List of Tables

3.1 Point Grey FL3-GE-28S4-C specifications [26] 14

5.1 Comparison of other datasets, which can be used to train the network. . . 40
5.2 Architecture arguments and corresponding values 54

iii

.

Intentionally blank page.

List of Figures

1.1 ATLASCAR1 autonomous car [3]. 2

1.2 ATLASCAR2 autonomous car. 2

2.1 The first car equipped with a lane detector system [6]. 5

2.2 Toyota Crown Majesta [9]. 6

2.3 Tesla model S equipped with the autopilot system [12]. 6

2.4 Two initial images (a) e (b) and the respective IPM applications (c) e (d).
The yellow line delimits the used area to get the IPM projection [18]. . . . 7

2.5 Processed Image. Left: Kernel used in filtering phase. Centre: Image
after kernel application. Right: Image after the threshold application [16]. 8

2.6 The Chuan-en-Li algorithm pipeline [19]. 8

2.7 Result obtained from an application of Udacity’s algorithm [20]. 9

2.8 Result obtained from the B-Snake application method [22]. 10

2.9 Pipeline of the algorithm that uses several templates for different types
of lines [23]. 10

2.10 Lane marking feature extraction experimental results. (a)Input image.
(b) Edge detection results after applying Canny edge detector on the
FBS image results. (c) Binary probabilistic image results. (d) Middle
point extraction. (e) Lane marking clustering results. (f) Fitting model
results. [25]. 11

2.11 SCNN’s architecture [19]. This architecture is composed by a set of slices,
in which each one, sequentially, passes information to the succeeding slice
only after it has received information from the preceding slices), allowing
message passing of pixel information between neurons within the same
layer, effectively increasing emphasis on spatial information. 12

3.1 Point Grey FL3-GE-28S4-C. 13

3.2 Aggregation and decimation of pixels. 14

3.3 Camera’s location in a Tesla. 15

3.4 Cameras location in ATLASCAR2. 15

3.5 Box that was created to protect the camera (Appendices B and C). 16

3.6 Plate to fix the box to the rotative support (Appendix A) 17

3.7 Final ATLASCAR2 setup. 17

3.8 One of the examples of using rqt in this project. 18

3.9 Rviz Interface. Through this interface, the sensors data can be visualised
in real-time. 19

3.10 image proc ROS package architecture [28]. 20

3.11 Flycap Interface. 21

v

4.1 camera calibration interface. 24

4.2 Frames representation on the ATLASCAR2. 25

4.3 Geometric transformations associated to the extrinsic calibration prob-
lem. 25

4.4 Detection of chessboard points through Camera Calibrator application. . 26

4.5 Length measuring tool used to find the transformation between the refer-
ence frame and the chessboard. 26

5.1 The different types of data that can be processed by the architecture. Left:
Spatial localisation of the road lines. Right: Polygon that represents the
road zone. 29

5.2 The generic behaviour of the architecture for each type of algorithm out-
put. From the top to the bottom: the rectified image is processed (image
processing) by an algorithm that returns or a polygon or the spatial local-
isation of road lines (algorithm output). If it is the spatial localisation of
the road lines in the image, then it passes through an intermediate stage
(polygon creation) to build the polygon from those road lane lines coor-
dinates. If the output of the processor algorithm is already a polygon, it
proceeds directly to the construction phase of the confidence map. 30

5.3 Part of the computation graph to one camera that corresponds to the
rectified image determination. 31

5.4 Part of the computation graph to one camera that corresponds to the
image processing for the three processor nodes. 32

5.5 Part of the computation graph to one camera that corresponds to the
merging of information that is provided by each algorithm. 33

5.6 Part of the computation graph related to the combination of the confi-
dence maps provided by multiple cameras. 33

5.7 Algorithm’s pipeline that composes the ”advanced lane detection” ROS
package. 35

5.8 Warping technique application [35]. The left image demonstrates the
source points that are used to the warp transformation. The right image
represents the warped points. Summarising, the points in the left image
are transformed into the points in the right image. 35

5.9 Combination of Red Channel binarisation and Sobel Edge Detector [35]. . 36

5.10 Histogram that represents where the lane lines start [35]. 36

5.11 Curve fitting procedure [35]. The green boxes are the windows that are
located based on the average of the previous line. 37

5.12 Result obtained by applying the algorithm [35]. 37

5.13 The overview of the LaneNet architecture, as well as the visual input of
each step. From the left to the right, the image enters the encoder/decoder
and produces the pixel embeddings, that discriminates the lane and the
lane segmentation. These are combined to produce the final result image,
which is further to the right. [39]. 38

5.14 Result obtained by applying the LaneNet ROS node approach. [38]. . . . 39

vi

5.15 Camvid datasets [41] used to train the architecture provided by one of
the tutorials of the Fast AI course. Each colour in the image represents a
different class. For example, the road is associated to the grey colour and
the sidewalks are identified with the pink colour. 40

5.16 An example of a labelled image that belongs to the Mapillary Vistas
dataset. This image was captured in Porto, Portugal [43]. 41

5.17 Polygon construction from the lane lines spatial localisation. 42

5.18 The three polygons used to calculate the confidence map (the first three
images) and a grayscale representation (fourth image), which shows the
intersection (white pixels) and non-intersection (darker pixels) of those
polygons. The first two images (A and B, respectively) represent the out-
puts of the draw poly node, which draws the polygons through the output
of the lane detector node and the lane detector2 node. Finally, the
third image (C) illustrates the output of the advanced algorithm node. . 43

5.19 Result obtained by applying the AND logical operation. The left image is
merely illustrative of the areas where there is a larger (white pixels) and
lower confidence (dark pixels) in which the pixels belong to the road lane
zone. 44

5.20 Result obtained by applying the XOR logical operation. White pixels
correspond to the result of applying the XOR operation. 45

5.21 Representation of the confidence map as an image. The darkest pixels do
not belong to the intersection of the three polygons and are affected by
lower confidence (dark pixels). The pixels that belong to the intersection
are white (greater confidence). 46

5.22 One example of a result of a warp transformation applied to a polygon.
The left image represents the algorithm detection results, which gives
rise to the polygon illustrated in the centre image. Finally, the polygon
warped is represented on the right image. This operation is equivalent to
the one represented in Fig. 5.8. 46

6.1 The road section is marked in red in this image. It was the environment
where the experiments presented in the following sections were made.
This road section has generated 360 frames to be processed. 58

6.2 One of the results obtained by using the lane detector node. 59

6.3 This image illustrates the case of a right-hand side occlusion. This oc-
clusion was not a limitation for the algorithm to detect the road lane
lines. 60

6.4 This image represents the case of a crosswalk, which was also a situation
that the algorithm could handle well. 60

6.5 The image in the upper right corner represents the use of a filter with a
size of 3× 3 for the construction of the confidence map and the image in
the right lower corner illustrates the use of a filter of 51 × 51. The left
images represent the road lane lines detection for each case. The difference
between the filter sizes is found in the blur around the area represented
with white pixels on the confidence maps. 61

vii

6.6 Variation of the percentage areas (relative to the total image area) of
WCAavg, Ac,avg and At,avg parameters, increasing the filter size — for
the experiment with one camera and the lane detector node. 62

6.7 Variation of the average of the indicators increasing the filter size — for
the experiment with one camera and the lane detector node. 63

6.8 Values of the standard deviations as the filter size increases. 63

6.9 advanced algorithm node result when facing a straight road. 64

6.10 advanced algorithm node behaviour when facing an occlusion on the
right side of the road. 65

6.11 Poor result obtained from the algorithm processing in a particular case
— roundabout. 65

6.12 The two images above represent the case of using a filter size of 3 × 3
for the construction of the confidence map. The left image represents the
area detected by the algorithm as the road and the right image illustrates
the confidence map built from the left image. The images represented
below the previous ones have a similar meaning to the one mentioned in
the preceding explanation. However, the size of the filter used is 51× 51.
The difference between the filter sizes is found in the blur around the area
represented with white pixels on the confidence maps. 66

6.13 Variation of the percentage areas (relative to the total image area) of
WCAavg, Ac,avg and At parameters, increasing the filter size — for the
experiment with one camera and the advanced algorithm node. 67

6.14 Variation of the indicators as the filter size increases — for the experiment
with one camera and the advanced algorithm node. 68

6.15 Values of the standard deviations as the filter size increases. 68

6.16 Results obtained from the processor nodes for the case of the use of one
camera and two algorithms. The left image represents the result obtained
from the advanced algorithm node that returns a polygon. The centre
image is related to the lane detector node and the right image corre-
sponds to the result obtained by the processor node lane detector2 node

(clone of the previous mentioned). 69

6.17 These two images represent the confidence maps created through a di-
mension of the filter of 3 × 3 (left image) and 51 × 51 (right image). It
is possible to observe the blur more prominent around the zone that is
considered as the driveable zone (white pixels of each image) in the right
image. 69

6.18 Variation of the percentage areas (relative to the total image area) of
WCAavg, Ac,avg and At parameters, increasing the filter size — for the
experiment with one camera and the two processor nodes. 70

6.19 Variation of the indicators as the filter size increases — for the experiment
with one camera and the two processor nodes. 71

6.20 Variation of the standard deviation related to each indicator, increasing
the filter size — for the experiment with one camera and the two processor
nodes. 72

6.21 Results obtained in this experiment. 73

6.22 The final confidence map after the weighted sum of the two maps built
from each camera. 73

viii

6.23 Illustration of the results obtained in this case. 74

6.24 The final confidence map after the weighted sum of the two maps built
from each camera. 74

6.25 Variation of the percentage areas (relative to the total image area) of
WCAavg, Ac,avg and At parameters, increasing the filter size — for the
experiment with two cameras and the lane detector node. 75

6.26 Variation of the indicators as the filter size increases — for the experiment
with two cameras and the lane detector node. 76

6.27 Variation of the standard deviation values related to each indicator as
the filter size increases — for the experiment with two cameras and the
lane detector node. 76

6.28 The two images above illustrate the detection of the road area from dif-
ferent perspectives (two cameras with different localisation). The images,
below the previous ones, correspond to the confidence map of each camera
after a filtering procedure where the filter size is 3×3. The last two images
are also confidence maps where the size of the filter applied is 51× 51. . . 77

6.29 The image represented on the left illustrates the case of a merged map,
where the filter applied has a size of 3× 3. The right image corresponds
to the use of a 51× 51 filter. 78

6.30 Variation of the percentage areas (relative to the total image area) of
WCAavg, Ac,avg and At parameters, increasing the filter size — for the
experiment with two cameras and the advanced algorithm node. 78

6.31 Variation of the indicators as the filter size increases — for the experiment
with two cameras and the advanced algorithm node. 79

6.32 The standar deviation values for this experiment. 79

6.33 The results obtained in this experiment. 80

6.34 Final confidence obtained by applying a filter whose size is 3× 3. 81

6.35 Variation of the percentage areas (relative to the total image area) of
WCAavg, Ac,avg and At parameters, increasing the filter size — for the
experiment of two cameras and two processor nodes. 82

6.36 Variation of the indicators as the filter size increases — for the experiment
of two cameras and two processor nodes 82

6.37 Variation of the standard deviation related to each indicator, increasing
the filter size — for the experiment of two cameras and two processor nodes. 83

6.38 Section of the road that was the subject of the study done for the case of
the application of deep learning methodologies (marked in red in the im-
age). This section generated 1070 frames processed by these two method-
ologies. 84

6.39 One of the results obtained by the application of the LaneNet ROS node.
Besides the precision of the road lane lines detection, it also shows the
depth of detection of the road lane lines, which is much higher than any
other algorithm performed so far. 84

6.40 One of the inexact results obtained by this LaneNet ROS Node. Here the
discontinuous road line was not detected. Consecutively, the division into
instances was imprecise, since the left line that should be represented by
the blue colour became represented by the red colour. 85

ix

6.41 The result obtained by the UNet Model in the case of a crosswalk on a
straight road. 86

6.42 The images shown above correspond to the result obtained by the UNet
Model for straight road lanes. The images below are the results obtained
by this model for the case of curved trajectories (roundabout). 86

6.43 This set of images represents the combination of classic techniques and
modern approaches achieved at the final stage of this dissertation. The
upper left image is the output of the advanced algorithm node. The
upper right image is the output of a UNet model ROS node. This node was
developed to study the potential combination of two types of computer
vision techniques: traditional (first image) and modern (second image).
Thus, the bottom left image corresponds to the input in the combination
step of the architecture explained in this work. Finally, the last image
represents the combination of the two types of techniques in one single
confidence map (the filter applied in this case has a size of 3× 3). 87

6.44 This is a similar case to the one presented in Fig. 6.43. However, here the
size of the filter is larger (9× 9)). Consecutively, it can be observed that
less confidence is given to the pixels belonging to the area of the other
lane, as would be expected. 88

x

Chapter 1

Introduction

The fields of Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS)
have developed a wide range of studies that can bring new possibilities to the drivers.
When AD achieves all of the aims that are foreseen, it would provide a decrease in the
number of accidents on the roads around the world. Also, it will lead to a reduction in
traffic jams since its next step is providing communication between cars, which would
help in identifying traffic problems early on. Finally, the system relieves the drivers from
the daily commuting task, improving their life.

For this, it is important that the car is equipped with all sensors that are determinant
to extract information from the real scenario. One of the functions of an autonomous
vehicle is to identify the road boundaries to ensure that it is within the lane in order
to minimise chances of collisions with other vehicles. Different approaches have been
implemented over the years and they are divided into two types: methods that use classic
computer vision techniques and more recent approaches that contemplate techniques of
learning, based on AI (Artificial Intelligence) [1].

This dissertation is the development of a road boundary detection method that in-
cludes a robust architecture, which enables the use of different road detection algorithms
to be suitable for both structured and unstructured roads. The former are roads with no
lane lines on it, commonly presented on rural locations and the latter are normal roads
that have clear lane marks and road boundaries. This is a problem since it is necessary
to perceive two different types of features. In addition to this, three main problems have
to be considered: lighting change, shadows and vehicle occlusions [2].

1.1 The ATLAS Project

The study inherent in this dissertation is a contribution to the ATLAS project. This
project was created by the Group of Automation and Robotics at the Department of
Mechanical Engineering of the University of Aveiro, Portugal [3]. It is related to au-
tonomous driving and it aims to develop a sensory architecture that allows the creation of
an autonomous car. Therefore, this project has promoted the improvement of advanced
active systems and the development of new methods to deal with real road scenarios.

The ATLAS Project started by developing several prototypes of robots, which com-
peted in autonomous driving competitions at the Portuguese National Robotics Festival.
Due to the success and the experience acquired in these competitions, the ATLAS Project

1

2 1.Introduction

took a step forward and started by developing the ATLASCAR1 (Fig. 1.1), a full-sized
prototype for research on ADAS.

Fig. 1.1: ATLASCAR1 autonomous car [3].

ATLASCAR1 is a Ford Escort Station Wagon from 1998 equipped with a broad
range of sensing technologies. These sensors are used to perceive what is happening in
its surroundings and identify the current internal status of the vehicle.

After years of studies and implementations of algorithms and hardware, the project
replaced the ATLASCAR1 by a new electric vehicle - ATLASCAR2 (Fig. 1.2). It is a
Mitsubishi i-MiEV (2015) equipped with 16 kWh batteries and several sensors such as
LIDAR sensors, GPS and cameras. This is the vehicle that is going to be used in this
dissertation.

Fig. 1.2: ATLASCAR2 autonomous car.

Tiago Almeida Master Degree

1.Introduction 3

1.2 Project Context and Motivation

This dissertation is a development of the study of lane markers or road boundaries
detectors (when there are no lanes on the road), which has been presented as one of the
most complex and crucial features that can be detected by an autonomous car [4]. To
achieve a robust boundary detector, the ATLASCAR2 has to be equipped with cameras
and it is necessary to conceive a software architecture that is capable of increasing the
quality of the planner of the car decision in terms of road boundaries. This idea of
detecting lane markers/road boundaries on the ATLASCAR2 is due to if the vehicle is
on a flat road, the LIDAR (Light Detection And Ranging) sensors that are implemented
are not enough to detect the road boundaries.

Many methods and algorithms can detect road limits, however, there is not a single
valid algorithm for all situations and this is why an architecture to combine and fuse
them is necessary. The architecture will increase the road boundary detection robustness
and, consecutively, the driving safety. This is important because self-driving is a subject
that has to be treated carefully since it influences people’s security. Therefore, in this
dissertation, two Point Grey FL3-GE-28S4-C cameras will be used, which are sensors
usually used for this type of study at LAR (Laboratório de Automação e Robótica).

1.3 Objectives

As described in Section 1.2, the installation of cameras and the detection of road bound-
aries onboard the ATLASCAR2 is a must-have tool on autonomous vehicles and because
of that the main objectives of this dissertation are:

• design and install the physical structure that allows cameras to be fixed to the
vehicle;

• develop a ROS software architecture based on two crucial premises: scalability and
redundancy. The idea is to create a ROS based architecture that can be used when
the number of cameras is increased and that allows the use of several algorithms at
the same time in order to get more information about the road boundaries features;

• find an effective method of merging the information returned by each algorithm;

• test the system developed in a real case scenario.

1.4 Document Structure

This document is divided into seven chapters. Chapter 1 is a brief explanation of the
goals of the dissertation, which were mentioned previously. Chapter 2 provides a sum-
mary of the methods implemented by different authors and explains the history of this
technology. Chapter 3 describes the hardware and software used in this project; The
physical structure designed and developed during the dissertation is also detailed in
Chapter 3. Chapter 4 presents the methods used to calibrate the camera. Chapter 5
explains the architecture developed to solve the problem presented. Chapter 6 shows the
results obtained after the development of the architecture. Finally, Chapter 7 contains
the conclusions about the project and the possible continuity of the work.

Tiago Almeida Master Degree

.

