

Introduction to

Sherlock 7

Introduction Page 1

v 1.1 March 19, 2008

Introduction

Welcome to Sherlock 7. Sherlock is a graphical IDE (Integrated Development Environment) in
which you design, test, debug and deploy machine vision applications.

A typical machine vision application is composed of four steps:

1. Acquire an image
2. Extract data from the image
3. Analyze the data
4. Report on or make decisions based on the analysis (write results to a file, trigger a reject

mechanism, set a PLC register value…)

Each of the four steps of an application is achieved by selecting program elements from within
Sherlock’s graphical interface, adding them to the program, and setting their execution
parameters. You do not write code to create a machine vision application with Sherlock.

A simple Sherlock program

A complete Sherlock application is called an investigation. An investigation is saved as a file
with an “.ivs” extension.

This manual explains how to use Sherlock to create an investigation, from acquiring an image,
through communicating the results of the analysis. Sherlock is a very rich environment with
hundreds of programming elements to choose from, so not every aspect of every element can be
explained; but by the end of the manual you will know where to find the elements you need, how
to add them to the investigation, and how to customize the elements to fit your needs.

Online help
For information on programming elements not explicitly covered in this manual, or for more
detailed information on the elements that are covered, use online help. Help is available through

Introduction Page 2

v 1.1 March 19, 2008

Sherlock’s main menu (Help����Help Topics), and by hitting the F1 key when a programming
element is selected.

When bad things happen to good developers
As with any computer application, there is always the possibility that an operating system
malfunction, a power outage, or some other event beyond your control will cause your computer
to hang, reboot, or otherwise cause you to lose your work. Words to the wise:

Save early, save often

Sherlock has an autosave feature that by default saves the open investigation to the file
<Sherlock>\Programs\Autosave.ivs every 20 minutes. To change the time between autosaves,
open Options����Application from Sherlock’s main menu. You can also disable the autosave
feature, but why in your right mind would you?

Introduction Page 3

v 1.1 March 19, 2008

 The autosave feature is not active while the investigation is executing.

Introduction Page 4

v 1.1 March 19, 2008

Some image basics
Here are a few things you’ll need to know about how images are stored and referenced in
Sherlock.

Monochrome pixel values
Most machine vision applications work with 8-bit monochrome images. In an 8-bit monochrome
image, 0 = black and 255 = white.

 0 127 255

(The representation of color images is discussed elsewhere.)

Image origin
The origin (0,0) is at the upper-left corner of the image.

(0,0) x (xm, 0)

y

(0, yn) (xm, yn)

Introduction Page 5

v 1.1 March 19, 2008

Definition of a line
A line is one of the five data types in Sherlock; the other types are the number, point (x,y
coordinate), Boolean (True/False), and character string. All of these data types are discussed
later in this manual. Because the definition of a line is non-intuitive, it is presented here for your
enlightenment.

In Sherlock, a line is defined by a, the angle of the line relative to the x-axis, and d, the shortest
distance from the image origin to the line (the perpendicular). A line has no start or end point; it
extends infinitely in both directions.

(0,0)

d
a

Introduction Page 6

v 1.1 March 19, 2008

The location of the origin and the direction of the axes affect how angles are measured.

The default origin is at the upper-left corner of the image.

(0,0)

Changing the location of the origin and the direction of the axes (see the chapter Calibration)
affects how angles are measured.

-89o

1o
0o

90o

89o

-1o

Introduction Page 7

v 1.1 March 19, 2008

Interface Page 1

v1.1 April 16, 2008

Interface

Investigation windows

A Sherlock investigation consists of several windows, the contents of most of which you control.

Some of the windows are present in every investigation; some are present by your choice.

Instructions

Program

Watch

Reporter Variables

Image window

Monitor

Interface Page 2

v1.1 April 16, 2008

Image Window

An image window contains an image and the

tools that extract data from it.

Program

The program is the sequence of steps you

define to perform the four steps of your

machine vision application – acquire an

image; extract data from the image; analyze

the data; and report on or make decisions

based on the results of the analysis.

Interface Page 3

v1.1 April 16, 2008

Instructions

Many of the programming elements you add to the program are available from the Instructions

window.

The instructions are grouped into functional folders, each of

which contains many instructions.

Variables

Variables are placeholders for data. You create and

display variables in the variables window.

Watch

The watch window can display, at your

discretion, the output of various

programming elements.

Interface Page 4

v1.1 April 16, 2008

Monitor

The monitor displays runtime

information, in particular how long the

various elements of the program took to

execute. It also displays errors and

warnings.

Reporter

The reporter is a window to which you can write text during

program execution.

Digital IO

If your system has digital inputs and outputs that Sherlock

has access to, the Digital Inputs and Digital Outputs windows

shows their states.

Interface Page 5

v1.1 April 16, 2008

Windows layout

You can arrange the windows in an investigation any way you want to. They can be docked, free-

floating, tabbed, and “pinned.” You can even choose not to display some or any of the windows

at all.

This investigation…

…is the same as this one…

Interface Page 6

v1.1 April 16, 2008

…and this one!

The status bar

The status bar at the bottom of the main Sherlock window displays information about various

aspects of the investigation.

Left to right:

• If the image window has been calibrated, the position of the cursor in calibrated units.

• The position of the cursor in pixels

• The value of the pixel at the cursor. This will be a single value for a grayscale image (for

example, pix:254), or the red, green and blue components for a color image (for example,

pix:132,045,025 for a dark maroon pixel.)

• Execution time of the last iteration of the investigation

• Memory usage

• Angle measurement units (DEGrees or RADians)

• Cap lock on (CAP) or off (blank)

• Num lock on (NUM) or off (blank)

• Scroll lock on (SCRL) or off (blank)

Interface Page 7

v1.1 April 16, 2008

The main toolbar

The buttons on Sherlock’s main toolbar are used to open, save, edit, execute, and debug an

investigation.

The main menu

The File, Edit and Run items echo the main toolbar buttons that open and save investigations,

copy program elements, and run the investigation. The Image window items echo image window

toolbar buttons (zoom in/out, live image, insert ROI, load/save image).

Open a new investigation

Save / Save As (the

current investigation)

Open an existing

investigation
Copy/Paste

program elements

Run the investigation

once / continuously

Stop/Abort the

investigation

Debugging

Open and close the

various windows

(Program, Watch, etc.)

Control the layout of the

image windows

Control the look-and-feel and execution of the Sherlock

application; define communication settings; create

background scripts

Interface Page 8

v1.1 April 16, 2008

Check or uncheck a window on the View menu to display or close

it. Closing a window does not destroy its contents.

In this example, the status bar, variables, program, monitor, and

watch windows are displayed. All other windows are closed.

The various items in the Options menu are covered elsewhere.

 You can run only one instance of Sherlock at a time, and Sherlock can open only one

investigation at a time.

Image window Page 1

v1.2 June 17, 2010

Image Window

An image window contains an image to be processed, and the tools to process it. An

investigation has at least one image window, and it may have many; there is no limit to the

number of image windows. An image window displays a single image at a time.

To add an image window to the investigation, click the Create image window instruction button

on the program window’s toolbar.

Image window options

Double left click on an image window to display its Options dialog; or click the Options button

on the image window’s toolbar.

Image window name

Every image window is assigned

a name when it is created: imgA,

imgB, imgC, etc.

You can rename an image window (Top View,

Camera 0) in its Options dialog, or in the program

window (left-click once on the name, wait briefly, then

left-click again). All names must be unique within an

investigation.

Image Source

An image window can get its image from one of several sources: a camera, another image

window, a combination of image windows, a single image file, a sequence of image files, or a

reading from an algorithm. To set an image window’s source, click the appropriate radio button.

���� Camera
In most

investigations, at

least one image

window acquires its

Image window Page 2

v1.2 June 17, 2010

image from a camera. The drop-down list next to Camera shows the indices of the available

cameras; you select the camera from which you want to acquire images for this image window. If

your system has more than one camera, the investigation will probably have an image window for

each camera.

Acquisition is software-triggered (free-running) unless

External Trigger is checked. Software triggering

acquires the next full frame from the camera as soon as

the image window is reached in the program. External

triggering waits for an input signal to initiate acquisition.

Most machine vision applications use a part-in-place

sensor or other hardware to determine when the object to

be inspected is in front of the camera; when the object is

in place, a signal is sent to the hardware to initiate

acquisition.

� Image window
 Sometimes you want to use the same image in more than one image window, for example to

apply different processing to the same image acquired from a camera.

In this example, image window imgB gets its image from image window imgA.

Image window Page 3

v1.2 June 17, 2010

If the destination image window’s Share buffer box is checked, any modifications made to the

source image are reflected in the destination image; if it is not checked, the “raw” image is used

as the source. (See the chapter ROIs, Preprocessors and Algorithms)

Image window Page 4

v1.2 June 17, 2010

You can set the destination image window’s type (monochrome, RGB color, YUV color, etc.) to

be the same as the source image window’s type, or different.

ImgA contains an RGB

color image. ImgB’s source

is set to imgA, and its type

is set to MONO8.

If the source image window contains a color image, you can select one of the color planes (R, G,

B or Y, U, V) as the source for a monochrome image window. In the monochrome image

window, pixels with high values of the color are shown as high grayscale values, and pixels with

low values of the color are shown as low grayscale values.

 RGB color image Red plane as monochrome Green plane as monochrome

Image window Page 5

v1.2 June 17, 2010

� Multiple image windows
Three

monochrome

image windows

can be combined

to make a single

color image.

When composing an image from three monochrome image windows, the only choices for the

image type are RGB32 , YUV32 and YCBCR32.

� Image file
It is common to use a

static image file as the

image source when you are developing an investigation. Sherlock supports image types bmp, tif,

jpg, and png.

� Image sequence
A series of image

files can be used to

simulate camera

input.

An image sequence simulates camera acquisition by loading a series of image files into the image

window, one at a time. The image files in an image sequence must have names of the format

anythingNNNN.ext
where

anything is a valid root file name – for example, image, LeftView or phone_keypad.

NNNN is a four digit sequence number, 0000, 0001, 0002, 0003, etc. Numbers in the

sequence must be contiguous.

ext is a valid image file extension (bmp, tif, jpg, png).

When the investigation runs, the first time the image window executes it loads the first image file

in the sequence, according to the number in Starting image number. (By convention sequence

numbers start at 0000, but they do not have to. To start at a sequence number other than 0,

change Starting image number.) On each subsequent execution of the image window, the next

image file in the sequence is loaded. If Ending image number is –1, all the image files in the

sequence are loaded, then the first image is loaded again, and so on. If Ending image number is

set to a positive number, the image file with that sequence number will be the last image loaded

from the sequence, even if there are more files in the sequence.

Example
There are image files with the names widget0000.bmp, widget0001.bmp, widget0002.bmp, …,

widget0099.bmp, and widget7777.bmp.

If the image sequence settings are left at their defaults (Starting image number = 0, Ending

image number = -1), the image window will load, in succession, images widget0000.bmp

through widget0099.bmp, then start at widget0000.bmp again. Widget7777.bmp will not be

loaded, because its sequence number is not contiguous with widget0099.bmp.

Image window Page 6

v1.2 June 17, 2010

If the image sequence settings are changed to Starting image number = 23, Ending image

number = 87, the image window will load, in succession, images widget0023.bmp through

widget0087.bmp, then start at widget0023.bmp again.

Delay before load sets the minimum time that will occur between loading images in an image

sequence. You can set this to a higher value to get a better look at what’s going on in the

investigation when you run it.

� Reading
An image can be created

from the output of an

algorithm.

For example, the Color Map algorithm outputs a gray-scale image that maps the colors in a color

image to grayscale values. Behavior of the Reading option is algorithm-dependant.

Image logging

When enabled, image logging saves every acquired image to an image file. Logging images is a

good way to gather images that you can use later as an image sequence for off-line application

development and testing.

The default root file name is <image window name>-log-. You can change it to any valid root

file name. You can also change the log directory.

Log size determines how many images will be logged. Each image file is appended with an

index number, starting at 0000. With the settings shown above, the images would be named

imgA-log-0000.bmp, imgA-log-0001.bmp, …, imgA-log-0099.bmp.

 Saving an image to disk is a relatively slow process. You should not leave image

logging enabled when you deploy an investigation, unless you want or need to save every

acquired image and are willing to live with the increase in overall processing time.

Calibration and Alignment

Calibration and Alignment are explained in separate chapters.

Image window Page 7

v1.2 June 17, 2010

The image window toolbar

Add ROIs to the image window

ROIs define the pixels in an image window that you want to analyze. They are explained in the

chapter ROIs, Algorithms and Preprocessors.

Zoom out, reset to normal, zoom in

Save the image in the image window without overlay graphics to a file

Load an image from a file into the image window

Save the image in the image window with overlay graphics to a file

Start/stop camera acquisition for this

image window without processing

Display the

Options

dialog

Image window Page 8

v1.2 June 17, 2010

Deleting image windows

To delete an image window

• Click its “close” control

• Select it in the program window and hit the keyboard Delete key

or

• Right-click it in the program window and select Delete from the pop-up menu

 Deleting an image window destroys it and its contents completely – any work you

have done in the image window is lost. When you delete an image window, a message box gives

you the opportunity to cancel the deletion. You cannot restore a deleted image window – no

“undo.” (But remember Sherlock\Programs\Autosave.ivs!)

Acquisition timeouts

If a camera is selected for the image window source, you can specify what the investigation

should do if the camera does not acquire within a defined time. For information on acquisition

timeouts, see the chapter Acquisition timeouts.

ROIs, Preprocessors and Algorithms Page 1

v1.2 June 18, 2010

ROIs, Preprocessors and Algorithms

The second step in a machine vision application is extracting information from an image. This

could mean measuring an object (width, height, area, circularity, distance between features, etc.),

checking for part presence (for example, making sure a chip has been soldered onto a printed

circuit board), reading a barcode, reading a character string, checking for surface defects,

verifying colors, and so on.

ROIs
To extract information from an image, you select a set of pixels within the image to process, and

select an algorithm to apply to those pixels.

For example, if the purpose of an investigation is

to read the character strings on the label of this

part, only the pixels within the red box – the

region of interest, or ROI – need to be

processed.

Types of ROIs

There are two main types of ROIs: area and line.

Area ROIs
Area ROIs process the pixels they enclose, including the pixels on their borders.

There are six area ROI shapes.

Rectangle Polygon Circle Area

Annulus Torus User Mask

ROIs, Preprocessors and Algorithms Page 2

v1.2 June 18, 2010

Rectangle ROI

Rectangle ROI reading the barcode

Annulus ROI

Annulus ROI reading a character string

Polygon ROI

A Polygon ROI can be any shape

and can have any number of

vertices.

Polygon ROI locating and measuring bright objects

Torus ROI

The Torus ROI processes the pixels between its

two defining circles, but not the pixels inside

the inner circle.

