OpenCV's Rapid Object Detection

How-to build a cascade of boosted classifiers based on
Haar-like features

Introduction

This document describes how to train a classifier for object detection. OpenCV comes already
with a trained classifier for frontal face detection. In order to show that it also works for a variety
of objects, not only for faces, an exemplary training process with bowl is shown. The system used
here is a Win32 machine with OpenCV beta 3.1 default installation into “C: \ Pr ogr am

Fi | es\ OpenCV” as <OpenCV-directory>.

The utilities used here should be in <OpenCV-directory>\bin. If this is not the case you have to
compile them first by using <OpenCV-directory>\apps\HaarTraining\make\full.dsw. In all
compilations select the “release” version as a current configuration in order to avoid creating the
debug version (library and program has “d” appended).

In case some files cannot be found, check the paths of the “include files” and “library files” in
your development evironment or compile the needed libraries.

In case the steps mentioned above run properly, you should look for any of the missing file(s) in
the OpenCV Yahoo!-Group.

When you try to compile one of the most common problems is that " cvcommon.h" cannot be
found because it has simply been forgotten in the distribution package. You can download it from
some message attachments of the OpenCV Yahoo!-Group (i.e.
http://groups.yahoo.com/group/OpenCV/message/11615 or
http://groups.yahoo.com/group/OpenCV/message/12353)

n

After the orginal code has compiled successfully, you should remove the sample size limitation in
the function icvCreatelntHaarFeatures() is to be found in “cvhaartraining.cpp”. Simply replace
s0=36, s1=12, s2=18 and s3=24 with s0=s1=s2=s3=0 and rebuild.

If you are lucky enough to have a multi-processor system or Pentium 4 with “Hyper-Threading”
for training, you should use the multi-processor feature in cvhaartraining. Thus the haartraining
has to be rebuilt with “OpenMP” enabled. Due to the fact that the system used here doesn’t have
any of the above mentioned features, we could not experience use of multi-processor features.

Florian Adolf Page 1 of 6 2003-09-02


http://groups.yahoo.com/group/OpenCV/message/12353
http://groups.yahoo.com/group/OpenCV/message/11615

OpenCV's Rapid Object Detection

Step 1 - Preparation

Tools:
First of all the utilities "cr eat esanpl es. exe", "haart r ai ni ng. exe" and
"per f or mance. exe" should be available. In our case we work in “C: \Temp\”.

Negative Samples:

You should have a lot of images (about 5,000 to 10,000) as negative (background) samples. You
can get them from well known ressources, i.e. photo-cds (CorelDraw or MS Office) or public
databases.

Due to compression artefacts in some compression levels of JPEG images, a BMP image format
should be chosen. The negative (background) resolution used here is equivalent to the one the
video camera uses for later image acquisition (384x256 pixels). But this is not a necessary
condition.

“C:\Temp\negatives\” contains the folders of negative images as well as the info files
“train.txt”and “test.txt”.

To work with these images in our utilities, a list of the files is needed. Using Win32 as host OS,
you can get the list via command promt. Move to the folder where the info file will be stored and
type “dir /b /s > infofile.txt”. Open “infofile.txt” and make the paths relative to the
info file (i.e. find “C:\Temp\negatives\”” and replace with ).

Positive Samples:

The advantage of object images taken from real world scenes is that you have different
reflections, illuminations and backgrounds. Using IPL the "createsamples"” tool can simulate such
conditions but generally they train not that well.

You can get real object images from several sources such as public data sets (as done for face
training) or you can create them by yourself.

The raw images of the bowls were made manually by statues of live video. Several sites with
different floor surfaces and illuminations have been taken to achieve a variety of conditions.
Additionally at each site the camera was positioned in several angles and distances around the
bowls.

You might want to use "objectmarker.exe" to extract the desired objects out of your raw images,
i.e. taken with a camera [Fig.1-1]. You browse through the folder named “rawdata” containing all
BMP format images and mark your object(s) with a bounding rectangle. You can add each
bounding box to the info file “info. txt” which you can use for your training and/or testing.

Notes: While marking the rectangle should be close to your objects border. Take care of the info
file before you restart this little tool, otherwise it will overwrite it without asking.

Florian Adolf Page 2 of 6 2003-09-02



OpenCV's Rapid Object Detection

2883-86-87_14-53-18 . hnp
1. rect x=29 y=233 width=138 height=98
2. rect x=268 y=186 width=112 height=74

ve and load next <ESCexit

Fig. 1-1: Raw image and a bounding rectangle on the bowl in the middle

If you want to try to train by one example image anyway, you must have “iplPXI.lib” available.
Also you have to uncomment “#define HAVE IPL”in file “ cvhaartraining.h” so that
iplWarpPerspective(() is running correctly for “createsamples.exe”. Otherwise when compiled
the step of pattern generation from your one sample is not included into the program and only the
negatives are put into a vec file.