Intentionally blank page.

Chapter 2

State of the Art

There are several methods and algorithms developed to detect road lane lines and road
boundaries. This section will first explore the history of this kind of technology. After
that, works developed at LAR will be presented, followed by methods implemented in
other types of contexts.

2.1 Genesis of the Technology

In 1992, Mitsubishi presented a camera-assisted lane-keeping support system on the
Mitsubishi Debonair (Fig. 2.1) sold in Japan [5]. The system worked like several current
systems: if the driver drifted across those road markings, an alarm would sound to alert
the driver. This type of technology is called LDWS (Lane Departure Warning System)
and its usage is more common and efficient while driving along long, straight highways.

Fig. 2.1: The first car equipped with a lane detector system [6].

After appearing for the first time, lane departure warning systems became a tool
used in many different vehicles. In 2003, Honda introduced its Lane Keep Assist System
(LKAS) on the Inspire model, based on images captured by a C-MOS camera mounted
inside the front window, which consists of producing 80% of steering torque to keep the
car in its lane [7]. The Japanese brand Toyota added a system to the Crown Majesta (Fig.
2.2), a model that includes an assist driver system. This was achieved by developing a
technology that was able to interact with the driver in order to improve the direction of
the vehicle during a trip. This was made possible by sending commands to the power
steering system to encourage the driver to make a steering correction. In 2014, Tesla

5

6 2.State of the Art

equipped the S model with an Advance Lane Assistance System [8]. This technology
includes a feature that promotes a beeping and a steering wheel vibration when the
vehicle changes lane without the driver signalling or turning the steering wheel.

Fig. 2.2: Toyota Crown Majesta [9].

2.2 Current Implementations

Nowadays, many car brands are developing Advanced Driver Assistance Systems (ADAS),
which commonly rely on LKA (Lane Keeping Assist). This kind of technology tries to
keep the car in the centre of the current lane if it starts to leave the lane. It is being
achieved in intelligent vehicle systems based on classical techniques of computer vision
such as the Hough Transform [10] and Canny Edge detector [11]. To process the road
scenario in real-time, hardware such as Nvidia’s Drive PX1 is used. This type of com-
puter has as main characteristics: high accuracy and suitable time processing when used
to compute systems based on neural networks. Tesla (Fig. 2.3) autopilot system is one
of the technologies that uses this feature to make highway driving more enjoyable. Au-
topilot allows the car to make significant steering inputs and it has been updated since
2014. At this moment, the system has its processing power increased by 40 times when
compared to the previous generation due to the adoption of a sophisticated computer
developed by the company to run a neural network.

Fig. 2.3: Tesla model S equipped with the autopilot system [12].

Tiago Almeida Master Degree

2.State of the Art 7

Not only Tesla is developing this system but also Nissan (e.g. Q50 and Q60 models)
with the Infiniti’s Direct Adaptive Steering system and Mercedes-Benz which has been
developing a Driver Assistance Package on the S-Class model. Volvo announced in
2017 [13] a semi-autonomous drive technology, Pilot Assist II. It includes a LKA system
in the XC90 II model.

There are also several vehicles endowed with the capacity of proactively keeping the
vehicle in the centre of the lane - LCA (Lane Centering Assist). Car companies like
Audi, Honda [14] (using a windshield-mounted camera to look for lane markers, and
the Electric Power Steering to help steer the vehicle) and Hyundai equip some of their
models with this type of technology.

2.3 Related Work Developed at LAR

There is a work at LAR authored by Morais [15], who developed and implemented two
different methods to detect road lines – “Road Time Detection of Lane Markers in Urban
Streets” and “The Lane Tracker”. The first, described by Mohamed Aly [16] in 2008, is
divided into several phases:

The first one consists of the IPM technique (Inverse Perspective Mapping or “Bird’s
Eye View”), which is related to the application of a transformation on the image per-
spective (Fig. 2.4). This technique enables to obtain the representation of parallel line
roads and not convergent.

Fig. 2.4: Two initial images (a) e (b) and the respective IPM applications (c) e (d). The
yellow line delimits the used area to get the IPM projection [18].

In the next phase, entitled ”Filtering and Thresholding”, the image is processed
through a Gauss 2D filter and a threshold is applied in order to obtain a result similar
to the one presented in Fig. 2.5-Right.

Thus, a simplified version of the Hough Transform is applied, followed by the appli-
cation of RANSAC Line Fitting [17], which increases the detection robustness. Then it’s
crucial to hone the method to achieve a better lane detection and for that, the RANSAC
Spline fitting is applied which fits the obtained lanes to a spline.

Tiago Almeida Master Degree

8 2.State of the Art

Fig. 2.5: Processed Image. Left: Kernel used in filtering phase. Centre: Image after
kernel application. Right: Image after the threshold application [16].

The second algorithm implemented by Morais is based on a Matlab® toolbox that
has the Hough Transform as the basis of the algorithm. In an introductory phase of this
method, the image is divided into two regions, although only the bottom part is used
for searching edges. The lanes found are stored to use as a point of comparison with the
next frames.

2.4 Related Work Developed in Other Contexts

In 2018, Chuan-en-Li [19] proposed an algorithm constituted by classic visual computing
techniques (Fig. 2.6). This approach uses the Hough Transform as the main technique
in order to extract the road lines, yet, a Canny detector (a multi-stage technique) is
applied first. This method was designed to be an optimal edge detector in a grayscaled
frame. The next step of the algorithm is to segment the lane area through a handcrafted
mask that is defined by the coordinates of three image points. It allows focussing on the
important areas on the next stage of the algorithm. After that, the Hough Transform
is applied, which transforms the Cartesian Space in the Polar Space. So, the lines
(in Cartesian coordinates) are represented as points and a line on this last system of
coordinates corresponds to a set of lines. Thus, if the number of intersections in the
polar coordinate system exceeds a defined threshold, this intersection (represented by θ
and r parameters) is considered as a line.

Fig. 2.6: The Chuan-en-Li algorithm pipeline [19].

In [20], several authors developed a road lane lines detection method using advanced
computer vision techniques during the Udacity’s Self-driving Engineer Nanodegree pro-
gram. All the algorithms implemented have a similar pipeline. The method starts by
applying a perspective transformation to the input frame, which means that the initial
vehicle perspective given by the camera becomes a perspective of a bird in the sky (as
explained in Section 2.3). After that, colour thresholds are applied to the HSL colour

Tiago Almeida Master Degree

2.State of the Art 9

space, where H (Hue) corresponds to the dominant wavelength of the colour, S (Sat-
uration) represents the relative purity of a colour (i.e. a colour without any white is
fully saturated) and L (Luminance) quantifies the amount of white present in an image.
In this stage, some authors also apply the colour threshold to the RGB colour space.
Then, a Sobel operator is applied to the lightness channel of the image to eliminate the
pixels with weak changes of lightness. After that, the algorithm fits a curve for each line
with a second-degree polynomial function to get the radius of the curvature of each lane.
Finally, the information obtained from the sky-view is transformed into the vehicle view
to project the road boundaries prediction in a real frame that comes from the camera
(Fig. 2.7).

Fig. 2.7: Result obtained from an application of Udacity’s algorithm [20].

A different strategy was applied in [21], which contemplates the use of deformable
templates to locate lane boundaries without using edge detectors. In [22], a B-Snake
based lane detection and tracking algorithm is developed. The key of this work is the
B-snake technique since it has practical and computational advantages against other
lane models (e.g. B-Spline) such as a greater description of more complex road shapes,
more robustness when it faces complex environments (Fig. 2.8), less processing time and
it is more suitable for lane tracking application.

Tiago Almeida Master Degree

10 2.State of the Art

Fig. 2.8: Result obtained from the B-Snake application method [22].

In [23], the authors propose a procedure of several stages (Fig. 2.9) for road lane
detection. First, the Canny edge detector is applied to acquire an ”edge map” from the
road image. After that, the edges that were found are labelled according to the type of
line that they represent. This is achieved through a comparison between the edge map
and several different types of templates that are related to each type of existing lines.
Now, the lines that do not correspond to the road lines are suppressed by applying a
priority and orientation based searching method to the previous labelled lines. The next
step of the procedure is to strengthen the confidence of a hypothetical road lane through
a linking condition. Finally, the K-mean clustering algorithm is computed to find the
localisation of the road lines in the image.

Fig. 2.9: Pipeline of the algorithm that uses several templates for different types of
lines [23].

In terms of existing ROS packages, there is one developed by Nicolas Acero [24], who
also used classic techniques such as the IPM, application of thresholds and the Kalman
Filter, which is a filter that provides the lanes tracking based on previous frames. This
filter allows the road lane recognition in a frame where they are not represented for some
reason.

Tiago Almeida Master Degree

2.State of the Art 11

A group of authors identifies the solution to the problem as consisting of a multi-
feature fusion [25]. First, it proposes an edge lane marking segmentation, which starts by
extracting the image foreground through the Red channel based on the Otsu’s Method.
The threshold applied in this phase (FBS-Foreground/Background Segmentation) is de-
termined through a dataset created previously. After that, the probability density func-
tions of a normal distribution are calculated for the channels Red, Green and Blue from
the RGB colour space and the saturation channel from the HSV colour space. The im-
ages used for these calculations are included in a training dataset. Thus, the probability
of each pixel belongs to a lane region (Ppixel) is provided by the product of the probabil-
ity of the pixel belongs to the lane region according to each channel already mentioned
(Prpixel, Pgpixel, Pbpixel and Phpixel)-given by Eq. 2.1:

Ppixel = Prpixel × Pgpixel × Pbpixel × Phpixel (2.1)

Therefore, a binary probabilistic image is computed through a threshold applied to
all the Ppixel (Fig. 2.10 (c)). After that, a Canny filter is applied to the FBS result (Fig.
2.10 (b)) in order to extract a set of points which are located within the road lane (Fig.
2.10 (d)). Then, this set of points are intersected with the binary probabilistic image to
create a candidate set of road lane points. Finally, the lane points are clustered by using
a distance between pixels method (Fig. 2.10 (e)) and fitting by a RANSAC model (Fig.
2.10 (f)).

Fig. 2.10: Lane marking feature extraction experimental results. (a)Input image. (b)
Edge detection results after applying Canny edge detector on the FBS image results.
(c) Binary probabilistic image results. (d) Middle point extraction. (e) Lane marking
clustering results. (f) Fitting model results. [25].

There are also other types of methods, which are based on learning related to AI. AI
is defined as a panoply of abilities such as think, learn, adapt and react that are given

Tiago Almeida Master Degree

12 2.State of the Art

to a computer/machine. Directly related to Artificial Intelligence is Machine Learning,
whose main characteristic is the improvement of an algorithm’s performance as the train
through more data is increasing over time. Finally, it is important to clarify what is Deep
Learning because it is strongly connected with the two concepts previously mentioned.
It is a technique that is being developed to increase the efficiency and robustness of this
type of algorithms. Technically, it is a subset of Machine Learning in which multilayered
neural networks learn from a vast amount of data to get knowledge to later return the
output. Besides being the most well-known method, Deep Learning is also the most
complex technique because it is based on several different areas as biology, since it
uses the human learning as the basis of the learning that is provided to the machine.
Concerning this type of method, Chuan-en-Li also developed a method that consists
of a Spatial Convolutional Neural Network (SCNN), which is a method that returns
reasonable results when the lighting conditions are poor and the road is unstructured.
This type of neural network is efficient in getting spatial relations because the layers
of the neural networks are divided into slices to increment the image spatial data (Fig.
2.11).

Fig. 2.11: SCNN’s architecture [19]. This architecture is composed by a set of slices,
in which each one, sequentially, passes information to the succeeding slice only after it
has received information from the preceding slices), allowing message passing of pixel
information between neurons within the same layer, effectively increasing emphasis on
spatial information.

Tiago Almeida Master Degree

Chapter 3

Experimental Infrastructure

This chapter is divided into two main sections. Section 3.1 presents and describes the
hardware used as well as the hardware developed during the dissertation. In Section 3.2,
all software used to get the final result is enumerated and described.

3.1 Hardware Used and Designed

3.1.1 Point Grey FL3-GE-28S4-C

The Flea3 FL3-GE-28S4-C (Fig. 3.1) is a 2.8 Megapixel colour GigE Vision digital
camera based on the Sony ICX687 EXview HAD CCD II image sensor. The camera
runs at 15 fps at full resolution (1928 × 1448), measures 29 × 29 × 30 mm, and weighs
38 g. Table 3.1 details the camera’s most relevant specifications.

Fig. 3.1: Point Grey FL3-GE-28S4-C.

The sensor has several pixel formats that can be chosen: Raw (image data unpro-
cessed), Mono (image data is monochrome), RGB (each pixel represents three intensities-
red, green and blue) and YUV, that assigns both brightness (Y) and colour (UV) values
to each pixel. Other variants that can be considered include the number of bits per pixel
that can be sent to form the image, which may vary between 8 and 24 bits per pixel.
The pixel format chosen was Raw 8.

13

14 3.Experimental Infrastructure

Finally, this camera is capable of running in different video modes, all of which allow
the user to select a specific ROI (region of interest) of the image. Also, some modes can
increase the number of frames per second by aggregating pixels. This process is called
binning, whose main characteristic is to join pixels in two possible directions (horizontal
or vertical) to reduce the effective image resolution and, consecutively, increase the frame
rate. There is, also, a process known as subsampling or decimination that skips every
second pixel horizontally and vertically (2 × 2) as shown in Fig. 3.2.

Fig. 3.2: Aggregation and decimation of pixels.

With these techniques, the image quality may be poorer since it reduces the effective
image resolution, so it is necessary to be aware of this. The video mode used is Mode 1
because increases the velocity of image formation by performing a 2× vertical binning
and 2× horizontal subsampling. This can be crucial in getting up-to-date information
about the real scenario.

Table 3.1: Point Grey FL3-GE-28S4-C specifications [26]

Max. Framerate (FPS) 15 @ 1928 × 1448
Max. Resolution 1928 × 1448
Imaging Sensor Sony ICX687 1/1.8” CCD
Version Colour/Mono
Weight (g) 38
Dimensions (mm × mm × mm) 29 × 29 × 30

3.1.2 Camera Setup on ATLASCAR2

Before assembling the camera in ATLASCAR2, the location to install the camera in the
vehicle was studied. There were two valid possibilities: inside the car or on the car roof.
Inside the car, the camera would be installed behind the windshield above the rear-view
mirror, similar to the cameras installed in the Autopilot system from Tesla (Fig. 3.3).

Tiago Almeida Master Degree

3.Experimental Infrastructure 15

Fig. 3.3: Camera’s location in a Tesla.

The main advantage of this is that the camera is protected from the outside agents
but the practical installation would be complicated because of the cameras’ dimensions
and the cables that have to be connected to the sensor.

So, the placement selected to settle the camera was the car roof (Fig. 3.4), which
enables to install the camera and manage the camera’s pitch angle easier than the pos-
sibility mentioned before.

Fig. 3.4: Cameras location in ATLASCAR2.

Tiago Almeida Master Degree

16 3.Experimental Infrastructure

Regarding the camera assembling on ATLASCAR2, it is quite important to establish
some goals to the final infrastructure:

• Protective - a protection box to the camera must be contemplated to protect it
from dust and rain;

• Rigid - the camera support has to be made in a rigid material to prevent camera
movements;

• Easy to assemble and disassemble;

• Watertightness - the box that protects the camera has to prevent the liquids inlet.

Based on the previous specifications, a box (Fig. 3.5) was designed to protect the
camera from the outside agents. This box was 3D printed and assembled with screws M5.
Also, a plate (Fig. 3.6) was designed to fix the box to the rotative support. This support
is attached to two Bosch aluminium profiles with 1.5 meters long, which is assembled to
the car roof. Finally, gutters were used to protect the Ethernet cable to the computer
connection and the power cable (8-pin GPIO connector) to the UPS (Uninterruptible
Power Supply) connection. Fig. 3.7 shows the final setup of ATLASCAR2.

Fig. 3.5: Box that was created to protect the camera (Appendices B and C).

Tiago Almeida Master Degree

3.Experimental Infrastructure 17

Fig. 3.6: Plate to fix the box to the rotative support (Appendix A)
.

Fig. 3.7: Final ATLASCAR2 setup.

Tiago Almeida Master Degree

18 3.Experimental Infrastructure

3.2 Software Used

3.2.1 ROS - Robot Operating System

ROS (Robot Operating System) is an open-source framework and a meta operating sys-
tem that operates on top of one OS (Operating System) like Linux. It enables to manage
and control hardware such as sensors, cameras and robots due to a well-planned commu-
nication protocol. This communication protocol is based on a publisher-subscriber logic.
In a deeper view, ROS has UNIX processes called nodes that can communicate with
each other. Each node can represent one sensor or a specific task like processing images
or processing a point cloud that is provided by a sensor. These nodes communicate
through messages that are published in topics. These messages can be ”ROS standard”
or customised by the user. On the other hand, the nodes can communicate through an-
other type of architecture - ROS services. They differ from the regular communication
between nodes because, in this case, a request is asked and a response is returned.

A ROS project is controlled and dependent on a ROS Master because it allows the
communication between nodes and keeps a registry of all the nodes. This also provides
a database of parameters that can be accessed and used in different locations.

The ROS distribution used in this project is ROS Melodic.

Rqt Package

Rqt hosts several plugins for displaying ROS information such as rqt console that al-
lows to filter messages by various means (e.g. which node publishes them), rqt logger-

level, which helps the user to do debugging because it shows messages marked by
different levels (debug, info, warn, error or fatal) and rqt graph, that shows on a visual
way, the type of existing connections in a ROS architecture. In this project, this software
framework made it easier to show the results because it allows displaying images in the
same window published in different topics (Fig. 3.8).

Fig. 3.8: One of the examples of using rqt in this project.