Torus ROI counting the dark pixels in the outer

band only (not the spokes or “axle”)

ROIs, Preprocessors and Algorithms Page 3

v1.2 June 18, 2010

CircleArea ROI

The CircleArea ROI processes all

the pixels on its circumference and

inside the circle. (Compare to the

Circle line ROI.)

CircleArea ROI finding the center of the bright area

User Mask ROI

With the User Mask

ROI, you can define

areas within a

rectangular area that are

excluded from

processing.

User Mask ROI with torus-shaped

“don’t process” area (red

hashmarks) before processing

After processing

Line ROIs
Line ROIs process pixels along a line or lines. They are most often used to find edges.

There are two types of line ROIs, simple and compound.

Simple

Compound

Line ROI

Line ROI finding dark-to-light edges

Point Polyline Circle

 Line Arc

Rake Spoke Bullseye

Partial Spoke Rainbow

ROIs, Preprocessors and Algorithms Page 4

v1.2 June 18, 2010

Polyline ROI

A Polyline ROI can include any number of

vertices.

A Polyline ROI finding dark-to light and light-

to-dark edges on an irregularly-shaped object

Circle ROI

The Circle ROI processes only the pixels on its

circumference, not the pixels inside the circle.

(Compare to the CircleArea ROI.)

Circle ROI finding dark-to light and light-to-

dark edges

Arc ROI

Arc ROI finding dark-to light edges.

The Arc ROI processes the pixels along an arc.

The Point ROI processes a single pixel. There isn’t much to show.

ROIs, Preprocessors and Algorithms Page 5

v1.2 June 18, 2010

Rake ROI

A Rake ROI finding points along the edge of

a stamped-metal part.

A Rake ROI consists of a series of

parallel lines.

Spoke ROI

A Spoke ROI consists of a series of lines

radiating out from a center point.

Spoke ROI finding the edge points on a

circle

Partial Spoke ROI

A Parital Spoke ROI consists of a series

of lines radiating out from a center

point, along an arc.

PartialSpoke ROI finding edge points along a

curved corner. (The points are then used to find the

best-fit circle.)

ROIs, Preprocessors and Algorithms Page 6

v1.2 June 18, 2010

Bullseye ROI

The Bullseye ROI consists of a series of

concentric circles.

The Bullseye ROI processes only the pixels on

its component circles, not the pixels between

them.

Bullseye ROI finding the defect (dent) in an

object by finding light-to-dark edges

Rainbow ROI

The Rainbow ROI consists of a series of

concentric arcs.

The Rainbow ROI processes only the pixels

on its component arcs, not the pixels between

them.

Rainbow ROI finding the same defect

Every line ROI (except the Point ROI), and every individual line

within a compound line ROI, has direction, as shown by the

arrowhead. The pixels in a line ROI are processed from the

beginning of the line (no arrowhead) to the end of the line

(arrowhead). This is important when setting parameters for edge-

finding algorithms.

Adding ROIs

To add an ROI to an image window, click its button in the image window’s toolbar, then click the

number of points necessary to define the ROI. (See the table of Coordinate indices later in this

chapter.)

Naming ROIs

ROIs are assigned default names that indicate their type and order of creation: RectA, TorusA,

RectB, RectC, SpokeA, etc.

ROIs, Preprocessors and Algorithms Page 7

v1.2 June 18, 2010

To rename an ROI, double-left-click on it in the image window or on its

name in the program window to display its Edit dialog. Enter the new

name in the text box at the top.

You can also rename the ROI directly in the program window.

Left-click once on the name, wait briefly, then left-click again.

Enter the new name.

Deleting ROIs

To delete an ROI

• Select it in the image window or the program window and hit the keyboard Delete key

or

• Right-click it in the program window and select Delete from the pop-up menu

Deleting an ROI is an immediate and irreversible action. You are not given an opportunity to

cancel a deletion, nor can you “undo” a deletion.

ROIs, Preprocessors and Algorithms Page 8

v1.2 June 18, 2010

Preprocessors
Sometimes it is desirable or necessary to modify the pixels in an ROI before information is

extracted from them. A preprocessor modifies the pixels in an ROI, but does not extract

information.

For example, here a rectangle ROI calls the Normalize preprocessor to expand the gray scale

range of a dark image. Such preprocessing might be necessary to make further analysis by

Sherlock more robust, or merely to make the image more easily viewed by the user.

Assigning preprocessors
To view the list of preprocessors available for an

ROI, double-click on the ROI to display its Edit

dialog, then click on the drop-down button next to

any of the Preprocessor entries. (The list is the

same for all Preprocessor entries within an ROI.)

Select a preprocessor from the list assign it to the preprocessor entry.

ROIs, Preprocessors and Algorithms Page 9

v1.2 June 18, 2010

Preprocessor parameters
If a preprocessor has parameters you can set to control its operation – and many do – the

Parameters button to the right of the selected processor will be enabled. For example, the

Threshold preprocessor sets each pixel in an ROI to one of two values, depending on whether the

pixel is above or below a threshold. To set the threshold, below value and above value

parameters, click on the Parameters button to display the preprocessor’s Parameters dialog.

(For online help on a preprocessor’s parameters and functionality, highlight the entry and hit the

F1 key, or select HelpààààHelp topics from Sherlock’s main menu.)

To change a parameter value, you can enter the

value directly (N)

or select a variable that will contain the value

when you run the investigation (var).

Click on N and var to toggle between the two

modes.

Whether you hard-code a parameter value (N) or select a variable that will contain the value at

runtime (var) depends on how “flexible” the preprocessor has to be. For the Threshold

preprocessor, if all of the acquired images to be analyzed will exhibit the same grayscale

characteristics, you can probably hard-code the threshold value. But if the lighting can vary over

time or the material you are analyzing can become darker or lighter, you may have to calculate

the threshold within the investigation at runtime and assign it to a variable.

(For more information on variables, see the chapter Program, Readings and Variables.)

Preprocessor order
Each ROI can execute up to seven preprocessors. Preprocessors execute sequentially. The

modifications made by one preprocessor are inherited by the next, so their order is sometimes

important.

ROIs, Preprocessors and Algorithms Page 10

v1.2 June 18, 2010

This is the source image for the following examples.

Example 1

Here only an Invert processor has been applied.

(The Invert preprocessor inverts pixel values – 0 becomes

255, 1 becomes 254, 2 becomes 253 … 255 becomes 0 –

making a “negative image”.)

Here only a Threshold preprocessor has been applied.

(Threshold = 128, below value = 0, above value = 255)

Here the Threshold preprocessor follows the Invert

preprocessor.

Here the Invert preprocessor follows the Threshold

preprocessor.

There is no difference in the result.

ROIs, Preprocessors and Algorithms Page 11

v1.2 June 18, 2010

Example 2

Here the Canny preprocessor follows the Dilate

preprocessor.

Here the Dilate preprocessor follows the Canny

preprocessor. Big difference!

Deleting and rearranging preprocessors

Use the

button to delete

a preprocessor.

Use the buttons to

change the order of

preprocessor execution

Here only a Dilate preprocessor has been applied.

(The Dilate preprocessor “thickens” a bright line. Dilating

a dark line thins it. The effect is subtle on a full grayscale

image.

Here only a Canny preprocessor has been applied.

(The Canny preprocessor is an edge enhancer.)

ROIs, Preprocessors and Algorithms Page 12

v1.2 June 18, 2010

Algorithms
An algorithm extracts information from the pixels in an ROI, but does not modify them.

Assigning algorithms
To view the list of algorithms available for an ROI,

double-click on the ROI to display its Edit dialog,

then click on the drop-down button next to any of

the Algorithm entries. (The list is the same for all

Algorithm entries within an ROI.)

As with preprocessors, many algorithms have parameters you can set to control their operation.

For example, the Count algorithm counts the number of pixels of a specific value. To set the

value of the pixels to be counted, click on the Parameters button to display the algorithm’s

Parameters dialog.

(For online help on an algorithm’s inputs, outputs and functionality, highlight the entry and hit

the F1 key, or select HelpààààHelp topics from Sherlock’s main menu.)

To change a parameter value, you can enter

the value directly (N)

or select a variable that will contain the value

when you run the investigation (var).

Click on N and var to toggle between the two

modes.

Each ROI can execute up to three algorithms. Algorithms execute sequentially and

independently; one algorithm’s execution has no effect on another’s.

Use the button to delete an algorithm.

ROIs, Preprocessors and Algorithms Page 13

v1.2 June 18, 2010

ROI position and properties

Position and size

To reposition an ROI, move the mouse pointer over the

ROI until it turns into the move icon , click-and-hold

the left mouse button, and drag.

To resize an ROI, move the mouse pointer over one of

the ROI’s shape handles until it turns into the resize icon

, click-and-hold the left mouse button, and drag.

To rotate a rectangle or rake ROI only,

move the mouse pointer over the ROI’s

rotate handle until it turns into the resize

icon , click-and-hold the left mouse

button, and drag.

This corner

handle is being

dragged to resize

the ROI.

This handle is

being dragged to

rotate the ROI.

ROIs, Preprocessors and Algorithms Page 14

v1.2 June 18, 2010

You can fine-tune the position of an ROI on its Edit dialog’s Position tab.

Move the

entire ROI

one pixel

Move one of the ROI’s

defining coordinates one pixel

(see the Coordinate indices

table)

Click the coordinate index,

then click one of the direction

arrows

Move the ROI to the center of

the image window

Expand the ROI to encompass

the entire image window

(rectangle ROI only)

Prevent the ROI from being

moved accidentally

Change the number of lines in the ROI

(rake, spoke, partial spoke, rainbow, and

bullseye only)

Change the angle of the ROI

(rectangle and rake only)

The Snap button acquires a new image in the image window, but does not apply the ROI’s

preprocessors or algorithms.

The Apply button executes the ROI’s preprocessors and algorithms. This is a one-time-per-

image action; you must acquire a new image before you can click the Apply button again.

If you click the Repeat button, the Snap button repeatedly acquires a new image in the image

window and executes the ROI’s preprocessors and algorithms. The Repeat button is changed to

a Stop button; click the Stop button to exit this mode.

ROIs, Preprocessors and Algorithms Page 15

v1.2 June 18, 2010

ROI coordinate indices

An ROI’s position and size are defined by a set of coordinates. The coordinates can be

accessed programmatically by indices; each index refers to a single (x, y) coordinate.

 Coordinate index

 0000

0001 0002 0003

ROI type

Point Point

Line Start End

Circle Center Point on circle

Arc Start point of arc End point of arc Point on arc

Rake Upper left Lower right

Spoke Center Start point of one

line

End point of one

line

Partial Spoke Start point of arc End point of arc Point on inner or

outer circle

Point on outer

or inner circle

Rainbow Start point of arc End point of arc Point on inner or

outer arc

Point on outer

or inner arc

Bullseye Center Point on inner or

outer circle

Point on outer or

inner circle

Rectangle and

User Mask
1

Upper left Lower right

Annulus Start of arc End of arc Point on inner or

outer arc

Point on outer

or inner arc

Torus Center Point on inner or

outer circle

Point on outer or

outer circle

Circle Area Center Point on circle

Polygon and

Polyline

One for each vertex, including the start and end points; double-click the end

point

1
 Resizing a User Mask ROI is not recommended, as it can lead to unexpected movement of the

“don’t processes” areas within the rectangle. For this reason, it is drawn without handles in its

corners, thus preventing interactive resizing. You can, with care, resize it by manipulating its

coordinates on the Position tab.

ROIs, Preprocessors and Algorithms Page 16

v1.2 June 18, 2010

Properties

You can extract information about the pixels in

the ROI and turn some of its graphics off and

on from the Edit dialog’s Properties tab.

Display Graph

Histogram
For monochrome area ROIs, clicking the Histogram button displays a graph of the count of each

pixel value (intensity) in the ROI. The x-axis shows the range of pixel values (0 to 255), and the

y-axis shows the count of pixels at each value. The histogram does not show pixel positions.

In this ROI, most of the pixels in RectA have values between about 60 and 240. The peak to the

right is composed mostly of the light-gray pixels outside the cross (values from about 200 to

240), and probably a few inside.

ROIs, Preprocessors and Algorithms Page 17

v1.2 June 18, 2010

The histogram can be useful for determining what value the threshold parameter of a

thresholding preprocessor should be. For this ROI, a threshold of about 190 would separate the

darker-gray cross from the lighter-gray background.

You can reduce

the range of the

displayed

intensities by

changing the

values in the

Min / left and

Max / right
boxes and

clicking the

Apply button.

To “zoom in” on any area of the histogram, click the X/Y Zoom button; then click, drag, and

release the mouse pointer over the area of interest. Click the X/Y Zoom button again to exit

zoom mode.

Click the Reset Zoom button to return the histogram to its full view.

To determine the exact pixel count at a particular intensity

• move the mouse pointer over the y-axis until it turns into the select icon

• click the left mouse button once

• move the mouse pointer to the left or right until it turns into the arrow icon
• click the left mouse button once

A horizontal detail line is drawn that you can drag up and down.

To determine the exact intensity point on the x-axis

• move the mouse pointer over the x-axis until it turns into the select icon

• click the left mouse button once

ROIs, Preprocessors and Algorithms Page 18

v1.2 June 18, 2010

• move the mouse pointer up or down until it turns into the arrow icon
• click the left mouse button once

A vertical detail line is drawn that you can drag left and right.

Example
The X/Y Zoom button was clicked to zoom in on an

area of the histogram.

Horizontal and vertical lines were added and dragged to

determine that the pixel count at intensity 189 is 32.

(The detail lines display floating-point numbers, but

there is no such thing as a noninteger intensity or pixel

count; round down to the nearest integer.)

(The color of the histogram curve was changed to red

by double-clicking the left mouse button inside the

histogram to display its Properties dialog, clicking the

Curve tab, and changing the Linecolor.)

To delete a detail line, move the mouse pointer over it until it turns into the select icon , then

click the right mouse button.

For color area ROIs, clicking the Histogram button displays a graph of the counts of the

component red, green and blue values in the ROI. The histogram does not show how these

values are combined to make any particular (red, green, blue) pixel.

Intensity
For monochrome area ROIs, clicking the Intensity button displays a three-dimensional graph of

the position and intenisty of each pixel.

For color area ROIs, clicking the Intensity button displays a three-dimensional graph of the

position and intensity of each pixel, with its corresponding color mapped onto its intensity.

You can reorient the display by holding down the left mouse button and dragging the mouse.

ROIs, Preprocessors and Algorithms Page 19

v1.2 June 18, 2010

Monochrome intensity display Color intensity display

Profile
For simple monochrome line ROIs (line, arc, circle, polyline), a Profile button replaces the

Histogram button. Click this button to display graphs of the pixel intensities and gradient (rate

of change) along the line.