These positive samples will be stored in a folder “bowls” in “C: \Temp\positives\” where
the info files “train.txt” and “testing. txt”are located [Fig.1-2].

leom Lt 003 -0 6002 1745400 b
[N R ak B Loge = R Aies £=20 3 M T
Toooew Lz® T 000 E ~ 0 G- 065 174555 bt
[N T na BT i Rl S s I U
b Lzt T0OTK =00 Ce2 . 1 =490, B
bl Lozt 000 -0 - 0o 145131 . B
Ioeorb Lz! 300N - 00— 063 15 -07-3 Lo ke
Jeom Lot 3003 -0 6002 120740 b
RSN I L a s Bt = E=Rl r g 3-8 P

§ 209 o7 43 102 24 71 44 194 1T 112 T 249 146 D6 62

4 183 &7 64 9% 252 24 62 41 246 199 20 BV 26 181 100 £

3 B 151 106 66 194 146 100 64 342 146 25 BG

321 164 108 T 245 175 111 T2

3 204 163 104 T4 140 141 29 B2 JTE 1EE 52 EE

1922 17 107 &5

1 916 169 102 &7 2 17T 107

E Q5T 116 7T 46 2B0 147 S8 Le 120 132 104 62 200 218 130 &0 437 179 100 &7

- E 223 110 =1 49 1Ek1 130 27 BE 122 dek 102 71 411 141 94 61 11F 204 100 &)

Il IO -0 =06 18-0T 43 bop & 253 135 51 BE 490 171 100 TY 25D 150 115 51 19E 130 = EY 49 200 124 &1

I lms T00K -0 -0 12-07-Lfobip & TR 164 100 &1 297 10 107 T4 411 4TS 115 T4 RIT 128 21 BE 2T 123 &4 82

I 1 O -0 6002 12-0-00. kaep € 400 135 27 E& J06 1TE 106 T4 270 430 TE 42 AEE 140 T 43 171 1EE 25 EL £0 140 £ Ee
Il 00 -06- 06 19-0-0k. ke 4 480 132 ST 65 ATI 144 TE 49 280 2L 6T 40 205 16T Q04 62

I loms T -0 =06 18- 11 bip 2 ARE 142 91 52 18T 162 100 52

I 1m0 -0 062 12-0- 16 bidp 2 D62 174 111 T 190 40 10& T

Il 00 -0 6062 12-0-20. kaep £ 298 137 21 EQ d44 160 100 B2 20 190 11F TE 234 229 140 402 J46 AFT 11 WO

Il IO =006 1S-0eS-2 B bip 6 B0 131 54 B0 480 180 ST 64 D56 ITE 10T V1 204 105 S0 5 21 154 5T BB 155 105 id 26
I loms T00K =006 12-0-d00 bp 3 478 144 97 B 114 154 107 BE A0 151 I0L BT

Il IO -0E-Ce_ 18-0-ddbedp 4 135 A07 TV 4T 281 113 84 B 38 143 93 6 126 15T A0 67

Il 00 -0 606 19-0-d 00 ke & 22T 22 TA 4 915 113 TR BV 419 131 £9 61 90 14 94 D 123 148 52 66 23T ATY 141 VR
I lms T -0 =06 19-0—t bidp 3 432 149 9L 61 283 1TE 115 &2

Il T00K -0 062 17-0T -k biip 3 246 137 55 60 47 206 131 25 345 240 180 104

It IO -0 6062 1V-0T-Ee baep 3 243 130 27 B4 21 187 100 TR 295 426 126 TR

0w le/ A0 -06-05_ 1T-05-00ubop 2 126 133 &5 5T 18T 331 147 35

Fig. 1-2: Example content of file train.txt (from left to right): BMP file location, number of rectangles, each rectangles
x/y coordinate of the upper left corner and width/height from this point x/y.

Florian Adolf Page 3 of 6 2003-09-02



OpenCV's Rapid Object Detection

Step 2 - Sample/Test Creation

Assuming that a sample size of 20x20 is a good choice for most objects, samples are reduced to
this size.

Basically there should be four sets of images that you work on:

- a positive sample set representing your object that you want to train
- another positive sample set for testing purpose

- a negative sample set (or so-called backgrounds) for training

- and another negative sample set for testing, too

Note: The testing sets should not contain any images that were used for training.

Of course, defining the number of images in each set depends on how many images you have in
total. We use 5500 negatives and split them into 5350 samples for training and 150 samples for
testing. As positive samples we have 1350 images from our bowl [Fig.2-1] where 50 are taken for
testing.

Fig. 2-1: Examples of how different a simple bowl can appear in a real video image

According to this amount of samples in each set you must specify the number paramters for the
training utilities, too.