Rviz

Rviz is an abbreviation for ”ROS visualisation” [27], and its main function is to show
the visual information of a ROS project such as the robot model, images captured
from a camera, of point clouds generated by data that comes from a sensor. The node
launched by the Rviz package subscribes to the available topics to display the information
included on them. It also provides a grid of a ground plan, which was quite important

Tiago Almeida Master Degree

3.Experimental Infrastructure 19

in this project, because it provides the visualisation of the sensors data included on the
ATLASCAR2 setup (Fig. 3.9).

Fig. 3.9: Rviz Interface. Through this interface, the sensors data can be visualised in
real-time.

3.2.2 ROS Packages used in this Project

pointgrey camera driver

The pointgrey camera driver ROS package is specially designed for Pointgrey cameras
and includes many interesting features such as the camera ”urdf” and a configuration
file that allows to change the camera details (video mode e.g.) without accessing to the
”Flycap” application.

camera calibration

The camera calibration package enables to calibrate monocular or stereo cameras
using a checkerboard calibration target based on OpenCV camera calibration tool. It
returns a file, which includes the intrinsic camera matrix, a distortion vector and the
rectification and projection matrices.These calibration parameters are used as inputs of
the image proc package.

image proc

The image proc package rectifies the image captured from a camera. This is possible
because the package contains a node that removes the image distortion through the
camera parameters.

Tiago Almeida Master Degree

20 3.Experimental Infrastructure

Fig. 3.10: image proc ROS package architecture [28].

3.2.3 Other Software Tools

OpenCV

OpenCV is an open-source computer vision library that is written in C and C++ and
runs on Linux, Windows, MacOS, Android and iOS [29]. It can be used in several pro-
gramming languages like Python, Ruby, Matlab and Java. It contains vision functions to
process images and some basic machine learning algorithms to help people to build fairly
sophisticated vision applications with high computational efficiency. The library is sub-
divided in modules with different functionalities such as camera calibration (calib3d),
image processing (imgproc) or video analysis.

This project is dependent on this tool since the main aim of the project is: visual
perception of the road detecting the road boundaries.

FlyCap

The FlyCap application (Fig. 3.11) is a generic, easy-to-use streaming image viewer
included with the FlyCapture SDK [30] that can be used to test many of the camera
capabilities. It enables to view a live video stream from the camera, save individual
images, adjust the various video formats, frame rates, properties and settings of the
camera, and access camera registers directly.

Tiago Almeida Master Degree

3.Experimental Infrastructure 21

Fig. 3.11: Flycap Interface.

SolidWorks

SolidWorks is a CAD (Computer-Aided Design) software that allows to model parts
easily and cost-effectively. This software includes a user-friendly GUI (Graphical User
Interface) as compared with other CAD solid modelling software.

In this project, this software was determinant when was necessary to create parts to
fix the camera to the vehicle as was showed in Section 3.1.2.

3.3 Summary

This project is based on the software tools and the hardware parts that were explained
and described in this chapter. ROS is the connection link between the main hardware
(camera) to the software (OpenCV) since it publishes images that are captured by the
cameras, that will be processed later by OpenCV to obtain the final result of the devel-
oped ROS architecture.

Tiago Almeida Master Degree

.

Intentionally blank page.

Chapter 4

Calibration

This chapter describes the calibration methods that were implemented to undistort the
original image that is captured from the camera (intrinsic calibration) and find the trans-
formation between the coordinate frames belonging to the system (extrinsic calibration).

4.1 Intrinsic Calibration

The process of doing the intrinsic calibration consists of determining the intrinsic camera
parameters: the focal length in two axis (fx and fy), the optical centers (cx and cy) and
the skew coefficient (s). In addition to undistort the original camera image, this process
relates pixel coordinates with metrics coordinates.

The matrix that combines all the camera parameters is the camera matrix (Eq. 4.1):

K =

fx s cx
0 fy cy
0 0 1

 (4.1)

As introduced in Section 3.2.2, the intrinsic camera calibration was made through
the camera calibration ROS package [31], which by using a checkerboard, determines
the focal length and optical centers parameters, not taking into account the skew factor.
This calibration technique is based on the OpenCV camera calibration method that
uses the pinhole camera model. The main objective of this model is to find the relations
between the coordinates of a point in a 3D space and its projection onto the image plane.

The interface (Fig. 4.1) provided by the package allows the user to know if the
checkerboard has already occupied all the positions (left, right, bottom and top) in the
field of view of the camera. A successful calibration gives rise to a ”yaml” file that
contains the camera matrix, the distortion vector, and the rectification and projection
matrices.

23

24 4.Calibration

Fig. 4.1: camera calibration interface.

Image Rectification

After determining the intrinsic parameters, it is everything set to acquire the undistort
image. This process was achieved by using the image proc ROS package. It is based
on a node that subscribes to two topics: the camera info topic, which has all the
intrinsic camera parameters and the image raw topic that contains the image captured
by the camera. This node transforms the original image into a rectified image (with
the distortion corrected). Therefore, the pixels of the image undergo the transformation
resulting from the camera matrix (K) following the distortion vector (D). If the image
had to be rotated then a rotation matrix would have to be applied (this is an optional
step). Finally, the main node of the method publishes the rectified image and the non-
rectified image.

4.2 Extrinsic Calibration

In order to analyse data in a common frame, knowledge of the geometric transformations
between each camera and the reference frame is required. The frame that is considered
as the reference is named ”moving axis” and is represented in Fig. (Fig. 4.2). The
referential used to perceive the road boundaries based on LIDAR is also ”moving axis”.
An interesting study that can be developed later is the data fusion between the road
boundaries detected from two different sources: LIDAR sensors and cameras, that is
why the frame chosen as the reference is the same. In conclusion, the frame that is going
to be used as a reference to the road boundaries detection through visual perception is
the same as the one used in LIDAR detection.

Tiago Almeida Master Degree

4.Calibration 25

Fig. 4.2: Frames representation on the ATLASCAR2.

Regarding the transformation that should be known, the graph presented in Fig. 4.3
illustrates the geometric transformations inherent to the problem.

Fig. 4.3: Geometric transformations associated to the extrinsic calibration problem.

The Eq. 4.2 is derived from the graph transformation.

CTMA =C TX ·X TMA (4.2)

Where CTMA (unknown variable) is the transformation between the camera and the
moving axis frame, CTX is the transformation between the camera and the chessboard,
and XTMA is the transformation between the chessboard and the moving axis frame.

The procedure was implemented in Matlab® environment, through the application
Camera Calibrator. In this application, one image of a chessboard on the road is
captured (Fig. 4.4).

Tiago Almeida Master Degree

26 4.Calibration

Fig. 4.4: Detection of chessboard points through Camera Calibrator application.

Then, the application returns the coordinates of the image in pixels and millimetres,
since the dimensions of the chessboard are given at the beginning of this stage. After
that, the function extrinsics was computed, to find the translation vector and the
rotation matrix of the transformation between the camera and the chessboard origin. As
inputs this Matlab® function has the localisation of the chessboard points in pixels and
millimetres and the intrinsic camera parameters. These last parameters were achieved
in section 4.1.

Since the transformation between the camera and the chessboard is determined, now
the transformation between the reference frame and the chessboard is determined. This
is the step more inaccurate of the deployed method, however, there is no other possibility
at this moment to do this type of calibration on ATLASCAR2. Therefore, the origin of
the chessboard detected in the last step (transformation camera-chessboard) was already
aligned with the reference frame to minimise the error caused by the differences in the
angles. At this point, the transformation between the reference frame and the chessboard
is measured through a laser range finder (Fig. 4.5).

Fig. 4.5: Length measuring tool used to find the transformation between the reference
frame and the chessboard.

Tiago Almeida Master Degree

4.Calibration 27

Finally, all the transformations are known then the transformation between the cam-
era and the reference frame is calculated.

Tiago Almeida Master Degree

.

Intentionally blank page.

Chapter 5

Multi-Camera and
Multi-Algorithm Architecture

This chapter presents the architecture developed to combine or fuse the results of each
algorithm (representation of the road boundaries). The main goal is to develop a multi-
camera architecture capable of gathering information from multiple algorithms and then
use it to return the road boundaries with more accuracy.

This chapter describes the ROS-based architecture, the influence of time stamp

preservation on the images throughout the architecture, and the nodes/topics used.
Finally, the image processors packages are summarised and the main launch files are
detailed.

5.1 The Base Architecture

In order to increase the quality and quantity of the information obtained from the road
boundaries detection, a ROS-based architecture was developed. It starts from a rectified
image provided by the image proc package. This image is the input of the algorithms,
which return the road lane lines. In this stage, the architecture is prepared to receive
results from two different types of algorithms (Fig. 5.1): the spatial localisation of the
road lanes in the image, or the polygon that represents the road zone.

Fig. 5.1: The different types of data that can be processed by the architecture. Left:
Spatial localisation of the road lines. Right: Polygon that represents the road zone.

29

30 5.Multi-Camera and Multi-Algorithm Architecture

If an algorithm returns the spatial localisation of the road lines, then the architecture
processes this information, turning it into a polygon. After that, the polygon is merged
with the data that comes from the algorithms that provide the polygon representation
as a road zone. Finally, after every algorithm result is in the same data type (polygons),
a confidence road map is built. Fig. 5.2 shows a flowchart that represents the general
behaviour of the architecture when facing these two types of algorithms.

Fig. 5.2: The generic behaviour of the architecture for each type of algorithm output.
From the top to the bottom: the rectified image is processed (image processing) by an
algorithm that returns or a polygon or the spatial localisation of road lines (algorithm
output). If it is the spatial localisation of the road lines in the image, then it passes
through an intermediate stage (polygon creation) to build the polygon from those road
lane lines coordinates. If the output of the processor algorithm is already a polygon, it
proceeds directly to the construction phase of the confidence map.

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 31

5.1.1 Nodes and Topics Presentation

In terms of ROS computation, this project can be broken down in three main stages: 1)
Rectified image determination; 2) Image processing; 3) Data combination. Each stage
takes into consideration the source of each topic, hence, namespaces are used to keep
the architecture understandable and clean (e.g. the topics that are published by the
image processor node lane detector node have as namespace ”lane detector”). At
this point, all nodes and topics are explained, not considering the case of multi-cameras
for the exposure of the architecture to become clearer. The multi-camera approach is
detailed in the last topic of this sub-section.

Rectified image determination

In this stage, the most important node is the one that is conceived by the image proc

package. Its name is the same as the package, the inputs are the topics /camera info

and /image raw. The former is the one that contains the information which concerns the
intrinsic camera parameters, and the latter contains the image that is captured by the
camera. The image proc node publishes the image rectified in the /image rect color

topic (Fig. 5.3).

Fig. 5.3: Part of the computation graph to one camera that corresponds to the rectified
image determination.

Image Processing

After acquiring the rectified image, two algorithms are applied (they are described in de-
tail in a later section). The nodes that subscribe to the rectified image and publish the
algorithms’ outputs are named lane detector node and advanced algorithm node.
Since the lane detector node has interesting parameters (to manipulate, which are re-
lated to the computer vision techniques that are computed in the algorithm), a clone of
this node was made with different parameters. It implies that, instead of two proces-
sor nodes, there are three (lane detector node, lane detector2 node and advanced-

lgorithm node). These nodes somehow publish the road lane lines or the road zone in
the respective ROS topics: /lane detector/lane, /lane detector2/lane and /advan-

ced algorithm/polygon. The lane detector node publishes the road lane lines spa-
tial localisation in the image and the advanced algorithm node publishes the poly-
gon that represents the navigable zone, which explains the name of the chosen topics

Tiago Almeida Master Degree

32 5.Multi-Camera and Multi-Algorithm Architecture

(Fig. 5.4). There are also other topics published by the processor nodes, which only
exist for the purpose of viewing results such as: /advanced algorithm/finalResult,
/lane detector/result and /lane detector2/result.

Fig. 5.4: Part of the computation graph to one camera that corresponds to the image
processing for the three processor nodes.

Combining the Results of the Processing Nodes

In this phase of the architecture, the data provided by each algorithm is merged (Fig.
5.5). For this, if the previous algorithms return the spatial localisation of the lane,
then there are nodes — draw poly node and draw poly2 node — prepared to build
the polygons from the detected lines. Thus, these nodes publish the polygons in the
respective topics: /draw poly/poly alg and /draw poly/poly alg2. Finally, there is a
node called calc prob map node, which combines the polygons and publishes the result
in an image (/calc prob map/image map).

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 33

Fig. 5.5: Part of the computation graph to one camera that corresponds to the merging
of information that is provided by each algorithm.

Combining the Confidence Maps provided by Multiple Cameras

The architecture so far is capable of gathering and combining information from multiple
algorithms. However, a method of combining the results obtained by each camera was
also developed. In short, the architecture is capable of combining results from multiple
algorithms for a single camera only, as explained so far, and it is also capable of combining
results (confidence maps) from each camera into a single result — multi-camera approach
(Fig. 5.6). Thus, there is a node — combine multi cams node — whose function is to
combine the maps that come from multiple sources (in this work the two cameras that
are used are named top right camera and top left camera). Finally, this node returns
the final confidence map and publishes it in the topic /combine multi cams/final map.

Fig. 5.6: Part of the computation graph related to the combination of the confidence
maps provided by multiple cameras.

5.1.2 Time Stamps and Asynchronous Sources

Time stamp is a specific time register provided by ROS that records when an event
occurred. Since this work deals with a dynamic scenario (vehicle movement), the advance
in time implies an alteration of the vehicle position. Thus, the developed architecture
resorts to a mechanism that controls the processing time of the frames. It enables to
suppress correctly the processed frames that are lagging behind in the architecture.

Consequently, throughout the architecture, the time stamp of each new image is
preserved. Therefore, the time of the publication of the first image is the one that is
kept in the images that are created later.

In a case where the preservation of time stamps is not considered, the time lag be-
tween the image capture and the output of the processing algorithms — processed image
— is not considered. Since the scenario where the architecture is running is dynamic,

Tiago Almeida Master Degree

34 5.Multi-Camera and Multi-Algorithm Architecture

then, the architecture would return wrong data about the current road scenario. Con-
versely, the preservation of the time stamps enables to ignore processed images related
to large processing time, since the current position of the vehicle is completely different
from the one that was processed.

5.2 Image Processors

In this section, the implemented algorithms are explained. The first algorithm was
developed by Nicolas Acero [24]. It is a ROS package, so the difficulties that were found
are related to the fact that the package was prepared to ROS Indigo and this project is
based on ROS Melodic. The second algorithm is based on the methodology developed
by Ross Kippenbrock [32] and very similar to those developed during the course of
Udacity [20]. Therefore, the algorithm was transformed into a ROS package to be part
of the developed architecture. Finally, techniques based on Deep Learning are exposed
as solutions to be part of the architecture in the future.

5.2.1 Algorithm 1: lane detector ROS Package

The ”lane detector” package created and implemented by Nicolas Acero is not doc-
umented anywhere. It was found on the Github platform and it consists of several
techniques developed by other authors. It starts by applying a threshold to the average
of the red channel from the RGB colour space to binarise the image. After that, the
IPM technique is applied based on the work developed by Mohamed Aly in [16]. The
next step of the algorithm is to group the input image into horizontal and vertical lines
through a smooth personalised filter. In order to validate the vertical detected lines in
the previous step, a RANSAC model is performed. Finally, the lines are tracked through
a combination between a Hungarian algorithm and a Kalman filter. This last step was
computed by Andrey Smorodov in a multi-target tracker project [33] and adapted to
this ROS package by Nicolas Acero. The lines are published through a message whose
type is geometry msgs. It provides messages for the coordinates of the right lane line,
left lane line and guide line (a line between the lane lines).

5.2.2 Algorithm 2: advanced lane detection ROS Package

This algorithm was implemented to present it in a PyData conference [34]. The global
PyData network promotes discussion of best practices, new approaches, and emerging
technologies for data management, processing, analytics and visualisation.

The author followed a pipeline (Fig. 5.7) similar to the one presented by the authors
that attended the Udacity course (mentioned in Section 2.4), which is constituted by
four main steps: image rectification, image warping, lane lines segmentation and curve
fitting.

Warp image application

The procedure starts with an operation to undistort the image, which is already provided
by the image rectification step, after the camera calibration, as mentioned in section 4.
After that, a ”bird’s eye view” is applied, which is a suitable technique for fitting curves
and finding lane lines, because it is easier to segment them if the point of view is from

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 35

Fig. 5.7: Algorithm’s pipeline that composes the ”advanced lane detection” ROS pack-
age.

top to bottom than forward. To obtain this, there are source points in the original
image, which constitute a polygon that is warped to straight lines (Fig. 5.8), through a
geometric transformation between them.

Fig. 5.8: Warping technique application [35]. The left image demonstrates the source
points that are used to the warp transformation. The right image represents the warped
points. Summarising, the points in the left image are transformed into the points in the
right image.

Lane lines detection

Regarding the segmentation of the lane lines, there are two approaches, that were com-
bined: ”Colour Selection” and ”Edge Detection”. The first method — Colour Selection
— consists of applying a threshold to the isolated channel — Red — from the RGB
colour space.

The second implementation — Edge Detection — is constituted by the application
of the Sobel Edge Detector [36]. Then, the two lane lines segmentation techniques are
merged, which is extremely useful, since there is information that is provided from two
different sources. This causes a sharing of information that would not be possible without
the combination of the two techniques as demonstrated in Fig. 5.9.

Tiago Almeida Master Degree

36 5.Multi-Camera and Multi-Algorithm Architecture

Fig. 5.9: Combination of Red Channel binarisation and Sobel Edge Detector [35].

Curve fitting

Finally, a curve fitting method is applied to the previous binary image. Hence, an
histogram from the bottom half of the image is taken. The histogram peaks (Fig. 5.10)
represent where the lines begin, and a box is drawn in those starting points.

Fig. 5.10: Histogram that represents where the lane lines start [35].