Intensity
From pixel 0 to approximately pixel 15, the pixel intensity of LineA is just above 200. At about

pixel 15 (the left-side dark border), the intensity drops down to about 100, then up to about 160

Gradient

Intensity

ROIs, Preprocessors and Algorithms Page 20

v1.2 June 18, 2010

(the gray “inside” of the cross), then down to about 100 again at about pixel 47 (the right-side

dark border), then back up to 200-plus from about pixels 48 to 62.

Gradient

The gradient graph shows not absolute pixel intensity, but rate and direction of change. The first

significant change in LineA occurs at the transition from the light gray background to the left-

side dark border, a negative gradient (light to dark). The next significant change occurs at the

transition from the dark border to the gray “inside” of the cross, a positive gradient (dark to light).

And so on.

 The Histogram, Intensity and Profile displays are not available for compound line

ROIs.

 The Histogram, Intensity and Profile displays are available only while you are

developing the investigation; they cannot be displayed while the investigation is running.

Color

The Color button is enabled for color images only. Clicking this button displays a three-

dimensional color cube with the ROI’s pixels arranged according to their (red, green, blue)

components.

Alignment

For information on alignment, see the chapter Landmarks and Alignment.

Display

Unchecking the Outline box disables display of the ROI’s outline and label.

Unchecking the Annotations box disables display of the annotations made by certain algorithms.

ROIs, Preprocessors and Algorithms Page 21

v1.2 June 18, 2010

ROI with outline (green rectangle)

and annotations (red crosses and

purple rectangle) enabled.

The red crosses are the centers of

dark objects found by the

Conncectivity-Binary algorithm;

the purple rectangle is the bounding

box of the largest dark object.

ROI with outline disabled,

annotations enabled.

ROI with outline and

annotations disabled.

The most common reason

for turning off outlines

and annotations is to

present a less-cluttered

image to the user.

An image window with

more than a couple of

ROIs displaying their

outlines and annotations

quickly becomes quite

“busy”.

Disabling an ROI’s outlines and annotations has no effect on its execution – all preprocessors and

algorithms are still executed.

Disabling outlines and annotations may save some very small amount of processing time, since

they do not have to be redrawn on every image update.

ROIs, Preprocessors and Algorithms Page 22

v1.2 June 18, 2010

ROI Tolerance

You can define conditions that determine

whether an ROI passes or fails on the ROI’s

Tolerance tab.

For information on ROI tolerance, see the

chapter Instructions.

 An image window can contain as many ROIs of as many types as you need.

To preprocess or not to preprocess?

Remember that an ROI’s preprocessors are executed before its algorithms, and that preprocessors

modify the pixels in the ROI. You must be careful that you do not apply preprocessors that

modify the pixels so much or in such a way that the algorithms return invalid information.

On the other hand, it is sometimes necessary or beneficial to apply preprocessors before the

algorithms, to “clean up” the image or enhance features.

Algorithms named Something-Binary (for example, Connectivity-Binary) require binarized

input, in which the pixels in the ROI are either 0 (black) or 255 (white). This is usually achieved

by applying one of the threshold preprocessors.

Program, readings and variables Page 1

v1.2 June 30, 2010

Program, Readings and Variables

The Program

As you add ROIs to an image window and set their preprocessors and algorithms, they appear in

the Program pane, within the scope ({ Begin / } End) of the image window. When you run the

investigation, the ROIs’ preprocessor and algorithms are executed in order from top to bottom.

When you run this investigation in Continuous

mode

Image window imgA acquires an image

ROI RectA executes the Threshold

preprocessor, then the Median preprocessor,

then the Connectivity algorithm

The values count through ellipse roundness[]

are returned by the Connectivity algorithm

The investigation returns to the beginning and

repeats the process

Readings

Every algorithm returns at least one value or “reading”; some algorithms return may readings.

There are five types of readings: Number (N), Boolean (B), String (S) Point (P), and Line (L).

Readings can be singular (N) or arrays (N[]). In the preceding program, the Connectivity

algorithm returns a single number count (the number of objects the algorithm found); a single

point centroid[0] (the coordinate of the centroid of the first object); an array of points centroid[]

(the coordinates of the centroids of all of the objects); an array of numbers area[] (the areas of all

of the objects); etc.

Program, readings and variables Page 2

v1.2 June 30, 2010

To view the contents of a reading (after

running the investigation at least once),

hover the mouse pointer over the reading.

You can display readings in the Watch

pane. To display a reading, drag-and-

drop it from the Program pane. (If the

Watch pane is not visible, select

View����Watch from the main menu .)

The reading’s value is updated every

time the reading changes.

Variables

As in any programming environment, variables in Sherlock are used as temporary placeholders

for data. The types of variables you can create are the same as the types of readings algorithms

can generate: Number, Boolean, String, Point and Line (singular and arrays for all types).

To create a variable, select the desired

type from the Variables pane’s toolbar.

(If the Variables pane is not visible,

select View����Variables from the main

menu.) Variables are assigned default

names and initial values.

Double-left-click on a variable to display its edit dialog. You

can rename the variable, set its initial value and add a

comment. It is a good idea to give variables meaningful

names – for example, numBadPartCount instead of varA.

You cannot directly modify algorithm readings – for example, you cannot delete elements from

an array of numbers returned as a reading from an algorithm – but you can modify data in

variables, so one of the most common uses of variables is as holding places for readings.

Program, readings and variables Page 3

v1.2 June 30, 2010

To save a reading to a variable,

double-left-click on the reading

to display its edit dialog. The

Store in variable drop down

list shows only the variables of

the same type as the reading.

(arrObjectAreas and varD are

both type N[])

Or right-click on the reading to

display its Connect value menu.

When you run the investigation, variables

connected to readings are filled with the readings’

data.

Double-left-click on a variable to view its

contents.

To delete a variable, select it in the Variables pane

and hit the keyboard’s delete key. If you select a

variable that is used anywhere in the program,

you will be warned!

 You can drag-and-drop variables within the Variables window to put them in any order

you want. You can double-click on the Variable window’s Name, Value and Comment column

headings to automatically order the variables.

Program, readings and variables Page 4

v1.2 June 30, 2010

Rearranging program elements

As you add elements to the program, you may find that you need to rearrange them for reasons of

program logic. You can move elements with the drag-and-drop method.

To move ROI LineA before

RectA, select it, hold down the left

mouse button…

… drag it on top of RectA…

… and release the mouse

button.

Copying program elements

You can copy individual program elements. When you create a copy of an element, the new

element inherits the properties of the source element. It is assigned a new name, since two

elements cannot have the same name.

To make a copy of RectA,

select it with the mouse, click

the right mouse button, and

select Copy from the pop-up

menu.

Select the element after which you

want to create the copy, click the

right mouse button, and select Paste

(Selected only) from the pop-up

menu.

The new element is named RectA_A.

After you make a copy of an element, you can edit it to change its name and functionality.

Changes made to a copy of an element do not affect the source element, and vice-versa.

Program, readings and variables Page 5

v1.2 June 30, 2010

You can copy entire sections of the program tree.

To make a copy of imgA and all

the elements it contains, select it

with the mouse, click the right

mouse button, and select Copy

from the pop-up menu.

Select the element after which

you want to create the copy,

click the right mouse button, and

select Paste (Tree) from the pop-

up menu.

A new image window is created;

it contains copies of all of the

elements from the source image

window.

 When you copy and paste program elements, you also copy and paste their settings.

It is up to you to change the settings of any preprocessors, algorithms and instructions when you

copy them so that they perform as you want them to. This is particularly true for instructions’

inputs. (For information on instructions, see the chapter Instructions.)

This code snippet shows one image

window with one rectangle ROI executing

the Threshold preprocessor and the

Connectivity – Binary algorithm. The

array of areas from Connectivity- Binary

is passed as input to the Statistics : Mean

Array instruction to calculate the average

object area.

Program, readings and variables Page 6

v1.2 June 30, 2010

The same functionality was needed in a

second image window, so RectA and

MeanArrA were copied from imgA and

pasted into imgB. But note that the input

to the new instance of Statistics : Mean

Array is still the array of areas from

Connectivity – Binary in RectA in

imgA. The investigation will execute,

and MeanArrA_A will return an average

value, but not the correct one! You have

to change the numbers input to

RectA_A.Connectivity – Binary.area[].

 You can copy-and-paste program elements, but you cannot cut-and-paste them. To

move program elements, copy-and-paste them, then delete the originals.

Determining variable use

In the process of creating and debugging an investigation, you may create variables that you

never use, or you may create variables and forget where they are used. To determine whether and

where a variable is used, move the mouse pointer over it in the Variables window.

The variable numGoodPartCount is

referenced by three instructions,

SetNumberA, AddA and SetNumberB. It is

referenced twice by AddA (as the input

number andas the output sum).

The variable strTodaysDate is not used in the

investigation.

Locating program elements

A typical Sherlock investigation contains hundreds of lines of code, spread across several

subroutines. (For information on subroutines, see the chapter Instructions.) You may want or

need to know where a particular element is located. Continuing the previous example, you may

need to locate the instruction SetNumberA to see how it uses the variable numGoodParts.

Program, readings and variables Page 7

v1.2 June 30, 2010

First, from Sherlock’s main menu, display the Find Results

window.

Next, from Sherlock’s main menu, open the Find Name

dialog.

Because SetNumberA is an instruction (formula), it will be in either the Main routine or a

subroutine.

 It is in the subroutine Init

Double-click on SetNumberA in the Find Results window

to show its location in the Program.

 The Find Name utility does not show where variables are used in the investigation.

The only place it finds variables is in the Variables window.

Instructions Page 1

v1.2 July 20, 2010

Instructions

Instructions manipulate data, perform calculations, control program flow, communicate with

hardware devices, write to and read from text files, and perform many other useful tasks.

Instructions are divided into functional groups, displayed as folders. Because there are many,

many instructions, and because the collection of instructions is constantly expanding, neither all

of the groups nor all of the instructions can be discussed here. Here is a brief overview of the

functional groups as of Sherlock 7.1.4.x.

Functional group Contains instructions to
Array : Data type Manipulate arrays of Data type (Boolean, Line, Number, Point, String).

These instructions manipulate the structures of arrays; they do not process

their contents.

Boolean Perform Boolean operations, such as AND, OR, and XOR.

Geometric Perform geometric calculations, such as fitting points to a line or circle,

calculating point-to-point distance, and finding the intersection point of two

lines.

IO : Target Communicate with Target devices or objects, including cameras, ROIs,

PLCs and text files.

Numeric Perform mathematical operations, such add, multiply, divide and compare

numbers; and initialize variables

Statistics Perform statistical operations on sets of numbers.

String Manipulate strings, such as concatenate, search for substrings, and trim.

Trigonometric Perform trigonometric operations, such as cosine, arccosine, convert

radians to degrees, and convert degrees to radians.

Adding instructions

To display the list of instructions, select View

�Instructions from the main menu. Open a folder

to see the instructions in the group. An

instruction’s name gives you some idea what the

instruction does, although for the sake of brevity,

some of the instruction names are a bit cryptic.

If you hover the mouse pointer over an instruction,

a pop-up window describes the instruction’s

functionality, inputs, and outputs.

Instructions Page 2

v1.2 July 20, 2010

Drag-and-drop an instruction on top of the program element

after which you want the instruction to appear. (In this

example, the Statistics : MeanArr instruction was dropped

on top of RectA. The preprocessors and algorithm are

members of RectA; they are not program elements

themselves.)

You can also add an instruction

by right-clicking an existing

program element to display the

instruction pop-up menu.

Navigate through the menu to the

instruction you want, then left-

click it. The instruction is added

after the program element you

right-clicked to display the menu.

Renaming instructions

To rename an instruction, left-click it once, wait

briefly, then left-click it again. Enter the new name.

Or double left-click the instruction to display its edit

dialog, and enter the new name in the text box.

Instruction inputs and outputs

An instruction’s inputs are denoted by red inward-pointing triangles.

Its outputs are denoted by green outward-pointing triangles.

Not every instruction requires inputs, and not every instruction generates outputs.

The characters before an input or output name tell you what data type the input needs or the

output returns: Number (N), Boolean (B), String (S) Point (P), and Line (L). Inputs and outputs

can be singular (N) or arrays (N[]).

Instructions Page 3

v1.2 July 20, 2010

For example, the MeanArr (Mean Array) instruction

takes an array of numbers as input (N[] numbers),

and returns a single number (N avg), the average of the

numbers in the array.

Defining input values

To assign a source to an

input, right-click the input

to display the Connect

value menu. Only

variables and readings of

the correct type are

displayed. Select the input

from the list.

You can also assign a source by dragging-and-dropping a valid

candidate from elsewhere in the program. Here, width[] was

dragged from RectA.Connectivity - Binary and is being dropped

on top of the input.

This instruction calculates the average of the

widths of the objects found by RectA’s

Connectivity – Binary algorithm. The result is

available from the output avg.

The Watch window

An easy way to view the value of an

instruction’s output is to drag-and-drop it

from the Program to the Watch window.

To display the Watch window, select View

�Watch from the main menu

The Watch window is updated every time a

value changes.

Instructions Page 4

v1.2 July 20, 2010

Program flow instructions

The General folder contains instructions that, for the most part, control

program flow. These instructions are also available from the Program

window’s toolbar.

To add a program flow instruction to the program:

Drag-and-drop the instruction from the General folder to the

Program window onto the program element after which you want

to add the instruction.

or

Right click an existing program element element after which you

want to add the instruction to display the Instruction pop-up menu,

and left click the instruction.

or

In the Program window, left-click to select the program element

after which you want to add the instruction, then left click the

instruction’s button in the toolbar.

If and If-Else

The If and If-Else instructions conditionally execute instructions based on the evaluation of a

conditional expression.

When you add an If or If-Else instruction and double-left-click it, the Edit conditional

expression dialog is displayed.

Instructions Page 5

v1.2 July 20, 2010

The default conditional expression is FALSE. You

create a real conditional expression from single-

value algorithm readings, instruction outputs and

variables; the logical operators (==, !=, AND, OR,

etc.); numbers; and character strings, that evaluates

to TRUE or FALSE at runtime.

In the conditional expression, readings, outputs and variables must be surrounded by square

brackets ([]). If you drag-and-drop a reading or variable from the Name list on the right of the

dialog into the conditional expression box, the brackets are added automatically.

Do not precede the conditional expression with the word “If” — for example,

If [MeanArrA.avg] < 10. The “If” is implied.

 The Name list on the right of the dialog contains every single-value reading and

variable that exists in the investigation, not just those that will contain “fresh” data when the If or

If-Else instruction is executed. You are responsible for creating a conditional expression that

makes sense at the time it is evaluated.

You can add any program elements you want to the If and Else branch of an If-Else instruction.

