

Sherlock 7 Technical Resource

Teledyne DALSA IPD

www.teledynedalsa.com/ipd 978.670.2002 (U.S.A.)

Document Revision: August 9, 2012

Remote Access from a

Custom Interface

Remote Access Page 1

v2.1 August 9, 2012

Although a Sherlock 7 investigation can be run directly from the Sherlock GUI, it is often desirable, and

sometimes necessary, to hide the Sherlock GUI behind a custom interface. Separate documents explain how

to create custom interface applications:

Developing a VB 6 interface for Sherlock 7.ppt

Developing a VB 2005 interface for Sherlock 7.ppt
Developing a VC# 2005 interface for Sherlock 7.ppt.

(The instructions in these documents can be adapted for Visual C++ 6.0, Visual C# 6.0 and Visual C++

2005.)

These documents assume that the interface application is running on the same computer as the Sherlock

investigation. However, it is possible for an interface application on one computer (the client) to launch and

control one or more Sherlock investigations on different computers (the servers).

Requirements

The tools for remote access to a Sherlock 7 investigation were first released with Sherlock 7.1.1.0. Earlier

versions of Sherlock 7 do not support remote access.

The same release of Sherlock must be installed on both the client and the server. The client does not have to

be licensed to run Sherlock.

Sherlock investigation

You do not have to modify in any way a Sherlock investigation that will be remotely accessed from an

interface application running on a client; develop the investigation as you would if it and the interface

application were going to run on the same computer.

Client running the interface

application (VB, VC++, or VC#)

Servers running the Sherlock

investigations

Remote Access Page 2

v2.1 August 9, 2012

Interface application

An interface application running on a client is virtually the same as one running on the server with the

Sherlock investigation. The only necessary modification is the addition of a call to connect to the server.

This call is a method of the IpeEngCtrl object:
.Connect(strServer, nPort)

where strServer is a string specifying the name or internet protocol address (IPA) of the server, and nPort is

the port number on the server through which the two computers will communicate (5100 by default).

IpeServer

On the server, you must launch IpeServer before invoking the .Connect method on the client. IpeServer

can be found in the <Sherlock>\bin directory.

Code examples

Examples are written in Visual Basic 2005, but they are easily ported to the other Visual Studio 6 and Visual

Studio 2005 languages. These are not complete examples; they show only how to set up a connection to a

server running Sherlock.

The New() routine is a good place to connect to the server.

Dim WithEvents hSherlock As IpeEngCtrl.Engine

Dim nErr As IpeEngCtrlLib.I_ENG_ERROR

Dim SherlockType As Type

Public Sub New()

 ' This call is required by the Windows Form Designer.

 InitializeComponent()

 ' Add any initialization after the InitializeComponent() call.

 SherlockType = Type.GetTypeFromProgID("IpeEngCtrl.Engine")

 'Create an instance of the Sherlock object

 hSherlock = Activator.CreateInstance(SherlockType)

 If Not (hSherlock Is Nothing) Then

 ' Connect to the server by IPA

 nErr = hSherlock.Connect("192.168.10.121", 5100)

' You can also connect to the server by name

 ' nErr = hSherlock.Connect("NS-550025", 5100)

 If Not (nErr = IpeEngCtrl.I_ENG_ERROR.I_OK) Then

 MsgBox("Error connecting to server.", MsgBoxStyle.Critical, "Error")

 Me.Close()

 End If

'Initialize the Sherlock engine

 nErr = hSherlock.EngInitialize()

 Else

 MsgBox("Error creating Sherlock object.", MsgBoxStyle.Critical, "Error")

 Me.Close()

 End

 End If

 ' Load the investigation from the server’s C drive

 nErr = hSherlock.InvLoad("C:\MyApps\Bottle top.ivs")

.

.

Remote Access Page 3

v2.1 August 9, 2012

.

End Sub

Connecting to multiple servers

To connect to multiple servers from one client interface, you must create a separate instance of the Sherlock

object for each server.