Then, boxes are drawn as the line search in the image is moving up. The location of
the boxes depends on the average of the previous line. Lastly, a second-order polyfit

is applied to the pixels that were in the boxes, which gives rise to the curve fit of those
points (Fig. 5.11).

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 37

Fig. 5.11: Curve fitting procedure [35]. The green boxes are the windows that are located
based on the average of the previous line.

The final image (Fig. 5.12) is obtained by applying the inverse transformation to the
warped points of the first step of the procedure (”warp image application”). Therefore,
a polygon is drawn between the points that were found in the previous step of the
procedure, giving rise to the final representation of the algorithm.

Fig. 5.12: Result obtained by applying the algorithm [35].

ROS package creation

As introduced at the beginning of this section, a ROS package was created based on
this algorithm. In this regard, the code developed by Chiang Hsuche [37] was used
as a library of functions to the ROS package. The developed ROS package’s name is
”advanced lane detection” and is based on a class, which is constituted by a constructor,
whose purpose is to advertise the topics that will publish the results of the algorithm.
There are also some essential functions that compose the package:

Tiago Almeida Master Degree

38 5.Multi-Camera and Multi-Algorithm Architecture

• receiveInitImg — this function receives the rectified image and through the
CvBridge tool converts the ROS original image message into an OpenCV image;

• Publishers — this function contains all the agents that will publish in topics the
results of the algorithm;

• processFrames — this represents the core function of the package. Here the
procedure of the algorithm is applied through the call of functions that are part of
the library created based on the Chiang Hsuche’s code.

5.2.3 Algorithms based on the Deep Learning Approach

LaneNet Ros Node

An alternative to classical techniques is an algorithm based on Deep Learning. There
is a ROS package [38] based on [39]. This model (Fig. 5.13) named LaneNet consists
of an encoder-decoder stage, binary semantic segmentation stage and instance semantic
segmentation for a near real-time lane detection task. If the results obtained by this
approach are sufficiently interesting, it would be interesting in future developments to
work on the performance of the neuronal network (e.g. changing the layers) to achieve
the real-time detection.

Fig. 5.13: The overview of the LaneNet architecture, as well as the visual input of each
step. From the left to the right, the image enters the encoder/decoder and produces
the pixel embeddings, that discriminates the lane and the lane segmentation. These are
combined to produce the final result image, which is further to the right. [39].

The architecture is composed of two branches. One of them is represented at the
bottom of Fig. 5.13 and its aim is to produce a binary lane mask through the network
training (segmentation branch). The other branch has the goal of dividing the pixels
of the lanes into groups according to the lane that they belong to (embedding branch).
Through the first branch, the background pixels are suppressed from the pixel groups
created in the second branch, and then, the final groups of lane lines are representing
the different lane lines of the image.

Therefore, the network clusters the road lane lines: each colour of the road line result
has a meaning. In a deeper view, in addition to detecting the lines of the road, the

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 39

algorithm disentangles the segmented lane pixels into different lane instances (instance
segmentation), through the colours that are represented in the output image (Fig. 5.14).

Fig. 5.14: Result obtained by applying the LaneNet ROS node approach. [38].

UNet Model

Another option in terms of the Deep Learning approach was found in the Fast AI course,
which brings a set of tutorials about different techniques related to Deep Learning. The
type of learning that is going to be implemented is the semantic segmentation [40] applied
in a real road scenario. The multi-label feature is included in the datasets that are given
before the training phase of the procedure. The other important concept related to this
method is ”Image Segmentation”, which is the process of dividing an image into pixels
groupings to then be labelled and classified. Therefore, the objects of the image that
have the same colour belong to the same class.

The dataset used (Camvid dataset) is labelled according to the segmented frame (Fig.
5.15). The reason why the dataset was chosen is the Camvid is that is one of the smallest
datasets available (701 labelled images divided into 32 classes), so the computational cost
was low.

Tiago Almeida Master Degree

40 5.Multi-Camera and Multi-Algorithm Architecture

Fig. 5.15: Camvid datasets [41] used to train the architecture provided by one of the
tutorials of the Fast AI course. Each colour in the image represents a different class.
For example, the road is associated to the grey colour and the sidewalks are identified
with the pink colour.

Also, in the experiment realised in this dissertation the classes were decreased to
11 by editing the code already provided by the Fast AI tutorials to further reduce the
computational cost. There are other datasets compared in [42] that imply a higher
computational cost due to their size, however, they can produce more accurate and
reliable results. They are presented in the Table 5.1.

Table 5.1: Comparison of other datasets, which can be used to train the network.

Datasets
Labelled
images

Number of
classes

Cityscapes 3478 34

Mapillary
Vistas

20000 66

ApolloScape 147000 36

BDD100K 8000 19

One interesting characteristic of the Mapillary Vistas dataset is that it includes
images from cities in Portugal (Fig. 5.16), which is relevant since the ATLASCAR2
most common environment are roads in Portugal.

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 41

Fig. 5.16: An example of a labelled image that belongs to the Mapillary Vistas dataset.
This image was captured in Porto, Portugal [43].

The training of the neural network was done in a computer present in LAR, whose
main function is to work in Deep Learning thanks to the high computational power
provided by their high-end GPGPU’s (General Purpose Graphics Processing Unit). In
order to train the network, it was necessary to work remotely and with some interes-
ting tools like Podman [44] and Jupiter notebooks, which allows an interactive Python
session in the browser [45]. Podman is a daemon-less container engine for developing,
managing, and running containers. Containers, in short, contain applications in a way
that keep them isolated from the host that they run on [46]. They enable applications
to be packaged in images that contain the operating system, dependencies and configu-
ration, so they are easy to deploy, distribute and develop. This allows easy management
of resources, such as CPU (Central Process Unit) quotas, memory and visible GPU
(Graphics Processing Unit) devices.

5.3 Data Combination

This section covers the core of the developed architecture — the data treatment packa-
ge. It launches two nodes: draw poly node and calc prob map node. The former re-
ceives the data that comes from each algorithm, whose result is the lane lines localisation,
and builds a polygon with this information. The latter creates a confidence map based
on the information included on the polygons. In the multi-camera mode of the archi-
tecture, the node "combine multi cams node" is also launched if an argument has True
value on the launching of the architecture (procedure described later). This is responsi-
ble for combining the maps from the calc prob map node result for each of the existing
cameras and publishing a single confidence map.

5.3.1 Node draw poly node

This node was created in order to deal with a specific type of algorithm’s result — the
lines localisation in the image.

Tiago Almeida Master Degree

42 5.Multi-Camera and Multi-Algorithm Architecture

One of the implemented algorithms (the one that returns the localisation of the
lines) consists of several parameters. Since these parameters are related to the visual
techniques applied, the algorithm can be parameterised with different values. Thus, this
algorithm originated two road lane lines detector nodes, whose results are transformed
into polygons through two other nodes (draw poly node). These nodes subscribe to
the /lane detector/lane topic of each processor node. Since the type of messages
published on these topics is associated to a ROS message (geometry mesgs), they are
converted into OpenCV points. It follows that the lines are drawn in an image whose
size is equal to the size of the processed images. Then, the maximum and minimum
points of each line are found to close the polygon. Finally, the interior of the polygon
is filled through the OpenCV function ”floodfill” (Fig. 5.17) and then published
in the /draw poly/poly alg1 and /draw poly/poly alg2 topics. Later, these topics
(polygons) will be subscribed by the node in charge of building the confidence map
(calc prob map node).

Fig. 5.17: Polygon construction from the lane lines spatial localisation.

5.3.2 Node calc prob map node

The calc prob map node node subscribes only to the topics that are provided in the
launch file, as it is explained in the next section. It allows the architecture to receive any
number of algorithms (scalability) and, consequently, enables this node to receive any
number of polygons. The current state of the architecture allows launching any number
of processor nodes. As a result, this node publishes the ”confidence map” based on the
number of topics (polygons) that it subscribes to. One case that can serve as an example
is the launching of one processor node — the ”lane detector node”. Consequently, the
launching of the architecture has to take into account some arguments, which would be
provided by the following:

• with-advanced algorithm:=false

• topics:=”/top right camera/draw poly/poly alg1”

These arguments deactivate the processor node that is not used in this experiment
(advanced algorithm node) and declare the topics that are going to be subscribed in

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 43

order to merge the polygons built from the processor nodes. As a result, the architecture
launch would be provided by the following command:

• roslaunch data treatment road visual perception.launch with-advanced-

algorithm:=false topics:="/top right camera/draw poly/poly alg1"

The information about each polygon received by this node is stored in a structure
(Listing 5.1).

Listing 5.1: Structure that contains the information about each polygon.

1 struct image info{
2 cv::Mat image;
3 bool isupdate;
4 double image delay;};

This structure is composed of three fields: the image (in OpenCV Mat type), a
Boolean variable ”is update”, which represents whether the polygon was already updated
or not and, finally, a Double variable ”image delay” that concerns the time it takes the
whole process until the polygon reaches the part of the architecture where it is combined
with other polygons. This last variable has extreme importance, because if the processing
time of the original image is too long — more than 0.06 s — the polygon is not used
in the following procedures. Since the camera can record 15 FPS (frames per second),
it means that the processor algorithms have to be faster to process the image than the
camera to capture one image. If this time interval exceeds 0.06 s, the polygon provided
by the processor node is rejected because there is a possibility that the image that was
processed was too outdated compared to the real scenario (as discussed in section 5.1.2).
Thus, each structure represents the information of each polygon image and is stored in
a vector to build the confidence map.

Regarding the construction of the confidence map, the polygons that will be used
during the calculation of the confidence map are first illustrated in Fig. 5.18.

Fig. 5.18: The three polygons used to calculate the confidence map (the first three im-
ages) and a grayscale representation (fourth image), which shows the intersection (white
pixels) and non-intersection (darker pixels) of those polygons. The first two images
(A and B, respectively) represent the outputs of the draw poly node, which draws the
polygons through the output of the lane detector node and the lane detector2 node.
Finally, the third image (C) illustrates the output of the advanced algorithm node.

Tiago Almeida Master Degree

44 5.Multi-Camera and Multi-Algorithm Architecture

Then, after receiving each polygon relative to the output of each algorithm, an
”AND” logic operation is applied to the polygons ”A”, ”B”, and ”C”. This implies
to obtain the intersection (D) of all polygons (Eq. 5.1).

D = A ∧B ∧ C (5.1)

This zone (D) is the one where there is more confidence that the pixels represented
in white belong to the true road zone since the three algorithms have this result (Fig.
5.19).

Fig. 5.19: Result obtained by applying the AND logical operation. The left image is
merely illustrative of the areas where there is a larger (white pixels) and lower confidence
(dark pixels) in which the pixels belong to the road lane zone.

Conversely, the non-intersection zone (E) of the three polygons is determined through
the computation of the XOR logic operation (given by Eq. 5.2).

E = A⊕B ⊕ C (5.2)

In this case, only one or two algorithms return this zone as a road area (white pixels
in Fig. 5.20); thus, there is less confidence that this zone belongs to the driveable road
zone when compared to the white pixels of the previous image.

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 45

Fig. 5.20: Result obtained by applying the XOR logical operation. White pixels corre-
spond to the result of applying the XOR operation.

Finally, the confidence map is built based on previous statements. Accordingly, a
square kernel (F) is applied to the image that represents the intersection of the polygons
(D). Consequently, the region where it is most possible that the pixels belong to the
road area (G) is calculated. This process is given by the Eq. 5.3.

G = F ~D (5.3)

Where F is an odd square kernel given by Eq. 5.4 in the case of filter with a size of
3× 3 (this size is variable).

F =

255 255 255
255 255 255
255 255 255

 (5.4)

As a result, each pixel value of this region is related to more or less confidence
in belonging to the road zone — pixels whose values are closer to the white colour
than others are more likely to be a valid representation of the road. The kernel is
applied to all pixels of the image, so the confidence is given by the number of pixels of
the neighbourhood that belong to the intersection area divided by the filter size. For
instance, if the kernel size is given by size(F), and in the neighbourhood of the pixel
where the filter is applied, X pixels belong to the intersection zone. Thus, the confidence
(L) that the pixel has in belonging to the correct road area is given by the Eq 5.5:

L =
X

size(F)
(5.5)

However, the zone that corresponds to the non-intersection (L) of the polygons has
a constant ”confidence” but less than the least possible of the intersection area. Given
the above, the two described zones form the confidence map (M in the Eq. 5.6), which
is published as an image in the image map topic.

M = D + L (5.6)

As can be observed in Fig. 5.21 (image map representation), the darker zones are
described as zones of less confidence in belonging to the road zone and, on the contrary,

Tiago Almeida Master Degree

46 5.Multi-Camera and Multi-Algorithm Architecture

the lighter areas are related to greater confidence of being a valid representation of the
road driveable area.

Fig. 5.21: Representation of the confidence map as an image. The darkest pixels do
not belong to the intersection of the three polygons and are affected by lower confidence
(dark pixels). The pixels that belong to the intersection are white (greater confidence).

There is an option implemented in this node when the architecture is running in
multi-camera mode. To combine the confidence maps from multiple cameras, a perspec-
tive transformation is necessary to place the cameras into a common reference frame
(moving axis frame). For this, an input argument — multi cameras combination —
in the architecture launching has to have True logical value. If this does not happen,
the multiple cameras work independently of each other and produce multiple confidence
maps viewed from different perspectives. This representation (Fig. 5.22) also corre-
sponds to how the data from the architecture has to be published to, for example, in
the future be merged into an Occupancy Grid with the data that comes from LIDAR
sensors.

Fig. 5.22: One example of a result of a warp transformation applied to a polygon. The
left image represents the algorithm detection results, which gives rise to the polygon
illustrated in the centre image. Finally, the polygon warped is represented on the right
image. This operation is equivalent to the one represented in Fig. 5.8.

This approach was based on the ”warpPerspective” OpenCV function which has
as input arguments a polygon that represents the road lane from the camera perspective
and a perspective transformation matrix. This transformation matrix is given by the
getPerspectiveTransform function, whose input arguments are the final and initial

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 47

position of the polygon. At this stage, the representation of the final polygon (final
points warped) assumes that the width of the road is 3.5 m (width of the road section
which is the environment where the results of this work are analysed in the section
6). Through the intrinsic camera parameters, the units of the road lane width are
transformed into pixels. This method is applied in several algorithms whose objective
is to detect road lane lines (e.g. the algorithm used in this work, whose output is a
polygon). However, it would be interesting to develop an IPM technique in a future work
that would be more generic based exclusively on the extrinsic and intrinsic calibration
of the camera.(e.g. [18]).

5.3.3 Node combine multi cams node

The combine multi cams node only exists when the architecture is acting in multi-
camera mode. It subscribes to the nodes explained in the previous sub-section of each
camera. Hence, for example, if there are two cameras (the current status of the ATLAS-
CAR2 setup) — top right camera and top left camera — this node subscribes to the to-
pics ”/top right camera/calc prob map/image map” and ”/top left camera/calc -

prob map/image map”. However, the node is prepared to receive more confidence maps,
it is just a matter of remapping the topics that the node has to subscribe to when the
architecture is launched, as explained in the next section.

To combine the confidence maps coming from multiple cameras, these warped maps
are combined through a weighted sum between the two images, where each image has
the same weight.

5.4 Launching Nodes

This section details how the required nodes from the architecture are launched. There
are specific files for the purpose, named launch files. They provide a convenient way to
start up multiple nodes and a master, as well as other initialisation requirements such
as setting parameters [47]. Finally, in the last sub-section, the use of two cameras will
be summarised.

5.4.1 Main Launch Files

In order to divide the launching of the architecture, there are two main launch files:
drivers.launch and road visual perception.launch. As the name indicates, the
drivers.launch file launches all the ATLASCAR2 sensors, which include the sensors
that are part of the architecture — the two cameras.

The road visual perception.launch (Listing 5.2) launches the nodes correspon-
ding to each algorithm (algorithm1.launch and advanced lane detection.launch),
the nodes that draw the polygons through the information that is obtained from the
algorithms that return the road lines localisation in the image (draw poly.launch) and
the node that joins the information from each processor node (data treatment.launch).

Listing 5.2: road visual perception.launch file that launches all the architecture.