If the logical expression evaluates to TRUE when

the instruction is executed, the If branch of the If-

Else is followed. If the expression evaluates to

FALSE, the Else branch is followed. (In this

example, Display error message and Display

success message are instances of the

IO:Reporter:Print instruction.

A simple If instruction has no Else branch.

When you add the first program element to an If instruction, it is placed at the same level as the If

instruction, not within its scope.

This code snippet is meant to calculate the average value of an array

of numbers only if there are one or more objects in the array, as

determined by the If instruction One or more objects? But when

the MeanArr instruction is added, it is placed at the same level as

the If instruction. Its execution is not conditional on the result of

the If instruction – it is always executed.

Here the MeanArr instruction is drag-and-dropped

on top of the If instruction.

Instructions Page 6

v1.2 July 20, 2010

Now the MeanArr instruction executes only if the If instruction

evaluates to TRUE.

Hint: You can leave either branch of an If-Else instruction empty, so you may as well always

use If-Else instead of If instructions.

Test

The Test instruction uses the same conditional expression dialog as the If and If-Else statements.

It has one Boolean output, which will be either True or False.

Verify serial number compares the string returned

by the Barcode 1D algorithm to the expected barcode.

One use of the Test instruction is to generate pass/fail results for several conditions, and use the

results later to determine whether the overall inspection succeeded or failed.

Each instance of Test compares the result from an

algorithm to an expected value. This is the conditional

expression for ifelseA:

The Test instructions could be removed, and the

conditional expression for ifelseA changed to this:

Most people feel that the first is easier to read and

manage, but the choice is yours.

Instructions Page 7

v1.2 July 20, 2010

While

The While instruction repeatedly executes the instructions within its scope as long its conditional

expression evaluates to TRUE. It is useful for, among other things, extracting data from arrays.

The While instruction uses the same conditional

expression dialog as the If and If-Else instructions.

In this example, a number variable intIndex was

created to access individual elements of

RectA.Connectvity.area[]. As long as intIndex is

less than the number of elements in the array (the

count of objects found), the While loop executes the

instructions within its scope. (Array indices start at

zero).

Initialize intIndex to 0 is a renamed

instance of the Numeric : SetNumber

instruction.

Get Connectivity.area[intIndex] is a

renamed instance of the Array:Number

GetAt instruction. The element

Connectivity.area[intIndex] is extracted

and saved to the variable intArea.

After some analysis is performed (More

instructions), intIndex is incremented with

an instance of the Numeric Add instruction.

The end of the loop is reached, so control

returns to the top of the loop. When

intIndex is equal to count, the loop is

exited, and Display message is executed.

Instructions Page 8

v1.2 July 20, 2010

Jump and Label

You can use the Jump and Label instructions to interrupt normal program flow.

A Label is a “do nothing”

instruction that can be

inserted anywhere and

renamed to anything.

The Jump instruction’s

dialog shows all labels.

Within the While loop, if an element of the

Connectivity.area[] array is less than 5, the loop is

exited immediately.

 Careless use of the Jump/Label combination can lead to unexpected and hard-to-

diagnose logic problems (“spaghetti code”). It is always possible to write a program such that the

Jump/Label combination is unnecessary. The preceding example could be rewritten to avoid the

use of the Jump/Label combination:

The While instruction’s logical expression was rewritten to check for both intIndex being within

the range of the array, and the last-read area being greater than or equal to 5. If either clause

evaluates to FALSE the loop is exited. (Note that intArea is initialized to a high value

[99999999], to ensure that the first time the logical expression is evaluated, the [intArea]>=5

clause evaluates to TRUE.)

Instructions Page 9

v1.2 July 20, 2010

Subroutine Call and Return

For the sake of program readability and logic, it is a good idea to divide the program into

subroutines.

To add a subroutine to the program, click the Sub button on the Program window’s toolbar or

drag-and-drop the Subroutine instruction from the Instruction window’s General folder. An

empty subroutine with a default name (subA, subB, etc.) is created.

Renaming subroutines

You can and should rename subroutines. It is not uncommon for an investigation to contain

several subroutines, and the names subA, subB, subC, etc., give no indication what the

subroutines do.

To rename a subroutine, click it once, wait

briefly, click it again, and enter the new name

Or double left-click the instruction to display

its edit dialog, and enter the new name in the

text box.

Adding code to subroutines

A subroutine can contain any program

elements.

Here the code from the If branch of the If-

Else instruction was copy-and-pasted from

the Main routine to a subroutine named

Average width too low.

Back in the Main routine, the instructions

Display error message and Stop were

replaced with a Call instruction. When you

double-left-click on a Call instruction, its

dialog shows all the subroutines in the

program. Select the subroutine to which you

want to pass control.

Instructions Page 10

v1.2 July 20, 2010

Now when you run this investigation in

continuous mode

ImgA acquires an image

RectA executes its preprocessors and algorithm

MeanArrA calculates the average of the

values in width[]

If the average width is less than 10, the

subroutine Average width too low is called;

otherwise Display success message is executed

The investigation returns to the beginning and

repeats the process

Returning from a subroutine

At the end of a subroutine, control automatically returns to the calling routine, where program

execution continues.

If a part passes inspection, the subroutine Good part is called; it if

fails, the subroutine Bad part is called.

The subroutine Good part pulses a signal on digital

output channel 4, and increments the count of good

parts. The subroutine has reached its end, so control

returns to…

Instructions Page 11

v1.2 July 20, 2010

… the instruction after Good part? (AddB) and

execution continues.

The Return instruction causes an immediate return from a subroutine to its calling routine.

This Return instruction causes an immediate return

from the subroutine if the height test fails. The code

that tests the width is not executed.

Control is automatically returned to its

calling routine at the end of a

subroutine. This Return instruction is

unnecessary, but harmless.

 Program execution always starts in the Main routine. You cannot rename the Main

routine, nor delete it.

Event-driven subroutine execution

A subroutine can be executed automatically based on an event. Suppose you want to write the

good average widths to a text file instead of executing the Display success message instruction.

Instructions Page 12

v1.2 July 20, 2010

The IO:File Open instruction is added to the

program.

Every open file must be associated with a file handle; up to 10

handles (0 – 9) can be active at once. Select the file handle from

the drop-down list that is displayed when you double-left click on

the handle input.

The Display good width message instruction is

replaced with the IO:File Write instruction.

The same file handle with which the file was

opened must be selected.

When defining a string to write, surrounding a

variable name with square brackets [] means that

the value of the variable is accessed. You cannot

access readings, only variables, so the avg output

of MeanArrA was saved to the number variable

widthAverage.

Instructions Page 13

v1.2 July 20, 2010

Now when his investigation is run in continuous

mode

The file C:\Test\Width.txt is opened

ImgA acquires an image

RectA executes its preprocessors and algorithm

MeanArrA calculates the average of the values in

width[]
If the average width is less than 10, the subroutine

Average width too low is called; otherwise the

average is written to the file

The investigation returns to the beginning and

repeats the process

But… It doesn’t make sense to repeatedly open the file at the start of every pass through the

program. (In fact, the program will run correctly, but every execution of Open after the first one

will generate a runtime warning.)

To open the file just once, the Open instruction

is moved to a subroutine. Double-left-click the

subroutine name to display its options dialog,

and select Execute after loading or Execute

before continuous investigation.

If you select Execute before continuous

investigation, the subroutine is called

automatically every time you click the Run

continuously button on the main toolbar.

If you select Execute after loading, the

subroutine is called automatically when you

select Program����Open from the main menu

and load the investigation.

Instructions Page 14

v1.2 July 20, 2010

Because the file is opened automatically after the

investigation is loaded, the IO:File Open instruction in the

Main routine is no longer necessary.

The file is closed automatically when the investigation is

unloaded. (You could add code to explicitly close the file

with an IO:File Close instruction based on some condition,

such as the number of passes through the program, an error

condition, etc.)

Exporting and importing subroutines

As you develop more and more Sherlock investigations, you may find yourself recreating the

same or similar pieces of code over and over again. With some forethought, you can design

useful subroutines that can be saved to separate files and inserted into new investigations as

needed.

When you right-click on a subroutine name, the Export and

Import items appear at the top of the pop-up menu.

Selecting Export displays the

Export subroutine dialog, with

which you can save the

subroutine to an .ivb file.

To import a subroutine into an investigation, right-click on any of the investigation’s routine

names and select the Import item from the pop-up menu. From the Import subroutine dialog,

select the .ivb file you want to import. The contents of the .ivb are imported as a new subroutine,

not into the routine you clicked to display the pop-up menu.

Before the subroutine is imported, a dialog box asks you

whether you want to create subroutine-specific variables.

If you click the Yes button, variables that are referenced

in the subroutine are created, prepended with the name of

the subroutine and an underscore (e.g., Open file_), and

references to the variables in the subroutines are given

the new names. If you click the No button, no variables

are created, and references to variables are undone.

Instructions Page 15

v1.2 July 20, 2010

This subroutine was exported to Init.ivb…

… and imported into a new investigation, with

the question Create subroutine specific

variables? answered Yes. Note the new names

of the variables.

After a subroutine is imported, you can rename the variables to their original names, provided

there are not already variables in the investigation with the same names.

 Variable names in text embedded in instructions – If, If-Else and While conditional

expressions; the text for IO : Reporter : Print and IO : File : Write, etc. – and JavaScript

modules are not updated to the new names. It is up to you to update these names.

 References to non-variable program elements – image windows, ROIs, subroutines,

alignment objects, calibration objects – are not maintained when you export and import

subroutines. You will have to redefine these references.

An .ivb file is a binary encoding of a subroutine; you cannot open it outside of Sherlock.

Instructions Page 16

v1.2 July 20, 2010

This routine executes the Connectivity – Binary

algorithm from the ROI RectA. If at least one

object was found, this routine calls the subroutine

Any holes? …

… which determines whether any of the

objects has holes, by calling an instance of

the Statistics : SumArr instruction with

RectA.Connectivity – Binary.hole

count[] assigned to its numbers input. A

sum greater than 0 means indicates a bad

part, in which case a pulse is sent out on

digital output channel 2.

The sum output of the SumArr instruction

is saved to the variable

numTotalHoleCount.

When you export Any holes? to an .ivb file,

import it into a new investigation, and answer

Yes to Create subroutine specific variables?,

numTotalHoleCount is renamed

Any holes?_numTotalHoleCount.

The reference to RectA.Connectivity –

Binary.hole count[] is undone. You must

redefine the input to the numbers parameter.

If you import a subroutine into an investigation that already contains elements with the same

names as elements in the subroutine, the elements in the subroutine are automatically renamed by

appending _A or _B or _C, etc. to them.

Instructions Page 17

v1.2 July 20, 2010

Stop

The Stop instruction causes an immediate halt of the investigation. The current iteration of the

investigation is not completed, but subroutines marked Execute after continuous investigation

are called if the investigation is running in continuous mode.

This behavior is slightly different than both the main toolbar button Stop after completing

current iteration, which allows the current pass through the investigation to complete, and

allows subroutines marked Execute after continuous investigation to be called; and the toolbar

button Abort, which causes an immediate halt of the investigation, and suppresses calls to

subroutines marked Execute after continuous investigation.

Remark

A good developer comments her code, with the

thought that at some point someone may need to

figure out how the program works. Use the Remark

instruction with wild abandon. It is non-executing, so

it will not increase investigation execution time.

ROI Tolerance

Every ROI has a Tolerance tab on which you can define a condition that determines whether the

ROI passes or fails.

Check Enable Pass/Fail output to

enable the Edit button.

Click the Edit button to display the

same Edit conditional expression

dialog as for the If, If-Else, and

While instructions.

Instructions Page 18

v1.2 July 20, 2010

The ROI RectA

executes the algorithm

Count. If the returned

pixel count is less than

28000, the conditional

expression evaluates to

TRUE.

In the program, the ROI displays a new reading, pass, which will

return TRUE or FALSE, the state of the conditional expression.

Either immediately after the ROI execution or later in the program, you can test the ROI’s pass

reading, either by itself or in combination with other readings.

Here, the pass readings from

two ROIs are tested in the

conditional expression of an

If instruction.

Although the Name list shows every single-value reading and variable that exists in the

investigation, not just the readings from the ROI’s algorithms, the idea is to create an expression

that evaluates only results returned by the ROI’s algorithms to determine whether the ROI met

some pass/fail criteria. Otherwise, if you want to evaluate results returned by algorithms from

several ROIs, you may just as well add If-Else or Test statements to the program.

Monitor and Reporter Page 1

v 1.1 April 16, 2008

Monitor and Reporter

The Monitor
The Monitor displays runtime information, such as warnings, errors, and execution times. To
display the Monitor, select View View����Monitor from the main menu.

You can select for display only the information
that is of interest to you.

Observing execution times can sometimes aid you in finding an application bottleneck.

 Updating the Monitor can add several milliseconds to the investigation execution time.
The Monitor should not be displayed when an investigation is deployed.

Turn
reporting on

/ off

Clear Monitor
display

Save
contents
to file Select

monitoring
options

Monitor and Reporter Page 2

v 1.1 April 16, 2008

The Reporter
The Reporter is a text window to which you can write with the IO:Reporter Print instruction.
To display the Reporter, select View����Reporter from the main menu.

The area of each object found by the
Connectivity algorithm is printed to the
Reporter from within the While loop.
The IO:Reporter Print instruction writes a
single line followed by a carriage return and
line feed.

When defining a string to print, surrounding a variable name with square brackets [] means that
the value of the variable is printed. You cannot print readings, only variables.

Clear
display

Save contents to
a file

Debugging Page 1

v1.2 July 20, 2010

Debugging

When developing and testing an investigation, it is sometimes desirable – or necessary – to step

through the program a line at a time, or at least very slowly, to find the source of a problem.

Combinations of Sherlock’s debug options, breakpoints, and execution options allow you to run

an investigation in various debug modes.

Highlight executed instructions mode

Click the Highlight executed instructions button.

Click either the Run once or Run continuously button.

The investigation runs at close to normal speed, but instructions are highlighted as they are

executed.

Slow mode

Click the Slow down execution button.

Click the Run once or Run Continuously button.

The investigation is executed at slow speed. It is much easier to see the update of the Watch,

Variables, Monitor, and Reporter panes.

Single step mode

Click the Single step execution mode button.

Single step

execution

mode

Execute

single

instruction

Highlight

executed

instructions

Slow down

execution

Debugging Page 2

v1.2 July 20, 2010

Click the Run once or Run Continuously button.

Repeatedly click the Execute single instruction button to execute one line at a time, or

click the Single step execution button mode to resume normal execution.

Breakpoints

A breakpoint marks an instruction at which execution pauses when reached.

To add a breakpoint, right-click

the instruction and select

Toggle Breakpoint on the pop-

up menu.