Once you have all your sets arranged the object images have to be “packed” into a vec-file in the
folder “data”. This can only be done by the createsamples tool, even if you already have a set of
object images and don’t want to generate artificial object images. The call in our case would be:

createsamples.exe -info positives/train.txt -vec data/positives.vec -num 1300 -w 20 —h 20

It should be checked if the vec file really contains the desired images. For example when you
took the non-IPL version of createsamples to create artificial object images, you will see now that
it contains parts of your negative set with no object on it. In our case call following and press

<Enter> to scroll through the images in this “highGUI” window:

createsamples.exe -vec data/positives.vec -w 20 —h 20

Florian Adolf Page 4 of 6 2003-09-02



OpenCV's Rapid Object Detection

Step 3 - Training

Assuming the default values of hitrate (0.995), maxfalsealarm (0.5), weighttrimming (0.95) and
boosting type (GAB, “Gentle Ada Boost”) are good in most cases, only some parameters will be
changed. The extended feature set should be used and the number of stages should be at least 20.
If these are too many stages you can abort training at any time. If these are too less stages you can
restart the training tool and stages will be added to an existing cascade (starting point is the last
completed stage). If the object is symmetric (like the bowl in our example) the parameter “-
nonsym” is not needed. This saves feature calculation time and memory usage in each stage.

The system you should use for haar training should have a fast processor and enough RAM
installed. The machine used for training here has 1.5GB of RAM and a P4 2.4GHz without
“Hyper Threading”. Using Windows 2000 Advanced Server for better memory management and
paging file behaviour, we can use 1,300 MB of RAM for “haartraining.exe”. It’s important not to
use all system RAM because otherwise it will result in a considerable training slow down.

The training of our bowl will be started by the following call:

haartraining.exe -data data/cascade -vec data/positives.vec -bg negatives/train.txt
-npos 1300 -nneg 5350 -nstages 30 -mem 1300 -mode ALL -w 20 -h 20

While training is running, you already can get a “feeling” whether it will be suitable classifier or
something has to be improved in your training set and/or training parameters.

The line starting with “POS:” shows the hitrate in the set of training samples. The next line
starting with “NEG” indicates the falsealarm rate. The rate of the positives should be equal or
near 1.0 (as it is in “stage 0”). The falsealarm rate should reach at least 5¥10° (five zeros) until it
is a usable classifier [Fig 3-1]. Otherwise the falsalarm is be too high for real world application.
If one of these values gets below zero [“Stage 187, Fig 3-1] there’s just an overflow. This means
that the falsealarm rate is so low that is can be stopped, no further training would make sense.

[...]
STAGE TRAINING TIME: 5037.31

STAGE: 17

POS: 1293 1293 1.000000

NEG: 5000 1308777143 0.000004
BACKGROUND PROCESSING TIME: 26671.78
PRECALCULATION TIME: 108.59

[...]
STAGE TRAINING TIME: 5389.59

STAGE: 18

POS: 1293 1293 1.000000

NEG: 5000 -1465156860 -0.000003
BACKGROUND PROCESSING TIME: 58371.50
PRECALCULATION TIME: 108.56

Fig. 3-1: Example of bowl training: In “STAGE 17” five zeros (red coloured number) indicate to possibly become a
suitable classifier. In 1.3 billion backgrounds might be 5000 backgrounds in which an object is detected falsly.

Florian Adolf Page 5 of 6 2003-09-02



OpenCV's Rapid Object Detection

Step 4 - Testing

A classifier can be tested with the performance tool mentioned under “utilies” or directly via a
“live” test if a detailed report is not necessary.

If you want a report test you must have a different set of positives and negatives as mentioned in
“Step 1 — Preparation”.

The info file for this performance utility must not contain a path to the image. Only the filename
itself is allowed. Otherwise the cvSavelmage() function throws an error because it cannot save the
image where the rectangles are drawn into.

To avoid this error you can also use the option “—ni and no detection result is saved to an image.

In our example the test of hitrate and falsealarm will be done by calling
performance.exe -data data/cascade -info positives/testing/testing.txt -w 20 -h 20 -rs 30

It will go through all images and tries detect the object. If one object is found and option “—ni” is
not specified, it will save the current image

The results of this performance utility should only be seen as one possible result and don’t reflect
the possible detection behaviour of your application [Fig 4-1].

Fig. 4-1: Different detection results for the same classifier base: performance tool (left column) and example
application from OpenCV documenation (right column)

Florian Adolf Page 6 of 6 2003-09-02



	How-to build a cascade of boosted classifiers based on Haar-like features
	Introduction
	Step 1 - Preparation
	Step 2 - Sample/Test Creation
	Step 3 - Training
	Step 4 - Testing