1 <launch>
2 <arg name="with−advanced algorithm" default="true"/>
3 <arg name="with−nsteel algorithm" default="true"/>

Tiago Almeida Master Degree

48 5.Multi-Camera and Multi-Algorithm Architecture

4 <arg name="topics left" default="/top left camera/draw poly/poly alg1,/
top left camera/draw poly/poly alg2,/top left camera/advanced algorithm/
polygon"/>

5 <arg name="topics right" default="/top right camera/draw poly/poly alg1,/
top right camera/draw poly/poly alg2,/top right camera/advanced algorithm
/polygon"/>

6 <arg name="top left camera" default="true"/>
7 <arg name="top right camera" default="true"/>
8 <arg name="multi cameras combination" default="true"/>
9 <arg name="topics maps" default="/top left camera/calc prob map/image map

,/top right camera/calc prob map/image map"/>
10

11 <!−− To launch the nsteel algorithm node −−>
12 <include file="$(find lane detector)/launch/algorithm1.launch" if="$(arg

with−nsteel algorithm)">
13 <arg name="top left camera" value="$(arg top left camera)"/>
14 <arg name="top right camera" value="$(arg top right camera)"/>
15 </include>
16

17 <!−− To launch the advanced algorithm node −−>
18 <include file="$(find advanced lane detection)/launch/

advanced lane detection.launch" if="$(arg with−advanced algorithm)">
19 <arg name="top left camera" value="$(arg top left camera)" />
20 <arg name="top right camera" value="$(arg top right camera)"/>
21 </include>
22

23 <!−− Just to draw the polygons to the algorithms that return localisation
lanes −−>

24 <include file="$(find data treatment)/launch/draw poly.launch" if="$(arg
with−nsteel algorithm)">

25 <arg name="top left camera" value="$(arg top left camera)"/>
26 <arg name="top right camera" value="$(arg top right camera)"/>
27 </include>
28

29 <!−− To launch the nodes that calculates the confidence maps −−>
30 <include file="$(find data treatment)/launch/data treatment.launch">
31 <arg name="topics left" value="$(arg topics left)" if="$(arg

top left camera)"/>
32 <arg name="topics right" value="$(arg topics right)" if="$(arg

top right camera)"/>
33 <arg name="top left camera" value="$(arg top left camera)"/>
34 <arg name="top right camera" value="$(arg top right camera)"/>
35 <arg name="multi cameras combination" value="$(arg

multi cameras combination)"/>
36 <arg name="topics maps" value="$(arg topics maps)" if="$(arg

multi cameras combination)"/>
37 </include>
38 </launch>

This launch file enables to launch one or two processor algorithms, due to the
Boolean arguments (with-advanced algorithm and with-nsteel algorithm). These
have their logic values depending on the use of them in the processing stage. In addi-
tion to this, there are also two arguments (topics right and topics left) associated
to the data treatment.launch file, whose function is to declare the topics (related
to each camera) that are subscribed by the node responsible for the confidence map
construction. Besides that, this launch file takes into account which camera is be-

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 49

ing used (top left camera and top right camera arguments) and in case they are
both used, whether the combination of maps coming from each camera is made or not
(multi cameras combination argument). Finally, there is an argument (topics maps)
that similarly to what happens with the topics (topics right and topics left) that
are subscribed by the node that calculates the confidence map for each camera, trans-
lates the topics inherent to the confidence maps that will be subscribed by the node that
combines the warped maps published in the case of multiple cameras.

Therefore, to launch the sensors and the architecture, it is necessary to run the
following commands:

1. roslaunch atlas2 bringup drivers.launch;

2. roslaunch data treatment road visual perception.launch — may have op-
tional arguments related to the image that is used in terms of source (if it is used
the images captured by the two cameras or not), the algorithms that will process
the image, the topics inherent to the polygons that are combined, whether exists
combination of multiple cameras or not and the topics related to the combination
of the confidence maps (multi-camera mode).

Where data treatment is the package in charge of merging the information coming
from each algorithm and for the combination of the confidence maps provided by each
camera (multi-camera mode). The package name is followed by the main launch file of
the architecture and then by the existing input arguments.

5.4.2 Architecture Launch Files

As mentioned before, there are three files launched from the main architecture file —
road visual perception.launch. The first one (Listing 5.3) is related to the first im-
plemented algorithm developed by Nicolas Acero. The package promotes the possibility
of processing images stored on disk, instead of analysing frames from cameras; it was
modified with ”remaps” to provide the correct name to the topics. Also, it takes into
account parameters that provide the resize of the initial image to get a faster process-
ing time, as explained in section 5.3. Finally, the processor node is cloned by creating
the node ”lane detector2”, which loads different parameters related to the algorithm
performance (e.g. points of the ROI (Region of Interest) used in the IPM technique).

Listing 5.3: This is an example of the algorithm1.launch that launches the two pro-
cessor nodes whose output are the localisation of the road lane lines in the image (here
only one processor node is launched in order to be easier to understand).

1 <launch>
2 <arg name="load images from folder" default="false" />
3 <arg name="top left camera" default="true"/>
4 <arg name="top right camera" default="true"/>
5

6 <node pkg="lane detector" type="lane detector" name="lane detector node"
output="screen" ns="top left camera" if="$(arg top left camera)">

7 <remap from="camera info" to="/top left camera/camera info" />
8 <remap from="/image" to="/top left camera/image rect color" />
9 <param name="images from folder" value="$(arg load images from folder)" /

>

Tiago Almeida Master Degree

50 5.Multi-Camera and Multi-Algorithm Architecture

10 <param name="images path" value="$(find lane detector)/data/first set" />
11 <remap from="lane detector/processed" to="/top left camera/lane detector/

processed" />
12 <remap from="lane detector/lane" to="/top left camera/lane detector/lane"

/>
13 <remap from="lane detector/result" to="/top left camera/lane detector/

result"/>
14 <param name="˜cols resize" type= "int" value="964"/>
15 <param name="˜rows resize" type= "int" value="720"/>
16 </node>
17

18 <node pkg="lane detector" type="lane detector" name="lane detector node"
output="screen" ns="top right camera" if="$(arg top right camera)">

19 <remap from="camera info" to="/top right camera/camera info" />
20 <remap from="/image" to="/top right camera/image rect color" />
21 <param name="images from folder" value="$(arg load images from folder)" /

>
22 <param name="images path" value="$(find lane detector)/data/first set" />
23 <remap from="lane detector/processed" to="/top right camera/lane detector

/processed" />
24 <remap from="lane detector/lane" to="/top right camera/lane detector/lane

" />
25 <remap from="lane detector/result" to="/top right camera/lane detector/

result"/>
26 <param name="˜cols resize" type= "int" value="964"/>
27 <param name="˜rows resize" type= "int" value="720"/>
28 </node>
29 </launch>

The next launch file (Listing 5.4) — advanced lane detection.launch — is asso-
ciated to the ROS package that was created to perform as a second algorithm. It is
a simple sample of a launch file because it only includes the node launching and two
parameters, which are related to the resizing of the original image:

• cols resize — represents the number of columns of the image that is processed
by each algorithm;

• rows resize — represents the number of rows of the image that is processed by
each algorithm.

Listing 5.4: advanced lane detection.launch file whose function is to launch the
advanced algorithm node.

1 <launch>
2 <arg name="top left camera" default="true"/>
3 <arg name="top right camera" default="true"/>
4

5 <!−− Node to top left camera −−>
6 <node pkg="advanced lane detection" type="main" name="

advanced algorithm node" output="screen" ns="top left camera" if="$(arg
top left camera)">

7 <remap from="/camera/image rect color" to="/top left camera/
image rect color" />

8 <remap from="/advanced algorithm/polygon" to="/top left camera/
advanced algorithm/polygon"/>

9 <remap from="/advanced algorithm/finalResult" to="/top left camera/
advanced algorithm/finalResult"/>

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 51

10 <param name="˜cols resize" type= "int" value="964"/>
11 <param name="˜rows resize" type= "int" value="720"/>
12 </node>
13

14 <!−− Node to top righ camera −−>
15 <node pkg="advanced lane detection" type="main" name="

advanced algorithm node" output="screen" ns="top right camera" if="$(arg
top right camera)">

16 <remap from="/camera/image rect color" to="/top right camera/
image rect color" />

17 <remap from="/advanced algorithm/polygon" to="/top right camera/
advanced algorithm/polygon"/>

18 <remap from="/advanced algorithm/finalResult" to="/top right camera/
advanced algorithm/finalResult"/>

19 <param name="˜cols resize" type= "int" value="964"/>
20 <param name="˜rows resize" type= "int" value="720"/>
21 </node>
22 </launch>

If the processor nodes return the lane line localisation in the image, then some nodes
draw the polygon based on that. To this, the file presented on the Listing 5.5 launches
the nodes responsible for this. This launch file, analogously to the previous one, includes
some parameters related to the resize of the image and the respective remaps.

Listing 5.5: draw poly.launch file (example of the launch file for the launch of just one
node ”draw poly node” that will build the polygons based on the lane detector node

outputs).

1 <launch>
2 <arg name="top left camera" default="true"/>
3 <arg name="top right camera" default="true"/>
4 <!−− Draw poly node to the first processor node that return lnes :

top left camera −−>
5 <node pkg="data treatment" name="draw poly node" type="subscriber" output

="screen" ns="top left camera" if="$(arg top left camera)">
6 <remap from="lane detector/lane" to="/top left camera/lane detector/

lane"/>
7 <remap from="draw poly/poly alg1" to="/top left camera/draw poly/

poly alg1"/>
8 <remap from="camera/image raw" to="/top left camera/image raw"/>
9 <param name="˜cols resize" type= "int" value="964"/>

10 <param name="˜rows resize" type= "int" value="720"/>
11 </node>
12

13 <!−− Draw poly node to the first processor node that return lnes :
top right camera −−>

14 <node pkg="data treatment" name="draw poly node" type="subscriber" output
="screen" ns="top right camera" if="$(arg top right camera)">

15 <remap from="lane detector/lane" to="/top right camera/lane detector/
lane" />

16 <remap from="draw poly/poly alg1" to="/top right camera/draw poly/
poly alg1"/>

17 <remap from="camera/image raw" to="/top right camera/image raw"/>
18 <param name="˜cols resize" type= "int" value="964"/>
19 <param name="˜rows resize" type= "int" value="720"/>
20 </node>
21 </launch>

Tiago Almeida Master Degree

52 5.Multi-Camera and Multi-Algorithm Architecture

Regarding the core of the architecture, there is a file (Listing 5.6) that launches the
main node calc prob map node, which, similarly to the ones presented before, incorpo-
rates two image parameters related to the original image re-scale (cols img small and
rows image small). It also has more three different parameters:

• topics polygons — includes a String of the topics that are subscribed by the
calc prob map node. It allows to run any number of algorithms, that process the
original image;

• cols img big — represents the number of columns of the image that is captured
by the camera (chosen in launch file of the used sensors), whose function is to get
the scale factor of the original image reduction;

• kernel size — is the size of the kernel used to filter the intersection zone of the
polygons to build the confidence map of the lane.

Moreover, this file launches the node that combines the confidence maps that come
from multiple cameras (combine multi cams node). This node has an important para-
meter — topics maps — which represents the topics that will be subscribed by the node
responsible for combining the confidence maps. Finally, this file also launches a node
named ”dynamicParameters”, which through the Dynamic Reconfigure ROS module
enables to change the kernel size parameter in real-time.

Listing 5.6: data treatment.launch file that launches all the nodes which are involved
in building the final confidence map.

1 <launch>
2 <arg name="top left camera" default="true"/>
3 <arg name="top right camera" default="true"/>
4 <arg name="multi cameras combination" doc="enables the combination of two

confidence maps from multi−cameras"/>
5

6

7 <!−− Node that calculate and launches the confidence map −−>
8 <!−− Top left camera −−>
9 <arg name = "topics left" doc="topics that that represents the polygons

to the left camera"/>
10 <node pkg="data treatment" name="calc prob map node" type="junction data"

output="screen" ns="top left camera" if="$(arg top left camera)">
11 <remap from="calc prob map/image map" to="/top left camera/

calc prob map/image map"/>
12 <remap from="/camera/camera info" to="/top left camera/camera info" /

>
13 <param name="˜topics polygons" type="string" value="$(arg topics left

)"/>
14 <param name="˜cols img big" type= "double" value="964"/>
15 <param name="˜cols img small" type= "double" value="964"/>
16 <param name="˜rows img small" type= "double" value="720"/>
17 </node>
18

19 <!−− Top right camera −−>
20 <arg name = "topics right" doc="topics that represents the polygons to

the right camera"/>
21 <node pkg="data treatment" name="calc prob map node" type="junction data"

output="screen" ns="top right camera" if="$(arg top right camera)">

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 53

22 <remap from="calc prob map/image map" to="/top right camera/
calc prob map/image map"/>

23 <remap from="/camera/camera info" to="/top right camera/camera info"
/>

24 <param name="˜topics polygons" type="string" value="$(arg
topics right)"/>

25 <param name="˜cols img big" type= "double" value="964"/>
26 <param name="˜cols img small" type= "double" value="964"/>
27 <param name="˜rows img small" type= "double" value="720"/>
28 </node>
29

30 <!−− Launching the combination of two cameras node−−>
31 <arg name = "topics maps" doc="topics that represents the maps of each

camera"/>
32 <node pkg="data treatment" name="combine multi cams node" type="

two cameras combination" output="screen" if="$(arg
multi cameras combination)">

33 <param name="˜topics maps" type="string" value="$(arg topics maps)"/>
34 <param name="˜cols img small" type= "double" value="964"/>
35 <param name="˜rows img small" type= "double" value="720"/>
36 </node>
37

38 <node pkg="data treatment" name="dynamicParameters" type="
dynamicParameters" output="screen"/>

39 </launch>

5.4.3 Launch Files Summary

To summarise, the architecture is prepared to launch one camera and one or two pro-
cessor algorithms as well as two cameras and one or two processor algorithms through
argument remaps in the architecture launching. For example, in the case of the launching
of the advanced algorithm node and only the image captured by the top left camera

is used in the processing stage, then the launching node would be provided by the fol-
lowing command:

• roslaunch data treatment road visual perception.launch top right came-

ra:=false with-nsteel algorithm:=false topics left:="/top left camera-

/advanced algorithm/polygon" multi cameras combination:=false

The default values of the arguments of the architecture give rise to the use of
two cameras and all algorithms (that is why, in the previous example, the argument
multi cameras combination is false). In order to clarify the possibilities of launching
nodes of the developed architecture, Table 5.2 is presented.

Tiago Almeida Master Degree

54 5.Multi-Camera and Multi-Algorithm Architecture

Table 5.2: Architecture arguments and corresponding values

Arguments Description Value

with-advanced algorithm
If the processor node

relative to the advanced algori-
thm is launched.

true/false

with-nsteel algorithm
If the processor node

relative to the Nsteel’s
algorithm is launched.

true/false

topics left

Topics that are going to be
subscribed by the node that

builds the map
(left camera as source).

String topics left

topics right

Topics that are going to be
subscribed by the node that

builds the map
(right camera as source).

String topics right

top left camera
Whether the image captured

by the left camera is used or not.
true/false

top right camera
Whether the image captured

by the right camera is used or not.
true/false

multi cameras combination
Whether the combination of the maps

that come from different
sources is made or not.

true/false

topics maps

Topics that are going to be
subscribed by the node

that builds the final combined
map.

String topics map

Where ”String topics left” (it implies that the top left camera argument is equal
to true) can be given by:

• "/top left camera/draw poly/poly alg1,/top left camera/draw poly/poly-

alg2,/top left camera/advanced algorithm/polygon" (default value);

• "/top left camera/draw poly/poly alg1,/top left camera/draw poly/poly-

alg2", if only the with-nsteel algorithm argument is true;

• "/top left camera/advanced algorithm/polygon", if only the with-advanced-
algorithm variable is true;

And ”String topics right” (it implies that the top right camera argument is equal
to true) can be given by:

• "/top right camera/draw poly/poly alg1,/top right camera/draw poly/po-

ly alg2,/top right camera/advanced algorithm/polygon" (default value);

• "/top right camera/draw poly/poly alg1,/top right camera/draw poly/po-

ly alg2", if only the with-nsteel algorithm argument is true;

Tiago Almeida Master Degree

5.Multi-Camera and Multi-Algorithm Architecture 55

• "/top right camera/advanced algorithm/polygon", if only the with-advanced-
algorithm variable is true;

And ”String topics maps” (it implies that the arguments: multi cameras combina-

tion, top right camera and top left camera are equal to true) can be given by:

• "/top left camera/calc prob map/image map,/top right camera/calc prob -

map/image map" (default value and the only one possible since there are only two
cameras prepared in the ATLASCAR2 setup);

Tiago Almeida Master Degree

.

Intentionally blank page.

Chapter 6

Experiments and Results

This chapter presents the experiments made to prove the scalability and reliability of
the developed architecture. Therefore, the results obtained using one and two cameras
combined with the use of one or two algorithms are shown.

First, the algorithms performance are discussed, as well as the difficulties/problems
found in terms of implementation and parametrisation. This discussion/description is
only present in the section related to the conjugation of one camera with each of the
algorithms (section 6.1) and in the section that describes the results obtained by applying
the Deep Learning techniques (section 6.5).

Apart from the performance of the algorithm, the usefulness, scalability and reliabi-
lity of the proposed architecture are demonstrated by carrying out several experiments.
They range from the simple ”one camera–one algorithm” up to ”multiple cameras–
multiple algorithms”. The experiments do not assess the architecture directly, but show
how the architecture can be used to test the performance of the algorithms and their
combination. Therefore, performance indicators were created to allow the evaluation
and tuning of the algorithms depending on some variable parameter.

The proposed metrics are based on the areas of the confidence maps described in
section 5.3.2, and the variable parameter is the size of the smoothing filter used (variation
from 3× 3 to 51× 51). The first indicator (I1) is defined by the Eq. 6.1:

I1 =
WCA

AT
(6.1)

Where:

• WCA is the ”weighted confidence area” of the confidence map. Mathematically,
it corresponds to the sum of the value of all pixels that belong to the confidence
map (M). M is the normalised matrix of the confidence map image (this means
that the range values of the pixels are from 0 to 1). Therefore, WCA is calculated
through the Eq. 6.2, where nc and nr are the positions along the columns and
rows of the image matrix of each pixel, respectively.

WCA =
∑
nr

∑
nc

(M(nr, nc)) (6.2)

57

58 6.Experiments and Results

• AT is the total area of the confidence map (Eq. 6.3) and the variables nc and nr
have the same meaning as the one presented in the Eq. 6.2.

AT =
∑
nr

∑
nc

dM(nr, nc)e =
∑
nr

∑
nc

ceil (M(r, c)) (6.3)

The second performance index (I2) is given by the Eq. 6.4:

I2 =
AC

AT
(6.4)

Where:

• AC is the common area. It is related to the area of the confidence map where all
pixels have a 100 % confidence in belonging to the driveable zone (white pixels).
Consequently, AC is given by the Eq. 6.5 (the variables nc and nr have the same
meaning as the one presented in the Eq. 6.2):

AC =
∑
nr

∑
nc

bM(nr, nc)c =
∑
nr

∑
nc

floor (M(nr, nc)) (6.5)

• AT is the total area of the confidence map (in pixels) — as demonstrated in Eq.
6.3.

All experiments evaluated in terms of the architecture results, were analysed in the
same road section (Fig. 6.1), to the comparison between each case to be reliable.