A breakpoint is marked with a

red dot.

When you click the Run once or Run continuously button, the program executes until the first

breakpoint. The investigation is automatically put into single step mode, and the Run once and

Run continuously buttons are disabled. To continue execution to the next breakpoint, click the

Single-step execution mode button. To execute one instruction at a time, click the Execute

single instruction button.

To remove a breakpoint, right-click the instruction again and select Toggle Breakpoint, or click

Remove all Breakpoints.

 Breakpoints are not saved when you close the investigation.

Ending debug

To end program execution while in the middle of a debug session, click the Abort

button.

Landmarks and alignment Page 1

v1.1 April 16, 2008

Landmarks and alignment

A typical machine vision application requires the analysis of the same features in a series of
images. Because of the nature of motion control and image acquisition equipment, or of the
target object itself, the features to be analyzed are sometimes in a slightly or considerably
different place in each image. An ROI simply analyzes the pixels inside it; there is no way for it
to “know” whether they’re the right pixels, so a shift or rotation of the object to be analyzed can
result in a “false bad” result.

Here a rectangle ROI is positioned to read the barcode on a book with the Barcode 1D algorithm.

Landmarks and alignment Page 2

v1.1 April 16, 2008

If the book shifts horizontally from acquisition to acquisition, the barcode may not be within the
ROI, and therefore may not be read.

To ensure that ROIs analyze the correct pixels, you can create an alignment scheme to move the
ROIs relative to one or more points that can be found reliably in every image.

If the pixels to be analyzed can shift only horizontally and/or vertically, one point is sufficient to
measure the amount of shift.

Landmarks and alignment Page 3

v1.1 April 16, 2008

If the pixels to be analyzed can rotate as well as shift, two points are necessary to calculate the
degree of rotation.

The first step in creating an alignment scheme is to identify the point or points – landmarks – that
can be found in every image.

In the book image, the left edge of the barcode label can be found with a line ROI executing the
First Edge algorithm. 100 was chosen for the algorithm’s edge strength parameter after
analyzing the magnitude and direction of the change in the pixel intensity at the label boundary in
the ROI’s Profile display.

An alignment scheme is created on the Alignment page of an Image Window’s Options dialog.

Landmarks and alignment Page 4

v1.1 April 16, 2008

Click the Create alignment button to create an empty alignment scheme. By default, alignment
schemes are named alignmentA, alignmentB, etc. Here the alignment scheme was renamed
alignLeftEdge.

All single point readings are candidates for inputs to alignment schemes. The point found by the
First Edge algorithm was dragged from the Point readings window to alignLeftEdge to make it
a landmark

An alignment scheme by itself doesn’t do anything other than determine the displacement of
landmark points from their original positions; the alignment must be applied to an ROI so that the
ROI moves relative to the landmark and analyzes the correct pixels.

To apply an alignment to an ROI, open the ROI’s Edit dialog and click the Properties tab. The
Alignment drop-down list shows all the alignments in the investigation.

Now if the book shifts horizontally, the line ROI’s First Edge algorithm finds the point at the left
edge of the barcode label and calculates its displacement from its original position. The rectangle
ROI executing the Barcode 1D algorithm shifts relative to this landmark. The dashed lines show
the original position of the rectangle ROI.

Landmarks and alignment Page 5

v1.1 April 16, 2008

If the object can rotate, a two-landmark alignment scheme is necessary. On the book, “ISBN”
and the ‘90000’ above the second barcode were trained as patterns in two rectangle ROIs
executing the Search – Line Based algorithm. The point readings from the two algorithms were
turned into landmarks by adding them to alignRotate.

The ROI executing the 1D Barcode algorithm was applied to the alignRotate alignment. Now if
the book rotates, the barcode ROI rotates relative to the two landmarks, as long as the trained
patterns do not move outside their search ROIs.

Landmarks and alignment Page 6

v1.1 April 16, 2008

 It is possible to have different alignment schemes applied to different ROIs within the
same image window.

Calibration Page 1

v 1.1 July 8, 2008

Calibration

By default, Sherlock returns point-to-point measurements in pixels.

To measure the distance between the outermost edges of the cutouts, a line ROI executing the
Outside Caliper algorithm was created. The distance is 384.94 pixels

To return measurements in real-world units, an image window must be calibrated to correlate
pixels in the image window to real-world locations.

Calibration method 1: points

1. Identify four points in an image that are known real-world distances from each other
2. Create a transform that correlates the image window points to real-world locations
3. Create a calibration object and fill it with the transform
4. Apply the calibration object to an image window

 Since you generally need to calculate the transform only occasionally, programmatic
creation of a transform is usually performed in a subroutine for which the Execute on calibration
option is selected. A subroutine with this option selected is executed when the F11 key is struck.
In the following example, the subroutine Calibration is marked for Execute on calibration.

Calibration Page 2

v 1.1 July 8, 2008

1. Identify four points
In this image window, four spoke ROIs (spUL, spUR, spLL , spLR) executing the First Edge
algorithm are positioned over four circles on a calibration target. In this target, the distance
between the centers of horizontally or vertically neighboring circles is 10 millimeters.

The array of edge points found by each
spoke ROI is passed as input to a
Geometric:PtsToBestCircle instruction.
One of the readings from this instruction is
the center point of the calculated circle.

Calibration Page 3

v 1.1 July 8, 2008

2. Correlate the four points
The four center readings returned by the four
PtsToBestCircle instructions are passed as inputs to
the IO:Calibration:Calibrate Using Points
instruction. The corresponding real-world locations
of the center points are entered as inputs in the same
order as the center points.
Upper-left circle center: (0.00, 0.00)
Upper-right circle center: (30.00, 0.00)
Lower-right circle center: (30.00, 20.00)
Lower-left circle center: (10.00. 20.00)

The unit of measurement is not specified.

3. Create and fill a calibration object
An empty calibration object can be created on any image window’s Options dialog Calibration
tab.

In the Calibrate Using Points instruction,
double-left click the HDL <Empty> input to
display the handles of the calibration objects.
Select an object (CalibrationA) to save the
calibration transform to.

Since the subroutine hasn’t been executed yet, the transform hasn’t been created, and the
calibration object is still empty. To create the transform and fill the calibration object, execute
the subroutine by hitting the F11 key.

4. Apply the calibration object
Calibration objects are applied to image windows individually. On an image window’s Options
dialog Calibration tab, select the calibration object from the drop-down list.

Click the Add button to
create an empty
calibration object

Calibration Page 4

v 1.1 July 8, 2008

Now when point-to-point measurements are made in the calibrated image window, they are
returned in real-world distances. The distance between the outermost edges of the cutouts is
23.09 millimeters.

Calibration method 2 : transformation values

1. Determine the origin and scaling factors of the image
2. Create a transform using the origin and scaling factors from step 1
3. Create a calibration object and fill it with the transform
4. Apply the calibration object to image windows

This method requires that you know or can calculate the ratios of horizontal and vertical pixel
distances in the image window to distances in real-world units; these are supplied as scaling
factors to the IO:Calibration:Calibrate Using Transformation Value s instruction.

Calibration Page 5

v 1.1 July 8, 2008

1. In this Calibration subroutine, the
horizontal scale factor is calculated by
dividing the real-world width of one of the
squares (10 mm) by the pixel distance returned
by the lineWidth ROI executing the Outside
Caliper algorithm. The same is done for the
vertical scale factor. The scale factors are 0.06
in both directions.

2. The scale factors are passed as inputs to the
Calibrate Using Transformation Values
instruction. The origin is left at (0,0), the
upper-left corner of the image; no rotation is
calculated.

3. The calibration object CalibrationB is
filled with the transform.

Calibration Page 6

v 1.1 July 8, 2008

4. After the Calibration subroutine is executed by hitting the F11 key, point-to-point distance
measurements made in another image window to which the calibration transform CalibarationB
is applied are returned in calibrated units.

Manual calibration

The calibration methods just described can also be
performed manually, by clicking the Direct calibration
(transformation values) or Point calibration (points) button
on the image window’s Options dialog Calibration tab.

 Area measurements, such as the area[] reading returned by the Connectivity –
Binary algorithm, are always returned in pixels.

Calibration using a grid Page 1

v 1.1 July 8, 2008

Calibration using a grid

Camera placement and optics (lenses) can introduce distortion that makes image analysis,
particularly point-to-point measurement, unreliable at best, and impossible at worst.

no distortion

perspective (skew) distortion

barrel distortion (from lens)

pincushion distortion (from lens)

The four-point calibration method can correct for perspective distortion (skew), which results
when the camera’s imaging plane is not parallel to the inspection plane. It cannot correct for the
kind of distortion introduced by most lenses, especially at their extreme edges, or by other optical
irregularities. (Calibration using transformation values [“scale x” and “scale y”] cannot correct
for any type of distortion.)

Grid calibration can be used to convert from pixels to real-world units (millimeters, inches, etc.),
or to remap pixels so that features appear as they would if there were no distortion introduced by
camera placement or optics.

The calibration algorithms
The grid calibration utility includes four algorithms, each optimized for a particular type of
distortion. Arbitrary or random distortion refers to distortion that is not the same throughout
the image. Radial distortion, which is introduced to some extent by most lenses, is the same
along any line drawn from the center of the image (the center of the lens) to the edge. Pincushion
and barrel (“fisheye”) distortion are examples of radial distortion.
• Perspective corrects for perspective distortion only; it does not correct for arbitrary or radial

distortion.
• Piecewise Bilinear corrects for any kind of distortion using a localized technique.
• Piecewise Perspective corrects for any kind of distortion using a localized technique. Unlike

Piecewise Bilinear the local approximation is based on perspective instead of linear
interpolation. This method is adequate for perspective distortion combined with another kind
of distortion (for example, radial).

Calibration using a grid Page 2

v 1.1 July 8, 2008

• Radial corrects for radial distortion only; it does not correct for arbitrary or perspective
distortion.

The calibration target
To calibrate using the grid method, you need one of the following targets:
• A black-and-white checkerboard in which the sizes of the squares are known and uniform
• A black-on-white or white-on-black line square grid in which the sizes of the squares created

by the grid are known and uniform
• An array of black-on-white or white-on-black circular spots in which the spots’ center-to-

center distances are known and uniform

By finding these feature points, and knowing that the original physical location of the feature
points must lie on a uniform grid with square cells, complex distortions can be corrected with
minimal user input.

This image of a checkerboard target exhibits arbitrary distortion, especially at the left and right
sides. There is no perspective distortion due to camera placement, nor is the distortion radial.

Once you have acquired an image of the target under the optical conditions in which processing
will take place, click anywhere in the image window to display its Options dialog. Click the
Calibration tab.

Calibration using a grid Page 3

v 1.1 July 8, 2008

1. Click the Add button to create

a new calibration object. You
can rename the object, or
leave its name as is.

2. Click the Grid calibration

button.

3. Select the algorithm appropriate for the

type of distortion you are correcting for.

4. Select the type of target you are using. If

you select Lines or Spots, Sherlock will
determine whether they are dark-on-light
or light-on-dark.

5. If you want to redraw the image (remap

the pixels), enter the grid size in pixels –
that is, the width and height of the squares
for a checkerboard or line grid; or the
center-to-center distance for spots. If you
want to convert from pixels to real-world
units, enter the grid size in real-world
units.

6. Select the method of image restoration

you want to use. (Image restoration is
performed only if you select it in step 8b.)

7. Click the Calibrate button. Calibration

will take several seconds.

1

2

3

4

5

7

6

Calibration using a grid Page 4

v 1.1 July 8, 2008

If Display detected grid is
checked, the grid connecting the
spots or running along the edges of
the squares or grid lines is
displayed.

Close the calibration dialog. On the Calibration page of the image window’s Options
dialog, select how you want to use the calibration object.

8a. If you want to convert from
pixels to real-world units, select
the calibration object for the
Image window calibration active
calibration.

OR

8b. If you want to remap the
pixels, select the calibration object
for the Image restoration active
calibration.

 A single calibration object cannot be used to perform both image
correction and pixel-to-real-world conversion. Selecting the same calibration object
for both of the calibration options will lead to unexpected (and undesirable) results.

If you created a calibration object to remap the pixels, you can run the investigation to see the
corrected image.

8a

8b

Calibration using a grid Page 5

v 1.1 July 8, 2008

Minimal target dimensions
The minimum number of grid points is four, which is acceptable for pure perspective distortion
(no arbitrary or radial distortion), as long as the four points form a rectangle. However, the
greater the number of grid points, the more accurate the calibration.

The checkerboard and the line grids result in the most accurate calibrations. The picture below
shows the range of acceptable dimensions for the pattern elements.

 The different calibration methods – Perspective, Piecewise Bilinear, Piecewise
Perspective, and Radial – take different amounts of time to generate the contents of a calibration
object. But once the contents have been generated, they all take the same amount of time to apply
to an image at run time. The different image restoration methods – Nearest Neighbor, Bilinear,
and Bicubic – take increasing amounts of time to remap the pixels, but are also increasingly
accurate.

Calibration using a grid Page 6

v 1.1 July 8, 2008

• For the checkerboard or line calibration targets, the algorithms require a 10-pixel buffer

between any point on an edge and the edge of the image, for the square to be used in the
calibration. For example, if the top edge of a square in a checkerboard is only 8 pixels from
the top edge of the image, the square will not be used to create the correction map, even
though the entire square is in the image

• Grid calibration corrects the source image starting at the point designated as the origin in the

detected grid display in the calibration dialog.
By default, this is the upper-leftmost spot center or square
corner in the grid; it is marked with two red arrows. This origin
becomes the (0,0) pixel of the corrected image; pixels to the left
and above the detected grid origin are “mapped out” of the
corrected image

.

JavaScript Page 1

v1.4 July 26, 2010

JavaScript

JavaScript is a scripting language developed by Netscape to enable Web authors to build

interactive sites. Although it shares many of the features and structures of the full Java language,

it was developed independently. JavaScript is not Java.

In a Sherlock investigation, a JavaScript code module can be used to perform tasks that “native”

Sherlock code either cannot perform easily, or cannot perform at all.

Adding a JavaScript module

To add a JavaScript module to a program, click the Create script button on the Program

toolbar.

The module is added to the program after the element

that had the focus when you clicked the Create

script button.

Double-left-click on the module name in the program

to display its edit dialog

JavaScript Page 2

v1.4 July 26, 2010

The JavaScript edit dialog

The JavaScript language includes many common programming constructs – For, While,

Do/While, If, If/Else, Switch, etc. There are also several objects with built-in properties and

methods – Sherlock, Vars, DigIn, DigOut, System, Math, Number, and Date.

To add code to the code window, you can either type it, or drag-and-drop an item from the

Predefined items or Sherlock variables window.

When you drag-and-drop a programming construct from

Predefined items into the code window, the construct’s

“skeleton” is created.

