
Developing a Visual Basic .NET interface

for a Sherlock 7 investigation

Overview

Although a Sherlock 7 investigation can be run from

the Sherlock IDE, it is often desirable, and sometimes

necessary, to hide the Sherlock GUI behind a custom

interface. This tutorial walks you through the steps of

creating a Visual Basic .NET front end for a Sherlock 7 creating a Visual Basic .NET front end for a Sherlock 7

investigation.

Requirements

To follow the steps in this tutorial, you will need

• Sherlock 7

• Microsoft Visual Basic .NET 2005 or newer1,2

• Familiarity with Visual Basic .NET• Familiarity with Visual Basic .NET

1A separate tutorial explains how to create an interface using Visual Basic 6
2 No claim is made for the applicability of this tutorial to earlier versions of Visual

Basic .NET (i.e., 2002 and 2003)

Five steps

The five steps in creating a Visual Basic .NET (from here

on, VB) front end for a Sherlock 7 investigation:

1. Add a reference to the Sherlock runtime engine

2. Declare and create a Sherlock object2. Declare and create a Sherlock object

3. Set up Sherlock display (optional, but common)

4. Use the Sherlock object to load, execute, control

and communicate with an investigation

5. Destroy the Sherlock object

Add the Sherlock reference

Open a new VB Windows Application project. From the

project’s main menu, select Project ���� Add Reference... On

the Add Reference dialog, click the COM tab, select

IpeEngCtrl 1.0 Type Library, and click the OK button.

Create the Sherlock object

The Sherlock object must be created and initialized before

you call any of its methods.

Public Class Form1

Private WithEvents hSherlock As IpeEngCtrlLib.Engine

Dim nErr As IpeEngCtrlLib.I_ENG_ERROR

Public Sub New()

InitializeComponent()

hSherlock = New IpeEngCtrlLib.Engine

nErr = hSherlock.EngInitialize()

End Sub

Load an investigation

The Form_Load subroutine is usually a good place to load the

investigation you want to run.

Private Sub Form_Load(ByVal...SystemEventArgs) Handles MyBase.Load

nErr = hSherlock.InvLoad("Widget.ivs")nErr = hSherlock.InvLoad("Widget.ivs")

End Sub

If you have several investigations that can use the same VB

front end (for example, different but similar parts to be

analyzed), the investigation name can be contained in a

variable that is filled based on user input or some other

mechanism.

Autocomplete and

pop-up tips

As you type Sherlock object code, autocomplete displays

a list of the matching methods…

…and pop-up tips show you the required parameters

for the methods.
Name of the Sherlock Boolean
variable to read, as a String

Returned value of the
variable, as a Boolean

Error return of the
function call

To display an image window on the VB form, you must add an IpeDspCtrl display

control. On the VB Toolbox, open the Components tab. From the VB project’s main
menu, select Tools ���� Choose Toolbox Items… On the Choose Toolbox Items dialog,

click the COM Components tab, select IpeDspCtrl Control, and click the OK button.
The IpeDspCtrl tool is added to the Components tab.

Add the IpeDspCtrl control

Add display controls

You can add as many display controls to your VB form as you

need. Their default names are AxIpeDspCtrl1, AxIpeDspCtrl2,

etc., but you can rename them.

Connect a display

to an image window

To display an image window, you must connect it to a display

control. You do not have to display any image windows, but it

is common to display at least one.

Private Sub Form_Load()

nErr = hSherlock.InvLoad("Widget.ivs")nErr = hSherlock.InvLoad("Widget.ivs")

' Connect the display object to Sherlock

AxIpeDspCtrl1.ConnectEngine(hSherlock.GetEngineObj())

' Connect the display object to a Sherlock image window

AxIpeDspCtrl1.ConnectImgWindow("imgA")

End Sub

Run the investigation

Commands to run the investigation are usually executed in

response to command button or menu item events.

Private Sub btnRunOnce_Click(ByVal...System.EventArgs)

Handles btnRunOnce.Click

' Run the investigation once' Run the investigation once

nErr = hSherlock.InvModeSet(IpeEngCtrlLib.I_MODE.I_EXE_MODE_ONCE)

End Sub

Private Sub btnRunContinuous_Click (ByVal...System.EventArgs)

Handles btnRunContinuous.Click

' Run the investigation continuously

nErr = hSherlock.InvModeSet(IpeEngCtrlLib.I_MODE.I_EXE_MODE_CONT)

End Sub

Run the investigation

Private Sub btnHalt_Click(ByVal...System.EventArgs) Handles btnHalt.Click

' Halt a running investigation after the current iteration

nErr = hSherlock.InvModeSet

(IpeEngCtrlLib.I_MODE.I_EXE_MODE_HALT_AFTER_ITERATION)

End SubEnd Sub

Private Sub btnAbort_Click(ByVal...System.EventArgs) Handles btnAbort.Click

' Abort a running investigation

nErr = hSherlock.InvModeSet(IpeEngCtrlLib.I_MODE.I_EXE_MODE_HALT)

End Sub

RunCompleted

At the end of every iteration of the investigation, the
RunCompleted subroutine is automatically called.

RunCompleted

Add code to this subroutine to read Sherlock algorithm

readings, read and write Sherlock variables, update the VB

form, etc.

Private Sub hSherlock_RunCompleted() Handles Sherlock.RunCompletedPrivate Sub hSherlock_RunCompleted() Handles Sherlock.RunCompleted

Dim dblCount as Double, dblAreas() as Double

nErr = hSherlock.VarGetDouble("varCount", dblCount)

labelBlobCount.Text = dblCount

nErr = hSherlock.VarGetDoubleArray("varAreas", dblAreas)

…

End Sub

Destroy the Sherlock object

It is “best practice” to destroy the Sherlock object before the

VB application terminates.

Protected Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing ThenIf disposing Then

If Not (hSherlock Is Nothing) Then

hSherlock.EngTerminate()

hSherlock = Nothing

End If

If Not (components Is Nothing) Then

components.Dispose()

End If

MyBase.Dispose(disposing)

End If

End Sub

Things to Note

1. Every call to the Sherlock object function generates a return

value. Best practice is to check this value:

nErr = hSherlock. VarGetDouble("varCount", dblCount)

If Not (nErr = IpeEngCtrlLib.I_ENG_ERROR.I_OK) Then

' Error-handling code

End If End If

2. To resize the contents of an image window to fill a display

control that is either larger or smaller than the image

window, call the method AxIpeDspCtrl.SetZoom(0).