Fig. 6.1: The road section is marked in red in this image. It was the environment where
the experiments presented in the following sections were made. This road section has
generated 360 frames to be processed.

Tiago Almeida Master Degree

6.Experiments and Results 59

In summary, there will be two types of discussions in this chapter: the first is related
to the quality of the algorithms implemented and the second is related to the combination
of algorithms through the developed architecture.

6.1 One Camera and One Algorithm

This experiment concerns the usage of a single camera with one processor algorithm.
The results obtained by the processor lane detector node are presented, following the
conclusions about the advanced algorithm node. The first part of each sub-section
consists of a discussion about the general behaviour of the algorithm, and the next part
is related to the results of the architecture. Here, the results obtained for each of the
indicators are shown.

6.1.1 Active Processor Node: lane detector node

Algorithm Behaviour

The first experiment consists of the usage of the processor node ”lane detector node”.
Regarding the practical results of the algorithm, it demonstrated interesting results for
the section of road assessed (Fig. 6.2).

Fig. 6.2: One of the results obtained by using the lane detector node.

However, it is an algorithm that uses a large number of parameters, which made it
difficult to parameterise. Moreover, it is important to characterise it as not very generic
in terms of road types, since it takes as parameters the geometry of the road lane. Never-
theless, at the level of road lines detection, after the algorithm has been parameterised, it
demonstrated consistent results. Even with the appearance of roadblocks and walkways,
the algorithm did not show negative results (Figs. 6.3 and 6.4).

Tiago Almeida Master Degree

60 6.Experiments and Results

Fig. 6.3: This image illustrates the case of a right-hand side occlusion. This occlusion
was not a limitation for the algorithm to detect the road lane lines.

Fig. 6.4: This image represents the case of a crosswalk, which was also a situation that
the algorithm could handle well.

One of the negative points demonstrated by this algorithm and that affected the
processing time of the architecture was the non-detection of the road lines when the

Tiago Almeida Master Degree

6.Experiments and Results 61

image sizes were less than 964 × 720. This could possibly be due to a decrease in
the width of the road line. Another repercussion of the large processing time is that it
makes the algorithm’s result useless as it takes longer to process than the camera’s image
capture time. Consequently, the condition of maximum processing time (mentioned in
section 5.3.2) was removed when this algorithm was analysed.

Architecture Results

This experiment consists of using the lane detector node as the processor of the images
captured from a single camera.

Two examples of the road lines detection and the respective confidence map are
shown in Fig. 6.5. Each example corresponds to the use of a filter with the minimum
and maximum size of the evaluated value range.

Fig. 6.5: The image in the upper right corner represents the use of a filter with a size
of 3 × 3 for the construction of the confidence map and the image in the right lower
corner illustrates the use of a filter of 51 × 51. The left images represent the road lane
lines detection for each case. The difference between the filter sizes is found in the blur
around the area represented with white pixels on the confidence maps.

The numeric results are presented in graphs. The first result presented is related to
the variation of the areas (Fig. 6.6) used for the calculation of each indicator. Therefore,

Tiago Almeida Master Degree

62 6.Experiments and Results

the following parameters are calculated for all the frames that compose the section of
road evaluated:

• WCA - the ”weighted confidence area” of each frame is calculated and at the end
of each road section the average of this parameter in all frames — WCAavg — is
calculated;

• Ac - the common area of the confidence map is also calculated to each frame.
Analogously to the WCA parameter, the average of each road section —Ac,avg

—is used to compare each obtained result;

• At - the total area of the confidence map is treated similarly to the parameters
mentioned above.

0 10 20 30 40 50

2

4

6

8

10

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

WCAavg ”Ac,avg”

”At,avg”

Fig. 6.6: Variation of the percentage areas (relative to the total image area) of WCAavg,
Ac,avg and At,avg parameters, increasing the filter size — for the experiment with one
camera and the lane detector node.

The graph presented in Fig. 6.6 shows an increase in the total area of the confi-
dence map (At,avg) as the filter size increases. This is acceptable since black pixels on
confidence maps, built through small filters would change to lighter pixels if the filter
size increases. The opposite happens for the common area (Ac,avg) since white pixels
transform into darker pixels as the filter size increases. Consequently, the weighted con-
fidence area (WCAavg) remains almost invariable. This is because there is an almost
null balance between pixels that are white and become darker (which causes a decrease
in this parameter) and those that are black and become lighter (which causes an increase
in this parameter), as the filter size increases.

The following study (Fig. 6.7) is related to the variation of the indicators presented
at the beginning of this chapter, increasing the filter size.

Tiago Almeida Master Degree

6.Experiments and Results 63

0 10 20 30 40 50
0

20

40

60

80

100

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

”I1,avg” ”I2,avg”

Fig. 6.7: Variation of the average of the indicators increasing the filter size — for the
experiment with one camera and the lane detector node.

In Fig. 6.7 both indicators decrease as the filter size increases but with different rates
of variation (I2,avg varies faster in relation to I1,avg). This is due to the fact that the first
indicator takes into account the weighted confidence area (WCAavg), which is invariant,
and the second one is calculated based on the common area (Ac,avg) that decreases as
the filter size increases.

Finally, the values of the standard deviation of each indicator for each filter size are
assessed (Fig. 6.8) in order to validate the results presented before.

0 10 20 30 40 50
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

kernel size variable

S
ta

n
d

ar
d

d
ev

ia
ti

o
n

I1.avg I2.avg

Fig. 6.8: Variation of the standard deviations of each indicator as the filter size increases
— for the experiment with one camera and the lane detector node.

Tiago Almeida Master Degree

64 6.Experiments and Results

The standard deviation values calculated for both indicators are quite low. This
leads to the conclusion that there was enormous proximity between the values obtained
for each indicator and the results obtained for this case study are reliable.

6.1.2 Active Processor Node: advanced algorithm node

Algorithm Behaviour

The second approach concerns the use of the processor ”advanced algorithm node”.
In terms of practical conclusion, this algorithm achieved regular results, since it demon-
strated a solid performance when the real scenario was a straight road (Fig. 6.9).

Fig. 6.9: advanced algorithm node result when facing a straight road.

Moreover, obstacles that occlude the lane lines did not make a difference (Fig. 6.10),
which is also a positive point. This algorithm, contrary to the other algorithm used,
presents qualitatively average results when the image size is 320 × 240. Consequently,
the increase in image size causes an increase in image resolution. This increases the
robustness and accuracy of the results obtained by this algorithm.

Tiago Almeida Master Degree

6.Experiments and Results 65

Fig. 6.10: advanced algorithm node behaviour when facing an occlusion on the right
side of the road.

On the other hand, this algorithm presents a particularity that implies to have several
precautions when using it — the two lane lines have to intersect the bottom of the image
since this algorithm starts to search the white pixels (start of the road lane lines) in the
last row of the image (as explained in section 5.2). Thus, the results obtained in circular
trajectories such as roundabouts are poor because there is no control over the lane lines
in the image (Fig. 6.11).

Fig. 6.11: Poor result obtained from the algorithm processing in a particular case —
roundabout.

Tiago Almeida Master Degree

66 6.Experiments and Results

In conclusion, this algorithm is considered a valid algorithm and more optimised than
the one presented in section 6.1.1. However, it is not prepared when facing all situa-
tions like curved trajectories, so it cannot be considered as an algorithm with excellent
performance. The architecture, which is the most important part of the work and the
one that has to be evaluated, has been demonstrating a reliable performance in terms of
computation. Also, the alteration of the algorithm to be used is made with no problems.

Architecture Results

The size of the filter that promotes the construction of the confidence map is expected to
influence not only the effective dimension of the map but also the area that is considered
more likely to represent the real roadway. The confidence maps obtained for the two
extremes of the filter dimension as well as the algorithm road lane lines detection, are
represented in Fig. 6.12.

Fig. 6.12: The two images above represent the case of using a filter size of 3 × 3 for
the construction of the confidence map. The left image represents the area detected by
the algorithm as the road and the right image illustrates the confidence map built from
the left image. The images represented below the previous ones have a similar meaning
to the one mentioned in the preceding explanation. However, the size of the filter used
is 51 × 51. The difference between the filter sizes is found in the blur around the area
represented with white pixels on the confidence maps.

The first numerical result presented in Fig. 6.13 is related to the areas used for
the calculation of the two indicators explained at the beginning of this chapter. It is

Tiago Almeida Master Degree

6.Experiments and Results 67

expected that the behaviour of these parameters is very similar to the one presented in
the previous case (the use of one camera and the lane detector node as a processor
node). It is also expected that in this case, the results obtained would be less dispersed
since the polygon detected by the algorithm does not vary as much as in the case of the
other algorithm presented.

0 10 20 30 40 50

10

20

30

40

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

WCAavg ”Ac,avg”

”At,avg”

Fig. 6.13: Variation of the percentage areas (relative to the total image area) of WCAavg,
Ac,avg and At parameters, increasing the filter size — for the experiment with one camera
and the advanced algorithm node.

Through the analysis of Fig. 6.13 the following conclusions can be drawn:

• The WCAavg is not related to the size of the filter applied for the construction
of the confidence map. This is because although the number of white pixels is
decreasing, the number of dark pixels is directly proportional to the filter size.
Hence, there is a null balance in the variation of the sum of the value of the pixels
of the confidence map;

• The Ac,med, as expected, decreases as the filter size increases. This is caused by
the positive variation of the filter size, which implies that it is more unlikely for
all pixels in the neighbourhood of the pixel where the filter is applied, to be part
of the navigable zone returned by the algorithm;

• The At,med is directly proportional to the filter, which would be expected, since a
group of pixels that were once black, turn to gray because in its neighbourhood is
more likely to have white pixels.

The parameters evaluated for this case compared to those presented in section 6.1.1
are numerically higher, since the detected polygon is larger in the case of the processor
advanced algorithm node.

Consequently, the average indicators (I1,avg and I2,avg) are calculated for each filter
class evaluated (each class consists of a different filter size). The variation that they
suffer due to the increase in filter size is plotted in Fig. 6.14.

Tiago Almeida Master Degree

68 6.Experiments and Results

0 10 20 30 40 50
0

20

40

60

80

100

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

”I1,avg” ”I2,avg”

Fig. 6.14: Variation of the indicators as the filter size increases — for the experiment
with one camera and the advanced algorithm node.

Through the analysis of the graph present in Fig. 6.14, it is possible to infer that
both indicators are inversely proportional to the filter size. The I2,avg, relative to the
common area ratio of the confidence map decreases faster since, besides the common area
decreases, the total area also decreases. This not occurs to the I1,avg, as the WCAavg

remains constant. Since the behaviour of the indicators is expected, the architecture
used is considered successful in the case of a single camera and one algorithm.

In order to prove that the evaluated samples are homogeneous in terms of dispersion,
the standard deviation for each series was also calculated. Its variation throughout each
sample is shown in the graph in Fig. 6.15.

0 10 20 30 40 50
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

kernel size variable

S
ta

n
d

ar
d

d
ev

ia
ti

o
n

”I1,avg” ”I2,avg”

Fig. 6.15: Variation of the standard deviation as the filter size increases — for the
experiment with one camera and the advanced algorithm node.

Tiago Almeida Master Degree

6.Experiments and Results 69

As can be observed in Fig. 6.15, the standard deviation values obtained are very
low, which allows concluding that the samples studied are reliable and homogeneous.

6.2 One Camera and Two Algorithms

This experiment consists of combining the outputs of all available processor nodes. These
process an image from a single camera resulting in three distinct results (Fig. 6.16).

Fig. 6.16: Results obtained from the processor nodes for the case of the use of one
camera and two algorithms. The left image represents the result obtained from the
advanced algorithm node that returns a polygon. The centre image is related to the
lane detector node and the right image corresponds to the result obtained by the
processor node lane detector2 node (clone of the previous mentioned).

The confidence maps, in this case, have an interesting aspect since the polygon that
is the output of one of the algorithms is larger than the polygons that are created by the
draw poly node. Consecutively, the area that is considered as the driveable zone has a
smaller area (Fig. 6.17) compared to the total area of the confidence map.

Fig. 6.17: These two images represent the confidence maps created through a dimension
of the filter of 3× 3 (left image) and 51× 51 (right image). It is possible to observe the
blur more prominent around the zone that is considered as the driveable zone (white
pixels of each image) in the right image.

Tiago Almeida Master Degree

70 6.Experiments and Results

Another important characteristic of the combination of outputs of the architecture
processor nodes that was possible to verify in this experiment is the fact that the area
related to less confidence of the confidence map is darker (means less confidence) with the
increase of the filter size (detail observed in the Fig. 6.17). This is because as the filter
size increases, the lower confidence of the intersection zone (filtered area of intersection
of all the polygons provided by each algorithm) decreases. Mathematically, the lowest
confidence of the zone of the intersection of those polygons is given by the Eq. 6.6:

LC =
ceil(side(fs)2)

fs
(6.6)

Where LC is the lowest numerical value for the pixels confidence of the intersection
zone, fs is the filter size and (side(fs)) is the filter width (e.g. if the filter size is 3 × 3
then the (side(fs)) is equal to 3 or if the filter size is 25 × 25 then the (side(fs)) is
equal to 25). Therefore as the filter size increases, the numerator increases more than
the denominator of the equation that describes the LC.

Regarding the evaluation of the architecture, Fig. 6.18 shows the variation of the
constituents of each indicator. It was expected that the architecture would behave
differently as it has behaved until now in each of the two previous experiments. That is
because of the different relationships between the areas compared to those calculated in
the sections 6.1.1 and 6.1.2.

0 10 20 30 40 50
0

5

10

15

20

25

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

WCAavg ”Ac,avg”

”At,avg”

Fig. 6.18: Variation of the percentage areas (relative to the total image area) of WCAavg,
Ac,avg and At parameters, increasing the filter size — for the experiment with one camera
and the two processor nodes.

As previously mentioned, this case study is an interesting case in which the confidence
map is mostly constituted by low confidence pixels (dark pixels), since the polygon
formed by the /advanced algorithm node is much larger than the polygon that results
from the /lane detector node processing. Consequently, there is just a slight decrease
of WCAavg. On the other hand, an invariance in At,avg is observed, because the higher
confidence area is always within the lower confidence zone so what happened for the other
experiments (black pixels transformed into lighter pixels), now continues to happen, but

Tiago Almeida Master Degree

6.Experiments and Results 71

these pixels are already within the total area (AT) of the confidence map. Finally,
the Ac,avg parameter, as expected, has a behaviour demonstrated until now. So, this
parameter decreases with the increase of the filter.

The following analysis concerns the variation of the indicators as the filter size in-
creases (Fig. 6.19).

0 10 20 30 40 50
0

20

40

60

80

100

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

”I1,avg” ”I2,avg”

Fig. 6.19: Variation of the indicators as the filter size increases — for the experiment
with one camera and the two processor nodes.

The Fig. 6.19 shows that the indicators are inversely proportional to the size of
the filter. Based on what was explained in the analysis of the variation of the areas —
WCAavg, Ac,avg and At,avg — the indicators vary due to different reasons. In the case of
I1,avg, it decreases with less intensity compared to previous cases, because of the slight
decrease of the parameter WCAavg. On the other hand, the indicator I2,avg decreases
due to the natural decrease of Ac,avg.

Finally, the variation of the standard deviation related to each indicator is shown
in Fig. 6.20. Since the variation of the areas was somewhat inconsistent (sometimes
showing positive and negative variations for At,avg and WCAavg), it is expected that
the value of the standard deviation for I1,avg is greater than the standard deviation of
I2,avg.

Tiago Almeida Master Degree

72 6.Experiments and Results

0 10 20 30 40 50
0

0.1

0.2

0.3

kernel size variable

S
ta

n
d

a
rd

d
ev

ia
ti

on

”I1,avg” ”I2,avg”

Fig. 6.20: Variation of the standard deviation related to each indicator, increasing the
filter size — for the experiment with one camera and the two processor nodes.

By observing the graph presented in Fig. 6.20, what was expected was confirmed.
This proves the moderate dispersion of results obtained in this experiment. This can be
substantiated by the fact that there is an inconstant variation in the area of the polygon
coming from the lane detector node, due to the unpredictable tracking of the lines.
This technique implies that the size of the detected lines is slightly different for the same
frame in two launchings of the architecture. The variation of the area of this polygon
can affect the indicators that are calculated in each frame of the analysis.

6.3 Two Cameras and One Algorithm

As explained in section 5.3.2, there are two options to launch the architecture in multi-
camera mode: with or without a combination of the maps coming from each camera.
If the two maps are not combined, the results would be the same as those presented in
the previous sections. Therefore, the results presented in this section are based on the
combination of the maps coming from each camera.

6.3.1 Active Processor Node: lane detector node

The study presented in this sub-section concerns the usage of the lane detector node,
which processes images that are captured from two different sources (cameras) — Figs.
6.21 and 6.23. Each algorithm detection implies the creation of a confidence map. In the
final stage, the two maps are combined after a perspective transformation, as described
in the sections 5.3.2 and 5.3.3.

Tiago Almeida Master Degree

6.Experiments and Results 73

Fig. 6.21: The two images above illustrate the output of the processor node
lane detector node for each camera. The images below represent the confidence map
that is built through these road lane lines detection, where the filter applied has a size
of 3× 3.

After each confidence map is calculated, a final map that combines the previous two
is constructed (Fig. 6.22).

Fig. 6.22: The final confidence map after the weighted sum of the two maps built from
each camera.

Tiago Almeida Master Degree

74 6.Experiments and Results

Fig. 6.23: The two images above illustrate the output of the processor node
lane detector node for each camera. The images below represent the confidence map
that is built through these road lane lines detection, where the filter applied has a size
of 51× 51.

Finally, the result of the final confidence map is illustrated in the Fig. 6.24.