You then fill in the details.

Using JavaScript objects

JavaScript is an object-oriented language. A JavaScript object encapsulates members and

methods for different types of operations.

The code window
The Sherlock variables you can

access in the JavaScript code

The JavaScript items you

can add to the code

JavaScript Page 3

v1.4 July 26, 2010

When you drag-and-drop an object from

Predefined items and type a period (.), the

object’s members and methods are displayed in

a drop-down list.

After you select an object’s method and type a

left parentheses, the method’s parameters are

displayed. You fill in the parameters to

complete the method.

Here, the max method of the Math object

returns the larger of the two numbers contained

in the variables number1 and number2. The

value is stored in the variable maxNumber.

Variables

Sherlock variables

The main method of communication between Sherlock and JavaScript is through Sherlock

variables. JavaScript cannot call Sherlock subroutines, manipulate ROIs, call instructions, or in

any other way access a Sherlock investigation (except for a few methods described later).

Sherlock variables are accessed from the JavaScript Vars object. For example, a Sherlock

variable intActiveShift would be accessed as Vars.intActiveShift.

If you type Vars. (with the period) in the code window, all of

the variables in the Sherlock investigation are displayed in a

drop-down list.

If you drag-and-drop Vars from the Predefined items list to

the code window, then type a period, the same drop-down list is

displayed.

If you drag-and-drop a variable from the variable window (the

JavaScript variable window, not the Sherlock Variables

window), Vars. is automatically prepended.

Point variables

A Sherlock point variable is accessed through two properties, .x and .y. To read the x and y

values of a single Sherlock point variable Point in JavaScript, use Vars.Point.x and Vars.Point.y.

To read the x and y values of one element in a point array variable Points, use

Vars.Points[array_index].x and Vars.Points[array_index].y.

Line variables
A Sherlock line variable is accessed through two properties, .a (angle) and .d (distance). To read

the angle and distance components of a single Sherlock line variable Line in JavaScript, use

JavaScript Page 4

v1.4 July 26, 2010

Vars.Line.a and Vars.Line.d. To read the angle and distance values of one element of a line array

variable Lines, use Vars.Lines[array_index].a and Vars.Lines[array_index].d.

 A JavaScript module has access to Sherlock variables only – not readings from

algorithms.

JavaScript variables

JavaScript variables do not usually have to be declared. A variable’s type and size are

determined at runtime based on context.

When you assign a Sherlock array variable to a JavaScript variable, the type and array size of the

JavaScript variable are automatically set, as in jsPointArray = Vars.varPointArray above.

Because variables are dynamic in JavaScript, there is no type checking when passing values to

Sherlock. Assigning the wrong type of JavaScript variable to a Sherlock variable will not

generate a syntax error, but will generate a runtime error.

A JavaScript variable’s type will change if you assign it different types of data. In the following

code, the JavaScript variable jsVariable is first a number, then a string, then an array of points,

and finally a number again. (But of course this is not good coding practice!)

JavaScript Page 5

v1.4 July 26, 2010

One of the few variables you

must declare is an array that is

not created by assigning a

Sherlock array to it. You do

not have to declare the size of

an array; arrays are

automatically resized as

necessary.

All JavaScript variables are local to the module in which they appear. They are destroyed when

the code module is exited; their values are not maintained between calls to the module.

JavaScript variable names are case sensitive. jsNumber is not the same variable as JSnumber.

If you type a Sherlock variable name in the JavaScript code window without using the Vars

object, you create a local JavaScript variable with the same name as the Sherlock variable, but

they are not the same.

This sets a local JavaScript variable

varTotal to 168.

This sets the Sherlock variable

varTotal to 3. The local JavaScript

variable varTotal is still set to 168.

JavaScript cannot recognize variables with embedded spaces. For example, varTotal Height is a

valid Sherlock variable; it will appear in the JavaScript Vars object as Vars.varTotal Height.

But at runtime the JavaScript engine will generate an error:

(The engine will generate the same error in the JavaScript edit dialog if you click the Check

Syntax button.)

JavaScript Page 6

v1.4 July 26, 2010

The Sherlock object

The Sherlock object writes to the Monitor, the Reporter and IpeStudioLog.txt. The three methods

that write to these – .Monitor, .Reporter, and .DbgLog, respectively – all take a single

parameter, the string to write.

When defining String

• To write a literal string enclose it in quotes (" ")

• To write a Sherlock variable, use the Vars object

• To write a JavaScript variable, enter its name without quotes

You can concatenate literal strings and variables in any combination with the plus sign "+".

For example

writes the literal string "i: ", the value of the JavaScript variable i, the literal string "; Count: ",

and the value of the Sherlock variable varCount.

Sherlock.Monitor writes to the Monitor only if the

Script option is enabled in the Select monitoring

options dialog, which is displayed when you click

the Monitor level button on the Monitor's toolbar.

Sherlock.DbgLog writes to

<Sherlock>\bin\IpeStudioLog.txt

only if the logger level in

<Sherlock>\bin\IpeLog.config

is set to DEBUG. If the logger level is set

to ERROR, WARNING or INFO,

Sherlock.DbgLog is ignored.

log4j.logger.ipeStudio.logger=DEBUG, RolFile

Sherlock.Reporter always writes to the Reporter, even if it is closed.

The DigIn and DigOut objects

The DigIn object reads the digital inputs

The DigOut object reads and writes the digital outputs.

JavaScript Page 7

v1.4 July 26, 2010

The System Object

The System object can manipulate text files (Open, Close Read, Write, Delete, Move, etc.) and

folders (Create and Delete), and pause the script for a number of milliseconds (Sleep).

You must create hierarchies of folders one level at a time.

For example, if neither Folder1 nor Folder two exists, these two statements will create them:

This statement alone will not:

You can delete a folder at any level of the hierarchy.

For example, given the hierarchy D:\\Folder1\\Folder2\\Folder3, the statement

deletes Folder2 and Folder3, but not Folder1.

The Date Object

The Date object returns the current date and time. The month, day, year (since 1900), hours (in a

24-hour clock), minutes, and seconds can be extracted with the methods getMonth, getDay,

getYear, getHours, getMinutes, and getSeconds.

This code gets the current hour, determines

which 8-hour shift is active, and sets the

Sherlock variable intActiveShift to 1, 2 or 3,

accordingly.

JavaScript Page 8

v1.4 July 26, 2010

• The array property .length returns the number of elements of both Sherlock and

JavaScript arrays. This line of code
ArrayLength = Vars.varAreas.length

sets the JavaScript variable ArrayLength to the number of elements in the Sherlock array

varAreas.

• If you need to read more than a few elements from a Sherlock array variable, it is more

efficient to copy the entire variable to a JavaScript variable than it is to read the elements of

the Sherlock variable one at a time. (In these examples, Vars.varAreas is a Sherlock number

array variable, and Vars.varTotalArea is a Sherlock number variable; jsArrayAreas and

jsTotalArea are JavaScript variables.)

This…

…not this

• true and false are Booleans; 0 and 1 are numbers.

• Variable names and predefined literal names are case sensitive. True is a variable; true is a

predefined literal.

• Sherlock and JavaScript cannot access the same text file at the same time. A text file that has

been opened with Sherlock’s IO:File Open instruction cannot be accessed by the JavaScript

System object file operations (FileClose, FileAppend, etc.) until Sherlock closes the file, and

vice-versa.

For more information on JavaScript, click on Start � Programs � Teledyne DALSA

 �Sherlock �JavaScript Help. There are also many online resources for learning more
about JavaScript.

Color classifiers Page 1

v1.1 April 18, 2008

Color classifiers

There are 16,777,216 (2563) colors in the 24-bit RGB color space. In an image acquired by a
color camera, it is unlikely that more than a few pixels will have exactly the same (r,g,b) values.
What may appear to the eye as two identical dark blue pixels probably vary by at least a few
values in each component – (10, 7, 223) and (8, 11, 220), for example.

For algorithms that compare pixels in an acquired image to a set of trained colors, using a single
(r,g,b) value as the basis of comparison would not result in satisfactory results, since very few, if
any, pixels being analyzed would match the single (r,g,b) value. For these algorithms, Sherlock
uses color classifiers that define a trained color not as a single (r,g,b) value, but rather as one or
more (r,g,b) “seed” values and their “volumes of influence”. A volume of influence is the three-
dimensional space around the seed value or values that defines the extent of the color within the
RGB color space.

Sherlock has two types of color classifiers, which are used in different algorithms. (See the
sections on the individual algorithms for which classifier an algorithm uses.) The basic steps for
training colors for both classifiers are the same.

1. Use a rectangle ROI to select a group of pixels. This can include pixels you do not want
to include in the defined color.

2. Select an algorithm from the ROI’s list. Click the algorithm’s Parameters button.
3. On the parameters dialog, click the Configure button. Either the Statistical Color

Classifier Trainer or the Block Color Classifier Trainer dialog will appear, depending
on the algorithm you selected.

4. On the trainer dialog, click the Teach button.
5. Enter a name for the color.
6. Click the Add New button. The color name is added to the list of learned colors, but the

color is not yet learned.

Color classifiers Page 2

v1.1 April 18, 2008

7. Click the Learn button. The average of the pixels within the ROI is calculated and
displayed in the list of learned colors. The average and the color displayed next to it are
for reference only. Depending on the algorithm, the classifier will use the average of the
(r,g,b) values in the ROI as the seed, or it will use each (r,g,b) value in the ROI as an
individual seed and assign each the same color name.

8. Click the OK button on the trainer dialog. Click the OK button on the algorithm’s
parameters dialog. Select a new group of pixels with the ROI, and repeat steps 3 thru 8.

The two classifiers – block and statistical – differ in how they classify colors, and in their options
for determining whether an (r,g,b) value falls matches a learned color.

Block Color Classifier (shown above)
Classifier creation
The block color classifier uses the individual (r,g,b) values of the pixels in the ROI as seeds.
When the first color is learned, a volume of influence expands around the seeds such that the
color “owns” all of the (r,g,b) values in the color space. As more colors are learned, the volumes
of influence of the learned colors are resized and reshaped so that they do not overlap. This
prevents an (r,g,b) value from falling into more than one color’s volume of influence. To each
(r,g,b) value in the RGB color space, the classifier assigns the identifier of the learned color
whose volume of influence contains it, and its distance from the color’s closest seed.

4

5

6

7

8

Color classifiers Page 3

v1.1 April 18, 2008

The following diagram gives an extremely simplified idea of what a color space classified by the
block classifier might look like. For the sake of readability, this color space has only two axes,
red and blue. Both axes extend for 256 units (0 thru 255), but only a small portion of the space is
shown. Every entry in the color space has a red and a blue component.

In this diagram, two colors have been learned, “red” and “blue”; their single seed values are in
bold. (In reality, block classifier learned colors usually have more than one seed.) Their volumes
of influence are demarcated by a bold line. The distances of the (r,b) values from their colors’
seeds are shown as “d = n”. These distances do not reflect how distances are really assigned
in the block classifier.

Classifier options
Bit resolution - The number of bits of each eight-bit color component of an (r,g,b) value that are
used during training and analysis. Only the n highest bits of each color component are used. The
lower the bit resolution, the more colors can differ and still be considered the same. You must set
this before you start training colors, and click the Change button.
Distance – How much the (r,g,b) value of a pixel being analyzed at run time can differ from a
one of the color’s seed values and still be recognized as the color. A pixel’s (r,g,b) value may fall
within a color’s volume of influence, but if its distance from all of the color’s seed values is
greater than distance, it will not be recognized as that color. The distance is applied equally to all
colors in the classifier.
Point # – You can assign the same name to more than one learned color. Each new instance of a
learned color is assigned a number (1 of 5, 2 of 5, 3 of 5, etc.).

Runtime
At run time, an algorithm checks the properties of the classifier’s (r,g,b) value to which a single
pixel or the average of a group of pixels (depending the algorithm) maps, to determine its
assigned color identifier and its distance from the seeds of the learned color. If the distance is
less than the distance limit, the algorithm returns the name of the learned color. If the distance is

red
d = 2

red
d = 1

red
d = 1

red
d = 1

red
d = 2

red
d = 3

red
d = 4

red
d = 6

red
d = 7

red
d = 2

red
d = 1

 red
d = 1

red
d = 2

red
d = 3

red
d = 4

red
d = 5

red
d = 6

blue
d = 4

red
d = 2

red
d = 1

red
d = 1

red
d = 1

red
d = 2

red
d = 3

blue
d = 3

blue
d = 3

blue
d = 3

blue
d = 3

red
d = 2

red
d = 2

red
d = 2

red
d = 2

red
d = 3

blue
d = 2

blue
d = 2

blue
d = 2

blue
d = 2

red
d = 3

red
d = 3

blue
d = 6

blue
d = 5

blue
d = 4

blue
d = 3

blue
d = 2

blue
d = 1

blue
d = 1

blue
d = 1

blue
d = 8

blue
d = 7

blue
d = 6

blue
d = 5

blue
d = 4

blue
d = 3

blue
d = 2

blue
d = 1

blue
seed

blue
d = 1

blue
d = 8

blue
d = 7

blue
d = 6

blue
d = 5

blue
d = 4

blue
d = 3

blue
d = 2

blue
d = 1

blue
d = 1

blue
d = 1

red
seed

red
d = 2

red
d = 5

Color classifiers Page 4

v1.1 April 18, 2008

greater than the distance limit, the (r,g,b) value’s color is “unknown”. In the preceding simplified
two-dimensional diagram, the highlighted (r,b) value falls within the volume of influence of the
red seed, and its distance from the seed is 5. If the distance limit is 5 or more, the color of the
highlighted (r,b) value is “red”. If the distance limit is 4 or less, the color of the highlighted (r,b)
value is “unknown”.

Statistical Color Classifier
Classifier creation
The statistical color classifier calculates the average of all of the pixels in the ROI to create a
single seed color, and calculates a volume of influence around the seed. As more colors are
learned, their volumes of influence may overlap.

Classifier options
Used channels – Which of the (r,g,b) components are used to learn and compare colors. You
must set this before you start training colors, and click the Change button.
Bit resolution – The number of bits of each eight-bit color component of an (r,g,b) value that are
used during training and analysis. Only the n highest bits of each color component are used. The
lower the bit resolution, the more colors can vary and still be considered the same. You must set
this before you start training colors, and click the Change button..
Threshold – How much an (r,g,b) value being analyzed at run time can differ from a color’s seed
value and still be recognized as the color. The threshold can be set differently for different colors
in the classifier.

Runtime
At run time, an algorithm using the statistical classifier calculates which seed the (r,g,b) value
being analyzed is closest to. If the (r,g,b) value falls outside the closest learned color’s threshold,
the (r,g,b) value’s color is “unknown”.