Dim WithEvents hSherlock_A As IpeEngCtrl.Engine

Dim WithEvents hSherlock_B As IpeEngCtrl.Engine

Public Sub New()

.

.

.

 'Create two instances of the Sherlock object

 hSherlock_A = Activator.CreateInstance(SherlockType)

 hSherlock_B = Activator.CreateInstance(SherlockType)

.

.

.

 nErr = hSherlock_A.Connect("192.168.10.120", 5100)

 nErr = hSherlock_B.Connect("192.168.10.132", 5100)

.

.

.

 nErr = hSherlock_A.InvLoad("C:\LineA\Cap placement.ivs")

 nErr = hSherlock_B.InvLoad("D:\Labeler\Label position.ivs")

.

.

.

End Sub()

Image display

Compression
A client interface application can connect to and display image windows in a server investigation just as

when the interface application and the investigation are on the same computer. However, transmitting

images across a network consumes considerable bandwidth. Since an interface application pauses upon

every call to the IpeEngCtrl RunCompleted() method (which is automatically invoked at the end of every

iteration through the investigation) until all the requested data and images have been transferred, an interface

that displays every image acquired into an image window will not run at the speed of the investigation

running by itself.

To decrease the amount of data being transmitted, you can compress the contents of Sherlock’s image

windows on the server before they are transmitted across the network, and decompress them on the client

before they are displayed. This is achieved by invoking the IpeEngCtrl Set Remote Display Compression

method:

 .SetRemDispCompression(bEnable, nCompression)

where nCompression is a number from 0 to 100

0 : images not transmitted

1 : high compression, worst image quality

…

Remote Access Page 4

v2.1 August 9, 2012

100 : no compression, best image quality

and bEnable is a Boolean value. If bEnable is True, compression is performed; if it is False, compression is

not performed.
 nErr = hSherlock.SetRemDispCompression(True, 50)

Note that only the contents of image windows that are connected to display controls on the interface

application are transmitted. If the Sherlock investigation has image windows imgA, imgB, and imgC, but

only imgB is connected to a display control on the interface application, only the contents of imgB are

transmitted.

A complementary method returns the compression settings:
 .GetRemDispCompression(bEnable, nCompression)

If compression is enabled, True is returned in bEnable; if compression is not enabled, False is returned.

The current compression factor is returned in nCompression, whether or not compression is enabled.
Dim bEnable as Boolean

 Dim nCompression as Integer

nErr = hSherlock.GetRemDispCompression(bEnable, nCompression)

Graphics
To further decrease image transmission time, you can disable transmission of an image window’s overlay

graphics (ROIs and annotations) by invoking the IpeEngCtrl Set Remote Display Graphics method:
 .SoSetRemDispGraphics(strImageWindow, bEnable)

where strImageWindow is a string specifying the name of the image window, and bEnable is a Boolean

value. If bEnable is True, the graphics are transmitted with the image; if it is False, the graphics are not

transmitted.
nErr = hSherlock.SoSetRemDispGraphics("imgA", True)

 nErr = hSherlock.SoSetRemDispGraphics("imgD", False)

A complementary method returns the graphics setting:
.SoGetRemDispGraphics(strImageWindow, bEnable)

where strImageWindow is a string specifying the name of the image window, and bEnable is a Boolean in

which the current setting for the image window is returned.
Dim bEnable as Boolean

nErr = hSherlock.SoGetRemDispGraphics("imgB", bEnable)

Acquiring without processing
To acquire and display images without processing them, call the method

.SoLiveSet(strImageWindow, bEnable)

where strImageWindow is a string specifying the name of the image window, and bEnable is a Boolean

value. If bEnable is True, live acquisition without processing is started; if it is False, live acquisition is

halted.
nErr = hSherlock.SoLiveSet("imgA", True)

 In Visual Basic 6, the Boolean parameters in the methods described above are passed and received

as Long values, where 0 = False and 1 = True.