Fig. 6.24: The final confidence map after the weighted sum of the two maps built from
each camera.

Tiago Almeida Master Degree

6.Experiments and Results 75

According to the case study presented in this section, the geometry of the map
(rectangular due to the perspective correction that is made) is different than the ones
presented so far. This can lead to a smoother application of the filter on the boundaries
of the map. Therefore numerical results for the variation of the WCAavg, Ac,avg and
At,avg are plotted in the Fig. 6.25.

0 10 20 30 40 50
0

20

40

60

80

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

WCAavg ”Ac,avg”

”At,avg”

Fig. 6.25: Variation of the percentage areas (relative to the total image area) of WCAavg,
Ac,avg and At parameters, increasing the filter size — for the experiment with two
cameras and the lane detector node.

As can be observed in Fig. 6.25, the variation of all parameters is the expected.
Some results affect the linearity of the variation of each parameter. These may be due,
once again, to the nature of the algorithm being studied. This nature promotes unpre-
dictability in the size of the polygons that generate the confidence map as mentioned
before, which has repercussions on the values obtained for each area and, consecutively,
for each indicator analysed (Fig. 6.26).

Tiago Almeida Master Degree

76 6.Experiments and Results

0 10 20 30 40 50
0

20

40

60

80

100

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

”I1,avg” ”I2,avg”

Fig. 6.26: Variation of the indicators as the filter size increases — for the experiment
with two cameras and the lane detector node.

These results show the negative variation of the indicators as the filter size increases.
Thus, the results obtained are considered valid. The next analysis (Fig. 6.27) concerns
the variation of the standard deviation values increasing the filter size. Here, it is
expected that these results would be slightly higher than usual (similar to what happened
in the combination of multiple algorithms with one camera) since some results disrespect
the linearity of the variation of the indicators.

0 10 20 30 40 50
0

0.1

0.2

0.3

kernel size variable

S
ta

n
d

ar
d

d
ev

ia
ti

o
n

”I1,avg” ”I2,avg”

Fig. 6.27: Variation of the standard deviation values related to each indicator as the filter
size increases — for the experiment with two cameras and the lane detector node.

By the observation of the graph represented in Fig. 6.8, some values for the standard
deviation are close to 0.1, which shows a small dispersion in the results obtained. This

Tiago Almeida Master Degree

6.Experiments and Results 77

can be due to the same reason as presented before to the parameters At,avg, Ac,avg and
At,avg.

6.3.2 Active Processor Node: advanced algorithm node

This experiment is related to the usage of two cameras as sources of images that are
processed by the advanced algorithm node. Similarly to the previous case study (sec-
tion 6.3.1), the two confidence maps are merged after a warp transformation applied in
the polygons. All process is illustrated in the Figs. 6.28 and 6.29.

Fig. 6.28: The two images above illustrate the detection of the road area from different
perspectives (two cameras with different localisation). The images, below the previous
ones, correspond to the confidence map of each camera after a filtering procedure where
the filter size is 3 × 3. The last two images are also confidence maps where the size of
the filter applied is 51× 51.

Tiago Almeida Master Degree

78 6.Experiments and Results

Therefore, a confidence map is built by merging each confidence map of each camera
resulting in Fig. 6.29.

Fig. 6.29: The image represented on the left illustrates the case of a merged map, where
the filter applied has a size of 3× 3. The right image corresponds to the use of a 51× 51
filter.

The confidence map, in this case, is considered more rectangular since the map is
from a top-view perspective. Thus, it implies that the blur created by the filtering
stage of the map construction is smoother than in the cases where the confidence map
corresponds to the camera perspective. Consecutively, the parameters — At,avg and
Ac,avg — will vary with a lower rate of change (as occurred in the previous case study).
Hence, the first result (Fig. 6.30), shows the variation of the parameters related to the
areas as the filter size increases.

0 10 20 30 40 50
20

30

40

50

60

70

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

WCAavg ”Ac,avg”

”At,avg”

Fig. 6.30: Variation of the percentage areas (relative to the total image area) of WCAavg,
Ac,avg and At parameters, increasing the filter size — for the experiment with two
cameras and the advanced algorithm node.

Through the analysis of the graph presented in Fig. 6.30, it is possible to confirm that
the At,avg and Ac,avg parameters have the expected behaviour. The WCAavg parameter

Tiago Almeida Master Degree

6.Experiments and Results 79

is completely constant, which demonstrates the almost null balance between the white
pixels that become darker pixels and black pixels that become lighter pixels as verified
in the previous sections. The next analysis (Fig. 6.31) consists of the variation of the
average indicators with the increase of the filter size.

0 10 20 30 40 50
60

70

80

90

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

”I1,avg” ”I2,avg”

Fig. 6.31: Variation of the indicators as the filter size increases — for the experiment
with two cameras and the advanced algorithm node.

As expected, the indicators suffer a negative variation when the filter size increases.
In addition, it is possible to observe that the I2,avg decreases with a higher rate than the
I1,avg since beyond the Ac,avg decreases, the At,avg increases. Finally, the results for the
standard deviations related to each indicator are shown in Fig. 6.32.

0 10 20 30 40 50
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

kernel size variable

S
ta

n
d

ar
d

d
ev

ia
ti

o
n

”I1,avg” ”I2,avg”

Fig. 6.32: Variation of the standard deviation as the filter size increases — for the
experiment with two cameras and the advanced algorithm node.

Tiago Almeida Master Degree

80 6.Experiments and Results

As represented in Fig. 6.30, the standard deviations are low, so the sample of the indi-
cators analysed, in this case, is homogeneous, which validates the discussion throughout
this case study.

6.4 Two Cameras and Two Algorithms

The last study to be analysed is related to the use of two cameras and two algorithms
(Fig. 6.34).

Fig. 6.33: The first two images represent the results obtained by the lane detector node

to each camera (the localisation of the images corresponds to the respective camera
perspective). The two images, below the previous ones, correspond to the output of the
advanced algorithm node. Finally, the last two images represent the map after the
respective perspective correction.

Tiago Almeida Master Degree

6.Experiments and Results 81

This experiment represents the maximum exponent of the architecture developed
in this work since it incorporates the maximum functionalities available in the archi-
tecture - multiple algorithms and multiple cameras. This mode of operation of the
architecture promotes the flow of large amounts of information which can lead to a
greater overall processing time of the architecture. Also, the final combination may be
affected by the amount of data that circulates between the nodes, since a single node —
calc prob map node — has to process the polygons from different sources and multiple
algorithms.

Once the maps of each camera are properly constructed (as has already been demon-
strated for the two previous case studies), they are combined in such a way that a single
confidence map is constructed (Fig. 6.34).

Fig. 6.34: Final confidence obtained by applying a filter whose size is 3× 3.

Regarding the results of the architecture, following what happened for the case of
using one camera and two algorithms (section 6.2), it is expected that the results obtained
by this mode of operation are slightly more heterogeneous (larger standard deviations
than those that have been presented for the use of one camera). However, it is expected
that the variation of the indicators will be broadly similar to what has been demonstrated
so far (decrease of both indicators as the filter size increases). The first result to be
discussed is the percentage variation of the areas that constitute the two indicators
analysed with the increase in filter size (Fig. 6.35).

Tiago Almeida Master Degree

82 6.Experiments and Results

0 10 20 30 40 50
0

20

40

60

80

100

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

WCAavg ”Ac,avg”

”At,avg”

Fig. 6.35: Variation of the percentage areas (relative to the total image area) of WCAavg,
Ac,avg and At parameters, increasing the filter size — for the experiment of two cameras
and two processor nodes.

The graph shows a slight increase in At,avg and decrease in Ac,avg. This is what
should happen under normal architectural conditions, as shown so far. However, similar
to the previous case study, there are some unexpected decreases in the variation of At,avg.
This may be due, as already explained, to a large amount of data that the computer
is processing at the same time. Also, the problems inherent to the algorithm that
incorporates the lane detector node — unpredictable variation of the area of created
polygons from the outputs of this algorithm). The following results are those concerning
the variation of the indicators as the filter size increases (Fig. 6.36).

0 10 20 30 40 50
20

30

40

50

60

kernel size variable

P
er

ce
n
ta

ge
va

lu
e

(%
)

”I1,avg” ”I2,avg”

Fig. 6.36: Variation of the indicators as the filter size increases — for the experiment of
two cameras and two processor nodes

Tiago Almeida Master Degree

6.Experiments and Results 83

As can be concluded from the analysis of the graph, the variations of both indicators
are overall negative as the filter size increases (expected and valid situation). However,
there are some points in the graph that do not follow the trend of the graph’s curve.
The causes of these ”discontinuities” are speculatively similar to those mentioned in the
previous analysis. Finally, the analysis of the variation of standard deviations was made
to evaluate the homogeneity present in the samples evaluated during this study (Fig.
6.37).

0 10 20 30 40 50
0

0.1

0.2

0.3

kernel size variable

S
ta

n
d

ar
d

d
ev

ia
ti

o
n

”I1,avg” ”I2,avg”

Fig. 6.37: Variation of the standard deviation related to each indicator, increasing the
filter size — for the experiment of two cameras and two processor nodes.

Through the analysis of the graph presents in Fig. 6.37, it is inferred that the samples
are considered as a whole homogeneous but, as expected, there are some cases of higher
standard deviations (greater than 0.1) that represent cases of fluctuations in the values
of the indicators that reflect the possible problems that were mentioned at the beginning
of this section that may occur in this mode of operation of the architecture.

6.5 Deep Learning Techniques Results

This section presents the results obtained by the two models described in section 5.2.3.
These methodologies were applied to the section of the road represented in Fig. 6.38.
The first sub-section presents the results obtained for the LaneNet ROS Node and the
next sub-section for the UNet Model.

Tiago Almeida Master Degree

84 6.Experiments and Results

Fig. 6.38: Section of the road that was the subject of the study done for the case of the
application of deep learning methodologies (marked in red in the image). This section
generated 1070 frames processed by these two methodologies.

6.5.1 LaneNet ROS Node Results

As already stated, this model is in a preliminary stage of development. Thus, there is still
a lack of development for curved trajectories (a situation that had been mentioned by
the author). Another negative point that the model, currently, presents is the processing
time since it does not process the images in real-time yet. However, in qualitative terms,
this model is robust and accurate (Fig. 6.39).

Fig. 6.39: One of the results obtained by the application of the LaneNet ROS node.
Besides the precision of the road lane lines detection, it also shows the depth of detection
of the road lane lines, which is much higher than any other algorithm performed so far.

Tiago Almeida Master Degree

6.Experiments and Results 85

The division of lines into instances also works well, however, in certain cases, the
discontinuous line is not detected by the algorithm as can be seen in Fig. 6.40. This
leads to the conclusion that this ROS node cannot be used at this time on the architecture
but can be developed in the future.

Fig. 6.40: One of the inexact results obtained by this LaneNet ROS Node. Here the
discontinuous road line was not detected. Consecutively, the division into instances
was imprecise, since the left line that should be represented by the blue colour became
represented by the red colour.

In conclusion, this model may be developed in future works. It divides the road
lane lines into different clusters, which could have an impact on the type of filters com-
puted during the confidence map construction stage of the architecture. Besides that,
this model distinguishes continuous lines of the road (hard obstacles) and broken lines
(soft obstacles). This is important information that can be used to formulate a more
informed/detailed confidence map.

6.5.2 UNet Model Results

The UNet Model is based on semantic segmentation and was the one that presented
the most reliable results of all algorithms used/described so far. Although the training
of the neural network was done with only 701 labelled images, the results obtained for
the section of road evaluated (Fig. 6.41) were quite satisfying and demonstrate the
positive impact that this type of approach can have on this architecture in the future.
In terms of this dissertation, the only drawback of this model is that it could not be
evaluated in terms of architecture results since it was not a ROS package when this
work was in its developmental stage. However, ROS is not yet prepared for such an
evolution demonstrating some incompatibilities with Deep Learning approaches. The
obstacles faced during the implementation of these methods were: few packages aimed
at integrating Deep Learning into ROS projects and a lack of compatibility with the
Python 3 version, which offers interesting libraries for Deep Learning implementations
(e.g. fastai library).

Tiago Almeida Master Degree

86 6.Experiments and Results

Fig. 6.41: The result obtained by the UNet Model in the case of a crosswalk on a straight
road.

The model did not present inaccuracy in any type of trajectory (curve or straight)
— shown in Fig. 6.42. This can lead to the idea that if this model were trained with
a more generic dataset (a larger number of images in different types of environments),
the results would be even better.

Fig. 6.42: The images shown above correspond to the result obtained by the UNet Model
for straight road lanes. The images below are the results obtained by this model for the
case of curved trajectories (roundabout).

Tiago Almeida Master Degree

6.Experiments and Results 87

A future work that would be interesting to develop for application in the architecture
already implemented in this dissertation is the implementation of two processor nodes —
identical models to those presented in this section (or the use of one that segments the
road and the lines of the road at the same time). Therefore, one of the processor nodes
would detect road lane lines and the other node would detect the whole road zone (all the
lanes included) through semantic segmentation. The node that detects road lane lines
would pass through the intermediate stage of the polygon drawing of the architecture
to later be intersected with the output of the road semantic segmentation. According
to the combination stage of the architecture, the intersection would be the area that
would be associated with a 100 % confidence in being considered as a road lane and the
remainder that would be given in this case by the road segmentation would be less likely
to be considered a road. This situation is interesting since the lane road of the road
where the vehicle circulates would be given as a 100 % driveable zone and the lane roads
around it would have less confidence of the vehicle circulating there. In conclusion, a
frame-based confidence map of the road would be created, with much more information
than if the algorithms were used individually as it is happening in the actual stage of
the architecture but with less reliability. Two samples that can serve as examples of the
case are represented in Figs. 6.43 and 6.44.

Fig. 6.43: This set of images represents the combination of classic techniques and mo-
dern approaches achieved at the final stage of this dissertation. The upper left image is
the output of the advanced algorithm node. The upper right image is the output of a
UNet model ROS node. This node was developed to study the potential combination of
two types of computer vision techniques: traditional (first image) and modern (second
image). Thus, the bottom left image corresponds to the input in the combination step
of the architecture explained in this work. Finally, the last image represents the combi-
nation of the two types of techniques in one single confidence map (the filter applied in
this case has a size of 3× 3).

Tiago Almeida Master Degree

88 6.Experiments and Results

Fig. 6.44: This is a similar case to the one presented in Fig. 6.43. However, here the
size of the filter is larger (9× 9)). Consecutively, it can be observed that less confidence
is given to the pixels belonging to the area of the other lane, as would be expected.

As can be observed through the analysis of Figs. 6.43 and 6.44, the confidence
map shows the maximum confidence in the intersection zone between the two different
algorithms (white pixels in the last image). However, lower confidence is given to the
other lane of the road. This may be interesting for future decisions of the vehicle planner,
since the road on where the vehicle is driven means greater confidence for the vehicle to
be driven in the future and the lane next to it (where it can also be driven) is associated
to lower confidence, which may mean that the vehicle can be driven there with the
necessary precautions.

Tiago Almeida Master Degree

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In the fields of autonomous driving and ADAS, the visual perception of the road boun-
daries is an important feature that has been studied and developed to join information
about the surroundings of the vehicle. This data allows avoiding collisions since the
car perceives the lane where it is travelling on. The work presented in this document
is the development of an architecture capable of receiving images captured by multiple
cameras and processed later by multiple algorithms.

There are several different types of algorithms for road lane detection. However,
the most common types of algorithms’ output are the spatial localisation of the road
lane lines in the image and a polygon that represents the navigable zone of the road.
Consequently, the deployed architecture is prepared to receive these two different types
of algorithms’ results. The integration of different types of algorithms in a single archi-
tecture could be susceptible to long processing time. Hence, the core of the developed
architecture (a combination of the algorithms’ results) is based on simple computer vi-
sion techniques, such as logical operations ”AND” and ”XOR” and image filtering. A
road confidence map is built, through the application of these techniques. This map is
an image and enables the knowledge of the navigable zone divided into areas of greater
or lesser confidence in belonging to the correct representation of the road lane. Since the
domain of the architecture application is the road lanes/boundaries detection, it depends
on the algorithms that are computed to detect the road lane lines or the road boundaries.
Then, two algorithms based on classical computer vision techniques were implemented.
One of them was already a ROS package. The other algorithm was successfully trans-
formed into a ROS package, based on an adaptation of a code developed in a course
context about autonomous driving. It demonstrated more accuracy and less processing
time than the previously mentioned. However, none of them obtained consistent and
reliable results to belong to the developed architecture in the future because they do not
present valid qualitative results in different types of environments. Conversely, modern
algorithms based on Deep Learning were also computed and the results obtained are
much better than the ones presented for the previous algorithms, which are based on
classical techniques of computer vision. To conclude, the modern algorithms have to be
developed and studied in order to be part of the processor nodes of this architecture and
possibly combined to the traditional computer vision techniques.

89

90 7.Conclusions and Future Work

Regarding the multi-camera mode that the architecture offers, there is the possibil-
ity that the maps from each camera can be combined using an IPM technique. The
technique developed in this work is not generic since the width of the road is considered
known previously. However, the architecture also enables the launch of multiple cameras
without combining the maps.

In addition to the architecture developed, some hardware was installed in the AT-
LASCAR2 such as two Pointgrey FL3 GE28S4-C, two protective boxes to the cameras
and the respective fixation systems, as well as all the operative material that enables
the cameras to operate appropriately.

Finally, the combination of classical computer vision techniques with modern tech-
niques is an interesting breakthrough in these studies related to the visual perception
applied to autonomous driving. Besides that, the developed architecture promotes a re-
sult that gathers more information than any algorithm running individually. Hence, an
article, named ”Scalable ROS-Based Architecture to Merge Multi-source Lane Detection
Algorithms”,was submitted to the Robot2019 Conference authored by Tiago Almeida,
Bernardo Lourenço and Vı́tor Santos.