Fine-tuning a classifier
Once you have trained one or more colors, you can test the distance or threshold setting to
determine whether it is too high or too low, and adjust it accordingly.

1. Select an area of pixels with the ROI.
2. Select a color from the list of learned colors.
3. Enable Show. All of the pixels in the ROI that are within the selected color’s distance or

threshold limit are highlighted with a uniform color.
4. Raise or lower the distance or threshold.

(Enable Show All to highlight all of the pixels in the ROI that fall within any learned color’s
volume of influence, and within the color’s distance or threshold.)

Color classifiers Page 5

v1.1 April 18, 2008

Here all the
“red” pixels
are
highlighted.

The pixels that are selected for training a color should be about the same (r,g,b) value, or at least
belong to the same color “family”. Training a color from an ROI that contains widely different
(r,g,b) values – for example, (210, 80, 24) (dark orange) and (100, 200, 15) (medium green) – will
have unexpected and probably undesired results. The same is true for assigning the same name to
widely different (r,g,b) values with multiple Add New/Learn sequences in either classifier.

3

4

2

Color classifiers Page 6

v1.1 April 18, 2008

If you cannot easily isolate the few pixels you want to classify by drawing an ROI, you can select
a portion of the ROI when training the color. You can select a single pixel, a rectangular portion,
or a circular portion.

Here a
rectangular
portion of
the ROI
was
selected to
train
“green”.

Rectangle

Pixel Circle

Entire ROI
(default)

Color classifiers Page 7

v1.1 April 18, 2008

You can use the “growth” option to select pixels in the ROI based on their distance from a
starting point, and their percent difference from the (r,g,b) value of the starting point.

1. Click the Teach button.
2. Enter a color name.
3. Click the Growth button.
4. Click a starting point in the ROI display. The pixels that are within the set distance

(radius) and percent difference of the starting point are highlighted.
5. Change the radius and/or percent, click on the ROI display to clear the highlighted pixels,

and click on the ROI display again to reselect the starting point. The changes to the
radius and/or percent are reflected in the highlighted pixels.

Here the growth
option was used
to select a group
of green pixels
within a red
area.

Growth

Color classifiers Page 8

v1.1 April 18, 2008

Sharing classifiers
Within an investigation, classifiers can be shared among algorithms that use the same type (block
or statistical). The default behavior is to share a classifier upon algorithm instantiation.

A new ROI RectB was added to an
investigation that already
contained the ROI RectA
executing the Color Presence
algorithm. Color Map was
selected as RectB’s algorithm.
Because the two algorithms use
the block classifier, by default
Color Map shares the classifier
configured for and owned by
Color Presence.

To configure Color Map’s own
classifier, click on
RectB.algB.Color Map in the
Available classifiers list, then
click the Configure button.

Classifier files
A classifier can be exported to a file by clicking the Export button at the bottom left of the trainer
dialog. A classifier file can be imported into algorithms in other investigations that use the same
type of classifier (block or statistical) by clicking the Import button.

 Block classifiers and statistical classifiers contain different information. You cannot
import a block classifier file into an algorithm that uses the statistical classifier, and vice-versa.

Color presence Page 1

v 1.1 April 18, 2008

Color presence

The Color Presence Meter counts the occurrence of trained colors within an ROI. It uses the
block color classifier.

Pixels within an ROI are analyzed one-by-one by the classifier. If a pixel is within a trained
color’s distance limit, the count for the color is incremented. After all the pixels in the ROI have
been analyzed, statistics on the colors are returned.

The classifier was trained
with the colors green, red,
orange, and yellow.

About 20% of the pixels in the ROI were outside the distance limits of all of the trained colors.

Color spot meter Page 1

Vv1.0 September 2, 2008

Color spot meter

The Spot Meter compares the average (r,g,b) value of the pixels in an ROI to the colors in a
classifier. If the average value falls within a color’s threshold, the name of the color in the
classifier is returned, as well as the average (r,g,b) values and standard deviation of the individual
pixels’ (r,g,b) values from the average. The Spot Meter uses the statistical classifier. If the
average (r,g,b) value does not fall within any color’s threshold, the returned color name is
“Unknown”.

The classifier was trained with the colors dark red, green
yellow, and brown.

The average (r,g,b) value within RectA is within the
threshold limit for the color “dark red”.

 If the average (r,g,b) value of the pixels in an ROI does not fall within any color’s
threshold, the returned average (r,g,b) values are (0,0,0), not the average (r,g,b) values of the
“Unknown” color.

Color mapping Page 1

v 1.0 September 2, 2008

Color mapping

Most of Sherlock’s algorithms work on monochrome images only. In order to apply these
algorithms to a color image, the image must be converted to monochrome.

Consider the task of isolating the objects is this image based on their color so that they can be
counted and measured.

A straightforward RGB-to-monochrome conversion yields what may seem to be a useable image.

But careful examination reveals that the green and orange objects share similar, overlapping
ranges of grayscale values.

green orange

Color mapping Page 2

v 1.0 September 2, 2008

It would not be possible to set a threshold to separate the green objects from the orange, so that
the Connectivity – Binary algorithm could be applied to them separately.

Color mapping assigns a grayscale value to the colors in a classifier. The Color Map algorithm
uses the block classifier. As you train each color, it is assigned the next number in the sequence
{0, 1, 2, 3,…, 255}.

In this example, the colors in the
source image – green, red, yellow,
and orange – were mapped to the
values 0, 1, 2 and 3.

The next step is to create a grayscale image from the source color image based on the color map.
You can map any rectangular section of the source image, or the entire image.

To map the entire source image, click the
Fit to image button on the Position tab of
the color source image window ROI’s
Parameters dialog. It’s a good idea to also
check the Lock position checkbox.

Create a destination image window, and add a rectangle ROI to it.

In the destination image window’s Options
dialog, select Reading as the image source, and
the color map created by the Color Map
algorithm as the reading.

Color mapping Page 3

v 1.0 September 2, 2008

To analyze only the green
objects, select the Threshold
Band preprocessor for the ROI,
set its threshold low and
threshold high parameters to 0,
in value to 0, and out value to
255. This will set all pixels from
threshold low to threshold high
(0 to 0) to 0, and all other pixels
to 255. For the algorithm, select
Connectivity – Binary. (By
default, the Connectivity –
Binary algorithm processes
black [0] pixels.)

When the investigation executes,
the grayscale image is thresholded
so that only the “green” pixels
(value 0) are mapped to black.
The Connectivity – Binary
algorithm returns information
about the green objects.

To analyze the red objects, set the Threshold Band parameters threshold low and threshold
high to 1 and 1; for yellow, 2 and 2; etc.

Color Correction Page 1

v1.0 April 18, 2008

Color Correction

Images acquired by color cameras sometimes exhibit subtle color shifts that can make color
analysis unreliable. Ideally, color problems should be corrected before the image is acquired, by
adjusting the lighting and the camera’s white balance. In cases where either or both of these is
insufficient, difficult, or impossible, Sherlock can make color adjustments after the image is
acquired.

Correction for color problems requires the use of two image windows executing a complementary
algorithm and preprocessor pair.
• In the first image window, the algorithm calculates the coefficients that must be applied to the

red, green and blue color planes to change the pixels in an ROI to white.
• In the second image window, the preprocessor applies the coefficients calculated by the

algorithm.

This image displays a noticeable shift in red; the lower-right rectangle is supposed to be white,
but it is blue-green.

Correction calculation
RectA executes the Color Correction Coefs algorithm.

The default target values for the red, green, and blue components of a white pixel are 255, 255,
and 255. You can change these values in the algorithm’s Parameters dialog. The algorithm
calculates the coefficients necessary to make the pixels in the ROI attain these target values.

Color Correction Page 2

v1.0 April 18, 2008

Correction application
An ROI executing the Color Correction preprocessor is created in the image to be corrected.

In the preprocessor’s Parameters dialog, the coefficients calculated by the Color Correction
Coefs algorithm are assigned to the proper parameters.

Color Correction Page 3

v1.0 April 18, 2008

Here is the image with the color correction coefficients applied to the pixels in RectB. Note
especially the change in the lower-right rectangle.

Security Page 1

v 1.0 March 19, 2008

Security

Sherlock provides two levels of security, one to prevent anyone – including you – from
accidentally modifying an investigation, and the second to prevent unauthorized people from
loading and examining an investigation.

Preventing modifications
A security dialog available from Sherlock’s Program menu lets you control which aspects of an
investigation can be modified.

Set the level of protection by enabling (checking) or disabling (unchecking) the Actions, entering
a password, and clicking the Lock button.

Actions
Allow parameter values editing – If disabled, preprocessor and algorithm parameters cannot be
edited.
Allow variable values editing – If disabled, variable values cannot be edited, nor can variables
be created, deleted, renamed, or modified in any way.
Allow roi repositioning – If disabled, ROIs cannot be moved or resized interactively, nor can
ROIs be created, deleted, renamed, or modified in any way. (Except that their preprocessors’ and
algorithms’ parameters can be edited if Allow parameter values is enabled.)
Show program window – If disabled, the Program window is not displayed.

If you do not enable any of the Actions, the investigation cannot be modified at all. No matter
which Actions are enabled or disabled, a locked investigation can still be run.

When the investigation is locked, the Lock button is changed to Unlock. You must supply the
correct password to unlock the investigation. In an unlocked investigation, the Actions settings
are ignored.

Security Page 2

v 1.0 March 19, 2008

 Even if the action Allow roi repositioning is disabled, ROIs can be moved
programmatically, either through landmarking and alignment, or by calls to the IO : Roi
instructions Offset, Set Coordinate, and Set Rotation.

 The security settings have no effect on access from a front end application created with
Visual C++, Visual C#, or Visual Basic. Even if an investigation is locked with none of the
allowable actions enabled, a front end application can modify variables and reposition ROIs. It is
up to the designer of the front end application to expose only those elements of an investigation
that she wants the end user to be able to modify. (However, the protection selections remain
active in the investigation file and are in effect when the investigation is accessed directly through
the Sherlock GUI.)

Preventing loading
You can save an investigation in a compressed format by specifying file type “.ivx” in the
Program ���� Save As.. dialog and supplying a password.

An investigation saved as type .ivx cannot be loaded, either directly into the Sherlock GUI or by a
Visual Basic, Visual C++ or Visual C# front end, without providing the correct password.
This password does not have to be the same password as for the security options described
in Preventing modifications.

This option makes the most sense when you deploy an application with a compiled (.exe) front
end created with Visual Basic, Visual C++ or Visual C#. In such a front end, you must call the
Sherlock engine method InvLoadComp(InvestigationName, Password) to load the
investigation. The password can be hard-coded, or the user can be prompted to enter the
password.

Passwords
For the Actions options and compressed files:

• The maximum password length is 32 characters. The minimum length is one character.
• A password can contain any printable keyboard character – A thru Z, a thru z, 0 thru 9, !,

@, #, etc.
• Passwords are not case-sensitive: “sahb74” is the same as “SaHb74”.

For the Actions options only:

• The password is not maintained when an investigation is unlocked; you must enter a
password every time you lock the investigation.

• A history of used passwords is not kept; you can use the same password over and over
again, or change it whenever you want to.

Security Page 3

v 1.0 March 19, 2008

• There is no facility for retrieving a forgotten password. If you forget the password for a
locked investigation, open the investigation .ivs file with a text editor (e.g., Notepad),
look for lines like these at the beginning (the token values will differ)
<Investigation
 Version="7010009"
 Lock="15"
 Pwd="0ZzkJPnFDnuCU9dOENFFepa6D8tBOy58">

and carefully change the Lock and Pwd values.

<Investigation
 Version="7010009"
 Lock="0"
 Pwd="">

There is no space between the two quote marks following Pwd=.

 Neither security method prevents an investigation from being deleted from the hard
drive, nor from being corrupted by the operating system. It is a good idea to keep backup copies
of your investigations, but “the best-laid schemes o’ mice an’ men…”

Program Switching Page 1

v1.0 March 25, 2008

Program switching

Sherlock’s program switching feature enables automatic switching among two or more
investigations based on digital input signals.

In the Program Switch dialog (see Configuring program switching) you assign program
numbers to the investigations you want to switch among, and select the digital inputs that will
cause the switch. Program switching requires that enough digital inputs be dedicated to represent
in binary the program numbers of the investigations, plus one more for a strobe to actuate the
switch. For example, if you want to switch among four investigations, three digital inputs will
have to be dedicated – two for the program number (00, 01, 10, 11), and one for the strobe.

Configuring program switching
From Sherlock’s main menu select Options � IO

In the IO Configuration dialog

1. Select Program Switch from the list of options.
2. Enable program switching.
3. Select a digital input to be the strobe to actuate program switching.
4. Select a digital input to be the least-significant digit of the binary representation of the

program number.
5. Set the number of digital inputs that are needed to define the program number. The

number of investigations that you can switch among will be 2
Input count.

6. For every investigation that you want to switch to
a. Select a program number, either by clicking on an entry in the program list or

from the Program # drop-down list
b. Browse to the location of the investigation and select it
c. Click the Add button

7. Click the Close button.

Program Switching Page 2

v1.0 March 25, 2008

 The digital inputs selected for program switching (program numbers and strobe)
should not be used for other purposes, but there is nothing to prevent you from doing this.
Careless selection of the program switching inputs could result in unpredictable behavior – for
example, if the strobe is assigned to the same input as the external trigger!

Program switch settings are saved in <Sherlock>\bin\IpePgmSw.dat. The settings are active only
when the Enable program switching checkbox on the IO Configuration � Program Switch
dialog is checked.

Program switching at runtime
When program switching is enabled and the strobe input is triggered
• the currently-loaded investigation is stopped after it completes its current iteration
• the digital inputs that define the program number are read, and the investigation assigned to

the program number is loaded
• the investigation is automatically put into Run continuous mode

 If the number of investigations you want to switch among is not a power of 2, the
program numbers assigned to the investigations do not have to be contiguous, nor start at zero.

1

2 3 4 5

6a

6b

6c

7

6b

Program Switching Page 3

v1.0 March 25, 2008

For example, if you want to switch among three investigations, they could be assigned the
program numbers 00, 10 and 11. Do not leave ***Empty*** assignments in the program list.
Because Sherlock cannot switch to an ***Empty*** investigation, the currently-loaded
investigation will continue to run, and you may never know that an attempt was made to switch to
an unassigned program number. Instead, create and assign an investigation that does something,
such as inform the user that an invalid combination of signals (and therefore an invalid program
number) was sent to the digital inputs.

 If a switch fails for a reason other than the ***Empty*** assignment case – for
example, if a program number is associated with an investigation that has been deleted, moved or
renamed
• the currently-loaded investigation is stopped after it completes its current iteration
• a new (empty) investigation is created
• Sherlock is halted
Severe program switch errors may cause an immediate halt of Sherlock.

 The program switching software cannot detect and adapt to changes in a system’s
hardware (digital input) configuration. You must be careful to reconfigure the program switching
setup if the hardware changes.

Concurrent scripts Page 1

v1.0 September 2, 2008

Concurrent scripts

A concurrent JavaScript module runs in the background, asynchronously from the main program.
A concurrent script is useful for
• performing computations independent from those in the main program
• calculating statistical data over time
• custom logging – normal or exceptional conditions
• monitoring and changing hardware status

The Concurrent Scripts dialog is available from the main menu Options entry.

To rename a script, left-click once on the script name, wait briefly, then left-click on the name
again.

Select a script and click the Edit button to open the script editor. The editor is exactly the same
as that for creating in-line JavaScript modules.

From the events listed in the Start Event and Stop Event drop-down lists on the Concurrent
Scripts dialog, select the events that will launch and terminate the script. A script is usually
launched by the Investigation Load or Continuous Investigation Start event.

A concurrent script is executed only once. To make any or all of the code in a script execute
repeatedly, the code must be placed within a for , while, or do…while statement that will loop
“forever” or until a condition is met.

In order to have the background thread yield control (especially in the case of tight loops) and
improve application responsiveness, a Sleep() call should appear somewhere inside the loop.

The scripts are synchronized on Sherlock resources. If the main program and a script need to
access the same resource -- variables, digital IO lines etc. -- they will block/wait until access is
yielded by the thread/script currently using that resource. This behavior is not user configurable.
No explicit synchronization is available to the user.

Concurrent scripts Page 2

v1.0 September 2, 2008

This script opens the text file CS2.txt. Within the for loop, the script goes to sleep for 5000
milliseconds, wakes up, and writes a line of text, including the value of the Sherlock variable
Total_area, to the file. If the Sleep and FileWrite statements were not placed within the for
loop, only one line would be written to the file, and the script would terminate. Because there are
no condition arguments in the for statement, it will loop “forever” (until the script is terminated).

Modbus Page 1

v 2.0 21 December 2012

Modbus

Creating a Modbus connection

You define and activate a Modbus connection from the IO Configuration dialog, which is

available from the main menu Options entry.

In the IO configuration dialog, select Modbus from the list of

options.

Modbus Page 2

v 2.0 21 December 2012

Sherlock as Modbus Master

To create a Modbus connection in which Sherlock is the master

1. Select Master as the access mode

2. Select TcpIp or Serial as the communication link

3. a. If you selected TcpIp as the communication link, enter the IP address and port number

of the remote computer which will be the slave to Sherlock

b. If you selected Serial as the communication link, select the serial port through which

you want to communicate

4. Click the Add button to add the connection configuration to the list of connections

Using Sherlock as Modbus Master in a program

Sherlock provides eight Modbus Master instructions, available from the IO: Modbus Master

folder:

1. Read multiple discrete

2. Read multiple registers

3. Read single discrete

4. Read a single register

5. Write multiple coils

6. Write multiple registers

7. Write single coil

8. Write a single register

1

2 3

4

Modbus Page 3

v 2.0 21 December 2012

The instructions are described in detail in Sherlock’s online Help.

This example writes a value – the count reading from the Connectivity – Binary algorithm – to a

register of the Modbus slave.

The Parameters settings depend on the

operating characteristics of the slave device.

Here, a single 16-bit value will be written to

the register at address 40001 (the first register

in the fourth register table).

For the connection handle , select the

Modbus master connection definition.

Modbus Page 4

v 2.0 21 December 2012

Sherlock as Modbus Slave

To create a Modbus connection in which Sherlock is the slave

1. Select Slave as the access mode

2. Select TcpIp or Serial as the communication link

3. a. If you selected TcpIp as the communication link, enter the port number through which

Sherlock will communicate with the Modbus Master

b. If you selected Serial as the communication link, select the serial port through which

Sherlock will communicate with the Modbus Master

4. Click the Add button to add the connection configuration to the list of connections

Using Sherlock as Modbus Slave in a program

Sherlock provides four Modbus Slave instructions, available from the IO: Modbus Slave folder:

1. Read discrete

2. Read a single register

3. Write discrete

4. Write a single register

The instructions are described in detail in Sherlock’s online Help.

1

2 3

4

Serial communication Page 1

v 1.2 August 28, 2008

Serial communication

Defining a serial port’s properties
From Sherlock’s main menu select Options � IO

In the IO Configuration dialog

1. Select Serial from the list of communication protocols
2. Select the COM port from the list of available ports. The ports are listed by name,

followed by [index number].
3. Set the port’s properties
4. Click the Close button

1

3

4

2

Serial communication Page 2

v 1.2 August 28, 2008

Instructions
Sherlock provides four serial communications instructions, available in the Instructions IO :
Serial folder:
• Receive Character: Read characters sent from another application; no termination character

expected.
• Receive Line: Receive a string of characters sent from another application; a specific

character must terminate the string.
• Send String: Send a string to the port for immediate transmission.
• Purge Buffer: Purge the specified buffer of the specified port.

Instruction examples

 Ports are referenced by index as shown in the IO Configuration dialog, not by port
number. In these examples, COM1 is index 0.

IO : Serial Send String

Send string A, an instance of IO: Serial Send String,
sends the string “A to B distance: [varDistance]” to
COM1. “[varDistance]” is replaced with the value of
the variable varDistance.

Since the instruction cannot know whether any application read the sent string, the result reading
will almost always return True.

Use the "C" language escape sequences to embed binary data into the string:

\0dd where dd = decimal digit
\xff where ff = hexadecimal digit

For example, the string "Send value 45: \045" will send the ASCII string "Send value 45: "
followed by the decimal value 45 (not an ASCII character string "45").

IO : Serial Receive Character

Receive characters A, an instance of IO: Serial Receive
Character, waits 500 milliseconds for 15 characters to arrive in
COM1’s input buffer.

If 15 characters do not arrive within 500 milliseconds, the result
reading returns False.

flush before recv (True): COM1’s input buffer is flushed of
any unread characters before the instruction starts waiting for 15
characters.

Whether or not the instruction times out, the char count reading returns the number of characters
received. The characters are removed from the port’s input buffer and made available from the
chars reading.

Serial communication Page 3

v 1.2 August 28, 2008

If more characters than were specified by the char count parameter are in the port’s input buffer
when the instruction is executed (and if flush before recv is set to False), only char count
characters are removed from the buffer and made available from the chars reading; the remaining
characters are left in the buffer.

IO : Serial Receive Line

Receive line A, an instance of IO: Serial Receive Line,
waits 500 milliseconds for a string of characters of any
length terminated with a carriage return (ASCII 13) to
arrive on COM1’s input buffer.

If a carriage return does not arrive within 500
milliseconds, the result reading returns False.

flush before recv (False) : COM1’s input buffer is not
flushed of any characters before the instruction waits for
a line.

Whether or not the instruction times out, char count returns the number of characters received,
and any characters received are available from the line reading. The port’s input buffer is cleared
up to and including the termination character.

 The termination character is not returned in the line reading, nor is it counted in char
count. For this example, if the sending application sends the line “abcde<carriage return>”
(<carriage return> = ASCII 13), line will contain “abcde” and char count will return 5.
However, many applications automatically append a carriage return and a line feed to a sent
string. In this case if the sending application sends the string “abcde<carriage return><line
feed>” twice, two calls to this Receive line instruction will result in:

First call to Receive Line:
 char count = 5
 line = abcde
Second call to Receive Line:
 char count = 6
 line = {0xa}abcde The line feed (0xa = ASCII 10 = <line feed>) is left over

from the first call to Receive Line.

a b c d e CR LF a b c d e CR LF

This is one reason – a very good one – to set flush before recv to True.

first Receive Line second Receive Line

Serial communication Page 4

v 1.2 August 28, 2008

IO : Serial Purge Buffer

For the buffer parameter:

0 = TX / output / transmit buffer
1 = RX / receive / input buffer
2 = both TX and RX buffers

COM1’s input buffer is purged of any characters before
the call to Receive line A.

The same could be achieved by setting Receive line
A’s flush before recv parameter to True. Purge
Buffer is usually used to flush a port’s input and/or
output buffers from any point in an investigation, not
just before a call to send or receive.

TCP/IP communication Page 1

v 1.4 March 2, 2011

TCP/IP communication

TCP/IP (Transmission Control Protocol/Internet Protocol) is a suite of communications

protocols used to connect computers on a network.

Sherlock implements TCP/IP with a server/client model. In this model, a server makes one of its

ports available to send and receive data, and a client communicates to the server through this port.

The client must know the IP Address or name of the server, and the port number that the server

has made available for communication. Sherlock can act as a TCP/IP server or client, or both

within the same investigation.

Selecting TCP/IP

From Sherlock’s main menu, select Options � IO.

In the IO configuration dialog, select Tcp/Ip from the list

of options

TCP/IP communication Page 2

v 1.4 March 2, 2011

Sherlock as a server

As a server, Sherlock makes one of the ports on its host computer available for communications.

Sherlock sends data to this port to be read by a client, and reads data sent to this port by a client.

1. Select Server as the mode

2. Enter the number of the port to use for communication.

3. Click the Add button to add the connection to the list. (Note that the port number is

automatically incremented when you click the Add button.)

1

2

3

TCP/IP communication Page 3

v 1.4 March 2, 2011

Sherlock as a client

As a client, Sherlock reads data from and sends data to a server’s port.

1. Select Client as the mode

2. Enter the name or IP Address of the server computer with which Sherlock will

communicate. (By default, Sherlock’s host computer name is shown as the Hostname /

IP; you will need to change this.)

3. Enter the port number on the server computer that will be used for communication.

4. Click the Add button to add the connection to the list. (Note that the port number is

automatically incremented when you click the Add button.)

1

4

2 3

TCP/IP communication Page 4

v 1.4 March 2, 2011

Instructions

Sherlock provides five TCP/IP communication instructions, available in the Instructions IO :

Tcp/Ip folder. All instructions can be invoked by a Sherlock server or client.

• Receive Buffer: Receive a specified number of ASCII characters sent from another

application; no termination character is required. If more than the specified number of

characters is sent by the other application, the extra characters are buffered; they will be the

first characters read the next time the instruction is invoked.

• Receive Byte Array: Receive a specified number of bytes (integer numbers) and save them

to an array; no termination character is required or expected. Positive values are truncated to

the range 0 thru 255: 256 is set to 0; 257 is set to 1; etc. Negative values are converted to

positive: -1 is set to 255; -2 is set to 254; etc.

• Receive Line: Receive an unspecified number of ASCII characters sent from another

application; a specific character must terminate the string. The default termination character

is ASCII 10, the line feed character. You can change this to any single character.

• Send Byte Array: Post an array of bytes (integer numbers) to the selected port for immediate

transmission. Positive values are truncated to the range 0 thru 255: 256 is set to 0; 257 is set

to 1; etc. Negative values are converted to positive: -1 is set to 255; -2 is set to 254; etc.

• Send Line: Post a string of ASCII characters with a termination character to the selected port

for immediate transmission. The application that receives the line looks for the termination

character to determine the completion of the transmission.

Examples

Receive Buffer

The Sherlock TCP/IP client waits up to 10 seconds

(10,000 milliseconds) to receive 32 characters from

port 1024 on the server computer named VA40-

S2202210.

If 32 characters are received within 10 seconds, result

returns True, and the characters are available in text.

If the instruction does not receive 32 characters within

10 seconds, result returns False, and bytes recvd

returns 0. Any bytes received before the timeout are

not available in text.

For the connection handle , the

TCP/IP client connection definition was

selected.

TCP/IP communication Page 5

v 1.4 March 2, 2011

Receive Byte Array

The Sherlock TCP/IP client waits up to 5 seconds

(5,000 milliseconds) to receive an array of 10 bytes

from port 1024 on the server computer named VA40-

S2202005.

If an array of 10 bytes is received within 5 seconds,

result returns True; the numbers are available in

bytes; and the number of bytes received is available

in bytes recvd.

If the instruction does not receive an array of 10 bytes

within 5 seconds, result returns False; bytes is

empty; and bytes recvd returns 0.

Receive Line

The Sherlock TCP/IP client waits up to 5 seconds

(5000 milliseconds) to receive a string of characters

terminated with a line feed character (ASCII decimal

10) from port 1024 on the server computer named

VA40-S2202210.

If a line feed termination character is received within 5

seconds, result returns True; incomplete returns

False; the received characters, including the line feed

character, are available in text; and bytes recvd

returns the number of characters, including the line

feed character. For example, if the server sends the

line “ABC123\n”, text will contain ABC123{0xd} and

bytes recvd will contain 7. (0xd is the hexadecimal

representation of decimal 10. The braces {} denote

that it is an ASCII value, not the three characters ‘0,’

‘x’ and ‘d.’)

If a line feed character is not received within 5

seconds, but other characters are, the instruction times

out, result returns True; incomplete returns True;

and bytes recvd returns the number of characters

received. The characters received before the timeout

are available in text.

If absolutely no characters are received within 5

seconds, including a line feed character, result returns

False; incomplete returns True; bytes recvd returns

0; and text is empty.

TCP/IP communication Page 6

v 1.4 March 2, 2011

For the connection handle , the

TCP/IP client connection definition was

selected.

Send Line

The Sherlock TCP/IP server sends the string

“Grommet width: [varDistance]” to port 1024.

[varDistance] is replaced with the value of the

variable varDistance. The string is terminated with

“\n”, the ASCII line feed character.

If no application is listening to the specified port

when the instruction is called, result returns False,

and bytes sent returns 0.

For the connection handle , the TCP/IP

server connection definition was selected.

 Within a single Sherlock investigation, multiple servers and clients can be defined

and active at the same time. However, a Sherlock server can be connected to only a single client

at a time.

 The Tcp/Ip server must be available when the client is created or initialized, or the client

will generate a “failed connection” error. This is true of all Tcp/Ip clients, not just those in

Sherlock investigations. For example, if you try to connect to a non-existent server from

Hyperterminal, Hyperterminal displays a message box with the error “Unable to connect to

192.168.0.100 port 1024.”

In Sherlock, as soon as you create the server in the Options � IO � Tcp/Ip dialog,or load an

investigation that includes a server specification, the server is available to be connected to a

client.

	Introduction
	Some image basics

	Interface
	Image Window
	ROIs, Preprocessors and Algorithms
	ROIs
	Preprocessors
	Algorithms
	ROI position and properties
	ROI Tolerance

	Program, Readings and Variables
	Instructions
	Monitor and Reporter
	Debugging
	Landmarks and alignment
	Calibration
	Calibration using a grid
	JavaScript
	Color classifiers
	Color presence
	Color spot meter
	Color mapping
	Color Correction
	Security
	Program switching
	Concurrent scripts
	Modbus
	Serial communication
	TCP/IP communication