The code of this work is presented and documented on the Github platform (http:
//github.com/lardemua/road_visual_perception).

7.2 Future Work

Future work has to include the development of the algorithms that are part of the pro-
cessing stage of the architecture. They are the infrastructure that provides the practical
results in terms of road lane lines or boundaries detection. Since the measure of these
is lacking in this work (because the architecture is the part that was developed and
treated carefully and not the algorithms), it would be interesting to measure the dif-
ference between the algorithms applied individually and combined by the implemented
architecture. It is also important to include another type of algorithms’ output on the
architecture to turn the architecture even more generic.

The phase that consists of the multiple algorithms combination can include a multi-
level confidence degree based on the number of algorithms that intersect the same zone.
The work developed in this document does not take into account how many algorithms
return the same zone. The current combination of the algorithms only results in a
maximum confidence to zones that are the intersection of all algorithms and gives a
lower confidence to all other zones (which can correspond to the output of one algorithm
or the intersection of n − 1 algorithms, where n is the number of algorithms used to
process the images captured by the camera).

In terms of extrinsic calibration, it is crucial to do an accurate calibration based on
the work developed in [48] to reduce the orientation errors, since even a one-degree error
translates to meters at large distances.

Regarding the architecture output, many minor improvements can be implemented;
however, there is also a high priority feature that needs to be deployed: the application
of the IPM technique to the final confidence map (based on an accurate extrinsic cali-
bration). It can be published as an Occupancy Grid to merge it with the data that came
from the LIDAR sensor [49]. If this were achieved, the ATLASCAR2 would base its

Tiago Almeida Master Degree

http://github.com/lardemua/road_visual_perception
http://github.com/lardemua/road_visual_perception

7.Conclusions and Future Work 91

decisions in a synchronous Occupancy Grid (navigation map). It would fuse information
from two different types of sensorial sources (LIDAR and cameras).

Tiago Almeida Master Degree

.

Intentionally blank page.

Appendix A

Plate to fix the box to the
rotative support

93

 1
40

 3
5 6

5

 1
0

 10

 30

 6
5

 30

 10

A

A

 5

8,

5

16

 4,4

 1
2,

8

6,

5

 3

ISO 2768-m

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 1

A4

WEIGHT:

chapa
SOLIDWORKS Educational Product. For Instructional Use Only.

Appendix B

Box to protect the camera

95

 1
60

 75

 7,5 7,5

 30

 7
,5

 2

2,
5

 6
5

 15 15

 55
 2

,1
 C

C

 4
0

 45

 4
5

 15

5,

3
5,

3

5,
3

5,

3

5,
3

 5 5

SECTION C-C

ISO 2768 -m

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

caixa_imp_final
SOLIDWORKS Educational Product. For Instructional Use Only.

Appendix C

Box’s carton

97

 1
45

 75

 6
5

 30 30

 6
5

 7
,5

 7,50

A

A

4,

3

4,
3

4,

3

 10
SECTION A-A

ISO 2768-m

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 1

A4

WEIGHT:

tampa_caixa_final
SOLIDWORKS Educational Product. For Instructional Use Only.

References

[1] Machine vision for self-driving cars – current applications. https://emerj.com/ai-
sector-overviews/machine-vision-for-self-driving-cars-current-

applications/. Accessed: 2019-02-15.

[2] Su CY. and Fan GH. An effective and fast lane detection algorithm. in: Bebis
g. et al. (eds) advances in visual computing. Lecture Notes in Computer Science,
5359:942–948, 2008.

[3] Atlas project. http://atlas.web.ua.pt/. Accessed: 2019-02-21.

[4] Abdulhakam.AM.Assidiq. Real time lane detection for autonomous vehicles. In
Intelligent Vehicles Symposium. IEEE, 2008.

[5] A brief history of lane departure warnings. https://medium.com/@ducannissan/

a-brief-history-of-lane-departure-warnings-f6316fce8427 . Accessed:
2019-02-25.

[6] Mitsubishi debonair. https://carfromjapan.com/specifications/mitsubishi/
debonair-v/581789df2afaa2c4b2874e3f. Accessed: 2019-02-25.

[7] Honda worldwide - world news - news release. https://web.archive.org/web/

20141230004825/http://world.honda.com/news/2003/4030618_2.html . Ac-
cessed: 2019-02-21.

[8] tesla model s adds ’speed assist’, lane-departure warning. https:

//www2.greencarreports.com/news/1094773_tesla-model-s-adds-speed-

assist-lane-departure-warning . Accessed: 2019-02-21.

[9] Toyota crown majesta. https://en.wikipedia.org/wiki/Toyota_Crown. Ac-
cessed: 2019-02-25.

[10] Paul C. Hough V. Method and means for recognizing complex patterns, December
1962.

[11] Roshan Jahan, Preetam Suman, and Deepak Kumar Sing. Lane detection using
canny edge detection and hough transform on raspberry pi. International Journal
of Advanced Research in Computer Science, pages 85–89, 2018.

[12] Tesla model s. https://www.zigwheels.com/newcars/Tesla/model-s. Accessed:
2019-02-25.

99

https://emerj.com/ai-sector-overviews/machine-vision-for-self-driving-cars-current-applications/
https://emerj.com/ai-sector-overviews/machine-vision-for-self-driving-cars-current-applications/
https://emerj.com/ai-sector-overviews/machine-vision-for-self-driving-cars-current-applications/
http://atlas.web.ua.pt/
https://medium.com/@ducannissan/a-brief-history-of-lane-departure-warnings-f6316fce8427
https://medium.com/@ducannissan/a-brief-history-of-lane-departure-warnings-f6316fce8427
https://carfromjapan.com/specifications/mitsubishi/debonair-v/581789df2afaa2c4b2874e3f
https://carfromjapan.com/specifications/mitsubishi/debonair-v/581789df2afaa2c4b2874e3f
https://web.archive.org/web/20141230004825/http://world.honda.com/news/2003/4030618_2.html
https://web.archive.org/web/20141230004825/http://world.honda.com/news/2003/4030618_2.html
https://www2.greencarreports.com/news/1094773_tesla-model-s-adds-speed-assist-lane-departure-warning
https://www2.greencarreports.com/news/1094773_tesla-model-s-adds-speed-assist-lane-departure-warning
https://www2.greencarreports.com/news/1094773_tesla-model-s-adds-speed-assist-lane-departure-warning
https://en.wikipedia.org/wiki/Toyota_Crown
https://www.zigwheels.com/newcars/Tesla/model-s

100 REFERENCES

[13] Volvo cars announces range of updates for model year 2017. https://www.media.
volvocars.com/global/en-gb/media/pressreleases/175764/volvo-cars-

announces-range-of-updates-for-model-year-2017 . Accessed: 2019-02-25.

[14] Lane keeping assist system (lkas) (honda sensing® models). https:

//www.hondainfocenter.com/en/Civic-Family/2018-Civic-Hatch/Product-

Details/Interior/Lane-Keeping-Assist-System-LKAS-Honda-Sensing-

models . Accessed: 2019-03-05.

[15] Ricardo Morais. Parametrização de algoritmos para classificação de estrada a bordo
do ATLASCAR. Master thesis, University of Aveiro, 2014.

[16] Mohamed Aly. Real time detection of lane markers in urban streets. In Intelligent
Vehicles Symposium, 2008 IEEE, pages 7–12. IEEE, 2008.

[17] Amol Borkar, Monson Hayes, and Mark T. Smith. Robust lane detection and
tracking with ransac and kalman filter. pages 3261–3264, 11 2009.

[18] Miguel Oliveira, Vitor Santos, and Angel Sappa. Multimodal inverse perspective
mapping. Information Fusion, 09 2014.

[19] Tutorial: Build a lane detector. hhttps://towardsdatascience.com/tutorial-

build-a-lane-detector-679fd8953132. Accessed: 2019-02-21.

[20] Udacity advance lane-detection of the road in autonomous driving.
https://medium.com/deepvision/udacity-advance-lane-detection-of-

the-road-in-autonomous-driving-5faa44ded487. Accessed: 2019-02-20.

[21] K. Kluge and S. Lakshmanan. A deformable-template approach to lane detection.
IEEE, pages 54–59, 1995.

[22] Y. Wang, E. Teoh, and D. Shen. Lane detection using b-snake. Int. Conf. Infor-
mation Intelligent and Systems, pages 438–443, 1999.

[23] Xiadong Miao, Shunming Li, and Huan Shen. On-board lane detection system
for intelligent vehicles based on monocular vision. International Journal on Smart
Sensing and Intelligent Systems, 5(4):957–972, 2012.

[24] Lane detector ROS package. https://github.com/Nsteel/Lane_Detector. Ac-
cessed: 2019-02-18.

[25] Tejus Gupta, Harshit Sikchi, and Debashish Charkravarty. Robust lane detection
using multiple features. IEEE Intelligent Vehicles Symposium (IV), 2018.

[26] FLIR ® Inc. Flea3 GigE Techincal Reference, 2017. Rev. 8.0.

[27] Carol Fairchild and Dr. Thomas L. Harman. ROS Robotics By Example. PACKT,
2016.

[28] image proc ros package. http://wiki.ros.org/image_proc . Accessed: 2019-02-
15.

Tiago Almeida Master Degree

https://www.media.volvocars.com/global/en-gb/media/pressreleases/175764/volvo-cars-announces-range-of-updates-for-model-year-2017
https://www.media.volvocars.com/global/en-gb/media/pressreleases/175764/volvo-cars-announces-range-of-updates-for-model-year-2017
https://www.media.volvocars.com/global/en-gb/media/pressreleases/175764/volvo-cars-announces-range-of-updates-for-model-year-2017
https://www.hondainfocenter.com/en/Civic-Family/2018-Civic-Hatch/Product-Details/Interior/Lane-Keeping-Assist-System-LKAS-Honda-Sensing-models
https://www.hondainfocenter.com/en/Civic-Family/2018-Civic-Hatch/Product-Details/Interior/Lane-Keeping-Assist-System-LKAS-Honda-Sensing-models
https://www.hondainfocenter.com/en/Civic-Family/2018-Civic-Hatch/Product-Details/Interior/Lane-Keeping-Assist-System-LKAS-Honda-Sensing-models
https://www.hondainfocenter.com/en/Civic-Family/2018-Civic-Hatch/Product-Details/Interior/Lane-Keeping-Assist-System-LKAS-Honda-Sensing-models
hhttps://towardsdatascience.com/tutorial-build-a-lane-detector-679fd8953132
hhttps://towardsdatascience.com/tutorial-build-a-lane-detector-679fd8953132
https://medium.com/deepvision/udacity-advance-lane-detection-of-the-road-in-autonomous-driving-5faa44ded487
https://medium.com/deepvision/udacity-advance-lane-detection-of-the-road-in-autonomous-driving-5faa44ded487
https://github.com/Nsteel/Lane_Detector
http://wiki.ros.org/image_proc

REFERENCES 101

[29] Adrian Kaehler and Gary Bradski. Learning OpenCV 3: Computer Vision in C++
with the OpenCV Library. O’Reilly Media, 2016.

[30] Flycap application. https://www.flir.com/products/flycapture-sdk. Ac-
cessed: 2019-03-01.

[31] Camera intrinsic calibration. http://wiki.ros.org/camera_calibration-

intrinsic calibration. Accessed: 2019-03-08.

[32] Finding lane lines for self driving cars. https://github.com/rkipp1210/pydata-
berlin-2017. Accessed: 2019-04-16.

[33] Multitarget-tracker. https://github.com/Smorodov/Multitarget-tracker. Ac-
cessed: 2019-04-07.

[34] Pydata berlin. https://berlin.pydata.org/. Accessed: 2019-05-09.

[35] Finding lanes for self-driving cars - pydata berlin jul 2017- ross kippenbrock
of yhat. https://pt.slideshare.net/Yhat/finding-lanes-for-selfdriving-

cars-pydata-berlin-jul-2017-ross-kippenbrock-of-yhat. Accessed: 2019-
05-09.

[36] Sobel derivatives. https://docs.opencv.org/2.4/doc/tutorials/imgproc/

imgtrans/sobel_derivatives/sobel_derivatives.html. Accessed: 2019-05-09.

[37] Advanced lane detction algorithm. https://github.com/HsucheChiang/

Advanced_Lane_Detection. Accessed: 2019-05-09.

[38] Lanenet ros node. https://github.com/AbangLZU/LaneNetRos. Accessed: 2019-
05-20.

[39] Davy Neven, Bert De Brabandere, Stamatios Georgoulis, Marc Proesmans, and Luc
Van Gool. Towards end-to-end lane detection: an instance segmentation approach.
pages 286–291, 06 2018.

[40] Lesson 3: Data blocks; multi-label classification; segmentation. https://course.

fast.ai/. Accessed: 2019-05-15.

[41] Image segmentation with camvid. https://nbviewer.jupyter.org/github/

fastai/course-v3/blob/master/nbs/dl1/lesson3-camvid.ipynb. Accessed:
2019-05-15.

[42] Semantic segmentation datasets for urban driving scenes. https://autonomous-

driving.org/2018/07/15/semantic-segmentation-datasets-for-urban-

driving-scenes/. Accessed: 2019-05-15.

[43] Mapillary vistas dataset. https://www.mapillary.com/dataset/vistas?pKey=

q0GhQpk20wJm1ba1mfwJmw . Accessed: 2019-05-15.

[44] Pod manager tool podman. https://podman.io. Accessed: 2019-04-29.

[45] Jupyter. https://jupyter.org/. Accessed: 2019-04-29.

Tiago Almeida Master Degree

https://www.flir.com/products/flycapture-sdk
http://wiki.ros.org/camera_calibration-intrinsic calibration
http://wiki.ros.org/camera_calibration-intrinsic calibration
https://github.com/rkipp1210/pydata-berlin-2017
https://github.com/rkipp1210/pydata-berlin-2017
https://github.com/Smorodov/Multitarget-tracker
https://berlin.pydata.org/
https://pt.slideshare.net/Yhat/finding-lanes-for-selfdriving-cars-pydata-berlin-jul-2017-ross-kippenbrock-of-yhat
https://pt.slideshare.net/Yhat/finding-lanes-for-selfdriving-cars-pydata-berlin-jul-2017-ross-kippenbrock-of-yhat
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html
https://github.com/HsucheChiang/Advanced_Lane_Detection
https://github.com/HsucheChiang/Advanced_Lane_Detection
https://github.com/AbangLZU/LaneNetRos
https://course.fast.ai/
https://course.fast.ai/
https://nbviewer.jupyter.org/github/fastai/course-v3/blob/master/nbs/dl1/lesson3-camvid.ipynb
https://nbviewer.jupyter.org/github/fastai/course-v3/blob/master/nbs/dl1/lesson3-camvid.ipynb
https://autonomous-driving.org/2018/07/15/semantic-segmentation-datasets-for-urban-driving-scenes/
https://autonomous-driving.org/2018/07/15/semantic-segmentation-datasets-for-urban-driving-scenes/
https://autonomous-driving.org/2018/07/15/semantic-segmentation-datasets-for-urban-driving-scenes/
 https://www.mapillary.com/dataset/vistas?pKey=q0GhQpk20wJm1ba1mfwJmw
 https://www.mapillary.com/dataset/vistas?pKey=q0GhQpk20wJm1ba1mfwJmw
https://podman.io
https://jupyter.org/

102 REFERENCES

[46] What are linux containers? https://opensource.com/resources/what-are-

linux-containers. Accessed: 2019-04-29.

[47] Launch files. http://www.clearpathrobotics.com/assets/guides/ros/Launch%
20Files.html. Accessed: 2019-05-12.

[48] David Silva. Multisensor Calibration and Data Fusion Using LIDAR and Vision.
Master thesis, University of Aveiro, 2016.

[49] Daniela Rato. Detection of the Navigable Road Limits by Analysis of the Accumu-
lated Point Cloud Density. Master thesis, University of Aveiro, 2019.

Tiago Almeida Master Degree

https://opensource.com/resources/what-are-linux-containers
https://opensource.com/resources/what-are-linux-containers
http://www.clearpathrobotics.com/assets/guides/ros/Launch%20Files.html
http://www.clearpathrobotics.com/assets/guides/ros/Launch%20Files.html

	Introduction
	The ATLAS Project
	Project Context and Motivation
	Objectives
	Document Structure

	State of the Art
	Genesis of the Technology
	Current Implementations
	Related Work Developed at LAR
	Related Work Developed in Other Contexts

	Experimental Infrastructure
	Hardware Used and Designed
	Point Grey FL3-GE-28S4-C
	Camera Setup on ATLASCAR2

	Software Used
	ROS - Robot Operating System
	ROS Packages used in this Project
	Other Software Tools

	Summary

	Calibration
	Intrinsic Calibration
	Extrinsic Calibration

	Multi-Camera and Multi-Algorithm Architecture
	The Base Architecture
	Nodes and Topics Presentation
	Time Stamps and Asynchronous Sources

	Image Processors
	Algorithm 1: lane_detector ROS Package
	Algorithm 2: advanced_lane_detection ROS Package
	Algorithms based on the Deep Learning Approach

	Data Combination
	Node draw_poly_node
	Node calc_prob_map_node
	Node combine_multi_cams_node

	Launching Nodes
	Main Launch Files
	Architecture Launch Files
	Launch Files Summary

	Experiments and Results
	One Camera and One Algorithm
	Active Processor Node: lane_detector_node
	Active Processor Node: advanced_algorithm_node

	One Camera and Two Algorithms
	Two Cameras and One Algorithm
	Active Processor Node: lane_detector_node
	Active Processor Node: advanced_algorithm_node

	Two Cameras and Two Algorithms
	Deep Learning Techniques Results
	LaneNet ROS Node Results
	UNet Model Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Plate to fix the box to the rotative support
	Box to protect the camera
	Box's carton
	Bibliography

